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Abstract

Various dynamic content caching approaches have been
proposed to address the performance and scalability prob-
lems faced by many Web sites that utilize dynamic content
generation applications. Proxy-based caching approaches
store content at various locations outside the site infras-
tructure and can improve Web site performance by reduc-
ing content generation delays, firewall processing delays,
and bandwidth requirements. However, existing proxy-
based caching approaches either (a) cache at the page level,
which does not guarantee that correct pages are served and
provides very limited reusability, or (b) cache at the frag-
ment level, which requires the use of pre-defined page lay-
outs. To address these issues, several back end caching
approaches have been proposed, including query result
caching and fragment level caching. While back end ap-
proaches guarantee the correctness of results and offer the
advantages of fine-grained caching, they neither address
firewall delays nor reduce bandwidth requirements.

In this paper, we present an approach and an implemen-
tation of a dynamic proxy caching technique which com-
bines the benefits of both proxy-based and back end caching
approaches, yet does not suffer from their above-mentioned
limitations. Our analysis of the performance of our ap-
proach indicates that it is capable of providing significant
reductions in bandwidth. Experimental results from an im-
plementation of this approach indicate that our technique
is capable of providing order-of-magnitude reductions in
bandwidth.

1. Introduction

To provide visitors with dynamic, interactive, and per-
sonalized experiences, web sites are increasingly relying on
dynamic content generation applications, which build Web
pages on the fly based on the run-time state of the Web
site and the user session on the site. However, these ben-
efits come at a cost – each request for a dynamic page re-
quires computation as well as communication across multi-
ple components inside the server-side infrastructure.
Caching is a widely-used approach to mitigate the per-

formance degradations due to WWW content distribution
and delivery. Here, content generated for one user is saved,
and used to serve subsequent requests for the same content.

In general, there are two basic approaches: back-end
caching and proxy-based caching. Back-end caches typi-
cally reside within a site, and cache at the granularity of a
fragment, i.e., a portion of a Web page. Back-end caching
solutions do not rely on URLs to identify cached content
(as is the case with proxy-based solutions), and thus guar-
antee correctness of the contents in a generated page. How-
ever, this type of solution does not reduce the bandwidth
needed to connect to the server to obtain content. In con-
trast, proxy-based caches typically store content at the gran-
ularity of full web pages, and reside outside the site’s infras-
tructure. This type of caching can provide significant band-
width savings, both in the site’s infrastructure as well as on
the WWW infrastructure; however, it suffers from two ma-
jor drawbacks: (1) full-page dynamically generated HMTL
files generally have little reusability, leading to low hit ra-
tios; and (2) cache hits are determined based on a request’s
URL, which does not necessarily uniquely identify the page
content, leading to the possibility of serving incorrect pages
from cache.

In this paper, we propose an approach for caching gran-
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ular proxy-based dynamic content that combines the ben-
efits of both approaches, while suffering the drawbacks of
neither. The remainder of this paper is organized as follows.
In Section 2 we provide a brief overview of dynamic content
generation, and in Section 3 we discuss existing approaches
to dynamic content caching. In Section 4 we describe our
approach for caching granular proxy-based dynamic con-
tent. In Sections 5 we present an analysis of our approach,
and in Section 6 we present experimental results which val-
idate our analytical findings. We conclude in Section 7.

2 Dynamic Content Generation:
Background and Preliminaries

Web sites are increasingly using dynamic content gener-
ation applications to serve content. At a high level, dynamic
content generation works as follows. A user request maps
to an invocation of a script. This script executes the nec-
essary logic to generate the requested page, which involves
contacting various resources (e.g., database systems) to re-
trieve, process, and format the requested content into a user
deliverable HTML page.

Consider a Web site that caters to both registered users
(i.e., users who have set up an account with the site) and
non-registered users (i.e., occasional visitors). Suppose the
site allows registered users to create a user profile, which
specifies the user’s content preferences and allows him to
control the layout of the page. Here, pages contain a num-
ber of elements or fragments. For each request, the Web site
lays out the fragments on a page in a specific default con-
figuration for non-registered, and based on a user profile for
registered users.

In general, an HTML page consists of two distinct com-
ponents: content and layout. Content refers to the actual
information displayed and layout refers to a set of markup
tags that define the presentation (e.g., where the content ap-
pears on the page). Loosely speaking, the different frag-
ments on a page represent content, whereas the layout deter-
mines how the fragments are presented on the user viewable
page. Here, the final presentation of the page is partially
determined by the order in which the markup tags appear in
the page, as well as the actual markup tags themselves.

The foregoing discussion highlights two important char-
acteristics of dynamically generated content. First, not only
is the content of many sites dynamic, but also the page lay-
out. Second, and most important, the same request URL can
produce different content and/or different layouts.

There are several potential bottlenecks involved in serv-
ing dynamic content. These bottlenecks can be classified
into two broad areas: (a) network latency, i.e., delays on the
network between the user and the Web site, and (b) server
latency, i.e., delays at the Web site itself. Delays at the
Web server can be further classified into two categories: (1)

session processing delays, and (2) dynamic content gener-
ation delays. Web server session processing delays occur
as a result of the numerous devices (e.g., routers, firewalls,
switches) through which requests must pass before reaching
the Web server.

Content generation delays occur as a result of the work
required to generate a Web page. Due to the complexity
of modern Web site application layers, sites are increas-
ingly employing a layered or n-tier application architecture,
which partitions the application into multiple layers. For
instance, the presentation layer is responsible for the dis-
play of information to users and includes formatting and
transformation tasks. Presentation layer tasks are typically
handled by dynamic scripts (e.g., ASP, JSP). The business
logic layer is responsible for executing the business logic,
and is typically implemented using component technologies
such as Enterprise Java Beans (EJB). The data access layer
is responsible for enabling connectivity to back-end system
resources (e.g., DBMSs), and is typically provided by stan-
dard interfaces such as JDBC or ODBC.

This process can incur several types of delays, includ-
ing computational delays (e.g., query processing). inter-
action bottlenecks (e.g., waiting for a DBMS connection),
cross-tier communication (e.g., TCP/IP stack traversal), ob-
ject creation and destruction, and content conversion (e.g.,
XML-to-HTML transformations). Each of these content
generation delays contributes to the end-to-end latency in
delivering a Web page. As user load on a site increases,
the site infrastructure is often unable to serve requests fast
enough. The end result is increased response times for end
users.

3 Existing Approaches and Their Limita-
tions

A widely used existing approach to address WWW
performance problems is based on the notion of content
caching. These caching approaches can be classified as
proxy-based and back end caching solutions.

Proxy-based caching approaches are based on caching
content outside the site’s infrastructure. When used to cache
dynamically generated content, proxy-based approaches
typically employ page-level caching, where the proxy
caches full page outputs of dynamic sites. This approach
has been considered in the literature, e.g., [11, 10], and
serves as the basis for a number of commercial solutions
as well. Some of these solutions operate in reverse proxy
mode (e.g., Inktomi’s Traffic Server [4]). Other solutions
are deployed in forward proxy mode (e.g., Content Deliv-
ery Networking (CDN) solutions offered by vendors such as
Akamai [1]), and are based largely on the fundamental body
of work that addresses distributed proxy caching, e.g., [15].
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In general, page-level caches can improve web site per-
formance by reducing (a) delays associated with generating
the content, (b) delays associated with packet filtering and
other firewall-related delays, and (c) the bandwidth required
to transmit the content from the back end application to the
proxy-based cache. However, this approach suffers from
two major drawbacks: (1) full-page dynamically generated
HMTL files generally have little reusability, leading to low
hit ratios; and (2) cache hits are determined based on a re-
quest’s URL, which does not necessarily uniquely identify
the page content, leading to the possibility of serving incor-
rect pages from cache.

An approach that attempts to address the issue of page
reusability is dynamic page assembly, an approach popu-
larized by Akamai [1] as part of the Edge Side Includes
(ESI) initiative [12]. This approach entails decomposing
each page into a number of fragments (specifically, sepa-
rate dynamic scripts) that are used to assemble the page at a
network cache when the page is requested. While dynamic
page assembly allows content to be cached at finer granu-
larities, it has two major limitations. First, this approach
requires that the page layouts be specified in advance. Sec-
ondly, dynamic page assembly cannot be used in the context
of pages with semantically interdependent fragments.

Back-end caches typically reside within the site in-
frastructure, and cache at the granularity of a fragment,
i.e., a portion of a Web page. This type of cache at-
tempts to reduce the computational and communication re-
sources required to build the page on the site, thus reduc-
ing server-side delays. Back-end caching approaches in-
clude various types of database caching (e.g., [8, 6]), as
well as presentation layer caching (e.g., [2]). Another
more general back-end caching approach is component level
caching [13], which caches arbitrary objects, addressing de-
lays due to computation as well as delays due to communi-
cation between different modules (available commercially
from Chutney Technologies [3]).

In addition to reducing server-side delays, back-end
caching solutions address the above-mentioned limitations
of proxy-based approaches: (1) they allow caching at finer
granularities and (2) they do not rely on URLs to identify
cached content, and thus guarantee correctness of the con-
tents in a generated page. However, this type of solution
does not reduce the bandwidth needed to connect to the
server to obtain content.

4 Dynamic Proxy-Based Caching Approach

In this section, we describe our proposed approach for
granular proxy-based caching of dynamic content, which
attempts to combine the above-mentioned benefits of proxy-
based and back-end caching approaches, without the limi-
tations.

Our objective is to deliver dynamic pages from proxy
caches. Any dynamic content caching system must account
for dynamic content and layout - in fact, the primary weak-
ness of existing proxy caching schemes arises from their in-
ability to map a URL to the appropriate content and layout.
To mitigate this weakness, our essential intuition may be
summarized as follows: We will route a request Ri through
a dynamic proxy, Di, to the site infrastructure. Upon reach-
ing the site infrastructure, Ri will cause the appropriate dy-
namic script to run. A back end module will observe the
running of this script and determine the layout of the page
to be generated. This layout, which will be much smaller
than the actual page output, will be routed to the proxy D i.
The proxy will fill in the content from its cache and route it
to the requestor.

There are two main components in our dynamic proxy
caching system, the Dynamic Proxy Cache (DPC) and the
Back End Monitor (BEM). The Dynamic Proxy Cache
(DPC) stores dynamic fragments outside the site infrastruc-
ture and assembles these fragments in response to user re-
quests. The BEM resides at the back end and generates the
layout for each request. This layout is passed back to the
DPC, which assembles the page that is returned to the re-
questing user.

The DPC can reside either (a) at the origin site (in a re-
verse proxy configuration), or (b) at the network edge (in a
forward proxy configuration). In the former case, the pri-
mary benefit is the reduction in the number of bytes trans-
ferred through the site infrastructure for each request. In the
latter case, the forward proxy configuration (similar to that
of present-day CDNs), the benefits are even greater – the
reduction in bytes transferred for each request is realized
not only within the site infrastructure, but also across the
Internet. This paper will focus on the reverse proxy case.

A prerequisite of our dynamic proxy caching system
is that the cacheable fragments be identified and marked.
Once the cacheable fragments are identified, each of the
corresponding code blocks in the script is tagged. Tagging
essentially means marking a code block as cacheable, an
initialization activity. This is done by inserting APIs around
the code block, enabling the output of the code block to be
cached at run-time. The tagging process assigns a unique
identifier to each cacheable fragment, along with the appro-
priate metadata (e.g., time-to-live).

At run-time, a user submits a request to the site. The ap-
plication logic in the script runs as usual, until a tagged code
block is encountered. When such a code block is encoun-
tered, a check is made to see whether the fragment produced
by that code block exists in the DPC. This is done by look-
ing up the fragmentID in the BEM. There are two general
cases possible:

1. The fragmentID is not in cache or is in cache but
invalid. In this case, an entry is inserted into the BEM
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for this fragment, the content is generated, and a SET
instruction is written to the page template. This in-
struction will insert the fragment into the DPC.

2. The fragmentID is in cache and is valid. In this case,
a GET instruction is written to the page template. This
instruction will retrieve the fragment from the DPC.

For the first request for a given page, none of the frag-
ments will be in cache, so the layout will consist of SET in-
structions, along with the generated content. For subsequent
requests, the cacheable fragments will likely be cached, as-
suming that they have not been invalidated. In this case, the
layout will consist mostly of GET instructions and hence
will be much smaller.

We now describe the BEM in more detail. The BEM has
two primary functions: (1) managing the cache for the DPC,
and (2) caching intermediate objects. We discuss the former
function, since the latter has been described elsewhere [13].

Managing the DPC cache is a critical function of the
BEM. This function is enabled by the cache directory, a
critical data structure contained in the BEM. The cache di-
rectory keeps track of the fragments in the DPC and their
respective metadata. The cache directory includes the fol-
lowing elements: fragmentID, a unique fragment identi-
fier (assigned during initialization), dpcKey, a unique frag-
ment identifer (assigned by the system), isValid, a flag to
indicate validity of fragment, and ttl, a time-to-live value
for the fragment.

The dpcKey is a unique integer identifier associated
with each fragment that serves as a common key for both
the BEM and the DPC. The use of such an integer key has
two benefits: (a) it reduces the tag size, and (b) it eliminates
the need for explicit communication between the BEM and
the DPC.

There are two basic ways in which fragments can be-
come invalid: (a) an invalidation policy determines that a
fragment is invalid, or (b) a replacement policy determines
that a fragment should be evicted from cache. In any case,
the fragment’s isValid flag will be set to FALSE to in-
dicate that it is no longer valid. When this occurs, the
dpcKey for the fragment is inserted at the end of a list of
available dpcKeys. This technique ensures that a subse-
quent request for the fragment will be generated and served
fresh.

5 Analytical Results

There are two types of benefits that accrue in our model:
(a) performance and scalability of the server side, and (b)
bandwidth savings. In this section, we briefly present the
results of our bandwidth savings analysis. Further details
can be found in [14]. Table 1 contains the notation to be
used throughout this section.

Symbol Description

E = fe1; e2; : : : ; emg set of fragments
C = fc1; c2; : : : ; cng set of pages
Ei = fej : ej 2 cig set of fragments corresponding

to page ci
sej average size of fragment ej (bytes)
g average size of tag (bytes)
f average size of header (bytes)
h hit ratio, i.e., fraction of fragments

found in cache
R total number of requests during

observation period

Table 1. Notation

In our analysis, we wish to compare the bandwidth sav-
ings for two cases: (a) with the dynamic proxy cache and (b)
without. For the purposes of this analysis, we model a given
Web application as a set of such pages C = fc1; c2; : : : ; cng.
Each page is created by running a script (as described
in Section 2), and the resulting page consists of a set of
fragments, drawn from the set of all possible fragments,
E = fe1; e2; : : : ; emg. We let Ei, Ei � E , be the set of
fragments corresponding to page c i. There exists a many-
to-many mapping between C and E , i.e., a page can have
many fragments and a fragment can be associated with
many pages. The average size of a fragment e j is denoted
by sej . Each page also has f bytes of header information
(e.g., HTTP headers) associated with it. We define expected
bytes served, B, as the average number of bytes served by
the Web site that is hosting the application during some time
interval.

We compute B based on the size of each response and
the number of times the page is accessed during the time
interval. The general form of B over a given time interval
is given by: �n

i=1Sci � ni(t), where ni(t) is the number
of times the page ci is accessed during the specified time
interval, and Sci is the size of the response corresponding
to page ci as delivered by the hosting site. ni(t) is given
by P(i)

R t2
t1

f(t)dt, where P(i) is the probability that page
ci is accessed for a given request and f(t) is the probabil-
ity density function (pdf) that describes the arrival rate of
requests. We assume that P(i) is governed by the Zipfian
distribution, which has been shown to describe Web page
requests with reasonable accuracy [9].

For the no cache case, the size of the response for page
ci, denoted as SNC

ci
, is given by �8ej2cisej + f , which is

the sum of the sizes of all the fragments on the page and the
header information. For the dynamic proxy cache case, the
size of the response for page ci, denoted as SCci , is given by
�8ej2ci [Xj [(h�g)+(1�h)(sej+2g)]+(1�Xj)(sej )+f ],
where Xj is an indicator variable denoting whether a frag-
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ment is cacheable. We have compared the expected bytes
served for the two cases using the baseline parameter val-
ues shown in Table 2.

Parameter Value

hit ratio (h) 0.8
fragment size (se) 1K bytes
number of fragments per page 4
number of pages 10
average size of header information (f ) 500 bytes
tag size (g) 10 bytes
cacheability factor 0.6
number of requests during interval (R) 1 million

Table 2. Baseline Parameter Settings for Anal-
ysis

Figure 1(a) (the curve labeled ’Analytical’) shows the re-

sults of the comparison of the ratio B
C

B
NC as fragment size

(se) is varied. As this figure shows, this ratio decreases as
fragment size increases. For small fragments sizes (e.g.,
less than 1 KB), the ratio exhibits a steep drop. This drop
can be explained as follows: For small fragment sizes, the
size of the tags is large with respect to the fragment size, de-
creasing the savings in bytes served for the dynamic proxy
cache. This is why the ratio is greater than 1 as the frag-
ment size approaches 0. As these results indicate, our dy-
namic proxy caching technique has a greater impact for
larger fragment sizes (e.g., greater than 1 KB).

We now examine the sensitivity of expected bytes served
with respect to the hit ratio (h), while holding all other pa-
rameter values constant. Figure 1(b) (the curve labeled ’An-
alytical’) shows the percentage savings in expected bytes
served as the hit ratio is varied from 0 to 1. In the case where
no fragments are served from cache (i.e., h = 0), we see that
the savings is negative. In other words, there is a cost to use
the dynamic proxy cache in this case because it adds tags to
the responses, thereby increasing the response sizes. This
effect holds up to the point where h = 0:01. Thus, as long
as 1% or more fragments are served from cache, using the
dynamic proxy cache will reduce the expected bytes served.

Figure 2(a) (the curve labeled ’Analytical’) shows a
comparison of the percentage savings in expected bytes
served as the cacheability factor is varied. The cacheability
factor is the percentage of all fragments that are cacheable
for a given application. As expected, this savings increases
as the cacheability ratio increases.

6 Experimental Results

We have implemented our dynamic proxy caching sys-
tem. Both the DPC and the BEM are written in C++. The
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DPC is built on top of Microsoft’s ISA Server [5] so that we
can take advantage of ISA Server’s proxy caching features.
The page assembly code is implemented as an ISAPI filter
that runs within ISA Server.

We ran a set of experiments in an attempt to validate our
analytical results. Our experiments were run in a test envi-
ronment that attempts to simulate the conditions described
in Section 5. Thus, we have incorporated the parameter set-
tings in Table 2. The test site is an ASP-based site which
retrieves content from a site content repository.

The basic test configuration consists of a Web server
(Microsoft IIS), a site content repository (Oracle 8.1.6), a
firewall/proxy cache (ISA Server), and a cluster of clients.
The client machines run WebLoad, which sends requests
to the Web server. For the dynamic proxy cache case, the
DPC runs on the ISA Server machine, and the BEM runs
on the IIS machine. Communication between all software
modules is via sockets over a local area network. Figure 3
shows the test configuration. The number of bytes served
is obtained by measuring bandwidth using the Sniffer net-
work monitoring tool [7]. More precisely, the bandwidth
measurement is taken between the Origin Site machine and
the External machine in Figure 3.

Figure 1(a) (the curve labeled ’Experimental’) shows

the ratio B
C

B
NC as fragment size is varied. As this figure

shows, our experimental results follow our analytical re-
sults closely. Interestingly, the analytical curve falls below
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Figure 1. Analytical and Experimental Results

the experimental curve. This difference can be explained by
the network protocol headers (e.g., TCP/IP headers) that are
included in the responses. However, we do not account for
these headers in our analytical expressions. Thus, for every
response, there is some network protocol messaging over-
head. The smaller the response, the greater this overhead is.
This is why the difference between the analytical and exper-
imental curves is higher for smaller fragment sizes than it is
for larger fragment sizes.

As in Section 5, we now examine the sensitivity of ex-
pected bytes served to changes in hit ratio. Figure 1(b)
shows the results of this analyis. Here again, our experi-
mental results closely follow our experimental results.

Figure 2 shows a comparison of the sensitivity of the
percentage savings in expected bytes served to changes in
cacheability. Once again, the experimental results follow
our analytical results closely.

7 Conclusion

In this paper, we have proposed an approach for granu-
lar, proxy-based caching of dynamic content. The novelty
in our approach is that it allows both the content and layout
of Web pages to be dynamic, a critical requirement for mod-
ern Web applications. Our approach combines the benefits
of existing proxy-based and back end caching techniques,
without their respective limitations. We have presented the
results of an analytical evaluation of our proposed system,
which indicates that it is capable of providing significant
reductions in bandwidth on the site infrastructure. Further-
more, we have described an implementation of our system
and presented experimental results, which demonstrate that
our system is capable of providing order-of-magnitude re-
ductions in bandwidth requirements.
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