
CODD: A Dataless Approach to Big Data Testing

Ashoke S. Jayant R. Haritsa
Database Systems Lab, SERC/CSA

Indian Institute of Science, Bangalore

1. INTRODUCTION
The construction and development of the so-called Big Data sys-

tems has occupied centerstage in the data management community
in recent years. However, there has been comparatively little atten-
tion paid to the testing of such systems, an essential pre-requisite
for successful deployment. This is surprising given that traditional
testing techniques, which typically involve construction of repre-
sentative databases and regression query suites, are completely im-
practical at Big Data scale – simply due to the time and space
overheads involved in their execution. For instance, consider the
situation where a database engineer wishes to evaluate the query
optimizer’s behavior on a futuristic Big Data setup featuring “yot-
tabyte” (1024 bytes) sized relational tables. Obviously, just gener-
ating this data, let alone storing it, is practically infeasible even on
the best of systems.

Motivated by the above lacuna, our lab has developed a graphical
tool called CODD (Constructing Dataless Databases), which takes
a first step towards the effective testing of Big Data deployments,
by implementing a new metaphor of “data-less databases” [2].
Specifically, CODD implements a unified visual interface through
which database environments with the desired meta-data charac-
teristics can be efficiently simulated without persistently generat-
ing and/or storing their contents. In addition, these databases will
appear to be hosted on the desired computational platforms. As
a case in point, the above-mentioned yottabyte scenario operating
on a massively parallel cluster can be easily modeled within a few
minutes on a vanilla laptop.

In conjunction with meta-data construction, CODD incorporates
a graph-based model of the structures and dependencies of the
metadata entities. This model is leveraged to implement a topo-
logical sort-based checking algorithm to ensure that the metadata
values input by the user are both legal (valid range, correct type)
and consistent (compatible with the other meta-data values).

Another unique feature of CODD is its support for automated
scaling of meta-data instances to suit not only space targets (e.g.
boosting a database from 100 GB to 100 TB), but more potently,
time targets (e.g. rework the metadata such that the overall execu-
tion time of a test query workload is multiplied by a user-specified
factor). The latter feature is implemented by modeling optimizer

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

plan costs for the query workload as algebraic functions of the scal-
ing factors of the relations featuring in the queries. Subsequently,
an inverse minimization function is computed to determine the fac-
tor values expected to produce the desired time scaling.

While Big Data has many different facets, including variety, ve-
locity, and volume, CODD currently addresses only the volume as-
pect. Notwithstanding this limited scope, it has been successfully
used in the following deployment scenarios:

• In conjunction with the Picasso tool [5], to graphically sim-
ulate and visualize query optimizer behavior in Big Data en-
vironments.

• To cheaply and proactively identify design bugs that surface
at Big Data scale in database engines.

• To verify that the attractive worst-case performance guaran-
tees provided by the “plan bouquet” query processing tech-
nique [1], are achievable even at Big Data scale.

On the implementation front, CODD is completely written in
Java, running to over 50K lines of code. It is operational on a
rich set of industrial-strength optimizers, including IBM DB2, Mi-
crosoft SQL Server, Oracle, HP SQL/MX and PostgreSQL. CODD
is freely downloadable [6], and is currently in use at industrial and
academic institutions worldwide.

Demo Features. The demo visually and interactively showcases
the various features of CODD on industrial-strength database en-
gines. The highlights of the presentation, which are detailed in
Section 4, include: (a) Metadata construction to simulate Big Data
databases; (b) Time-based scaling of metadata; (c) Characterizing
query optimizer behavior on Big Data databases; (d) Demonstra-
tion of design bugs surfacing at Big Data scale; and (e) Verifying
that plan bouquet’s good robustness extends to Big Data scenarios.
A complete video of CODD in operation is available at the project
website [6].

2. THE CODD METADATA PROCESSOR
In this section, we provide an overview of CODD’s architecture

and main features – the full technical details are available in [2].
Database systems maintain a large corpus of meta-data, covering

various aspects of their operation. The current CODD prototype
primarily supports the construction of statistical metadata related
to query optimization, including the following entities: (a) Re-
lation statistics: (cardinality, row length, number of disk blocks,
etc.,); (b) Attribute statistics (column width, fraction of nulls, his-
togram bounds, number of distinct values, etc.,); (c) Index statis-
tics (cardinality, leaf blocks, cluster factor, etc.,); and (d) System
parameters (number of CPUs, CPU speed, sort heap size, etc.,).

Figure 1: Metadata Construction Interface

2.1 Metadata Construction
Given a database schema with empty content, CODD simulates

the desired metadata configuration by asking the user to input, in
sequence, the relation statistics for all the tables in the schema,
followed by the column and index statistics for each attribute in
each relation. The entry of this information is through a convenient
graphical interface, a screenshot of which is shown in Figure 1. To
push these values into the database catalogs, CODD leverages the
native techniques provided by the underlying engine for statistics
updates, but adds convenience by (a) packaging them in a largely
vendor-neutral interface, and (b) camouflaging the details through
dynamically created SQL procedures.

For easily creating the histograms corresponding to column dis-
tributions, CODD provides a graphical editing mode wherein the
individual bucket geometries can be modified using the mouse, sub-
ject to the histogram types permitted by the underlying engine – for
instance, an equi-depth histogram, as shown in Figure 1. Moreover,
CODD also offers the user a pre-defined menu of classical distribu-
tions (e.g. Uniform, Zipf, Normal, etc.), and choosing any of these
results in the appropriate histogram being automatically created.
Subsequently, the user can make local variations on this base his-
togram, if so desired.

2.2 Metadata Validation
Since CODD facilitates users to directly enter meta-data, we

need to ensure that the input information is both legal (valid type
and range) and consistent (compatible with other metadata val-
ues). The validation process involves the construction of a directed
acyclic constraint graph, which concisely represents all the meta-
data entities along with their structural and consistency constraints.
Specifically, each node in the graph represents a single metadata en-

tity, annotated with legality constraints, and the currently assigned
values to the entity which must adhere to these constraints. The
directed edges between nodes represent the statistical value depen-
dencies between the associated metadata entities. The edge direc-
tion is always from the node at the higher level of abstraction to the
lower level node (e.g. from relation to attribute), while for nodes
at the same level, the edge goes from the aggregate to the specific
(e.g. from cardinality to distributions), and for the remainder, a
lexicographic ordering is used.

A sample portion of a constraint graph, corresponding to a popu-
lar commercial database engine, hereafter referred to as ComOpt,
is shown in Figure 2, covering relation, attribute and index metadata
entities. Here, if we consider the node Card, which represents the
cardinality of the relation, the associated legality constraint spec-
ifies that the value should be greater than or equal to zero. Sim-
ilarly, the consistency constraint represented by the directed edge
from Card to Null Count, specifies that Null Count, the number of
null values in the column, cannot exceed Card.

After construction of the constraint graph, a topological sort is
run to obtain a linear ordering on the graph. Then, CODD guides
the user to enter the metadata details in exactly this order, request-
ing inputs at each new node, and ensuring that all applicable con-
straints are met. The linear ordering sequence is shown in Figure 2
by the (bracketed) number associated with each node.

2.3 Metadata Scaling
CODD supports two flavors of database scaling, size-based scal-

ing and time-based scaling – while the former is commonplace, the
latter has not been previously attempted in the literature.

In size-based scaling, given an initial metadata configuration, de-
noted by M , and a positive integer scaling factor α entered by the

Figure 2: Metadata Constraint Graph (ComOpt)

user, CODD produces a scaled metadata configuration Mα such
that the size of the new database is α times the size of the initial
configuration. It does so by linearly scaling the cardinalities of the
relations, accompanied by domain-cardinality scaling for the pri-
mary keys and foreign keys featuring in the scaled tables. This
approach is similar to the scaling mechanisms found in standard
benchmark databases such as TPC-H [4].

In time-based scaling, on the other hand, the input also includes
a query workload Q. Here, the objective is to scale M such that
the optimizer’s estimated time for executing Q on M is scaled by
the factor α when executed on Mα. In particular, the following
optimization problem is solved, with the intention of having, as far
as possible, each individual query’s cost to be scaled by α:

Produce an Mα such that the sum over Q of the individual
squared deviations from α in cost scaling is minimized, subject to
the constraint that the overall cost over Q is scaled by α.

The modeling and solution of this problem is described in [2].
It is an instance of sequential quadratic programming with both
equality and inequality constraints, and CODD uses the Suan-
Shu [3] numerical library to solve this optimization formulation.

3. CODD IN ACTION
As already mentioned, CODD is currently deployed at various

industrial and academic sites. In this section, we present various
scenarios that highlight its utility.

3.1 Query Optimizers on Big Data
With CODD, we can easily simulate and assess a query opti-

mizer’s behavior in response to futuristic scenarios. For instance,
given a parameterized SQL query template that defines a relational
selectivity space, we can combine CODD with the Picasso tool [5]
to produce Plan Diagrams and Cost Diagrams for the desired Big
Data environment. A plan diagram is a visual representation of
the plan choices made by the optimizer over the parameter space,
while the cost diagram quantitatively depicts the estimated query
processing costs of the plans shown in the plan diagram.

To make this notion concrete, consider QT5, the parameterized
SQL query template shown in Figure 3, which is based on TPC-
H Query 5. Here, selectivity variations on the SUPPLIER and
LINEITEM relations are specified through the s acctbal :varies and
l extendedprice :varies predicates, respectively.

Figure 3: Query Template QT5

The associated plan diagram produced by ComOpt on the base-
line 1 GB TPC-H database hosted on a vanilla single-server con-
figuration, is shown in Figure 4(a). In this picture, each colored
region represents a specific plan, and a set of 21 plan choices cover
the selectivity space.

Now consider a scenario where the optimizer developer would
like to assess its behavior on a 1 PB version of the TPC-H bench-
mark, operating on a scaled-out system with 1000 servers. Using
the metadata construction and scaling features of CODD, we can
easily create a metadata shell that emulates this futuristic environ-
ment. The plan diagram produced by ComOpt for this scenario is
shown in Figure 4(b). We observe that the number of plans has
sharply decreased from 21 to 12 in the scaled version, and the ge-
ometries of the plan optimality regions have undergone significant
changes. Morever, the plans themselves are quite different between
the two pictures.

(a) 1 GB / 1 Server (b) 1 PB / 1000 Servers

Figure 4: Plan Diagrams for QT5 (ComOpt)

3.2 Design Bugs at Big Data scale
CODD has also proved to be effective at identifying bugs that

surface at Big Data scale. For instance, by iteratively executing
CODD with QT5 on ComOpt, and having the database size in-
crease in each iteration, we were able to quickly discover that Co-
mOpt’s cardinality estimation module started seriously malfunc-
tioning when the input data size to an operator exceeded 20 ex-
abytes – specifically, the output cardinality of the operator became
frozen at approximately 18.4 exabytes, no matter how large the in-
put was beyond this point! This is visually shown in the (partial)
plan tree of Figure 5, where the circled regions highlight the erro-
neous behavior.

A second bug example is shown in the cost diagram of Fig-
ure 6a, corresponding to the QT5 template operating on a 100
petabyte database shell (for readability, only the cost variation on
the LINEITEM selectivity is shown). Here, we observe that the
query execution costs initially rise with the selectivity, as expected.

Figure 5: Output Cardinality Error (ComOpt)

However, at a selectivity of 60 percent, there is a sudden and sub-
stantial dip followed by a saturation in the query execution cost,
violating the cost-monotonic behavior that typically holds for such
queries. The primary change is a switch from a nested-loops join
of LINEITEM and SUPPLIER in the red plan to a sort-merge join in
the blue plan.

Interestingly, this incorrect behavior disappears when the proces-
sor speed is scaled up by a factor of 100, as shown in Figure 6(b).
These results strongly suggest the presence of underlying issues in
the construction of ComOpt’s cost estimation module.

(a) 100 PB / 1 Server (b) 100 PB / x100 Scaleup Server

Figure 6: Cost Diagrams for QT5 (ComOpt)

3.3 Robustness Guarantees at Big Data scale
A well-documented problem in the database literature is that se-

lectivity estimates for optimizing decision support queries often
differ significantly from those actually encountered during query
execution, leading to poor plan choices and inflated response times.
A new approach to address this classical problem was recently pro-
posed in [1], wherein the compile-time estimation process is com-
pletely jettisoned – instead, selectivities are systematically discov-
ered at run-time through a precisely calibrated sequence of cost-
limited executions from a carefully chosen small set of plans, called
the “plan bouquet”. A potent benefit of this discovery-based ap-
proach is that it lends itself, for the first time in the literature, to
providing guaranteed bounds on worst-case query processing per-
formance. More precisely, if we define MSO (Maximum Sub-
Optimality) as the worst-case ratio of the cost sub-optimality in-
curred by the database engine, relative to an oracular system that
magically knows the correct selectivity values, it is guaranteed that
MSO ≤ 4 ∗ |PlanBouquet|.

For conventional database environments, it was found in [1] that
the bouquet cardinality is typically a small number, around 3 or 4,
leading to MSOs of less than 20 – this is miniscule in compari-
sion to current query optimizers whose MSOs are in the thousands!

Database Size PostgreSQL MSO PlanBouquet MSO
1 GB 2000 12

100 GB 5000 16
10 TB 300000 16

Table 1: MSO Performance wrt Database Size

However, an open question was whether this attractive performance
extends to Big Data environments. We answered this by leverag-
ing CODD to experimentally confirm on PostgreSQL, as shown in
Table 1, that the plan bouquet approach continues to provide low
MSO values at Big Data scales – for instance, on a 10 TB database,
its MSO is only 16. In marked contrast, the native PostgreSQL en-
gine’s performance becomes progressively worse with increasing
database size, reaching an MSO of 300000 at the 10 TB scale!

4. CODD DEMONSTRATION
In the demo, the audience will actively engage with a variety of

visual scenarios that showcase the utility of the CODD tool.
Firstly, we will present the Construct Mode of CODD on the

TPC-H schema and show how arbitrary “what-if” metadata scenar-
ios could be constructed from scratch – in particular, the yottabyte
scenario mentioned in the Introduction. The GUI for creating his-
tograms for attribute distributions will also be emphasized.
User Interaction: The audience will be able to input all the meta-
data details for a sample relation. They will also be encouraged
to provide illegal and inconsistent values, and verify that these are
caught by the validation checks employed in CODD. The audience
will also get to play with the graphical histogram interface to model
changes in the data distributions.

Secondly, we will move on to demonstrating the scaling func-
tionalities supported by CODD. For size-based scaling, starting
from the standard 1GB TPC-H metadata statistics, we will sim-
ulate a Big Data setup featuring yottabyte-sized relational tables.
For time-based scaling, we will take a set of TPC-H benchmark
queries as the query workload, and compute the relation size scal-
ings required to produce the desired time scaling of this workload.
User Interaction: The audience will be able to choose the scaling
factor, and verify that the metadata statistics have been changed
appropriately to reflect the desired Big Data scenario.

Finally, we will showcase the bugs that were discovered at Big
Data scale in ComOpt, as described in Section 3. This will be fol-
lowed by demonstrating on PostgreSQL that the plan bouquet’s at-
tractive robustness guarantees are maintained even in these extreme
environments, whereas the native optimizer performs very poorly.

Acknowledgements. We thank Rakshit Trivedi, I. Nilavalagan,
Deepali Nemade and Ankur Gupta for their valuable contributions
to the development of CODD over the past five years, and Suresh
Soundararajan of HP for his detailed evaluation of its features.

5. REFERENCES
[1] A. Dutt and J. Haritsa, “Plan Bouquets: Query Processing

without Selectivity Estimation”, Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, 2014.

[2] R. Trivedi, I. Nilavalagan and J. Haritsa, “CODD:
Constructing Dataless Databases”, Proc. of 5th Intl. Workshop
on Testing Database Systems (DBTest), 2012.

[3] numericalmethod.com/suanshu/
[4] www.tpc.org/tpch
[5] dsl.serc.iisc.ernet.in/projects/PICASSO
[6] dsl.serc.iisc.ernet.in/projects/CODD

