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1. INTRODUCTION

Modern database systems emplogugry optimizer module to
automatically identify the most efficient strategies foeexting the
declarative SQL queries submitted by users. The efficiefthese
strategies, called “plans”, is measured in terms of “cotat are
indicative of query response times. Optimization is a ménga
exercise since the difference between the costs of the kestie
tion plan, and a random choice, could be in orders of magaitud
The role of query optimizers has become especially crititat
ing this decade due to the high degree of processing comylexi
characterizing current data warehousing and mining agpidias,
as exemplified by the TPC-H and TPC-DS decision support bench
marks [20, 21].

Over the course of the last five years, we have developed a vi-
sualization tool, calledPicasso[22], for graphically profiling and
analyzing the behavior of database query optimizers. Tbkito
operational on a rich set of industrial-strength optinszeénclud-
ing IBM DB2 [15], Microsoft SQL Server [16], Oracle [17], Sgbe
ASE [18] and PostgreSQL [19]. Picasso, which is freely doadt
able, is currently in use by leading industrial and acadensittu-
tions worldwide. It has been employed as

e a query optimizer analysis, debugging, and redesign aid by
system developers;

e aquery optimization test-bed by database researchers; and

e a query optimizer pedagogical support by database instruc-
tors and students.

The scientific underpinnings of the Picasso tool have ptsho
appeared in a series of recent VLDB papers [12, 7, 8, 6, 1]. In
this demo, we will first present a walk-through of the Picasem,
and explain how it provides powerful visual metaphors tol@s
in detail the intriguing world of modern database querymojers.
We will then show how the tool can be used to efficiently deter-
mine improvements on the plan choices made by the optimizer —
for example, to identify “robust plans” that are resistamsélec-
tivity estimation errors on the query’s base relations. afjn we
will indicate how these concepts have important impliaagidor
the design of next-generation query optimizers.
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2. PICASSO DIAGRAMS

Given a parametrized SQL query template that defines a rela-
tional selectivity space, and a choice of database endieePt
casso tool automatically generates a variety of diagrawusctiar-
acterize the behavior of the engine’s optimizer over thacep For
example, the so-calledPan Diagram” [12], representing a color-
coded pictorial enumeration of the plan choices made by fhe o
timizer over the selectivity space. Specifically, plan dégs vi-
sually capture the optimality regions of POSP [9], the patim
optimal set of plans.

To make these notions concrete, consider QT8, the parametri
2D query template shown in Figure 2, based on Query 8 of the TPC
H benchmark. Here, selectivity variations on theppLIERand
LINEITEM relations are specified through tlseacctbal :varies
andl_ extendedprice :varies predicates, respectively.

select ayear, sum(case when nation = 'BRAZIL' then volume else 0

end) / sum(volume) as mighare
from (select YEAR(ocorderdate) as gear, Lextendedprice * (1 t
|_discount) as volume, n2Z.name as nation
from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region
where ppartkey = lpartkey and suppkey = lIsuppkey|
and Lorderkey = aorderkey and austkey = ccustkey
and cnationkey = nl.mationkey and nl.megionkey =
r_regionkey and s)ationkey = n2.mationkey and_name
= 'AMERICA' and p_type = 'ECONOMY ANODIZED
STEEL and
s_acctbal :variesandl_extendedprice :varies
) as allnations
group by ayear
order by ayear

Figure 1: Example Query Template (QT8)

The associated plan diagram for QT8 is shown in Figure 2(a),
produced by Picasso on a popular commercial database emgine
this picturé, each colored region represents a specific plan, and a
set of 89 different optimal plan®?1 throughP89, cover the se-
lectivity space. The value associated with each plan inggerd
indicates the percentage area covered by that plan in tiyeatia
— for example, the biggesB1, covers about 22% of the space,
whereas the smalle®89, is chosen in only 0.001% of the space.

Compile-Time Diagrams. The complete suite of diagrams pro-
duced by the Picasso tool is enumerated in Table 1. It inslude
several compile-time diagrams that qualitatively and djtetively
describe the plan choices made by the optimizer. For instanc

1The figures in this paper should be viewed frorootor copy, as
the grayscale version may not clearly register the features
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(b) Reduced Diagram (Threshold\ = 10%)

Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

the Cost Diagram quantitatively depicts the estimated query pro-
cessing costs of the plans shown in the associated planadiagr
while the Cardinality Diagram displays the estimated result car-
dinalities. These diagrams can be drilled-down at indigldaca-
tions to determine the operator trees of the plans at thasgitms
(Schematic Plan-tree diagram), with the tree nodes optionally
annotated with cost and cardinality informatiddompiled Plan-
tree diagram). The structural differences between a given fdair o
plans can be identified through tRéan-Difference diagram, with
the differences highlighted in a color-coded format.

Picasso also supports comparison of an optimizer's plaiteko
with those made byther engines at the same locations, or by the
same engine operating at a different optimization le¥@réign
Plan-tree diagram). So, for example, an IBM developer interested
in a particular query instance, can visually ascertain andpare
DB2's plan choice for this query with those made by other eegi
such as Oracle and SQL Server. Finally, recent versionsvefae
optimizers have included a “foreign plan costing” (FPCYéea in
their API, that is, of costing plaraitside their native optimality re-
gions (e.g. Optimization Profile in DB2, XML Plan in SQL Seryve
and Abstract Plan in Sybase ASE). This FPC feature is used-by P
casso to visually characterize the cost behavior of a datégrplan
over the entire selectivity spacAlfstract-Plan diagram).

Plan-replacement Diagrams. Perhaps the most appealing as-
pect of Picasso is that it also supports the construction of
plan-replacement diagrams. Here, the query template’s original
plan/cost diagrams are taken as input, and new plan diagaeens
constructed wherein a subset of the optimizer's originalias

are replaced by alternative plans from the POSP set. Thaaepl
ments are made on the expectation that they will perfornebttan

the original choicesReduced Plan andRobust Plan diagrams).
The motivation for these substitute diagrams, and theisttantion
techniques, are discussed in detail in Section 5.

Run-time Diagrams. Finally, apart from the above compile-time
diagrams, Picasso also generates-time diagrams that visually
describe thectual query performance behavior, in terms of execu-
tion time and result cardinalities, on the current datalpdatorm
(Execution Cost andExecution Cardinality diagrams). Compar-

ing the predicted and actual diagrams helps in understgratia
profiling the modeling quality of the optimizer.

Compile-time Diagrams

Plan Diagram

A pictorial enumeration of the optimizer's exec
tion plan choices over the selectivity space.

Cost Diagram

A visualization of the associated estimated plan
ecution costs over the selectivity space.

£X-

Cardinality
Diagram

A visualization of the associated estimated qu
result cardinalities over the selectivity space.

Bry

Schematic Plan
tree Diagram

A tree visualization of a selected plan in the pl
diagram.

an

Plan-difference

Highlights the schematic differences between a

se-
m.

fic
St

Diagram lected pair of plans that appear in the plan diagra
Compiled A tree visualization of a selected plan at a spec
Plan-tree location in the plan diagram, annotated with cg
Diagram and cardinality information.
Foreign At a given location in a plan diagram produced
a database engine, a tree visualization of the
Plan-tree roduced by another engine (or the same engin
Diagram P Y 9 9

another optimization level) at this location.

bn
lan
e at

Abstract-Plan
Diagram

A visualization of the estimated behavior of a de-

lected plan in the plan diagram, when this spec
plan is used throughout the selectivity space.

Plan-replacement Diagrams

Shows the extent to which the original plan dip-

fic

vidual query by more than a user-specified thre
old value.

Run-time Diagrams

Execution Cost
Diagram

A visualization of the runtime query response tim|
over the selectivity space.

Execution Car-

dinality Diagram

A visualization of the runtime query result card
nalities over the selectivity space.

Table 1: Picasso Diagram Suite

gram may be simplified (by replacing some of the
S%L:g?: Plan plans with their siblings in the plan diagram) with-
out increasing the cost of any individual query by
more than a user-specified threshold value.
Shows the extent to which the plans in the original
Robust Plan plan diagram‘ may b_e repla_ced by comparativel_y yo-
Diagram bust plans without increasing the cost of any ingi-

sh-

es




3. DIAGRAM PRODUCTION

required to produce the entire picture is close to a week!

The schematic architecture of the Picasso system is shown in_ This issue of computational overheads is now addressed in

Figure 3. The plan diagram production strategy used is thefo
ing: Given ad-dimensional query template and a plot resolution of
r, the Picasso tool generateSqueries that are either uniformly or
exponentially (user’s choice) distributed over the sélégtspace.
Then, for each of these query locations, based on the assthcia
selectivity values, a query with the appropriate constanitsstan-
tiated — the constants are determined from the statistietddata
available from the optimizer, typically in the form of higtams.
This query is then submitted to the query optimizer to be “ex-
plained”, that is, to have its optimal plan computed andrregd.
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Figure 3: Picasso Architecture

After the plans corresponding to all the query points are ob-
tained, a different color is associated with each unique,pdad
all query points are colored with their associated planmsol®hen,
the rest of the diagram is colored by painting the region radou
each point with the color corresponding to its plan. For epamn
in a 2D plan diagram with a uniform grid resolution of 10, #er
are 100 real query points, and around each such point a sqfiare
dimension 10x10 is painted with the point’s associated ptar.

In parallel with the construction of the plan diagram, thstite
mated) cost and cardinality diagrams are created usinguha-q
titative information provided in the “explain plan” outpuThese
diagrams, as well as the operator trees corresponding @G&P
plans, are persistently stored in the database to faeildatgram
reuse. Further, statistical estimators have been impladea pro-
vide users with predictions of diagram production times.

The Picasso tool is completely written in Java and curremnihg
to about 50K lines of code with approximately 100 classesa3a,
VisAd, Swing and JGraph libraries are used for visualizapar-
poses, while database connections are established thdige
drivers. Version 1 of Picasso was released in 2007, whilsidar
2 came out in 2009. With V2, users can restrict diagram produc
tion to desiredsub-regions of the selectivity space — for example,
near the origin, where high volatility in optimizer plan dtes is
typically encountered.

Another major feature of Version 2 is the introductiorepprox-
imate plan diagrams. The motivation here is that the exhaustive di
agram production approach described above is practicafondi-
agrams on low-dimension query templates (1D and 2D) withssba
resolutions (up to 100 points per dimension). However, ¢opees
infeasibly expensive for higher dimensions and fine-gireso-
lutions, due to the exponential growth in overheads. Fomple, a
2D plan diagram with a resolution of 1000 on each dimensioa, o
3D plan diagram with a resolution of 100 on each dimensioth bo
require invoking the optimizer million times. Even with a con-
servative estimate of 0.5 seconds per optimization, the tohe

Picasso through the incorporation of powerful sampling and
inference-based approximation techniques [6]. Thesentqubs
deliver diagrams with close to 90% accuracy while incurramdy
about 10% of the overheads of the brute-force approach.

4. APPLICATIONS OF PLAN DIAGRAMS

As evident from Figure 2(a), plan diagrams can be surptiging
complex and dense, with a large number of plans covering the
space — several such instances spanning a representdtioé se
benchmark-based query templates on current optimizeravaik
able at [22]. In fact, the very name of the Picasso tool steoms f
plan diagrams often appearing similar to “cubist paintirfgs

Our interactions with industrial development teams ingtichat
Picasso plan diagrams have often proven to be contrary toréie
vailing conventional wisdom. The reason is that while ojten
behavior onindividual queries has certainly been analyzed exten-
sively by developers, plan diagrams provide a completdfgmint
perspective of behaviaver an entire space, vividly capturing plan
transition boundaries and optimality geometries. So, iiteadl
sense, they deliver the “big picture”.

Plan diagrams are currently in use at various industrialeasd
demic sites for a diverse set of applications including ysialof
existing optimizer designs; visually carrying out optierizegres-
sion testing; debugging new query processing featurespaany
the behavior between successive optimizer versions; tigatsg
the structural differences between neighboring plans énsghace;
evaluating the variations in the plan choices made by comgpep-
timizers; etc. As a case in point, visual exampleaaf-monotonic
cost behavior in commercial optimizers, indicative of modger-
rors, were highlighted in [12].

Apart from aiding optimizer design, plan diagrams can also b
used in operational settings. Specifically, since theytiflethe
optimal set of plans for the entire relational selectivipase at
compile-time, they can be used at run-time to immediatedyiify
the best plan for the current query without going throughtitme-
consuming optimization exercise. Further, they can praeful
to adaptive plan selection techniques (see [5] for a reagnty)
which, based on run-time observations, may dynamicallpsado
re-optimize the query and switch plans mid-way through tte p
cessing. In this context, plan diagrams can help to eliraittze re-
optimization overheads incurred in determining the stitstiplan
choices.

5. PLAN-REPLACEMENT DIAGRAMS

As mentioned earlier, apart from visually profiling optimide-
havior, Picasso also incorporates mechanismgniproving on the
optimizer’s plan choices through the production of “redu@éan
diagrams” and “robust plan diagrams”, described below.

5.1 Reduced Plan Diagrams

Consider a dense original plan diagram and a cost-increase-
threshold Q) specified by the user. Our reduction algorithms re-
color the dense diagram to a simpler picture, featuring arslybset
of the original plans — that is, some of the original plans“aoen-
pletely swallowed” by their siblings, leading to a reduceniber
of plans in the diagram. Most importantly, the recoloringqess
guarantees that the cost afy recolored query point doe®t in-
crease by more thak percent, relative to its original cost.

2Pablo Picasso is considered to be a founding-father of thistcu
school of painting [14].



It has been empirically shown in [7] that if users are willitag
tolerate minor cost increases of upXe20%, the absolute number
of plans in the final reduced picture could usually be browginn
to within or around ten. In short, that complex plan diagrams can
be made “anorexic” while retaining acceptable query prsiogs

performance. For example, the QT8 plan diagram (Figure) 2(a)

can be reduced with =10% to the diagram shown in Figure 2(b),
where only 7 of the original 89 plans are retained.

Anorexic plan diagram reduction has significant practicaid>
fits, as described in detail in [7], including quantifyingetredun-
dancy in the plan search space, enhancing the applicatiilgsra-
metric query optimization (PQO) techniques [9, 10], idfitig
error-resistant and least-expected-cost plans [3, 4]n@ninizing
the overhead of multi-plan approaches [2, 11].

5.2 Robust Plan Diagrams

An implicit assumption in producing reduced plan diagrantsw
the A-guarantee is that the optimizer's compile-time estimates
query locations in the selectivity space are accurate. Mewyén
practice, these selectivity estimates are significantlgrior with
respect to the run-time values encountered during querguexe
tion. Such errors, which can even be in orders of magnitudedh
database environments, arise due to a variety of reasamsding
outdated statistics, attribute-value independence gssoms and
coarse summaries [13].

Given the above, the replacements suggested by the rediaced p

diagrams, while within the\ threshold at the estimated query loca-
tions, may turn out to barbitrarily better or worse substitutes in
the presence of selectivity estimation errors. Therefarewould
ideally like to only permit replacements that are guarashteeei-

ther improve the query processing performance or not haye an

adverse effectsno matter where the actual query location turns
out to be at run-time. Surprisingly enough, it is actually possi-
ble to efficiently identify such replacements for optimesup-
porting the foreign-plan-costing (FPC) feature, as désctiin [8].
This approach is implemented in Picasso to englobally safe
replacements which can only improve, but never harm quesy pr
cessing performance. Further, our empirical results stgtat
significant improvement is often provided, effectivelyuking in
robust plans. Interestingly, robust plan diagrams typicaligtain
the anorexic properties of reduced plan diagrams. Thezefora
nutshell, our results indicate that it is indeed possiblsitalta-
neously achieve plan safety, robustness and anorexia, in industrial-
strength database settings.

As a final step, we have shown very recently in [1], how the

above post-processing steps on plan diagrams cantéyealized
into the online query optimization process, resulting in an intrin-
sically improved optimizer that delivers better plan clegic It is
particularly noteworthy that this desirable outcome isiendd in
spite of the online process lacking the global behaviorfarma-
tion available to the offline algorithms.

6. DEMO ORGANIZATION

In the demo of the Picasso tool, we will first present the fuites
of optimizer diagrams listed in Table 1, highlighting thegence
of complex plan diagrams. Then we will demonstrate how afiore
and robust plan replacement diagrams can be generatediesa t
dense diagrams. Finally, we will demonstrate the mechaniem
internalizing these concepts in the core of the query ogémiThe
entire demo will be conducted on popular industrial-stterapti-
mizers, using a variety of query templates based on the TR@GeH
TPC-DS benchmarks.
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