Holistic Schema Mappings for XML-on-RDBMS

Priti Patil* and Jayant R. Haritsa

Database Systems Lab, SERC,
Indian Institute of Science, Bangalore 560012, INDIA

Abstract. When hosting XML information on relational backends, a
mapping has to be established between the schemas of the information
source and the target storage repositories. A rich body of recent liter-
ature exists for mapping isolated components of XML Schema to their
relational counterparts, especially with regard to table configurations.
In this paper, we present the Elixir system for designing “industrial-
strength” mappings for real-world applications. Specifically, it produces
an information-preserving holistic mapping that transforms the com-
plete XML world-view (XML schema with constraints, XML documents
XQuery queries including triggers and views) into a full-scale relational
mapping (table definitions, integrity constraints, indices, triggers and
views) that is tuned to the application workload. A key design feature
of Elixir is that it performs all its mapping-related optimizations in the
XML source space, rather than in the relational target space. Further,
unlike the XML mapping tools of commercial database systems, which
rely heavily on user inputs, Elixir takes a principled cost-based approach
to automatically find an efficient relational mapping. A prototype of
Elixir is operational and we quantitatively demonstrate its functionality
and efficacy on a variety of real-life XML schemas.

1 Introduction

For persistently storing information from XML sources, there are primarily two
technological choices available: A specialized native XML store (e.g. Tamino [25],
Natix [11], Timber [10]), or a standard relational engine (e.g. IBM DB2 [20], Ora-
cle [24], MS-SQL Server [22]). From a pragmatic viewpoint, the latter approach
brings with it the benefits of highly-functional, efficient and mature technol-
ogy. Therefore, a rich body of literature has emerged in the last five years on
the mechanics of hosting XML documents on relational backends. Specifically,
there have been several proposals for generating efficient mappings between XML
schema (e.g. DTDs [I7] or XML Schema [29]) and relational schema. A common
feature of much of this work is that it has focused on isolated components of
the relational schema, typically the table configurations. However, viable XML-
to-relational systems that intend to support real-world applications will need
to provide an information-preserving holistic mapping that transforms the com-
plete XML world-view (XML schema with constraints, XML documents, XQuery

* Currently with IBM India Software Lab.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 741-[756] 2006.
© Springer-Verlag Berlin Heidelberg 2006

742 P. Patil and J.R. Haritsa

queries including triggers and views) into a full-scale relational schema (table
definitions, integrity constraints, indices, triggers and views). In this paper, we
address this issue by presenting a system called ELIXIR, (Establishing hoLIstic
schemas for XML In Rdbms) which produces such “industrial-strength” XML-
to-RDBMS mappings.

By taking a principled cost-based approach to mapping design, Elixir auto-
matically delivers efficient mappings that are tuned to the XML application.
This is in marked contrast to the XML mapping tools currently provided by
commercial database systems, wherein the user is expected to play a significant
role in the design and the tuning is largely manual. For example, in DB2’s XML
Extender, the user needs to have intimate knowledge of the application to specify
mapping of each XML node to either a table or a column using the Document
Access Definition (DAD) medium [20].

A novel feature of Elixir is that it performs all its mapping-related optimiza-
tions in the XML source space, rather than in the relational target space. The
evaluation of the quality of these optimizations is done at the target database
engine, and the feedback is used to guide the optimization process in the XML
space, in an iterative manner, resulting in a dynamically-derived mapping that
is tuned to the application. This approach is based on our observation that an
organic understanding of the XML source can result in more informed choices
from a performance perspective — as a case in point, making index choices at the
XML source and then mapping them to relational equivalents proves to be sub-
stantially better than directly using the relational engine’s index advisor, which
is the current industrial practice [6]. An additional benefit of source-based index
choices is that the knowledge can be used to guide the XQuery-to-SQL transla-
tion during query processing, consistent with the observation in [I2] that schema
decomposition and query translation are interdependent and should therefore be
handled in an integrated manner.

A related feature of Elixir is its integrated approach to producing efficient
holistic schemas — for example, the choice of indices is affected by the XML
constraints. This integration ensures that all the interactions between the XML
inputs and the effects of these inputs on the relational outputs are automatically
taken into account during the optimization process.

Currently, a prototype of Elixir is operational on the DB2 relational en-
gine [20], and can be easily ported to any standard RDBMS. The prototype
is implemented in Ocamlc (Objective Caml) [23], a strongly-typed functional
programming language, and has been successfully evaluated on a variety of real-
world and synthetic XML schemas [29] for representative XQuery [2] queries. To
make our objectives concrete, a sample fragment of inputs from an XML bank-
ing application and a relational mapping derived from Elixir for these inputs is
shown in Figure [

To the best of our knowledge, Elixir is the first system to aim towards deliver-
ing industrial-strength mappings for XML-to-RDBMS. In the remainder of this
paper, we describe its highlights — the complete technical details are available
in [I4].

Holistic Schema Mappings for XML-on-RDBMS

— — XML Schema

<xs:element name="country" type="CountryType"

743

— — Tables
CREATE TABLE Customer (Cust-id-key

minOccurs="0" maxOccurs="unbounded"> INTEGER PRIMARY KEY, id INTEGER NOT NULL,

<xs:key name="acc-num-key">
<xs:selector xpath=".//account"/>
<xs:field xpath="./sav-acc-num
./check-acc-num"/>
</xs:key>

name VARCHAR(25),...);
CREATE TABLE Account (Acc-id-key
INTEGER PRIMARY KEY, ...);

<xs:keyref name="cust-acc" refer="acc-num-key"> — Relational keys equivalent to XML keys

<xs:selector xpath=".//customer"/>
<xs:field xpath="./acc-num"/>
<xs:keyref>
</xs:element>

— — XML Documents

<bank>
<country>
<name>India</name>
<customer>
<cust-id>1</cust-id>
<acc-num>101</acc-num> ...
</customer> ...
<city>
<account>
<sav-acc-num>101</sav-acc-num>
<balance>1232423</balance>
</account>
</city> ...
</country> ...
</bank>

— — XML Query workload

FOR $cust IN //customer

FOR $acc IN //account

WHERE ($cust/acc-num = $acc/sav-acc-num
OR $cust/acc-num = $acc/check-acc-num)
AND $cust/cust-id = 21000’

return <balance>$acc/balance</balance>
Frequency 20000

— — XQuery Triggers

CREATE TRIGGER Increment-Counter
AFTER INSERT OF //Customer

CREATE TRIGGER NewCityTrigger
AFTER INSERT OF /bank/country/city

— — XML Views

CREATE VIEW imp cust AS
FOR $cust IN //customer
FOR $acc IN //account
WHERE ($cust/acc-num = $acc/sav-acc-num
OR $cust/acc-num = $acc/check-acc-num)
AND $acc/balance > 100000
return <acc-num>$cust/acc-num</acc-num>
<balance>$acc/balance</balance>

(a) Input

ALTER TABLE Account ADD CONSTRAINT Acc-key
UNIQUE (sav-or-check-acc-num, parent-Country);
ALTER TABLE Customer ADD CONSTRAINT Acc-fkey
FOREIGN KEY (acc-num, parent-Country)
REFERENCES Account (sav-or-check-acc-num,
parent-Country) ;

— — Recommended Indices

CREATE INDEX name-index ON Customer (name) ;
CREATE INDEX acc-num-index ON Account
(sav-or-check-acc-num, parent-Country);

— — SQL Triggers

CREATE TRIGGER Increment-Counter
AFTER INSERT ON Customer
REFERENCING NEW AS new_row
FOR EACH ROW
BEGIN ATOMIC
UPDATE Branch-office
SET Acc-counter = Acc-counter + 1
WHERE Branch-office.Id = new_row.Branch
END

— — Stored Procedure

CREATE PROCEDURE NewCityTrigger(...)
BEGIN

Send-mail (cust-name, city-name, ...)
END

— — Relational views

CREATE VIEW imp cust AS

(SELECT C.acc-num, A.balance

FROM Customer C, Account A

WHERE C.acc-num = A.sav-or-check-acc-num
AND A.balance > 10000)

(b) Output

Fig. 1. Example Elixir Mapping

744 P. Patil and J.R. Haritsa
2 Architecture of Elixir System

The overall architecture of the Elixir system is depicted in Figure Pl Given an
XML schema, a set of documents valid under this schema, and the user query
workload, the system first creates an equivalent canonical “fully-normalized”
initial XML schema [9], corresponding to an extremely fine-grained relational
mapping, and in the rest of the procedure attempts to design more efficient
schemas by merging relations of this initial schema.

Summary statistical information of the documents for the canonical schema
is collected using the StatsCollector module. The estimated runtime cost of the
XML workload, after translation to SQL, on this schema is determined by ac-
cessing the relational engine’s query optimizer. Subsequently, the original XML
schema is transformed in a variety of ways using various schema transforma-
tions, the relational runtime costs for each of these new schemas is evaluated,
and the transformed schema with the lowest cost is identified. This whole pro-
cess is repeated with the new XML schema, and the iteration continues until
the cost cannot be improved with any of the transformed schemas. The choice
of transformations is conditional on their adhering to the constraints specified
in the XML schema, and this is ensured by the Translation Module.

In each iteration, the Index Processor component selects the set of XML
path-indices that fit within the disk space budget (measured with respect to the
equivalent relational indices), and deliver the greatest reduction in the query
runtime cost. These path indices are then converted to an equivalent set of

XML Schema XML Disk XQuery XQuery XQuery
with keys Documents Budget Workload Triggers Views
‘ Additional
! XQuery Y

) Workload | K R

Index XML Trigger| XML View

Processor Processor Processor

QL Relatjional

Path Indices i .
Stats . ; Vidws
Collector Triggers
)éM L Data Translation XQuery
tagstics transformed Module Rewriting

schema

Schema
Transformation
Module

Relational tables, keys,
| indexes, statistics
and SQL Workload

Relational Optimizer

Stored

Efficient Relational configuration Procedures

consisting of table, keys, indices,
SQL triggers, Relational views

Fig. 2. Architecture of the Elixir system

Holistic Schema Mappings for XML-on-RDBMS 745

relational indices. The XQuery queries are also rewritten to benefit from the
path indices, with the query rewriting based on the concept of path equivalence
classes [16] of XML Schema.

The XML Trigger Processor is responsible for handling all XML triggers — it
maps each trigger to either an equivalent SQL trigger, or if it is not mappable (as
discussed in Section [), represents it with a stored procedure that can be called
by the middleware at runtime. To account for the cost of the non-mappable
triggers, queries equivalent to these triggers are added to the input query work-
load. Finally, the XML View Processor maps XML views and materialized XML
views specified by the user to relational views and materialized query tables,
respectively.

To implement the above architecture, we have consciously attempted,
wherever possible, to incorporate the ideas and systems previously presented in
the literature. Specifically, for schema transformations, we leverage the LegoDB
framework [3], with its associated FleXMap search tool [I5] and StatiX [9] statis-
tics tool; the Index Processor component is based on the XIST path-index selec-
tion technique [I6]; and, the DB2 relational engine [20] is used as the backend.

In the following sections, we discuss in detail the generation of the various
components of the holistic relational schema, including Table Configurations,
Key Constraints, Indices, Triggers and Views.

3 Generating Constraint-Preserving Relations

XML Schema supports a rich set of integrity and cardinality constraints. The
Translation Module takes an XML schema with such constraints as input and
produces a constraint-preserving equivalent relational schema. For example,
XML Schema supports three integrity constraints: unique, key and keyref, with
similar semantics to their relational counterparts — unique ensures no duplica-
tion among non-null values; key ensures all values are unique and non-null; and
keyref ensures reference to XML nodes. Due to hierarchical data model of XML,
context is also specified for integrity constraints to define the different sets of
nodes to be distinguished.

Using the syntax of [5], example constraints for the sample bank.zml document
shown in Figure [3 are given below:

— acc-num-key: (//country,(.//account, {sav-acc-num | check-acc-num}))
Within a country (here country is a context), each account is uniquely iden-
tified by a savings or checking account number.

— cust-acc: (//country,(./customer,{acc-num})) KEYREF acc-num-key
Within a country, each customer refers to a savings or checking account
number by acc-num.

An obvious way of supporting XML constraints in an RDBMS is to use trig-
gered procedures, but this is highly inefficient [§], and should therefore only be
used for those constraints (such as cardinality constraints) that do not have a
relational equivalent. Specifically, the XML key and keyref constraints should

746 P. Patil and J.R. Haritsa

<bank> TABLE Account (
<country> Acc-id-key INT,

<name>India</name>

<customer> sav-acc-num INT,
<cust-id>1</cust-id> check-acc-num INT,
<acc-num>101</acc-num> ... balance INT,

</customer> ...

<city> parent-City INT)

<name>Bangalore</name>
<state>Karnataka</state>

(a) Using LegoDB mapping

<head-office> ... </head-office>

<branch-office> ... </branch-office> ...

<atm> ... </atm> ... TABLE Account (

<account> Acc-id-key INT,
<sav-acc-num>101</sav-acc-num>
<balance>1232423</balance> sav-or-check-acc-num INT,

</account> parent-Country INT,

<account> _ _
<check-acc-num>102</check-acc-num> acc num flag INT,
<balance>645634</balance> balance INT,

</account>... parent-City INT)

</city> ...
</country>
</bank> (b) Inclusion of relational key

Fig. 3. Sample XML Document (bank.xml) Fig. 4. Generating relational keys
for XML key — acc-num-key

be mapped to relational key and foreign-key constructs. We have developed a
three-step algorithm for implementing this mapping — this technique is superfi-
cially similar to the X2R storage mapping algorithm [7], but a crucial difference
is that they tailor the schema to fit the key constraints, thereby risking efficiency,
whereas we take the opposite approach of integrating the key constraints with
an efficient schema.

Specifically, Elixir starts by converting the XML schema into the schema tree
representation proposed in FleXMap [I5]. Then, in the first step, subtrees cor-
responding to different paths that need to be mapped to a single column are
“associated”, with the need for association determined from the XML keys. For
example, for acc-num-key, the subtrees corresponding to sav-acc-num and check-
acc-num have to be associated. In the next step, the XML-to-relational mapping
procedure proposed in [3] is extended to create table configurations in the presence
of the associated trees. After mapping the XML schema to tables, the final step is
to incorporate the relational keys that are equivalent to the original XML keys.

An example output for the initial generic mapping of Figure @(a)) is shown
in Figure [d(b). Here, the elements sav-acc-num and check-acc-num are mapped to
a single column sav-or-check-acc-num, and an additional column, acc-num-flag,
is created for identifying the account number type. Further, since the context
element for acc-num-key is country, which is not an immediate parent of Account,
a parent-Country column, which refers to country-id-key, is added to distinguish
between different contexts.

Similarly we can define an equivalent relational foreign key for the cust-acc
XML keyref. Specifically, create the following relation:

TABLE Customer (Cust-id-key INT, Cust-id INT, Name STRING, Address
STRING, Acc-num STRING, parent-Country INT)

Holistic Schema Mappings for XML-on-RDBMS 747

* *
I (Account) If
account
j (SAccount) / \
/ account account
| \:;ﬁance — " (CAccounty |
sav- check- sav- alance check. oiance
acc-num acc-num ace-num

acc-num

Fig. 5. Invalid union distribution due to acc-num-key constraint

where the foreign key is {Acc-num, parent-Country}, referring to the key attribute
pair of the Account relation.

Cost-based strategies, such as those proposed in [3], explore the optimization
space by applying various transformations to the XML schema (which exploit
the standard rules of regular expressions in XML Schema for unions and repeti-
tions), and evaluating the costs of the corresponding relational configurations.
Elixir restricts the mapping search space to only constraint-valid schema trees
by filtering out the invalid schema transformations. For example, consider the
union account = sav-acc-num | check-acc-num shown before and after distribution
in Figure Bl The corresponding relational configuration will have account
numbers stored in two relations as follows:

TABLE SAccount(SAcc-id-key INT, sav-acc-num INT, balance INT, parent-City
INT)

TABLE CAccount(CAcc-id-key INT, check-acc-num INT, balance INT,
parent-City INT)

Here our goal is to map the XML key and keyref in the form of primary key and
foreign key, respectively. However, according to the acc-num-key constraint,
sav-acc-num and check-acc-num should be mapped to a single column, in order to
define the relational key, thereby rendering the union distribution invalid.

This example shows that not all relational configurations obtained by schema
transformations are valid. Thus, while exploring the search space of relational
configurations, we should explore only the space of valid configurations. The
simple solution for this is to carry out the transformation on the schema tree
and then check if relational keys equivalent to the given XML constraints can
be defined on the resulting relational configuration. If it is not possible then
that relational configuration can be ignored, otherwise it should be evaluated
for the given query workload. However, this solution results in considerable un-
necessary work, which can be avoided if we can detect the invalidity schema
transformations before carrying out the schema transformation.

For example, assume that union ¢; |t2 is being distributed, where t; and t5 are
subtrees of the schema tree. Now we will try to analyze the cause for invalidation.
Note that both the subtrees, corresponding to sav-acc-num (¢1) and check-acc-num
(t2), are on the same field path of the acc-num-key constraint. Thus, if the union
distribution of this tree i.e. t1|t2 is distributed, then in the resulting configura-
tion, t; and to will be mapped to different relations. In general, if subtrees t;
and t; are both on the same field path, then union distribution of t1|ts

748 P. Patil and J.R. Haritsa

is invalid. The complete set of rules to detect when schema transformations
are invalid w.r.t. XML schema constraints is given in [I4]. A useful side-effect of
incorporating the constraints during the schema design process is that the map-
ping process completes faster due to the reduction of the optimization search
space.

4 Index Selection in Elixir

We move on in this section to a different component of the holistic mapping,
namely deciding on the best choice of relational indices, given a disk space bud-
get. As mentioned earlier, Elixir takes the approach of finding a good set of
indices in the XML space and then mapping them to equivalent indices in the
relational space. This is in marked contrast to current industrial practice [6],
where the index advisor of the relational engine is used to propose a good set of
indices after the schema mapping has been carried out.

For finding good XML indices, we leverage the recently proposed XIST
tool [16], which makes path-index recommendations given an input consisting
of an XML schema, query workload, data statistics, and disk budget. We have
extended XIST to make use of semantic information such as keys, which are
closely linked to index selection, by giving priority to the paths corresponding
to keys during the index selection process. This is in keeping with Elixir’s gen-
eral philosophy of exploring the combined search space of logical design (i.e.
schema transformations) and physical design (i.e. indices) since solving them
independently leads to suboptimal performance [6].

After making the choice of XML path-indices, a strategy to convert path
indices to the equivalent relational indices has to be designed. Secondly, the
disk usage of the relational indices should be within the user-specified budget —
therefore, an equivalence mapping between the disk occupancies in the XML and
relational spaces has to be formulated. Finally, the XQuery-to-SQL translation
process should take advantage of the presence of the relational indices. In the
remainder of this section, we describe our approach to handle the first and third
issues — the second issue is discussed in [I4].

4.1 Path Index to Relational Index Conversion

Consider an XML-to-relational mapping, as shown in Figure [0 for a frag-
ment of the XMark benchmark schema [28]. Here, a non-leaf node is anno-
tated with a relation name, while a leaf node is annotated with the name of
a relational column. Relations Site, Africa, ..., Samerica, Item, and Mailbox
are created for elements site, africa, ..., samerica, item, mailbox, respectively. For
this environment, assume that the following path index, PI, has been recom-
mended: /site/regions/africa/item/mailbox/mail /from. To evaluate PI, the four re-
lations {Site, Africa, Item, and Mailbox} have to be joined.

An obvious translation process is to simply build the indices on the key and
foreign-key pair for each parent-child involved in PI. However, the drawback of

Holistic Schema Mappings for XML-on-RDBMS 749

(Site) Site
. 1. Mailbox.parent-africa
regions
2. Mailbox.from
_ africa ... samerica
(Africa) X _ % (Samerica) (a) Equivalence Class-based Approach
(Item) item

\ . Africa.parent-Site
(Mailbox) mailbox

1
‘ 2. Item.parent-Africa
mail 3. Mailbox.parent-Item
4

/‘ . Mailbox.from

(Mailb ;rom) to text
ailbox.from) (Mailbox.to) (Mailbox.text) .
(b) Direct Approach

Fig. 6. Example relational config- Fig.7. Relational indices for path index
uration /site/regions/africa/item/mailbox/mail /from

this direct approach is that the number of relational indices created for a path-
index is a function of the path-length, and can therefore become very expensive
to create and maintain. An alternative and less expensive approach is to use the
concept of equivalence classes [16] to reduce the number of relational indices.
Two paths P; and P, are in the same equivalence class if the evaluation of both
paths against XML data results in selection of the same nodes. These equivalence
classes can be determined directly from the XML schema and are valid for all
XML documents conforming to the XML schema.

We have developed a procedure (details in [I4]) that uses these path equiv-
alence classes (EQs) to convert the path-index only to the relational indices
corresponding to each EQ on the path. For example, if we assume that for each
relation, the column which stores IDs is the primary key, and that an index exists
on the primary key by default, then the equivalent relational indices for PI are
as shown in Figure[[{a) (for comparative purposes, the indices recommended by
the Direct approach are shown in Figure [{[(b)).

4.2 Query Rewriting for Path Indices

The use of integrity constraints to guide XQuery-to-SQL query translation has
been recently discussed in [I3]. Here, we focus on the use of available path indices
to guide XQuery-to-SQL query translation, and thereby derive a more efficient
rewriting of the query. For example, consider the query:

for $mail = /site/regions/africa/item/mailbox/mail
where $mail/from/text() = "priti@dsl.serc.iisc.ernet.in"
return count($mail)

The relevant path P here is /site/regions/africa/item/ mailbox/mail/from. If there
is no path index on P, then the SQL translation of the above query will be:

select count(*)
from Site S, Africa A, Item I, Mailbox M

750 P. Patil and J.R. Haritsa

where S.site-key = A.parent-site
and A.africa-key = I.parent-africa
and I.item-key = M.parent-item
and M.from = ’priti@dsl.serc.iisc.ernet.in’

On the other hand, if a path index on P is available, the translation module uses
this information to translate the query as follows:

select count (%)
from Africa A, Mailbox M
where A.africa-key = M.parent-africa
and M.from = ’priti@dsl.serc.iisc.ernet.in’

While the above was an illustrative example, the complete algorithm for incor-
porating indices in the XQuery-to-SQL translation process is given in [I4].

5 Mapping XML Triggers and Views

We now move on to the advanced components of XML triggers [4] and XML
views [I]. Triggers are primarily used to execute a specific logic upon updates
to the database. To leverage the power of relational databases, our aim is to
map the XML triggers to relational triggers, an example of which is shown in
Figure 8

CREATE TRIGGER Increment-Counter CREATE TRIGGER Increment-Counter
AFTER INSERT OF //CUSTOMER AFTER INSERT ON Customer

FOR EACH NODE REFERENCING NEW AS new row

LET $branch id = NEW NODE/branch FOR EACH ROW

LET $branch node =
//branch-office[id=$branch id] BEGIN ATOMIC
LET $counter = $branch node/acc-counter UPDATE Branch-office

DO (SET Acc-counter=Acc-counter+1
FOR $branch node WHERE Branch-office.Id =
UPDATE $branch node new row.Branch
REPLACE $counter WITH $counter + 1) END

(a) XML trigger (b) Equivalent SQL trigger

Fig. 8. Mapping XML triggers to SQL triggers

A problem specific to the XML domain, however, is that compared to rela-
tional updates, XQuery updates may be seen as bulk statements since they may
involve arbitrarily large fragments of documents that are inserted or dropped
through a single statement. For example, when a bank sets up operations in a
new city, the corresponding XQuery update could result in several SQL insert
statements on the tables corresponding to the update path.

Holistic Schema Mappings for XML-on-RDBMS 751

In this situation, consider the following XML trigger, sending e-mail to ad-
vertise the new office to all customers from the same country as the inserted
city:

CREATE TRIGGER NewCityTrigger AFTER INSERT OF /bank/country/city
FOR EACH NODE DO (

LET $city-name = NEW NODE/name

LET $city-state = NEW NODE/state

LET $city-head-office-id = NEW NODE/head-office-id

LET $city-branch-offices = NEW NODE/branch-office

FOR $customer IN NEW NODE/../country/customer
send-email ($customer, $city-name, $city-state,
$city-head-office-id, $city-branch-offices, ...))

The above trigger needs to be executed after all the insert statements to the City,
Branch-office, Office-Id, Atm, Account relations have been executed. However,
in the current SQL standard, triggers cannot be specified relative to a set of
operations on different tables. We refer to such triggers as non-mappable XML
triggers and model them instead as stored procedures that can be called by the
middleware at runtime.

While the costs of mappable triggers are natively modeled by the relational
optimizer, an additional query workload equivalent to the non-mappable triggers
is included in the XML query workload. Our experiments have shown that in
practice XML triggers play an important role in determining the choice of the
final relational configuration.

Turning our attention to XML views, Elixir maps these views to relational
views by first converting the XML view definition to the equivalent SQL view def-
inition, and then translating XQuery queries on the XML views to SQL queries
on relational views. Additionally, if the user specifies a materialized XML view,
then this view is mapped to materialized relational views. The complete mapping
algorithm is given in [T4], and an illustrative example is shown below.

Consider a user specifying the following materialized XML view to make the
balance inquiry query execute faster:

CREATE MATERIALIZED VIEW customer balance AS
FOR $customer IN //customer
FOR $account IN //account
WHERE $customer/acc-num = $account/sav-acc-num or
$customer/acc-num = $account/check-acc-num
return
<customer-balance>
<id>$customer/cust-id</id>
<acc-num>$customer/acc-num</acc-num>
<balance>$customer/balance</balance>
</customer-balance>
DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

Elixir maps this XML materialized view to the following equivalent relational
materialized view:

752 P. Patil and J.R. Haritsa

CREATE TABLE customer balance AS

(SELECT C.id, C.acc-num, A.balance

FROM Customer C, Account A

WHERE C.acc-num = A.sav-or-check-acc-num)
DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

6 Experimental Evaluation

In this section, we present our experimental evaluation of the Elixir system.
Our experiments were run on a Pentium-IV PC running Linux, with DB2 UDB
v8.1 [20] as the backend database engine. Four representative real-world XML
schemas: Genex [19], EPML [18], ICRFS [21] and TourML [26], which deal with
gene expressions, business processes, enterprise analysis and tourism, respec-
tively, are used in our study. In addition, we also evaluate the performance for
the synthetic XMark benchmark schema [28] [

6.1 Effect of Keys

To serve as a baseline for assessing the effect of key inclusion, we compare the
performance of Elixir (in the absence of indices, triggers, and views) with that of
FleXMap (FM) [15], a framework for expressing XML schema transformations
and for searching the equivalent relational configuration space. Using the ToX-
gene tool [27], three types of documents were generated for each XML schema
by varying the distribution of elements as all-uniform, uniform-exponential, and
all-exponential, resulting in documents with uniform data, moderately skewed
data, and highly skewed data, respectively. The query workload involves 10 rep-
resentative queries for each XML schema.

We compare the runtime efficiency of Elixir and FleXMap with regard to the
following metrics: (a) The percentage reduction in search space, and (b) The
response time speedup due to this reduction. The average number of transfor-
mations evaluated by Elixir and FM are shown in Figure [@(a) for the five XML
schemas. We see there that the reduction ranges from 30% to 60%, arising from
the filtering out of invalid transformations, discussed in Section [Bl For exam-
ple, on the ICRFS schema, the average number of transformations performed by
FleXMap are about 1860, whereas Elixir only requires about 860.

The time speedup due to the search space reduction is shown in Figure B(b),
which captures the average time required to obtain the final relational configu-
ration for the same set of schemas. Here, we observe that the runtime reductions
range from 50% to 85%. It is interesting to note that the speedup is super-linear
in the percentage space reduction. For example, the 50% search space reduction
for ICRFS may be expected to result in a speedup of 2, but the speedup actu-
ally obtained is greater than 4. The reason for this is as follows: A given XQuery
workload satisfies more paths in the fully decomposed schema of FleXMap re-
sulting in more subqueries in the equivalent SQL workload, as compared to the

! Since XMark is available only as a DTD, we created the equivalent XML Schema
and incorporated keys by mapping the IDs and IDREFs.

Holistic Schema Mappings for XML-on-RDBMS 753

6000 600

g - Y
H Wl Elixir Il Elixir
% 5000] 500
£ -
£ >
S £
@ 4000 £ 400
8 £
.,'-_ o
S 3000 € 300
] =
a o
E 2000 &
3 £ 200
> >
s <
&
5 1000 100|
>
<
Genex EPML ICRFS TourML ~ XMark 0 Genex EPML ICRFS TourML XMark
XML Schemas XML Schemas
(a) Search space (b) Time efficiency

Fig. 9. Impact of Keys

number derived from the restrictive decomposed schema of Elixir. Thus, the
time required for evaluating the cost of an individual transformation using the
relational optimizer is more for FleXMap than for Elixir. In a nutshell, Elixir
has “fewer and cheaper” transformations.

6.2 Effect of Index Selection

We now move on to evaluating the impact of index selection. Specifically, we
compare Elixir, with its path-index-based selection, against two alternatives:
BasicDB2, where the system has only its default primary key indices, and
DB2Advisor, where DB2’s Index Advisor tool is used to suggest a good set
of indices, similar to [6].

We report here the results of experiments on the EPML schema [I8] with
various sizes of XML documents ranging from 1 MB to 500 MB. The query
workload involves 20 representative queries. The index disk budget was set to be
10 percent of the space occupied by the XML document repository, a common
rule-of-thumb in practice. The results for this set of experiments are shown in
Figure [0 where we see that the cost of the final relational configuration is
significantly lower for Elixir as compared to BasicDB2 as well as DB2Advisor.
The results obtained on other schemas were similar and are available in [I4].

Analysis of the set of indices chosen by Elixir and DB2Advisor indicates the
following: The SQL workload equivalent to the given XQuery workload involves
several joins. DB2 attempts to improve the query performance by creating mul-
ticolumn indexes or single column indexes (with include clause). Elixir, on the
other hand, uses the path indices suggested by XIST and converts path indices
to equivalent single column relational indices. Further, the sets of indexes chosen
by DB2Advisor and Elixir are quite different in that the overlap is only between
20% to 50%.

6.3 Overall Performance of Elixir System

While the previous experiments evaluated the performance in isolation for var-
ious components (the trigger and view performance is available in [14]), the

754 P. Patil and J.R. Haritsa

] BasicDB2 ‘ ‘ Il Mapping
I DB2Advisor [Index Selection
Hl Elixir 500 [] Optimizer
1
~ 400}
c
. 08r =
H £ 300
(5] L o
° 0.6 E
E F
£ 200
E 0.41
0l 100}

o
o

1MB 10MB 100MB 500 MB XMark EPML ICRFS
Document Size XML Schema
Fig. 10. Index selection Fig. 11. Elixir Performance

overall performance when all components are integrated is shown in Figure [l
This figure shows both the total time for producing the final relational schema
as well as the breakup of this time in different steps of the tuning process —
Mapping, Index selection, and Optimizer. With regard to overall time, we find
that it is in the range of a few hours for each schema. While this may seem ex-
cessive at first glance, note that (a) the schema generation process is typically a
one-shot process, and therefore time may not be a major issue; and, further, (b)
the breakup of the runtime indicates significant potential for improvement — the
heavy overhead (60% to 70%) is largely attributable to our using the optimizer
from the outside, which involves fresh creation of tables, loading of statistics,
costing the mapping and table deletion, in each iteration of the mapping pro-
cess. We expect that this overhead would be substantially reduced if the Elixir
system were implemented inside the relational engine since the optimizer could
be instrumented to directly provide the cost for the new mappings. Finally, note
that due to the absence of comparable systems for producing holistic schemas,
we only provide absolute performance results here.

7 Conclusions and Future Work

In this paper, we studied the problem of producing information-preserving holis-
tic schema mappings from XML repositories to relational backends. Specifically,
we proposed the Elixir system, which captures most significant aspects of the
XML world and delivers relational schemas that include table configurations,
keys, indices, triggers, and views, featuring an integrated, cost-based and source-
centric optimization of the mapping process. A detailed experimental study on
real-world and synthetic schemas demonstrated the effectiveness of our tech-
niques with regard to both the final quality of the relational configuration as
well as the mapping time. In a nutshell, the Elixir system achieves “industrial-
strength” mappings for XML-on-RDBMS providing lossless translation (struc-
ture and semantics including constraints and triggers) and performance tuning
(indices and materialized views). Our future plans include implementation of the

Holistic Schema Mappings for XML-on-RDBMS 755

Elixir system inside public-domain relational engines and extending the schema
mapping to include security components.

Acknowledgements. This work was supported in part by a Swarnajayanti
Fellowship from the Dept. of Science & Technology, Govt. of India.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

S. Abiteboul. On Views and XML. In Proc. of 18th ACM Symp. on Principles of
Database Systems (PODS), May 1999.

S. Boag et al. XQuery 1.0: An XML Query Language, May 2001.
http://www.w3.org/TR/xquery/.

. P. Bohannon, J. Freire, P. Roy and J. Siméon. From XML schema to relations: A

cost based approach to XML storage. In Proc. of 18th IEEE Intl. Conf. on Data
Engineering (ICDE), March 2002.

. A. Bonifati, D. Braga, A. Campi and S. Ceri. Active XQuery. In Proc. of 18th

IEEE Intl. Conf. on Data Engineering (ICDE), February 2002.

. P. Buneman, S. Davidson, W. Fan, C. Hara and W. Tan. Keys for XML. Computer

Networks, 39(5), 2002.

. S. Chaudhuri, Z. Chen, K. Shim and Y. Wu. Storing XML (with XSD) in SQL

Databases: Interplay of Logical and Physical Designs. In Proc. of 20th IEEE Intl.
Conf. on Data Engineering (ICDE), March 2004.

. Y. Chen, S. Davidson and Y. Zheng. Constraints preserving schema mapping from

XML to relations. In Proc. of 5th Intl. Workshop on Web and Databases (WebDB),
June 2002.

. Y. Chen, S. Davidson and Y. Zheng. Validating constraints in XML. Tech. Report

MS-CIS-02-03, Dept. of Computer and Information Science, Univ. of Pennsylvania,
2002.

. J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Siméon. Statix: Making XML

count. In Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June 2002.
H. Jagadish et al. TIMBER: A Native XML Database. VLDB Journal, 11(4),
2002.

C. Kanne and G. Moerkotte. Efficient Storage of XML data. In Proc. of 16th IEEE
Intl. Conf. on Data Engineering (ICDE), February 2000.

R. Krishnamurthy, V. Chakaravarthy and J. Naughton. On the Difficulty of Finding
Optimal Relational Decompositions for XML Workloads: a Complexity Theoretic
Perspective. In Proc. of 9th Intl. Conf. on Database Theory (ICDT), January 2003.
R. Krishnamurthy, R. Kaushik and J. Naughton. Efficient XML-to-SQL Query
Translation: Where to Add the Intelligence? In Proc. of 30th Intl. Conf. on Very
Large Data Bases (VLDB), August 2004.

P. Patil and J. Haritsa. Holistic Schema Mappings for XML-on-RDBMS. Tech. Re-
port http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2005-02.
pdf .

M. Ramanath, J. Freire, J. Haritsa and P. Roy. Searching for efficient XML-to-
relational mappings. In Proc. of 1st Intl. XML Database Symp. (XSym), September
2003.

K. Runapongsa, J. Patel, R. Bordawekar and S. Padmanabhan. XIST: An XML
Index Selection Tool. In Proc. of 2nd Intl. XML Database Symp. (XSym), August
2004.

http://www.w3.org/TR/xquery/
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2005-02.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2005-02.pdf

756

17.
18.
19.
20.
21.
22.

23.
24.

25.

26.
27.

28.
29.

P. Patil and J.R. Haritsa

DTD. http://wuw.w3.org/XML/1998/06/xmlspec-report.

EPML (EPC Markup Language). http://wi.wu-wien.ac.at/ mendling/EPML/|
GENEX (Gene Expression Markup Language). http://www.ncgr.org/genex.
IBM DB2 XML Extender. http://wuw-3.ibm.com/software/data/db2/
extenders/xmlext/library.html.

ICRFS (ICRFS XML schema). http://www.insureware.com/abouti/mlines.
shtml.

A survey of MS-SQL Server 2000 XML features. http://msdn.microsoft.com/
library/en-us/dnexxml/html/xm107162001.asp?frame=true.

Objective Caml. http://caml.inria.fr/ocamll

Oracle XML DB: An oracle technical white paper. http://technet.oracle.com/
tech/xml/content.html.

Tamino. http://wwwl.softwareag.com/Corporate/products/tamino/prod info/
default.asp.

Tourism Markup Language. http://www.opentourism.org.

ToXgene (ToX XML Data Generator). http://www.cs.toronto.edu/tox/
toxgene/.

XMark. http://monetdb.cwi.nl/xml/\

XML schema. http://www.w3.org/TR/xmlschema-1/.

http://www.w3.org/XML/1998/06/xmlspec-report
http://wi.wu-wien.ac.at/~mendling/EPML/
http://www.ncgr.org/genex
http://www-3.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www-3.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www.insureware.com/abouti/mlines.shtml
http://www.insureware.com/abouti/mlines.shtml
http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07162001.asp?frame=true
http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07162001.asp?frame=true
http://caml.inria.fr/ocaml
http://technet.oracle.com/tech/xml/content.html
http://technet.oracle.com/tech/xml/content.html
http://www1.softwareag.com/Corporate/products/tamino/prod_info/default.asp
http://www1.softwareag.com/Corporate/products/tamino/prod_info/default.asp
http://www.opentourism.org
http://www.cs.toronto.edu/tox/toxgene/
http://www.cs.toronto.edu/tox/toxgene/
http://monetdb.cwi.nl/xml/
http://www.w3.org/TR/xmlschema-1/

	Introduction
	Architecture of Elixir System
	Generating Constraint-Preserving Relations
	Index Selection in Elixir
	Path Index to Relational Index Conversion
	Query Rewriting for Path Indices

	Mapping XML Triggers and Views
	Experimental Evaluation
	Effect of Keys
	Effect of Index Selection
	Overall Performance of Elixir System

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

