
Robust Heuristics for Scalable Optimization of Complex SQL Queries

Gopal Chandra Das Jayant R. Haritsa
Database Systems Laboratory, SERC/CSA

Indian Institute of Science, Bangalore, INDIA

1 Introduction

Modern database systems incorporate aquery optimizer
to identify the most efficient “query execution plan” for ex-
ecuting the declarative SQL queries submitted by users. A
dynamic-programming-based approach is used to exhaus-
tively enumerate the combinatorially large search space of
plan alternatives and, using a cost model, to identify the
optimal choice. While dynamic programming(DP) works
very well for moderately complex queries with up to around
a dozen base relations, it usually fails to scale beyond this
stage due to its inherent exponential space and time com-
plexity. Therefore, DP becomes practically infeasible for
complex queries with a large number of base relations, such
as those found in current decision-support and enterprise
management applications.

To address the above problem, a variety of approaches
have been proposed in the literature. Some completely jet-
tison the DP approach and resort to alternative techniques
such as randomized algorithms (e.g. [7]) or genetic tech-
niques (e.g. [5]), whereas others have retained DP by us-
ing heuristics to prune the search space to computationally
manageable levels. In the latter class, a well-known strategy
is “Iterative Dynamic Programming”(IDP) [3] wherein DP
is employed bottom-up until it hits its feasibility limit, and
theniterativelyrestarted with asignificantly reduced subset
of the execution plans currently under consideration. The
experimental evaluation of IDP in [3] indicated that by ap-
propriate choice of algorithmic parameters, it was possible
to almost always obtain “good” (within a factor of twice of
the optimal) plans, and in the few remaining cases, mostly
“acceptable” (within an order of magnitude of the optimal)
plans, and rarely, a “bad” plan.

While IDP is certainly an innovative and powerful ap-
proach, we have found that there are a variety of common
query frameworks wherein it can fail to consistently pro-
duce good plans, let alone the optimal choice. This is es-
pecially so whenstar or clique components are present,
increasing the complexity of the join graphs. Worse, this
shortcoming is exacerbated when the number of relations
participating in the query is scaled upwards.

Example. Consider the 15-relation “Star-Chain” join
graph shown in Figure 1, where relationR1 star-joins with
relationsR2 throughR11, andR11 throughR15 join in a
chain formation – this join graph is structurally similar to
Queries 8 and 9 of the TPC-H benchmark [8]. A hundred
different instances of the Star-Chain join graph were imple-
mented on the PostgreSQL engine [4], and optimized with
DP and IDP (for a representative IDP parameter setting ofk = 7, wherek determines the number of DP levels exe-
cuted in each iteration).

Figure 1. Star-Chain Join Graph

The relative performance results are shown in Table 1.
Here, the classification of Good (G), Acceptable (A), and
Bad (B) plans, is refined with the addition of Ideal (I),
meaning the recommended plan is either identical to that
produced by DP, or within 1% of this optimal. Addition-
ally, the Worst-case (W) plan-cost increase ratio w.r.t. DP
is given, and an overall plan-quality factor,�, defined as the
Geometric Mean of the plan-costs normalized to the same
metric w.r.t. DP, is tabulated.

Query Join Tech- Plan-Quality
Graph nique I G A B W �

DP 100 0 0 0 1 1
Star-Chain-15 IDP 2 44 54 2 10.9 2.83

SDP 80 20 0 0 1.2 1.02

Table 1. Plan Quality (DP, IDP, SDP)

The table shows that, relative to DP, for which all plans
are Ideal by definition, a sizeable fraction of the plans deliv-

ered by IDP arerather inefficient– 56% are beyond a factor
of 2 with regard to the optimal, and 2% are beyond a factor
of 10. Further, IDP produces the ideal plan only for a very
few (2%) queries. In the worst-case, the IDP plan is about
11 times slower than the optimal plan, and the� overall
plan-quality metric is close to 3, way above the ideal value
of 1.

Skyline Dynamic Programming

We have attempted to address the above problem of con-
sistency in plan quality by proposing a new pruning strat-
egy for the DP search space. Our heuristic, called “Sky-
line Dynamic Programming”(SDP), is based on two novel
premises: (a) Selectively applying pruning to onlylocal
segments of the join graph that are expected to be diffi-
cult to optimize, and not to the entire join graph; and, (b)
Adopting a multi-wayskyline-based pruning strategy on a
sub-plan feature vector that incorporatescosts, cardinalities
andselectivities.

Through a detailed study, running to millions of complex
star and star-chain queries on rich relational schemas imple-
mented on the PostgreSQL engine, we have found SDP to
berobustwith regard to consistently providing high-quality
plans – in fact, for a large fraction of the queries, it produces
ideal plans. A quantitative instance is shown in Table 1,
where SDP gives the ideal plan in 80% or more of the cases
for Star-Chain-15, while the remaining sub-optimal choices
are all good plans – in fact, very good plans, since in the
worst-case, the plan selected by SDP is only 22% slower
than the optimal. Finally, the� value is 1.02, very close to
the ideal of 1.

Equally important, SDP’s improvement is not achieved
at the cost of increasing the optimization time and space
overheads – on the contrary, due to its aggressive pruning
strategy, SDP is completes the optimization process with
overheads perceptibly lower than that of IDP. This is quan-
titatively shown in Table 2 where the space and time over-
heads of SDP are at least a third lower than that of IDP.

Query Join Tech- Memory Time Costing
Graph nique (in MB) (in sec) (in plans)

DP 32.39 1.00 8.3E5
Star-Chain-15 IDP 7.39 0.20 1.3E5

SDP 4.33 0.10 0.5E5

Table 2. Optimization Overheads

To put the above results in perspective, Figure 2 shows a
plot of the plan-quality� against the the optimization over-
head, for DP, IDP (withk = 4 andk = 7) and SDP. We
see here that SDP produces a much better “knee-of-the-
tradeoff” between input effort and output quality, as com-
pared to IDP.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

P
la

n
Q

ua
lit

y

Optimization Time Overhead (in sec)

DP
IDP (k = 4)
IDP (k = 7)

SDP

Figure 2. Plan Quality (�) vs. Effort Tradeoff

Effect of Scaling. When the Star-Chain join graph is
scaled up to 23 relations, DP becomes computationally in-
feasible, due to running out of physical memory. However,
both IDP and SDP are able to run to completion and in Ta-
ble 3, we show IDP’s performance relative to SDP, that is,
treating SDP as ideal. We see there that the quality gap
between SDP and IDPincreases, with close to 90% of the
IDP plans falling in the bad category relative to SDP. Fur-
ther, with regard to the overheads, shown in Table 4, SDP
requires about anorder of magnitudeless effort than IDP.

Query Join Tech- Plan-Quality
Graph nique I G A B W �

DP � � � � � �
Star-Chain-23 IDP 0 0 12 88 25.3 16.2

SDP 100 0 0 0 1 1

Table 3. Scaled Join Graph: Plan Quality

Query Join Tech- Memory Time Costing
Graph nique (in MB) (in sec) (in plans)

DP � � �
Star-Chain-23 IDP 460.37 54.7 4.5E6

SDP 55.33 1.08 0.4E6

Table 4. Scaled Join Graph: Overheads

In a nutshell, SDP consistently and efficiently produces
high-quality query execution plans, as compared to prior
pruning approaches. Moreover, like IDP, it can be easily
integrated with current optimizers – in fact, as mentioned
earlier, all our experiments have been conducted through
direct implementationon the PostgreSQL engine.

2 The SDP Algorithm

A common characteristic of the previous approaches to
limiting the DP search space was to apply the pruning uni-
versally over theentire query join graph. However, we have
observed that in practice, it is the presence ofhub rela-
tions(defined as relations that join withthree or morerela-
tions) that are primarily responsible for the high overheads
of DP in the optimization process. The notion of a hub re-
lation applies not only to the base relations in the original
query graph, but also to the intermediateJoin-Composite-
Relations (JCRs)that are computed during the optimization
process. Based on this observation, SDP selectively applies
pruningonly to JCRs containing hub relations, leaving the
remaining JCRs to be optimized under the aegis of the tra-
ditional exhaustive DP.

In its first iteration, SDP implements the standard DP
algorithm, identifying the best access plan for each indi-
vidual relation. Then, in the second iteration, all pair-wise
join-composites (excluding cartesian products) of the base
relations are enumerated, as in standard DP. These JCRs
are split into two sets:PruneGroup (PG) andFreeGroup
(FG), with the splitting based on whether or not the JCR in-
cludes a complete hub from the immediately previous level
– i.e. a “hub-parent”. Subsequently the pruning strategy de-
scribed below is applied, and the output is the set of length-
2 “survivor JCRs”. These survivor JCRs, along with all the
survivor JCRs of previous levels then form the input to DP
of the next level, and the process iteratively continues in
this manner until a stage is reached where there are only
two additional relations to be joined for each composite. At
this point, by definition, there cannot be any hub-relations
present, and therefore, the standard DP algorithm is em-
ployed for the last two levels.

Pruning Strategy. The pruning strategy in SDP has two
steps: First, the JCRs in the PruneGroup are assigned to
sub-groups that are formed with respect to the “root hubs”,
that is, the hub relations of the original join graph. The
second step is to apply the function, described next,within
each sub-group, to prune a subset of the JCRs present in the
sub-group.

We characterize JCRs with a feature-vector comprised of
the following attributes: [ROWS(R), COST(C), SELECTIV-
ITY (S)], corresponding to the number of rows output by the
JCR, the lowest cost of producing this output, and the out-
put selectivity of the JCR relative to the product of the sizes
of its base relations, respectively.

Theskylineconcept [1] is employed on this feature vec-
tor for pruning JCRs. Specifically, we compute adisjunc-
tive multiway skylineon pairwise combinations of the RCS
attributes in the feature vector. That is, we first identify
the skyline set of JCRs based on their RC values, then the

skyline set on the CS values, and finally the skyline set on
the RS values. The JCRs featured in the three skylines are
unioned, and all remaining JCRs are pruned. That is, we re-
tain only those JCRs that are able to survive in at leastone
of the three skylines.

An example of the pruning process is shown in Table 5,
where from the Prune Group on root hub 1, which con-
sists of JCRsf1-2-3, 1-2-5, 1-3-5, 1-4-5, 1-5-6g, the sur-
vivor JCRs aref1-2-3, 1-2-5, 1-4-5, 1-5-6g while f1-3-5g
is pruned (the digits are the relation identifiers).

Prune Feature Vector Skylines
Group1 [R,C,S] RC CS RS
1-2-3 [187638, 49386, 3.9E-5]

p p
-

1-2-5 [122879, 52132, 1.0E-5]
p p p

1-3-5 [242620, 56021, 1.0E-5] - - -
1-4-5 [241562, 55388, 6.65-6] - -

p
1-5-6 [385375, 52632, 4.5E-6] -

p p
Table 5. Multi-way Skyline Pruning

Further Details. The complete details of the design and
implementation of the SDP algorithm, and its performance
evaluation, are available in the full version of this paper [2].

References

[1] S. Borzsonyi, D. Kossmann and K. Stocker.The Sky-
line Operator.Proc. of 17th IEEE Intl. Conf. on Data
Engineering (ICDE), 2001.

[2] G. Das and J. Haritsa.Scalable Optimization
of Complex SQL Queries.Tech. Report TR-
2006-01, DSL, Indian Inst. of Science, 2006.
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2006-01.pdf

[3] D. Kossmann and K. Stocker.Iterative dynamic pro-
gramming: a new class of query optimization algo-
rithms. ACM Trans. on Database Systems (TODS),
25(1), 2000.

[4] PostgreSQL Database System.www.postgresql.com.

[5] Postgres Genetic Optimizer.
www.postgresql.org/docs/7.4/static/geqo-intro2.html

[6] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie
and T. Price.Access Path Selection in a Relational
Database Management System.Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, 1997.

[7] M. Steinbrunn, G. Moerkotte and A. Kemper.Heuris-
tic and Randomized Optimization for the Join Order-
ing Problem.Intl. Journal on Very Large Data Bases
(VLDB), 1997.

[8] Transaction Processing Performance Council.
http://tpc.org/.

