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During the past few years, several studies have been 
made on the performance of real-time database sys- 
tems with respect to the number of transactions that 
miss their deadlines. These studies have used either 
simulation models or database testbeds as their perfor- 
mance evaluation tools. We present here a prelimi- 
nary analytical performance study of real-time trans- 
action processing. Using a series of approximations, 
we derive simple closed-form solutions to reduced real- 
time database models. Although quantitatively approx- 
imate, the solutions accurately capture system sensi- 
tivity to workload parameters and indicate conditions 
under which performance bounds are achieved. 

1 I n t r o d u c t i o n  

In a broad sense, a real-time database system (RT- 
DBS) is a transaction processing system that  is de- 
signed to handle workloads where transactions have 
service deadlines. The objective of the system is to 
meet these deadlines, that  is, to process transactions 
before their deadlines expire. Therefore, in contrast to 
a conventional DBMS where the goal usually is to min- 
imize transaction response times, the emphasis here is 
on satisfying the timing constraints of transactions. 

Transactions may miss their deadlines in a real- 
t ime database system due to contention for physical 
resources (CPUs, disks, memory) and logical resources 
(data). During the last few years, several detailed 
studies [1, 3, 5] have evaluated the performance of 
various real-time transaction resource scheduling poli- 
cies with respect to the number of missed transaction 
deadlines. These studies have either used simulation 
models [1, 3] or used database testbeds [5] as their 
performance evaluation tools. The lack of analytical 
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F i g u r e  1.1: R T D B S  M o d e l  

studies may be at tr ibuted to the complexity of real- 
time database systems. Accurately modeling a real- 
time database system involves incorporating transac- 
tion time constraints, scheduling at multiple resources, 
concurrency control, buffer management,  etc., and this 
appears to be mathematically intractable. In fact, the 
exact solutions to extremely simplified special cases 
are themselves complex (e.g. [8]). 

While exact solutions appear infeasible or too com- 
plex to be of utility, we show in this paper that  it 
is possible to derive simple approximate solutions to 
reduced models of real-time database systems. Al- 
though the solutions are quantitatively approximate, 
they satisfactorily capture system sensitivity to work- 
load parameters and indicate conditions under which 
performance limits are achieved. In essence, we are 
able to estimate performance trends and bounds. 

We investigate here the performance of real-time 
database systems where transactions have deadlines 
to the start of service (i.e. laxities). In our reduced 
model (Figure 1.1), transactions arrive in a stream to 
the real-time database system. Each transaction upon 
arrival requests the scheduler for access (read or write) 
to a set of objects in the database. A transaction that 
is granted access to its data  before its laxity expires is 
considered to be "successful". Successful transactions 
access their data  for some period of time and then exit 
the system. Transactions that  are not successful are 
"killed", that  is, they are removed from the system 
wait queue when their laxities expire. Our goal is to 
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derive the steady-state fraction of input transactions 
that are killed (c~ in Figure 1.1), as a function of the 
workload and system parameters. We consider only 
data contention in our model since it is a fundamental 
performance limiting factor, unlike hardware resource 
contention which can be reduced by purchasing more 
resources and/or  faster resources. While abundant re- 
sources are usually not to be expected in conventional 
database systems, they may be more common in RT- 
DBS environments since many real-time systems are 
sized to handle transient heavy loading. 

Using a series of approximations, we develop here 
a simple closed-form solution for the above RTDBS 
model, which merely involves finding the roots of a 
cubic equation. This approximate solution accurately 
captures the qualitative behavior of the model. Fur- 
ther, it also provides quantitative results that are 
fairly close to the exact values (as determined by sim- 
ulation). Taking advantage of the simplicity of the 
approximate solution, we derive interesting corollar- 
ies, some of which are unique to the database environ- 
ment. For example, we show that the absolute values 
of certain database parameters play a role in deter- 
mining system performance, unlike the corresponding 
classical real-time systems where performance is de- 
termined solely by normalized quantities. 

2 M o d e l  a n d  N o t a t i o n  

We consider a system where transaction arrivals 
are Poisson with rate A, transaction data processing 
times are exponentially distributed with mean l / p ,  
and transaction laxities are (independently) exponen- 
tially distributed with mean 1/7 (A, p, 7 > 0). We as- 
sume that the database is large, that it is accessed uni- 
formly, and that each transaction atomically requests 
its entire data  set (i.e. static locking or predeclaration 
[9]). We also assume that  each transaction requests J 
data objects and that  J is much smaller than N, the 
database size (this is usually true in practice). 

The database scheduler queues and processes trans- 
actions in arrival order. A transaction is allowed ac- 
cess to its data only if it has no data  conflicts with 
currently executing transactions and if all transactions 
that arrived prior to it have either been successful or 
been killed. While this type of fcfs policy is not typi- 
cal of real-time systems, there are database situations, 
however, where this policy may be used due to fairness 
requirements. A practical example is that  of brokers 
submitting real-time buy and sell orders in a stock ex- 
change, wherein fcfs processing may be used to main- 
tain fairness among brokers. In addition, a fcfs policy 

provides a baseline against which more sophisticated 
real-time scheduling disciplines can be evaluated. 

In the subsequent discussions, we use a (0 < a < 1) 
to denote the steady-state fraction of input transac- 
tions that  are killed. To succinctly characterize our 
system configuration, we use the queueing-theoretic 
notation M/MINI/M, where the first M denotes the 
Poisson transaction arrival process, the second M de- 
notes the exponential transaction service time distri- 
bution, N,~ denotes the number of servers, and the 
last M denotes the exponential transaction laxity dis- 
tribution. In typical queueing systems, the number of 
servers is usually constant. However, in the database 
environment, the number of "servers", that is, the 
number of transactions that  can be simultaneously 
processed, is variable depending on N, J ,  and the 
current sequence of transaction data  requests (i.e. the 
level of data contention). We therefore use the nota- 
tion Nj  for the server descriptor, thereby highlighting 
the variability in the number of servers. With this con- 
vention, our real-time database model is represented 
by a M/M/N.1/M queueing system, and our goal is to 
characterize the c~ behavior of this system. 

3 R e l a t e d  W o r k  

There is an extensive literature on the analysis of 
queueing systems with deadlines. In particular, queue- 
ing systems such as M/M/1/M and M/M/m/M have 
been solved exactly with respect to the a metric 
[2, l l] .  However, these results are applicable only 
to systems with a constant number of servers. They 
are not useful for determining the performance of our 
queueing model since the number of servers in the 
database is variable, as explained in Section 2. 

Database systems where queueing is not allowed 
were considered in [8, 7]. In these systems, a transac- 
tion that  cannot receive service as soon as it arrives is 
immediately killed (equivalently, all transactions have 
zero laxity). The exact solution for this model was 
shown to be quite complex in [8] and approximations 
to the solution for large databases were presented in 
[7, 8]. In our model, where queueing is included, the 
situation becomes more complicated, especially since 
the number of servers is variable. 

The performance of locking protocols in database 
systems has been extensively analyzed. However, vir- 
tually all of these studies (e.g. [9, 10]) have been 
been made in the context of conventional database sys- 
tems where transactions do not have service deadlines. 
Therefore, their results are not directly applicable to 
the real-time environment. 
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F i g u r e  4.1: Q u e u e i n g  M o d e l  

4 Analysis of M / M / N j / M  

In this section, we present an approximate solu- 
tion to the M/M//N.1//M queueing system described 
in Section 2. Our solution is in two parts: First, we 
characterize Oth, the steady-state fraction of transac- 
tions that  successfully manage to reach the head of the 
transaction wait queue but  are killed while waiting for 
their data conflicts to disappear. Next, we compute 
ab, the steady-state fraction of transactions that  are 
killed before they reach the head of the queue, that  is, 
while they are in the body of the queue. These quan- 
tities are related to the overall a of the system by the 
following equation (derived by elementary flow analy- 
sis of Figure 4.1 which shows the queueing model) 

1 - ~ = ( 1  - C ~ h ) ( 1  - O~b) ( 1 )  

Therefore, if we are able to separately compute the 
"head-of-queue" and "body-of-queue" performance 
statistics, we can then easily derive the overall system 
performance. Our motivation for taking this two-step 
approach is to decouple the data conflict analysis from 
the queueing analysis and thereby simplify the perfor- 
mance modeling. 

In the following derivations, we refer to p = A/p as 
the system offered load, and to 5 = P /7  as the normal- 
ized mean laxity (following the terminology of [11]). 
Further, we refer to ~ = J / N  as the database access 
ratio. For ease of explanation, we initially derive re- 
sults for the case where transactions access their data 
objects only in write (exclusive lock) mode. Later, in 
Section 7, these results are extended to the situation 
where data  is accessed in both read and write modes. 

4 .1  H e a d - O f - Q u e u e  P e r f o r m a n c e  

In this section, we compute C~h (0 _< C~h _< 1), the 
probability that  a transaction which has successfully 
managed to reach the head of the queue is killed while 
waiting in this position. 

L e m m a  1 The value of ah is approximately given by 

c~h = A(1 - a)  (2) 

where the coefficient A -  p~ J 
1 + 5  " 

P r o o f :  Consider a transaction that  reaches the head 
of the queue when k database objects are currently 
locked and finds that  some of the data  objects it re- 
quires are in this locked set (i.e. the transaction has 
data conflicts). The probability that  this transaction 
is killed while waiting for the conflicting locks to be 
released is given by 

J 

ahlk = E Pconlk,' Pexpli (3) 
i = 1  

where Pconlkj is the probability that  the transaction 
conflicts on i of its requested J objects, and P~pli 
is the probability that  the transaction's laxity expires 
before these i objects are released. 

We approximately model the head waiter's request 
of J data items from the N database objects as J 
samplings with replacement, that  is, as a sequence of 
Bernoulli trials. In this situation, the probability of 
exactly i conflicts is given by 

Peonlk,i= ( J ) k i k J-i  
i ( ~ )  (1 - ~ 1  (4 / 

since the probability of requesting an already locked 
k 

item is ~ .  

We next compute Pexpli ,  which is the probability that  
the head waiter's laxity expires before all of its i con- 
flicting locks are released. Due to the assumption of 
uniform access to the database and since J << N, the 
probability of having more than one conflict with the 
same transaction is small. We therefore assume that  
each of the i conflicts occurs with a different trans- 
action. The cumulative distribution of the maximum 
of i identically-distributed exponential variables with 
parameter p is given by 

Fma~(i)(t) = (1 - e-"t) i 

Only values of t that  are greater than the remaining 
laxity of the waiting transaction have to be considered 
and since the expression e -t4t tends to 0 with increas- 
ing t, we make the approximation that  

Fma~(O(t) ~ (1 - ie-"t) 

Since transaction laxities are exponentially distributed 
(with parameter  7), and by virtue of the memoryless 
property of exponential distributions, we obtain 

Z Pe~pl i = ie -"t 7e -'Yt dt - i_.___~7 i . + 7  (5) 
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Substituting the above results in Equation 3 gives 

ah[k = E J i i ( ) (1 - ~ )  ( ] - - -~ )  
i=1 

kJ  ~ (  J - 1  ) k i-1 k J- i  

- N ( l + 5 )  i=1 i - 1  ( ) ( 1 - - ~ )  

= k l +  5 (6 )  

since the second summation is identically equal to 1. 

We now go on to compute ah, the unconditional 
probability that a head-of-queue waiter is killed. Us- 
ing Pk to denote the probability of k objects being 
locked, ah can be expressed as 

. h  = a h , k  = Pk  _ E ( k )  
1 + 5  1A-5 k k 

(7) 
Here, E(k)  is the average number of locked objects and 
is easily computed using Little's formula [6]. The rate 
at which transactions obtain locks is A(1 - a ) J  and 
locks are held for a mean duration of 1/#. It therefore 
follows from Little's formula that 

E ( k ) -  $ ( 1 - a ) J  = p J ( 1 - a )  (8) 
tt 

Combining Equations 7 and 8, we finally obtain 

a) -- -P~--J-.(1 - a)  
ah = 1+ 5 p J ( 1 -  1 + 5 "  

[] 

that in the above derivation, a series of ap- Note 
proximations were made to obtain a simple expres- 
sion for ah. The expression is asymptotically exact as 
N ---* oo. 

4 .2  B o d y - O f - Q u e u e  P e r f o r m a n c e  

In this section, we compute ab (0 _< ab _< 1), 
the steady-state probability that a transaction in the 
queue is killed before reaching the head of the queue, 
that is, while it is in the body of the queue. 

L e m m a  2 The value of ab is a unique root of the 
cubic equation 

a 3 + Ba~ + Cab + D = 0 

where the coefficients B, C, and D, are given by 

1 1 ( 1 +  5 
B = + - 

( 9 )  

C = ( 1 -  2 ~ 1 1 2 ] - - ~ )  - (1 + ~ - - ~ )  - p - - ~ ( 1  + 3)  

1 
D -- 

1 + 5  

Over the range of valid parametric values, the equation 
has exactly one root in [0,1] - this is the required root. 

Proof." A detailed proof of this lemma is given in 
the Appendix. Here, we will sketch the outline of the 
proof. The basic idea behind our solution is to treat 
the transaction wait queue itself as an M / G / 1  system 
with the head of queue position playing the role of the 
"server". That  is, we treat the wait queue as being 
composed of a (pseudo)server and a secondary queue. 
As shown in the Appendix, it is possible to express 
the "service-time" distribution of this system (i.e. the 
distribution of the time spent at the head-of-queue 
position) with the following equation 

fh(t)  = (1 -- E)uo(t) + E(# + 7)e -(~+'~)t (10) 

where E = p ~ J ( 1 -  a b ) ( 1 -  a)  and uo(t) is the impulse 
function [6]. 

From Equation 10, we infer that  a fraction (1 - E) 
of the input transactions have a service time of zero 
while the remainder have an exponentially distributed 
service time with parameter (# + 7)- The transactions 
that  have a service time of zero are those that are killed 
before they reach the head of the queue and those that 
immediately enter the database on reaching the head 
of the queue. The remaining transactions either enter 
the database after waiting for some time at the head 
of the queue or are killed during their wait at the head 
of the queue. 

In [6], formulas for computing the waiting time dis- 
tribution of M / G / 1  queues are given in terms of the 
service-time distribution. Substituting the service- 
time distribution from Equation 10 in these formu- 
las, the cumulative distribution function of the waiting 
time in the body of the queue works out to 

Fw(t) = 1 - Ge -(t'+7)(1-G)t (11) 

where G -- P25~J (1 - ab)(1 - -  O~). 
1 + 5  

Recall that  ab is (by definition) the fraction of transac- 
tions that are killed because their laxity is smaller than 
their waiting time in the body of the queue. Therefore, 

ff = (1 - -  dt  = 2 + 5 - a ( 1  + 5) 

02) 
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After substituting for G,  the above equation expresses 
C~b in terms of the system input and output parame- 
ters. Using this equation in conjunction with Equa- 
tions 1 and 2, and after some algebraic manipulations, 
we finally arrive at the cubic equation described in the 
lemma. The proof that this equation has only a single 
root in [0,1] is given in [4]. 

[] 

An important point to note here is that  the above 
derivation is approximate. This is because the M/G~1 
queueing results that  were used in the derivation as- 
sume independence between the task arrival process 
and the service time distribution. In our case, how- 
ever, the head-of-queue "service-time" distribution 
(Equation 10) is dependent on the task arrival pro- 
cess since it involves terms (e.g. p) that  are a function 
of the arrival process. 

4 .3  S y s t e m  P e r f o r m a n c e  

In this section, we combine the results derived 
above for the head-of-queue and body-of-queue statis- 
tics to compute a (0 < c~ < 1), the overall fraction of 
killed transactions. 

T h e o r e m  1 For the M / M / N ~ / M  system, the 
steady-state fraction of transactions that are killed is 
approximately given by 

(1  - C~b) ( 1 3 )  
a = l -  l + A ( 1 - - a b )  

where Ol b is obtained from Lemma 2, and A - p~J 
t + 6  

is the coefficient derived in Lemma 1. 

Proof :  The above expression for a is obtained by 
combining Equations 1 and 2. 

[] 

From the above results, we observe that  the perfor- 
mance of an M / M / N j / M  real-time database system 
is determined by p, 6, ~ and J. This  is in contrast to 
classical M / M / 1 / M  real-time systems where the sys- 
tem performance is dependent only on p and ~f [11]. 

5 Q u a l i t y  o f  A p p r o x i m a t i o n s  

In this section, we compare the accuracy of the ap- 
proximate analysis with respect to the exact solution, 

as determined by simulation 1 of the queueing system. 
In Figures 5.1 through 5.4, we plot a,  the fraction 
of killed transactions, as a function of p, the system 
load, fi)r different combinations of 6 (the normalized 
mean laxity) and ~ (the database access ratio). The 
transaction size, J ,  is set to 10 in these experiments, 
and all data objects are requested in write (exclusive 
lock) mode. Four different values of ~, which span 
the range from a large-sized database to an extremely 
small database were considered. The chosen ~ valuds 
were 0.0001, 0.001, 0.01 and 0.1, which correspond to 
database sizes of 100000, 10000, 1000, and 100 respec- 
tively. Note that  while ~ << 1 was assumed in the 
analysis, the performance for larger values of ~ was 
also evaluated in order to observe at what stage the 
analysis broke down when the assumptions were not 
satisfied. 

For each of the ~ settings, we evaluated the c~ per- 
formance for three values of 6, the normalized laxity. 
The selected 6 values were 0.1, 1.0 and 10.0, thus cov- 
ering a spectrum of transaction slack times (6 = 0.1 
corresponds to transaction laxities being small com- 
pared to processing times, ~ = 1.0 makes the laxi- 
ties comparable to processing times, and ~ = 10.0 re- 
sults in laxities that  are much greater than processing 
times). 

In Figure 5.1, which captures the large database 
situation, we observe that  under light loads, the ana- 
lytical solution (solid lines) provides an excellent ap- 
proximation to the exact solution (broken lines) for 
all the laxities. At heavier loads, the quantitative 
matching deteriorates to some extent (for the large 
laxity case), but the qualitative agreement is main- 
tained throughout the entire loading range. This ex- 
periment confirms that,  for large databases, the sim- 
ple cubic approximation is a good estimator of system 
performance. 

The above experiment is repeated for progressively 
decreasing database sizes in Figures 5.2 through 5.4. 
From these figures, it is clear that  the approximations 
provide reasonably accurate performance predictions 
until ~ goes above 0.01. Further, even when ~ is as 
large as 0.i (Figure 5.4), the qualitative agreement 
between the analysis and the exact solution remains 
very close. Therefore, although our analytical solution 
is heavily based on the assumption that the database 
is large, it captures system performance trends for 
smaller-sized databases as well. 

1 All (~ s imu]at ionresu l t s  in this paper  show m e a n  values that  
have relat ive  half -widths  about  the  m e a n  of less  than  5 ~  at the  
9 5 ~  conf idence level.  
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6 O b s e r v a t i o n s  

In this section, we derive interesting corollaries from 
the c~ solution constructed in Section 4. 

6 .1  E x t r e m e  L a x i t y  C a s e s  

We consider two extreme cases here, one where the 
laxity tends to 0, and the other where the laxity tends 
to cxD, keeping the remaining workload and system pa- 
rameters fixed. When laxity tends to 0, .transaction 
wait queues do not form and c~b --* 0. Substituting 
6 = 0 and c~b = 0 in Equation 13 gives 

1 
o~6=0 = C~h = 1 1 + p~J (14) 

Conversely, when laxity tends to cx), it is clear from 
Equation 2 that C~h --~ 0. Substituting 6 --* co in 
the equation for c~b (Equation 9) and simplifying, we 
obtain 

1 1 
c~--.oo = c~b = - p - - ~  if p > 1 /v / -~  (15) 

0 otherwise 

This equation shows that  when transactions are will- 
ing to wait almost indefinitely to obtain service, they 
do not get killed unless the system offered load is 
greater than 1 / x / ~ .  From Equation 8, this criti- 
cal system load corresponds to the average number 
of locked database objects being x /~ .  

6 .2  P e r f o r m a n c e  C r o s s o v e r  

An interesting feature of Figures 5.1 and 5.2 is that  
the large laxity (6 = 10.0) performance is worse than 
the small laxity (6 = 0.1) performance over virtually 
the entire loading range. Further, in Figure 5.3, a 
performance crossover (at p = 4.0) is clearly observed 
between the large laxity and the small laxity perfor- 
mances (the crossover occurs in Figures 5.1 and 5.2 
also but is not clear due to the scale of the graph). 
This means that  under light loads, large laxity results 
in improved performance, whereas under heavy loads, 
it is the other way around. Therefore, there is a critical 
loading point after which increased laxity can degrade 
performance. This may appear counter-intuitive since 
the expectation is that  an increase in laxity should 
result in better  performance, as observed in the corre- 
sponding classical real-time systems [11]. The reason 
for the difference in the database context is that  trans- 
actions do not ask for generic servers, but  for servers 
with "identity" (i.e. for specific data objects). As a 

result, transactions get queued up behind transactions 
that develop data conflicts and increased laxities re- 
sult in longer queues and more conflicts. Under heavy 
loads, the queues become long enough that  more and 
more transactions are killed while waiting in the queue 
although they have been provided with greater laxity. 
In short, the increased willingness to wait on the part 
of individual transactions is more than outweighed by 
the increased system queueing times that  result from 
this willingness to wait. 

6 . 3  C r o s s o v e r  P o i n t  

In this subsection, we compute the crossover load- 
ing point beyond which the c~ performance with 6 --* 
co becomes worse than that  with 6 = 0. By equating 
the a results obtained for 6 = 0 and 6 --* c~, and after 
some algebraic manipulations, we obtain 

( x / ~  i f v r ~ <  1 
(16) c~cro,,o~r = 1.0 otherwise 

From this expression for acro,,over, it is clear that  with 
decreasing ~ (the database access ratio), the crossover 
occurs at lower and lower values of a. For example, 
with ~ = 0.001 and J = 10, the a c ,o , , o ~  evaluates 
to 0.1. This means that from the system perspective, 
for loading levels that  result in a kill fraction greater 
than 0.1, a workload of transactions that  are willing to 
wait almost indefinitely is more difficult to handle than 
a workload of transactions that  find only immediate 
service acceptable. 

6 .4  P e r f o r m a n c e  B o u n d s  

By evaluating the partial derivative of a w.r.t. 6 in 
Equation 13, the following corollary is obtained (the 
proof is provided in [4]): 
C o r o l l a r y  1 The c~ performance under light loads 
(p ~ O) is a decreasing function of 6. Conversely, 
under heavy loads, (p ---* oo), the oc performance is an 
increasing function of 6. 
From this corollary, we infer that 6 ~ oo provides the 
lower bound on a under light loads, and the upper 
bound on o~ under heavy loads. Conversely, 6 = 0 pro- 
vides the upper bound on c~ under light loads, and the 
lower bound on o~ under heavy loads. Of course, since 
these bounds are derived from the approximations, 
they aren' t  exact numerical bounds on the queueing 
model itself; however, they serve to indicate the con- 
ditions under which these bounds would be achieved 
for the original system. In short, Equations 14 and 15 
provide estimates of the o~ performance range in the 
light-load and heavy-load regions, respectively. 
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6.5 Effect of Transaction Size 

We show in Figure 6.1 and Figure 6.2 the ef- 
fect of varying the transaction size while keeping the 
database access ratio fixed (i.e., the database size is 
scaled in proportion to the transaction size). For this 
experiment, we set ~ = 0.001 and graph a as a func- 
tion of p for different values of J ,  the transaction size. 
In Figure 6.1, 6 is set to 1.0 and in Figure 6.2, di is set 
to 10.0. It is clear from these figures that the absolute 
value of the transaction size plays a significant role 
in determining system performance. This is in con- 
trast to the classical i / i / 1  and M / M / 1 / M  systems 
where performance is determined solely by normalized 
quantities [11]. 

7 Read and Write Access 

In the derivations of Section 4, it was assumed that  
transactions accessed all their data  objects in write 
(exclusive lock) mode. The following lemma extends 
this analysis to include read (shared lock) data ac- 
cesses (the proof is given in [4]). 

L e m m a  3 Let each transaction request a fraction 
(0 < w < 1) of its J data objects in write mode 

and the remainder in read mode. Then, Lemmas 1 
and 2 and Theorem 1 apply in exactly the same form 

except that ~ is to be replaced by ~w (2 -  ~) in all the 
equations. 

When w = 1 (all data items requested in write mode), 
the expression ¢w(2 - w )  reduces to ~, as should be 
expected. Conversely, when w = 0 (all data items 
requested in read mode), the expression ~w(2 - w )  re- 
duces to 0. Substituting this value in the a solution 
results in a = 0. This is as expected since no data 
conflicts occur when data is accessed only in shared 
mode, that  is, the database behaves like an "infinite 
server". 

8 Conclusions 

In this paper, we have at tempted a preliminary ana- 
lytical study on the performance of real-time database 
systems with respect to the number of missed trans- 
action deadlines. Our goal was to provide insight 
into RTDBS behavioral characteristics, rather than 
to quantify actual system performance. To this 
end, we modeled the real-time database as an an 
M / M / N j / M  queueing system and developed an ap- 
proximate closed-form solution for computing the frac- 
tion of killed transactions in this system. The so- 
lution is based on decoupling the queueing analysis 
from the database conflict analysis and then treating 
the transaction wait queue itself as an M/G/1  system. 
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The solution only requires finding the roots of a cubic 
equation, unlike typical Markovian models where the 
computational complexity is often a function of the 
parameter values. Due to its simplicity, the approxi- 
mate solution provided us with insight into the sensi- 
tivity of system performance to workload parameters 
and also yielded conditions under which performance 
limits would be reached. 

Our study showed that, for medium and large- 
sized databases, the approximate analysis provides 
extremely good qualitative agreement with the cor- 
responding simulation-derived exact results. In ad- 
dition, the quantitative results are also fairly accu- 
rate, especially under light loads. For small-sized 
databases, the qualitative matching was retained al- 
though there was considerable deterioration in quan- 
titative accuracy under heavy loads. 

Our experiments showed that the absolute value 
of transaction size, independent of its relation to 
database size, plays a significant role in determining 
system performance. Therefore, we recommend that 
designers of real-time database applications should try 
to minimize the size of their transactions. Our results 
also showed that unlike classical real-time systems, 
where increased task laxity usually results in improved 
performance, increased transaction laxity worsens per- 
formance under heavy loads. We provided a quantita- 
tive characterization of the loading level beyond which 
increased laxity results in degraded performance. We 
also showed that laxity tending to infinity provides 
the best performance under light loads, while laxity 
tending to zero is the best under heavy loads. 

In our model, the transaction scheduler used a fcfs 
processing policy. Different performance behaviors 
may show up for prioritized scheduling disciplines. 
However, it is our view that the approximate anal- 
ysis methodology described here can be successfully 
used to analyze these other cases also and we have had 
some preliminary encouraging results in this regard in 
our ongoing research. Some of the other assumptions 
in our model were that transaction laxities and pro- 
cessing times are exponentially distributed. We are 
currently working on extending the analysis to deter- 
ministic distributions of laxities and processing times. 
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A p p e n d i x  

We present here the detailed proof for Lemma 2. 
The first step is to compute fh(t), the service 
time distribution of transactions at the head-of-queue 
(pseudo)server. Both transactions that  are killed be- 
fore they reach the head of the queue and transactions 
that  immediately enter the database on reaching the 
head of the queue have an effective service time of 
zero. Denoting the service time random variable by 
xh, we have 

fh(O) = P(xh = O) = (C~b + (1 - ab) * (1 - Peon)) uo(t) 
(17) 

where Peon is the probability that  a transaction at the 
head of the queue has to wait due to data conflict and 
uo(t) is the impulse function. A quick way to compute 
Peon is to realize that  it is equivalent to the head-of- 
queue kill fraction in a system where tasks have zero 
laxity. Using the result in Equation 2, we have 

Peon = ah[~=0 ---- p~g(1 - a) 

Substituting this expression for Peon in Equation 17 
and simplifying, we obtain 

fh(O) = (1--  E) uo(t) (18) 

where E = p~J(1 - ab)(1 -- a ) .  
The transactions that  do not fall into the above 

categories either gain entry into the database before 
their laxity expires or are killed while positioned at 
the head of the queue. The service time distribution 
for a transaction with remaining laxity I is given by 

[ #e -~'t O < t < l  
hi ,  (19) e -~'t u o ( t -  1) t > 1 

where the first equation corresponds to the case where 
the transaction's data conflict disappears before its 
laxity expires, and the second equation corresponds 
to the case where the transaction is killed. 
Therefore, the unconditional pdf  of the service time 
distribution when the service time is greater than 0 is 

f fh(t > O) = (pc -gt -4- e-Zl uo(t - l))7e- 'd dl 

= + 7) (20) 

Combining the expressions in Equations 18 and 20, 
the complete service time pdf  is given by 

fh(t) = (1 -- E)uo(t) + E(tt + 7)e -("+'Y)t (21) 

Then, using the well-known M / G / 1  results [6], we ob- 
tain the corresponding waiting-time distribution to be 

w(t) = (1 - ph)Uo(t) + (1 - ph)AEe -(~+7-'xE)t (22) 

where Ph is the "utilization" of the head-of-queue 
server. Consequently, the CDF of the waiting time 
is given by 

F (0 = w ( 0  at 

= (1 - ph)(1 + AE ( _ e_(U+7_XE)t)) 
+ 7 - AE-1 

The Ph parameter is easily computed as 

E 
Ph = AZh = A - -  

#+7 

from the distribution given in Equation 21. 
Substituting this value of Ph in the above equation for 
Fw (t) and simplifying, we have 

F~(t) = 1 - Ge -("+'O0-G)t (23) 

P26~J (I _ where G -  ] ' 7 6 "  ab)(1 - a ) .  

Recall that  ab is the probability of a transaction being 
killed due to its laxity being smaller than its wait time 
in the body of the queue. Theret'ore, 

= (1 - Fw (t)) 7e- ' at 

Substituting for F,~(t) from Equation 23 and evaluat- 
ing the integral, the above expression reduces to 

G 
= 2 + e -- a ( 1  + (24) 

Substituting for G in this equation, and then solving 
for olb, we have 

ab ~ + Pab + 1 = 0 (25) 

1 1 
where P = 2 - (2 + 6)(~--~--~_._ + p26~j( 1 _ c~- ) . 

] 

From the flow equation (Equation 1) and from Equa- 
tion 2, we can express a in terms of ab as 

= 1 - (1  - a b )  
1 + A(1 - ab) (26) 

Substituting this expression for o~ in Equation 25 and 
making algebraic manipulations, we finally obtain 

~3 + B ~  + Cab + D = 0 

where B, C, and D are the coefficients given in Equa- 
tion 9. 

[] 
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