
On Incorporating Iceberg Queries in Query Processors

Krishna P. Leela
�
, Pankaj M. Tolani

�
, and Jayant R. Haritsa

�

Dept. of Computer Science & Automation
Indian Institute of Science, Bangalore 560012, INDIA�

leekris,pankaj,haritsa � @csa.iisc.ernet.in

Abstract. Iceberg queries are a special case of SQL queries involving GROUP
BY and HAVING clauses, wherein the answer set is small relative to the database
size. We present here a performance framework and a detailed evaluation within
this framework of the efficiency of various iceberg query processing techniques.
Based on these results, we provide a simple recipe algorithm that can be imple-
mented in a query optimizer to make appropriate algorithmic choices for process-
ing iceberg queries.

Keywords: Iceberg Query, Query Optimizer

1 Introduction

Many database applications, ranging from decision support to information retrieval,
involve SQL queries that compute aggregate functions over a set of grouped attributes
and retain in the result only those groups whose aggregate values satisfy a simple
comparison predicate with respect to a user-specified threshold. Consider, for example,
the “Dean’s Query” shown below for the Relation REGISTER (RollNo, CourseID,
Credits, Grade):

SELECT RollNo, SUM(Credits)
FROM REGISTER
GROUP BY RollNo
HAVING SUM(Credits) > 18

This query returns the roll number of students currently registered for more than 18
course credits (i.e. the fast-track students). Here, the grouping attribute is the student
roll number, the aggregate operator is SUM, the comparison predicate is “greater than”,
and the threshold value is 18. When the threshold is sufficiently restrictive such that
the results form only a small fraction of the total number of groups in the database, the
query is called an iceberg query [4] – the analogy is that the database is the iceberg
and the small result represents the proverbial “tip” of the iceberg.

Database systems currently do not employ special techniques to process iceberg
queries operating on large databases. That is, independent of the threshold value, they
typically use the one of the following approaches:

Sort-Merge-Aggregate (SMA) : The relation is completely sorted on disk with re-
gard to the group-by attributes and then, in a single sequential scan of the sorted
database, those groups whose aggregate values meet the threshold requirement are
output; or

Hybrid-Hash-Aggregate (HHA) : The relation is recursively partitioned using hash
functions, resulting in partitions in which the distinct groups fit in the available
main memory, where they are subsequently processed.

In general, these strategies appear wasteful since they do not take the threshold pred-
icate into account, that is, they are not output sensitive. Motivated by this observation, a
variety of customized algorithms for efficiently handling iceberg queries were proposed
and evaluated in [4] by Fang et al. These algorithms, which we will collectively here-
after refer to as CIQE1, are based on various combinations of sampling and hashing
techniques. For example, the Defer-Count algorithm operates in the following manner:
in the sampling scan, a random sample of the database is used to identify “candidate”
(i.e. potentially qualifying) groups by scaling the sample results to the database size,
followed by a hashing scan of the database to identify other candidate groups, winding
up with a counting scan of the entire set of candidates against the database to identify
exactly those that do meet the threshold requirement.

1.1 CIQE Applicability

CIQE represents the pioneering work in defining and tackling iceberg queries. However,
it can be utilized only in a restricted set of iceberg query environments – specifically
environments in which

1. The aggregate values of the groups have a highly skewed distribution; and
2. The aggregate operator is either COUNT or SUM; and
3. The comparison predicate is � .

An implication of the first constraint (high skew) is that CIQE would not work for
the Dean’s Query since the number of credits taken by students typically occupies a
small range of values (in our institute, for example, the values range between 0 and 24,
with 99 % of the students taking between 6 and 18 credits).

With respect to the second constraint, apart from COUNT and SUM, other common
aggregate functions include MIN, MAX and AVERAGE. For example, an alternative
“Dean’s Query” could be to determine the honors students by identifying those who
have scored better than a B grade in all of their courses. The candidate pruning tech-
niques of CIQE are not effective for such aggregates since they introduce “false nega-
tives” and post-processing to regain the false negatives can prove to be very expensive.

Finally, the impact of the third constraint (� comparison predicate) is even more
profound – restricting the predicate to � means that only “High-Iceberg” queries, where
we are looking for groups that exceed the threshold, can be supported. In practice,
however, it is equally likely that the user may be interested in “Low-Iceberg” queries,
that is, where the desired groups are those that are below a threshold. For example, an

1 Representing the first letters of the paper’s title words: Computing Iceberg Queries Efficiently.

alternative version of the “Dean’s Query” could be to find the part-time students who
are taking less than 6 credits.

At first sight, it may appear that Low-Iceberg queries are a simple variant of the
High-Iceberg queries and can therefore be easily handled using a CIQE-style approach.
But, in fact, the reality is that Low-Iceberg is a much harder problem since there are
no known efficient techniques to identify the lowest frequencies in a distribution [8]. A
practical implication is that the sampling and hashing scans that form the core of the
CIQE algorithm fail to serve any purpose in the Low-Iceberg scenario.

1.2 Integration with Query Processor

The performance study in [4] was limited to investigating the relative performance of
the CIQE suite of algorithms for various alternative settings of the design parameters.
This information does not suffice for incorporation of iceberg queries in a query opti-
mizer since it is not clear under what circumstances CIQE should be chosen as opposed
to other alternatives. For example, questions like: At what estimated sizes of the “tip”
should a query optimizer utilize CIQE? Or, what is the minimum data skew factor for
CIQE to be effective for a wide range of query selectivities?, and so on, need to be
answered. A related issue is the following question: Even for those environments where
CIQE is applicable and does well, is there a significant difference between its perfor-
mance and that of an offline optimal? That is, how efficient is CIQE?

1.3 Our Work

We attempt to address the above-mentioned questions in this paper. First, we place
CIQE’s performance for iceberg queries in perspective by (empirically) comparing it
against three benchmark algorithms: SMA, HHA, and ORACLE over a variety of
datasets and queries. In these experiments, we stop at 10% query selectivity (in terms
of the number of distinct targets in the result set) since it seems reasonable to expect
that this would be the limit of what could truly be called an “iceberg query” (this was
also the terminating value used in [4]). SMA and HHA represent the classical approaches
described above, and provide a viability bound with regard to the minimal performance
expected from CIQE. ORACLE, on the other hand, represents an optimal, albeit prac-
tically infeasible, algorithm that is apriori “magically” aware of the identities of the
result groups and only needs to make one scan of the database in order to compute the
explicit counts of these qualifying groups2. Note that this aggregation is the minimum
work that needs to be done by any practical iceberg query algorithm, and therefore the
performance of ORACLE represents a lower bound.

Second, we provide a simple “recipe” algorithm that can be implemented in a query
optimizer to enable it to make a decision about the appropriate algorithmic choice to be
made for an iceberg query, that is, when to prefer CIQE over the classical approaches
implemented in database systems. The recipe algorithm takes into account both the
query characteristics and the underlying database characteristics.

2 Since the result set is small by definition, it is assumed that counters for the entire result set
can be maintained in memory.

Due to space limitations, we only focus on High-Iceberg queries in this paper – for
the extensions to Low-Iceberg queries, we refer the reader to [10].

2 Algorithms for High-Iceberg Queries

As formulated in [4], a prototypical High-Iceberg query on a relation�����
	������� ����������� �
	��������� � ��������� and a threshold � can be written as:

SELECT
�
	������� � , ...,

�
	���������
,
	�� �! �"$#%�'&'(�")��*+��	��� ������

FROM I
GROUP BY

�
	���,��� � , ...,
�
	�������-�

HAVING
	�� �! !"$#%�'&'(�")�.*/��	,�� !����� �0�

where the values of
�
	������� ����������� �
	��������� identify each group or target, while measure

(1 �������
) refers to the fields on which the aggregate function is being computed, and the

relation
�

may either be a single materialized relation or generated by computing a join
of the base relations.

We describe, in the remainder of this section, the suite of algorithms – SMA, HHA,
CIQE – that can be used for computing High-Iceberg queries, as also the optimal ORA-
CLE. For ease of exposition, we will assume in the following discussion that the aggre-
gate function is COUNT and that the grouping is on a single attribute. Further, we will
use, following [4], the term “heavy” to refer to targets that satisfy the threshold criteria,
while the remaining are called “light” targets.

2.1 The SMA Algorithm

In the SMA algorithm, relation
�

is sorted on the target attribute using the opti-
mized Two-Phase Multi-way Merge-Sort [5]. The two important optimiza-
tions used are: (a) Early Projection – the result attributes are projected before executing
the sort in order to reduce the size of the database that has to be sorted, and (b) Early
Aggregation – the aggregate evaluation is pushed into the merge phases, thereby re-
ducing the size of data that has to be merged in each successive merge iteration of
external merge-sort.

2.2 The HHA Algorithm

In the HHA algorithm, aggregation is achieved through hybrid hashing on the grouping
attributes. Hybrid hashing combines in-memory hashing and overflow resolution. Items
of the same group are found and aggregated when inserting them into the hash table.
Since only output items are kept in memory, a hash table overflow occurs only if the
output does not fit into memory. However, if an overflow does occur, partition files are
created. The complete details of the algorithm are available in [7].

2.3 The CIQE Algorithm

We now describe the CIQE algorithms. In the following discussion, we use the notation2
and 3 to denote the set of heavy and light targets respectively. The CIQE algorithms

first compute a set 4 of potentially heavy targets or “candidate set”, that contains as
many members of

2
as possible. When 465 2

is non-empty, it means that there are
false positives (light values are reported as heavy), whereas when

2 574 is non-empty
it means that there are false negatives (heavy targets are missed). The algorithms sug-
gested in [4] use combinations of the following sequence of building blocks in a manner
such that all false positives and false negatives are eventually removed.

Scaled-Sampling: A random sample of size
�

tuples is taken from
�
. If the count of

each target, scaled by 8:9 � , where 8 is the number of tuples in
�
, exceeds the

specified threshold, the target is part of the candidate set 4 . This step can result in
both false positives and false negatives.

Coarse-Count: An array ;=<�> ��� *@? of
*

counters and a hash function A , which maps the
target values from B (��C%� to B (�DC%* bits,

*FEG�
, is used here. Initially all the entries

of the array are set to zero. Then a linear scan of
�

is performed. For each tuple in�
with target H not in 4 , the counter at ;=< A � H �'? is incremented. After completing

this hashing scan of
�
, a bitmap array I@<�> ��� *J? is computed by scanning through the

array ; and setting I@< K ? to one if ;L< K ? �M� . This step removes all false negatives,
but might introduce some more false positives.

Candidate-Selection: Here the relation
�

is scanned, and for each target H whose
I@< A � H �'? entry is one, H is added to 4 .

Count: After the final 4 has been computed, the relation
�

is scanned to explicitly
count the frequency of the targets in 4 . Only targets that have a count of more than
� are output as part of the query result. This step removes all false positives.

Among the CIQE algorithms, we have implemented Defer-Count and Multi-
Stage, which were recommended in [4] based on their performance evaluation. A
brief-description of these algorithms is provided next.

Defer-Count The Defer-Count algorithm operates as follows: First, compute a
small sample of the data. Then select the

�
most frequent targets in the sample and

add them to 4 , as these targets are likely to be heavy. Now execute the hashing scan
of Coarse-Count, but do not increment the counters in ; for targets already in 4 .
Next perform Candidate-Selection, adding targets to 4 . Finally remove false
positives from 4 by executing Count.

Multi-Stage The Multi-Stage algorithm operates as follows: First, perform a sam-
pling scan of

�
and for each target H chosen during the sampling scan, increment

;=< A � H �'? . After sampling
�

tuples, consider each of the ; buckets. If ;=< &N? �O�0P � 9%8 ,
mark the

&RQ�S
bucket to be potentially heavy. Now allocate a common pool of auxiliary

buckets I@<�> ��� */TU? of
*+T

(V *
) counters and reset all the counters in ; to zero. Then

perform a hashing scan of
�

as follows: For each target H in the data, increment ;=< A � H �'?
if the bucket corresponding to A � H � is not marked as potentially heavy. If the bucket
is so marked, apply a second hash function A T and increment I@< A TR� H �R? . Next perform
Candidate-Selection, adding targets to 4 . Finally remove false positives from
4 by executing Count.

2.4 The ORACLE Lower Bound Algorithm

We compare the performance of the above mentioned practical algorithms against OR-
ACLE which “magically” knows in advance the identities of the targets that qualify for
the result of the iceberg query, and only needs to gather the counts of these targets from
the database. Clearly, any practical algorithm will have to do at least this much work
in order to answer the query. Thus, this optimal algorithm serves as a lower bound on
the performance of feasible algorithms and permits us to clearly demarcate the space
available for performance improvement over the currently available algorithms.

Since, by definition, iceberg queries result in a small set of results, it appears reason-
able to assume that the result targets and their counters will all fit in memory. Therefore,
all that ORACLE needs to do is to scan the database once and for each tuple that cor-
responds to a result target, increment the associated counter. At the end of the scan, it
outputs the targets and the associated counts.

3 Performance Evaluation for High-Iceberg Queries

In this section, we place CIQE’s performance in quantitative perspective by comparing
it against the three benchmark algorithms: SMA, HHA and ORACLE, over a variety of
datasets. We implemented all the algorithms in C and they were programmed to run
in a restricted amount of main-memory, fixed to 16 MB for our experiments. The ex-
periments were conducted on a PIII, 800 MHz machine, running Linux, with 512 MB
main-memory and 36 GB local SCSI HDD. The OS buffer-cache was flushed after ev-
ery experiment to ensure that caching effects did not influence the relative performance
numbers.

The details of the datasets considered in our study are described in Table 1.
Dataset refers to the name of the dataset, Cardinality indicates the number of
attributes in the GROUP BY clause, NumTargets indicates the total number of targets
in the data, Size of DB indicates the size of the dataset, Record Size indicates
the size of a tuple (in bytes), Target Size indicates the size of the target fields
(in bytes), Measure Size indicates the size of the measure fields (in bytes), Skew
(measured using 3 ��WX&
��YZ	��'&'(= [�� 9�\ ��	�"

) is a measure of the skew in the count dis-
tribution, and Peak Count represents the peak target count.

Data- Cardi- Num- Size Record Target Measure Peak
set nality Targets of DB Size Size Size Skew Count]=^

1 10M 1GB 16 4 4 1657 194780]`_
2 62M 1GB 16 8 4 1541 194765]Za
1 8.38M 1GB 16 4 4 1.27 24]Zb
2 16.4M 1GB 16 8 4 0.89 18

Table 1. Statistics of the datasets

We now move on to the performance graphs for these datasets, which are shown
in Figures 1(a)– 1(d). In these graphs, the query response times of the different algo-

rithms are plotted on the Y axis for different values of result selectivity ranging from
0.001% to 10% on the X axis (note that the X axis is on a log scale.) We stopped at the
10% selectivity value since it seemed reasonable to expect that this would be the limit
of what could truly be called an “iceberg query” (this was also the terminating value
used in [4]). Since we found little difference in the relative performance of Defer-
Count and Multi-Stage for all our datasets, we have given the performance of
the Defer-Count algorithm under the generic name CIQE in the graphs. In the fol-
lowing discussion, low number of targets means that for the amount of main-memory
available, the average occupancy per bucket in CIQE algorithms is less than 5. Else we
say the number of targets is high.

0

200

400

600

800

1000

1200

1400

0.001 0.01 0.1 1 10

re
sp

on
se

 ti
m

e
(in

 s
ec

s)

% targets selected

ORACLE
SMA
CIQE
HHA

Fig. 1(a). High skew/low number of targets

0

200

400

600

800

1000

1200

1400

0.001 0.01 0.1 1 10

re
sp

on
se

 ti
m

e
(in

 s
ec

s)

% targets selected

ORACLE
SMA
CIQE
HHA

Fig. 1(b). High skew/high number of targets

0

200

400

600

800

1000

1200

1400

0.001 0.01 0.1 1 10

re
sp

on
se

 ti
m

e
(in

 s
ec

s)

% targets selected

ORACLE
SMA
CIQE
HHA

Fig. 1(c). Low skew/low number of targets

0

200

400

600

800

1000

1200

1400

0.001 0.01 0.1 1 10

re
sp

on
se

 ti
m

e
(in

 s
ec

s)

% targets selected

ORACLE
SMA
CIQE
HHA

Fig. 1(d). Low skew/high number of targets

3.1 High skew, Low number of targets

Figure 1(a) corresponds to Dataset c � wherein the data has high skew and low number
of targets, corresponding to the “favorite” scenario for CIQE. Therefore, as expected,

CIQE performs better than SMA for a substantial range of selectivity values (upto 7.0%).
This is essentially because the average bucket occupancy (

� 9ed) is low (= 2.75) and
the peak target counts are much higher than the mean target count. However, the best
overall performer is HHA, as the total number of targets are not huge compared to the
number of targets that can fit in the constrained memory. Note that both SMA and HHA
are unaffected by the query selectivity, unlike CIQE. Finally, we see that there is a
significant gap (order of magnitude) between the performance of ORACLE and the
online algorithms indicating that there appears to be some scope for designing better
iceberg query processing algorithms.

3.2 High skew, High number of targets

Figure 1(b) corresponds to Dataset c C wherein the data has high skew with high number
of targets. For this dataset, CIQE performs better than SMA for a much smaller spread
of selectivity values (only upto 0.7%). This is because the average bucket occupancy
in this case is almost 17, which is rather high. HHA performs worse compared to other
algorithms as the number of targets are far greater than the number of targets that can
fit in memory. The reason that ORACLE shows a steep increase at 10% selectivity is
that the result targets exceed the available main memory.

3.3 Low skew, Low number of targets

Figure 1(c) corresponds to Dataset cgf wherein the data has low skew with low number
of targets (similar to the Dean’s Query in the Introduction). Note the dramatic change in
performance from Figure 1 – we now have CIQE always performing worse than SMA.
This is entirely due to the fact that the low skew means that a significant fraction of the
bits in the bit-vector turn out to be 1, effectively nullifying the desired filtering effect
of the Coarse-Count step. In fact, the bit-vector had over 25% of 1’s even at the highest
selectivity (0.0001%). The best overall performer is HHA, due to the low number of
targets.

3.4 Low skew, High number of targets

Finally, Figure 1(d) corresponds to Dataset cgh wherein the data has low skew with high
number of targets, corresponding to the “nightmare” scenario for CIQE. Therefore, not
surprisingly, we see here that CIQE always performs much worse than SMA because
the combination of the low skew and the high bucket occupancy results in completely
nullifying the pruning from the Coarse-Count step. The best overall performer is again
HHA.

An important point to note from the above experiments is that, apart from being
stable across all selectivities, the performance of SMA is always within a factor of two
of CIQE’s performance. This means that SMA is quite competitive with CIQE. On the
other hand, the performance of HHA degrades considerably as the number of targets
increase. Other issues with HHA are:

– HHA opens multiple files for storing the overflow buckets on disk. This creates a
problem with respect to system configuration, as there is a limitation on the number
of files that can be opened by a single process. A related problem is the memory
space consumed by open file descriptors [11].

– As the number of attributes in the GROUP-BY increase, it is difficult to estimate the
number of targets, which is critical for choosing HHA for iceberg query evaluation.

4 Recipe Algorithm

In this section, we describe a simple “recipe” algorithm (Figure 2) that can be imple-
mented in the query optimizer to enable it to make a decision about the appropriate
algorithmic choice to be made for a High Iceberg query, that is, whether to choose
CIQE or SMA. We do not consider HHA here, because as discussed at the end of Sec-
tion 3, HHA is not suitable for the kind of datasets (within the given memory constraints)
we consider here.

For Iceberg queries involving the AVERAGE, MIN or MAX aggregate functions, SMA
is the only choice among the suite of algorithms we consider here since CIQE/MINI
pruning techniques do not work for these functions.

For High-Iceberg queries involving COUNT or SUM on a single relation, we make a
binary decision between SMA and CIQE based on the conditional in the formula on line
9. Estimating the

�
(��
	 B mentioned in this formula is simple and is done the same way
as in Scaled-Sampling. i.e. compute the total for the sample size

�
(
�
(��
	 BNi
j%kmlon�p)

and then scale it to the dataset size by multiplying by 8:9 � .

DS qsrutRv w�rutRv qXxNyRv wsxRyRv]=^
12 7.00 18 4.40]`_
19 0.0002 18 0.0004]Za
72 0.70 18 1.02]Zb
18 0.0001 18 0.0001

Table 2. Crossover point : actual vs estimated

We verified the accuracy of this binary decision for the datasets involved in our
study. Table 2 presents a summary of these results. In this table, � j�z Q refers to the actual
threshold (based on the experiments) below which SMA starts performing better than
CIQE, {|joz Q refers to the corresponding percentage target selectivity, �}p
i Q refers to the
estimated threshold (based on the formula) below which SMA should start performing
better than CIQE, and {|p�i Q refers to the corresponding percentage target selectivity. As
shown in the table, the selectivity estimates where SMA will start performing better than
CIQE are very close to the numbers from the experimental study.

So far, we had implicitly assumed that the iceberg query was being evaluated over
a single base relation. But in case of an iceberg query involving a join of multiple base
relations, the iceberg relation I is derived from the base relations B using one of the ef-
ficient join algorithms such as, for example, sort-merge join or hybrid-hash

Iceberg Query Optimizer Module (~ , � , � , � , q , �)
Input:~ - set of relations in the query i.e. FROM clause,� - set of attributes in the group-by i.e GROUP BY clause,� - set of attributes in the equi-join i.e. WHERE clause,� - aggregate function on the targets,q - threshold on the aggregate function i.e. HAVING clause,� - memory for computing the query
Output:�

- choice of algorithm to use for computing the Iceberg Query
CIQE, SMA, SA.

1. if (� = AVERAGE or MIN or MAX) // irrespective of whether � is �!�)� or ���)�
2. return SMA
3. if (� = COUNT or SUM)
4. if (� ~=���M�) // single relation
5. � = number of hash buckets for CIQE in the available memory �
6. if (� = COUNT)
7. �N���N��� = �
8. else
9. Sample ~
10. Estimate �R�o�R�D� = aggregate value treating the whole database

as a single target = �`�����|�N���N��� y�r%�|�u��x
11. if (�R�o�R�D���o����q) // takes care of average per bucket occupancy,

skew and selectivity
12. return CIQE
13. else
14. return SMA
15. else if (� ~L�e���) // join of multiple relations
16. if (��� �¡��¢) // no interesting join order possible
17.

]
= the amount of free disk space

18. Estimate w = the size of the join
19. if (w/�¤£m�])
20. // same as � ~=���0� above
21. else
22. return CIQE
24. else if (�¥� �M¦7� and join output sorted on �)
25. if (grouping on attributes in �¨§©� for the individual targets

based on attributes in � can be done in memory)
26. return SA
27. else
28. return CIQE
29. else if (�¥� �¡��� and join output sorted on �)
30. return SA

Fig. 2. Recipe Algorithm

join [7]. For the case where the group-by clause shares some attributes with the join
attributes, the query optimizer may opt for join algorithms that produce “interesting
orders” ([7],[14]) – that is, where the output is sorted on one or more attributes. As
a result of this, the sorted tuples from the result of the join can be piped (using the
iterator model discussed in [7]) to the following aggregate operation, which can then
aggregate the tuples in memory to produce the final query result. We use Simple Ag-
gregation (SA) to refer to such a situation where the aggregation is computed on
pre-sorted output, and this SA technique is also incorporated in the concluding part of
the recipe algorithm (Figure 2).

5 Related Work

Apart from the CIQE set of algorithms [4] previously discussed in this paper, there is
comparatively little work that we are aware of that deals directly with the original prob-
lem formulation. Instead, there have been quite some efforts on developing approximate
solutions (e.g. [1, 6, 9, 12]). In [12], a scheme for providing quick approximate answers
to the iceberg query is devised with the intention of helping the user refine the threshold
before issuing the “final” iceberg query with the appropriate threshold. That is, it tries
to eliminate the need of a domain expert or histogram statistics to decide whether the
query will actually return the desired “tip” of the iceberg. This strategy for coming up
with the right threshold is complementary to the efficient processing of iceberg queries
that we consider in this paper.

As mentioned before, the CIQE algorithm works only for simple COUNT and SUM
aggregate functions. Partitioning algorithms to handle iceberg queries with AVERAGE
aggregate function have been proposed in [2]. They propose two algorithms, BAP (Ba-
sic Partitioning) and POP (POstponed Partitioning) which partition the relation logi-
cally to find candidates based on the observation that for a target to satisfy the (average)
threshold, it must be above the threshold in at least one partition. The study has two
drawbacks: First, their schemes require writing and reading of candidates to and from
disk, which could potentially be expensive, especially for low skew data. Second, their
performance study does not compare BAP/POP with respect to SMA, making it unclear
as to whether they are an improvement over the current technology. In our future work,
we plan to implement and evaluate these algorithms.

All the above work has been done in the context of High-Iceberg queries. To the
best of our knowledge, there has been no prior investigation of Low-Iceberg queries
which appears in the technical report version [10] of this paper.

6 Conclusions

In this paper, we have attempted to place in perspective the performance of High-
Iceberg query algorithms. In particular, we compared the performance of CIQE with
regard to three benchmark algorithms – SMA, HHA and ORACLE – and found the fol-
lowing:

– CIQE performs better than SMA for datasets with low to moderate number of tar-
gets, and moderate to high skew. It never performs better than SMA for datasets with
low skew and high number of targets.

– The performance of CIQE is never more than twice better than that of SMA for the
cases where the base relation is materialized and there is enough disk space to sort
the relation on disk.

– While HHA did perform well in several cases, its performance was not robust in that
it could perform quite badly when the number of targets was high, and in addition,
it has implementation difficulties.

– There was a considerable performance gap between the online algorithms and OR-
ACLE, indicating a scope for designing better iceberg query processing algorithms.

We also described a simple recipe algorithm for the incorporation of Iceberg queries in
the Query Optimizer. This recipe takes into account the various data and query param-
eters for choosing between classical and specialized techniques.

Acknowledgements This work was supported in part by a Swarnajayanti Fellowship
from the Dept. of Science & Technology, Govt. of India.

References

1. “AQUA Project”, http://www.bell-labs.com/project/aqua/papers.html.
2. J. Bae and S.Lee, “Partitioning Algorithms for the Computation of Average Iceberg Queries”,

Proc. of DAWAK Conf., 2000.
3. D. Bitton and D. Dewitt, “Duplicate Record Elimination in Large Data Files”, ACM Trans.

on Database Systems, 8(2):255–265, 1983.
4. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani and J. Ullman, “Computing Iceberg

Queries Efficiently”, Proc. of 24th Intl. Conf. on Very Large Data Bases, 1998.
5. H. Garcia-Molina, J. Ullman, and J. Widom, “Database System Implementation”, Prentice

Hall, 2000.
6. A. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss, “Surfing wavelets on streams: one-

pass summaries for approximate aggregate queries,”, Proc. of 27th Intl. Conf. on Very Large
Data Bases, 2001.

7. G. Graefe, “Query Evaluation Techniques for Large Databases”, ACM Comput. Surv., 25, 2,
73–170, June 1993.

8. Y. Ioannidis and V. Poosala, “Histogram-Based Solutions to Diverse Database Estimation
Problems”, IEEE Data Engineering, Vol. 18, No. 3, pp. 10-18, September 1995.

9. I. Lazaridis and S. Mehrotra, “Progressive Approximate Aggregate Queries with a Multi-
Resolution Tree Structure”, Proc. of ACM SIGMOD Conf., 2001.

10. K. Leela, P. Tolani and J. Haritsa, “On Incorporating Iceberg Queries in Query Processors”,
Tech. Rep. TR-2002-01, DSL/SERC, Indian Institute of Science, February 2002.

11. http://linuxperf.nl.linux.org/general/kerneltuning.html
12. Y. Matias and E. Segal, “Approximate iceberg queries”, Tech. Rep., Dept. of Computer Sci-

ence, Tel Aviv University, Tel Aviv, Israel, 1999.
13. R. Ramakrishnan and J. Gehrke, “Database Management Systems”, McGraw-Hill, 2000.
14. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Selection in a

Relational Database Management System”, Proc. of ACM SIGMOD Conf., 1979.

