LexEQUAL: Multilexical Matching Operator in SQL

A. Kumaran

1. INTRODUCTION

To effectively support today’s global economy, database
systems need to store and manipulate text data in multiple
languages simultaneously. While current database systems
do support the management of multilingual data [4], they
are not capable of matching data across languages with dif-
ferent scripts — for example, between English (Latin script),
Russian (Cyrillic script) and Hindi (Devanagari script). As
a first step towards addressing this lacuna, we recently pro-
posed the LexEQUAL [5] operator for multilexical matching
of names, which is of particular importance since a fifth
of normal text corpora and a majority of search terms are
proper and generic names [6].

Consider a hypothetical Books.com that sells books across
the globe, with a product catalog as shown in Figure 1,
where books in different languages are featured.

Author Author_FN Title Price Language
Descartes René Les Méditations Metaphysiques €49.00 |French
Grp satamiare | 2 Fw Geors INR 250 | Tami1
Zoppn Kotepivo Tloayvidwe oto ITidvo €15.50 |Greek
Nehru Jawaharlal | Letters to My Daughter $25.00 | English
D6 (oaig 8 Sl e 3 5lexll [SAR 75 |Arabic
Nehru Jawaharlal |Découverte de 1’Inde $9.95 |French
SRS E KO LRI ¥7500 |Japanese
i SATEETE | 9RA Uk B INR 175 | Hindi

Figure 1: Multilingual Books.com

In this environment, the LexEQUAL operator can match an
input name, such as "Nehru", across a user-specified set of
languages with the SQL query syntax shown in Figure 2.
The returned tuples (Figure 3), have in the Author column
the multilexical strings that are phonetically close to Nehru.
Note that the input name itself could have been given in any
language.

*Supported in part by a Swarnajayanti Fellowship from the
Dept. of Science & Technology, Govt. of India.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 2004 June 13-18, 2004, Paris, France.

Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

Jayant R. Haritsa*
Database Systems Lab, SERC/CSA

Indian Institute of Science, Bangalore, INDIA
{kumaran,haritsa}@dsl.serc.iisc.ernet.in

949

SELECT Author, Title, Language FROM Books
WHERE Author LexEQUAL ‘Nehru’ Threshold 0.3
IN { English, French, Tamil }

Figure 2: Sample LexEQUAL Query

Author Title Language
Nehru Letters to My Daughter English
Gms 21,81 Bepin @ Tamil
Nehru Découverte de 1’Inde French

Figure 3: LexEQUAL Query Results

We present, in this demo, a prototype implementation of
LexEQUAL on a standard relational database system, and
demonstrate its viability, with regard to both result quality
and computational efficiency, as a data integration tool for
multilingual environments.

2. MULTILEXICAL MATCHING

The matching strategy of LexEQUAL is based on trans-
forming the multilingual text strings to their equivalent
phonemic representations, obtained using common linguis-
tic resources, such as text-to-phoneme converters. The
phoneme strings are processed in the canonical IPA al-
phabet [2] and in the Unicode [7] encoding format. Such
phoneme strings represent a normalized form of proper
names across languages, thus providing a means of com-
parison. Further, when the text data is stored in multiple
scripts, this may be the only means of comparing them.
Since the phoneme sets of two languages are seldom identi-
cal, we employ approximate matching techniques to match
the phoneme strings. Thus, the multilexical comparisons
are inherently fuzzy, making it only possible to produce a
likely, but not perfect, set of answers with respect to the
user’s intentions.

To finetune the result quality to meet application require-
ments, the LexEQUAL operator is parametrized with regard
to both the phonetic matching and the approximate match-
ing. In [5] we demonstrated that for these tunable param-
eters, there exist appropriate ranges of choices that can be
evaluated and customized for a given dataset, through which
both good Recall and Precision may be simultaneously ob-
tained.

The skeleton of the LexEQUAL matching algorithm [5] is
given in Figure 4. Here, the transform function is imple-

LexEQUAL (Sy, Ly, Sy, Ly, e, So)
Input: Input Strings S, Sr
Input String Languages L;, L,
Match Threshold e
Set of Languages for output So
Set of Languages with TTP Convertors Sc (global)
Output: TRUE, FALSE or NORESOURCE
if L; ¢ Sc or L; ¢ S then return NORESOURCE;
if L; € So then
T+ transform(S;,L;);
T,<+transform(S,,L,);
Smaller < (| T, | < [7T: |7 IT;] : T]);
if editdistance(7},7,) < (e * Smaller) then
return TRUE else return FALSE;

SOk

Figure 4: The LexEQUAL Algorithm

mented using standard linguistic resources, such as Text-
to-Phoneme converters that convert a lexicographic string
in a specific language to an equivalent phonemic string in
the TPA alphabet. The editdistance function is a tunable
function that can be made to compute the traditional Lev-
enshtein edit distance or a modified distance metric, by pa-
rameterizing the cost functions for different edit operations.
The closeness of the matching may be controlled by the
User Match Threshold parameter, which specifies the level
of allowable mismatch between the phonemic strings.

3. MIRAIMPLEMENTATION

@)
vV V

Approximate
Matching

Query
String

>

Matched
Stringls]

<

Function

A
A

Transaction
Manager

———
B e

Figure 5: MIRA Architecture

<444

Our multilingual query processing architecture — MIRA!
for relational systems is as shown in Figure 5. For storage of
multilexical strings and phoneme strings, we used a standard
commercial database, namely Oracle, capable of storing and
handling Unicode character set. The LexEQUAL and Edit-
Distance functions were implemented as UDF’s in PL/SQL
language. The cost functions for computing the edit dis-
tance, were made as parameters to LexEQUAL function. For
converting multilingual strings in specific languages to their
equivalent phoneme strings, Text-to-Phoneme converters are
used when available, or by referring to standard linguis-
tic resources, such as Ozford English Dictionary, otherwise.

"Multilingual Information processing on Relational Architecture

950

‘While the standard implementation of LexEQUAL as a UDF
was slow, we were able to improve the efficiency of matching
by utilizing either Q-Gram filters [1] or Phoneme Indexing
techniques [3, 8], that weed out most of the false positives,
thus optimizing calls to the more expensive UDF function.
Further performance improvements could be obtained by in-
ternalizing our “outside-the-server” implementation into the
database engine.

3.1 Salient Features of MIRA Architecture

Modular Design The language resources, such as text-to-
phoneme convertors, may be added easily, as the func-
tions that are called based on a table lookup. Our de-
sign goal is to make the database capable of processing
a new language, just by installing a few resources and
adding references in the look-up table.

Approximate Matching Customization The closeness
of match may be controlled using the Threshold pa-
rameter, depending on the requirements of the appli-
cation. A Homeland Security application may need
tighter matches than a Directory Enquiry application.

Phonetic Matching Customization The matchable set
of phonemes may be customized, by forming clusters of
near-equal phonemes. Such clusters may be installed
based on inputs from linguistic community.

4. DEMONSTRATION

The multilexical operator LexEQUAL is a first step to-
wards a transparent support for multilingual functionality
in database systems. In this demonstration, we present an
outside-the-server implementation on the Oracle 9i (Ver-
sion 9.1.0) database system, running on a standard Pen-
tium/Windows NT platform. The LexEQUAL and the ap-
proximate matching functions are implemented as UDF’s in
PL/SQL programming language. The user interface is de-
veloped in Java environment. We demonstrate LexEQUAL’s
effectiveness with a sample data set containing generic and
proper names from English and Indic domains.

5. REFERENCES

[1] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan and D. Srivastava. Approximate String
Joins in a Database (almost) for Free. Proc. of the 27th
VLDB Conf., 2001.
The International Phonetic Association.
hitp://www.arts.gla.ac.uk/IPA /ipa.html.
D. Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching. Addison-Wesley, 1973.
[4] A. Kumaran and J. R. Haritsa. On the Costs of
Multilingualism in Database Systems. Proc. of the 29th
VLDB Conf., 2003.
A. Kumaran and J. R. Haritsa. Supporting Multiscript
Matching in Database Systems. Proc. of the 9th EDBT
Conf., 2004.
M. Liberman and K. Church. Text Analysis and Word
Pronunciation in TTS Synthesis. Advances in Speech
Processing, 1992.
The Unicode Consortium. http://www.unicode.org.
J. Zobel and P. Dart. Phonetic String Matching: Lessons
from Information Retrieval. Proc. of 19th SIGIR Conf.,
1996.

	page1: 949
	page2: 950

