Providing Diversity in K-Nearest Neighbor Query
Results

Anoop Jain, Parag Sarda, and Jayant R. Haritsa*

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA.

Abstract. Given a point query Q in multi-dimensional space, K-Nearest Neigh-
bor (KNN) queries return the K closest answers in the database with respect to Q.
In this scenario, it is possible that a majority of the answers may be very similar
to one or more of the other answers, especially when the data has clusters. For
a variety of applications, such homogeneous result sets may not add value to the
user. In this paper, we consider the problem of providing diversity in the results
of KNN queries, that is, to produce the closest result set such that each answer is
sufficiently different from the rest. We first propose a user-tunable definition of
diversity, and then present an algorithm, called MOTLEY, for producing a diverse
result set as per this definition. Through a detailed experimental evaluation, we
show that MOTLEY can produce diverse result sets by reading only a small frac-
tion of the tuples in the database. Further, it imposes no additional overhead on
the evaluation of traditional KNN queries, thereby providing a seamless interface
between diversity and distance.

Keywords: Nearest Neighbor, Distance Browsing, Result Diversity

1 Introduction

Over the last few years, there has been considerable interest in the database community
with regard to supporting K-Nearest Neighbor (KNN) queries [8]. The general model
of a KNN query is that the user gives a point query in multidimensional space and a
distance metric for measuring distances between points in this space. The system is
then expected to find, with regard to this metric, the K closest answers in the database
from the query point. Typical distance metrics include Euclidean distance, Manhattan
distance, etc.

It is possible that a majority of the answers to a KNN query may be very similar
to one or more of the other answers, especially when the data has clusters. In fact,
there may even be duplicates w.r.t. the attributes of the multidimensional space. For a
variety of applications, such as online restaurant selection [6], providing homogeneous
result sets may not add value to the user. It is our contention in this paper that, for such
applications, the user would like to have not just the closest set of answers, but the
closest diverse set of answers.

* Contact Author: haritsa@dsl.serc.iisc.ernet.in

Based on the above motivation, we consider here the problem of providing diversity
in the results of KNN queries, that is, to produce the closest result set such that each
answer is sufficiently diverse from the rest. We hereafter refer to this problem as the
K-Nearest Diverse Neighbor (KNDN) problem, which to the best of our knowledge has
not been previously investigated in the literature, and cannot be handled by traditional
clustering techniques (details in [6]).

An immediate question that arises is how to define diversity. This is obviously a
user-dependent choice, so we address the issue by providing a funable definition, which
can be set with a single parameter, MinDiv, by the user. MinDiv values range over [0,1]
and specify the minimum diversity that should exist between any pair of answers in the
result set. Setting MinDiv to zero results in the traditional KNN query, whereas higher
values give more and more importance to diversity at the expense of distance.

Finding the optimal result set for KNDN queries is an NP-complete problem in
general, and is computationally extremely expensive even for fixed K, making it infea-
sible in practice. Therefore, we present here an online algorithm, called MOTLEY',
for producing a sufficiently diverse and close result set. MOTLEY adopts a greedy
heuristic and leverages the existence of a spatial-containment-based multidimensional
index, such as the R-tree, which is natively available in today’s commercial database
systems [7]. The R-tree index supports a “distance browsing” mechanism proposed in
[5] through which database points can be efficiently accessed in increasing order of
their distance from the query point. A pruning technique is incorporated in MOTLEY
to minimize the R-tree processing and the number of database tuples that are examined.

Through a detailed experimental evaluation on real and synthetic data, we have
found that MOTLEY can produce a diverse result set by reading only a small fraction
of the tuples in the database. Further, the quality of its result set is very close to that
provided by an off-line brute-force optimal algorithm. Finally, it can also evaluate tra-
ditional KNN queries without any added cost, thereby providing a seamless interface
between the orthogonal concepts of diversity and distance.

2 Basic Concepts and Problem Formulation

In the following discussion, for ease of exposition and due to space limitations, we
focus on a restricted instance of the KNDN problem — a significantly more general
formulation is available in the full version of the paper [6].

We model the database as composed of NV tuples over a D-dimensional space with
each tuple representing a point in this space?. The domains of all attributes are numeric
and normalized to the range [0,1]. The user specifies a point query () over an M -sized
subset of these attributes (M < D). We refer to these attributes as “point attributes”.
The user also specifies K, the number of desired answers, and a L-sized subset of at-
tributes on which she would like to have diversity (L < D). We refer to these attributes
as “diversity attributes” and the space formed by diversity attributes as diversity-space.
Note that the choice of the diversity attributes is orthogonal to the choice of the point
attributes. Finally, the result is a set of K database points.

! Motley: A collection containing a variety of sorts of things [9].
2 We use point and tuple interchangeably in the remainder of this paper

Given that there are N points in the database and that we need to select K points for
the result set, there are %Y C'x possible choices. We apply the diversity constraints first
to determine the feasible sets and then bring in the notion of distance from the query
point to make a selection from these sets. Viewed abstractly, we have a two-level scoring
function: The first level chooses candidate result sets based on diversity constraints, and
the second level selects the result set that is spatially closest to the query point.

Result Diversity We begin by defining point diversity and then, since the result is
viewed as a set, extend the definition to set diversity. Point diversity is defined with
regard to a pair of points and is evaluated with respect to the diversity attributes, V' (Q),
mentioned in the query. Specifically, given points Py, P> and V (@), the function DIV
(P1, P2, V(Q)) returns true if P, and P, are diverse with respect to each other on the
specified diversity attributes. A sample DIV function is described later in this section.
For a set to be fully diverse, all the points in the set should be mutually diverse. That
is, given a result set R with points Ry, Rs, ..., Rk, we require DIV (R;, R;,V(Q))
= true V4,5 suchthati # jand 1 < 4,5 < K. For the restricted scenario considered
here, we assume that at least one fully diverse result set is always available for the user

query.

Diversity Function Our computation of the diversity between two points P; and P,
is based on the classical Gower coefficient [2], wherein the difference between two
points is defined as a weighted average of the respective attribute differences. Specifi-
cally, we first compute the differences between the attributed values of these two points
in diversity-space, sequence these differences in decreasing order of their values, and

then label them as (8,02, ...,01). Now, we calculate divdist, the diversity distance
between points P; and P, with respect to diversity attributes V' (Q) as
L
divdist(Py, P, V(Q)) = Y (W) x &) (1)
j=1

where the WW;’s are weighting factors for the differences. Since all ;s are in the range
[0,1] (recall that the values on all dimensions are normalized to [0,1]), and by virtue of
the W; assignment policy discussed below, diversity distances are also bounded in the
range [0,1].

The assignment of the weights is based on the heuristic that larger weights should
be assigned to the larger differences. That is, in Equation 1, we need to ensure that
W; > Wj if i < j (recall that §;’s are sorted in decreasing order.) The rationale for this
assignment is as follows: Consider the case where point P; has values (0.2, 0.2, 0.3),
point P has values (0.19, 0.19, 0.29) and point P3 has values (0.2, 0.2, 0.27). Consider
the diversity of P; with respect to P, and P3. While the aggregate difference is the same
in both cases, yet intuitively we can see that the pair (P;, P») is more homogeneous as
compared to the pair (P, P3). This is because P, and P; differ considerably on the
third attribute as compared to the corresponding differences between P; and Ps.

Now consider the case where P3 has value (0.2, 0.2, 0.28). Here, although the ag-
gregate §; is higher for the pair (P, P»), yet again it is pair (P, P3) that appears more

diverse since its difference on the third attribute is larger than any of the individual
differences in pair (P, P).

Based on the above discussion, the weighting function should have the following
properties: Firstly, all weights should be positive, since having difference in any dimen-
sion should never decrease the diversity. Second, the sum of the weights should add
up to 1 (i.e., Ele W; = 1) to ensure that divdist values are normalized to the [0,1]
range. Finally, the weights should be monotonically decaying (W; > W; if i < j) to
reflect the preference given to larger differences.

Example 1. A candidate weighting function that obeys the above requirements is the
following:
Jj—1 —

w= S0 acj<n @
where a is a tunable parameter over the range (0,1). Note that this function implements
a geometric decay, with the parameter ‘a’ determining the rate of decay. Values of a
that are close to O result in faster decay, whereas values close to 1 result in slow decay.
When the value of a is nearly 0, almost all weight is given to maximum difference i.e.,
Wi ~ 1, modeling (in the language of vector p-norms) the L, (i.e., Max) distance
metric, and when a is nearly 1, all attributes are given similar weights, modeling a L,
(i.e., Manhattan) distance metric.

Minimum Diversity Threshold We expect that the user provides a quantitative notion
of the minimum diversity distance that she expects in the result set through a threshold
parameter MinDiv that ranges between [0,1]3. Given this threshold setting, two points
are diverse if the diversity distance between them is greater than or equal to MinDiv.
Thatis, DIV (P, P,,V(Q)) = true iff divdist(Py, P,V (Q)) > MinDiv.

The physical interpretation of the MinDiv value is that if a pair of points are deemed
to be diverse, then these two points have a difference of MinDiv or more on atleast one
diversity dimension. For example, a MinDiv of 0.1 means that any pair of diverse points
differ in atleast one diversity dimension by atleast 10% of the associated domain size.
This physical interpretation can guide the user in determining the appropriate setting of
MinDiv. In practice, we would expect that MinDiv settings would be on the low side,
typically not more than 0.2. As a final point, note that with the above formulation, the
DIV function is symmetric with respect to the point pair { P, P»}. However, it is not
transitive in that even if DIV (P, P»,V(Q)) and DIV (P, P5,V(Q)) are both true, it
does not imply that DIV (P, P3, V(Q)) is true.

Integrating Diversity and Distance Let function Spatial Dist(P, Q) calculate the
spatial distance of point P from query point () (this distance is computed with regard to
the point attributes specified in).) The choice of SpatialDist function is based on the
user specification and could be any monotonically increasing distance function such as
Euclidean, Manhattan, etc. We combine distances of all points in a set into a single value

3 This is similar to the user specifying minimum support and minimum confidence in association
rule mining to determine what constitutes interesting correlations.

using an aggregate function Agg which captures the overall distance of the set from Q).
While a variety of aggregate functions are possible, the choice is constrained by the fact
that the aggregate function should ensure that as the points in the set move farther away
from the query, the distance of the set should also increase correspondingly. Sample
aggregate functions which obey this constraint include the Arithmetic, Geometric, and
Harmonic Means.

Finally, we use the reciprocal of the aggregate of the spatial distances of the result
points from the query point to determine the score of the (fully diverse) result set. (Note
that the MinDiv threshold only determines the identities of the fully diverse result sets,
but not their scores.) Putting all these formulations together, given a query () and a
candidate fully diverse result set R with points Ry, Ra, ..., Rk, the score of R with

respect to () is computed as

1
Seore(R, Q) = Agg(Spatial Dist(Q, Ry), - .., Spatial Dist(Q, Rk)))

Problem Formulation In summary, our problem formulation is as follows:

Given a point query Q on a D-dimensional database, a desired result cardinality
of K, and a MinDiv threshold, the goal of the K-Nearest Diverse Neighbor (KNDN)
problem is to find the set of K mutually diverse tuples in the database, whose score, as
per Equation 3, is the maximum, after including the nearest tuple to Q in the result set.

The requirement that the nearest point to the user’s query should always form part
of the result set is because this point, in a sense, best fits the user’s query. Further, the
nearest point R; serves to seed the result set since the diversity function is meaning-
ful only for a pair of points. Since point Ry of the result is fixed, the result sets are
differentiated based on their remaining K — 1 choices.

An important point to note here is that when MinDiyv is set to zero, all points (in-
cluding duplicates) are diverse with respect to each other and hence the KNDN problem
reduces to the traditional KNN problem.

3 The MOTLEY Algorithm

Finding the optimal result set for the KNDN problem is computationally hard. We can
establish this (proof in [6]) by mapping KNDN to the well known independent set
problem [3], which is NP-complete. Therefore, we present an alternative algorithm here
called MOTLEY, which employs a greedy selection strategy in combination with a
distance-browsing-based accessing of points; our experimental evaluation, presented
later in Section 4, shows that the result sets obtained are extremely close to the optimal
solution.

3.1 Distance Browsing

In order to process database tuples (i.e., points) incrementally, we adopt the “distance
browsing” approach proposed in [5], through which it is possible to efficiently access
data points in increasing order of their distance from the query point. This approach is
predicated on having a containment-based index structure such as the R-Tree[4], built

collectively on all dimensions of the database (more precisely, the index needs to cover
only those dimensions on which point predicates may appear in the query workload.)

To implement distance browsing, a priority queue, pqueue, is maintained which is
initialized with the root node of the R-Tree. The pqueue maintains the R-Tree nodes and
data tuples in increasing order of their distance from the query point. While the distance
between a data point and the query () is computed in the standard manner, the distance
between a R-tree node and () is computed as the minimum of the distances between @)
and all points in the region enclosed by the MBR (Minimum Bounding Rectangle) of the
R-tree node. The distance of a node from @ is zero if () is within the MBR of that node,
otherwise it is the distance of the closest point on the MBR periphery. For this, we first
need to compute the distances between the MBR and () along each query dimension —
if @ is inside the MBR on a specific dimension, the distance is zero, whereas if () is
outside the MBR on this dimension, it is the distance from () to either the low end or
the high end of the MBR, whichever is nearer. Once the distances along all dimensions
are available, they are combined (based on the distance metric in operation) to get the
effective distance.

Example 2. Consider an MBR, M, specified by ((1,1,1),(3,3,3)) in a 3-D space. Let
Py(2,2,2) and P»(4,2,0) be two data points in this space. Then, Spatial Dist(M,
P1) =+/0% + 02 + 02 = O and Spatial Dist(M,P,) = \/(4—3)2+ 02 + (0 — 1)2 =
1.414.

To return the next nearest neighbor, we pick up the first element of the pqueue. If it
is a tuple, it is immediately returned as next nearest neighbor. However, if the element
is an R-tree node, all the children of that node are inserted in the pqueue. Note that
during this insertion process, the spatial distance of the object from the query point is
calculated and used as the insertion key. The insertion process is repeated until we get
a tuple as the first element of the queue, which is then returned.

The above distance browsing process continues until either the diverse result set is
found, or until all points in the database are exhausted, signaled by the pqueue becoming
empty.

3.2 Finding Diverse Results

We first present a simple greedy approach, called Immediate Greedy, and then its exten-
sion Buffered Greedy, for efficiently finding result sets that are both close and diverse.

Immediate Greedy Approach In the ImmediateGreedy (IG) method, tuples are sent in
increasing order of their spatial distance from the query point using distance browsing,
as discussed above. The first tuple is always inserted into the result set, R, to satisfy
the requirement that the closest tuple to the query point must figure in the result set.
Subsequently, each new tuple is added to R if it is diverse with respect to all tuples cur-
rently in R; otherwise, it is discarded. This process continues until R grows to contain
K tuples. Note that the result set obtained by this approach has following property: Let
B = b1,...,bk be the sequence formed by any other fully diverse set such that ele-
ments are listed in increasing order of spatial distance from (). Now if ¢ is the smallest
index such that b; # R;(R;eR), then Spatial Dist(b;, Q) > Spatial Dist(R;, Q).

e P;

divdist<0./ R, .
divdist > 0.1 new
) ys o *p x ’
Q 1 P 5 Q R
divdist < 0.1

oP,

Fig. 1. Poor Choice by Immediate Greedy Fig. 2. Heuristic in Buffered Greedy Approach

While the IG approach is straight forward and easy to implement, there are cases
where it may make poor choices as shown in Figure 1. Here, () is the query point, and
P, through P; are the tuples in the database. Let us assume that the goal is to report 3
diverse tuples with MinDiv of 0.1. Clearly, { P;, P3, P,} satisfies the diversity require-
ment. Also DIV (Py, P>,V (Q)) = true. But inclusion of P, disqualifies the candida-
tures of P; and Py as both DIV (P,, P3,V(Q)) = false and DIV (P, Py, V(Q)) =
false. By inspection, we observe that the overall best choice could be {P;, P3, P4},
but Immediate Greedy would give the solution as { Py, P2, P5}. Moreover, if point P
is not present in the database, then this approach will fail to return a fully diverse set
even though such a set, namely { Py, Ps, P4}, is available.

Buffered Greedy Approach The above problems are addressed in the BufferedGreedy
(BG) method by recognizing that in IG, only the diverse points (hereafter called “lead-
ers”) in the result set, are retained at all times. Specifically, BG maintains with each
leader a bounded buffered set of “dedicated followers” — a dedicated follower is a point
that is not diverse with respect to a specific leader but is diverse with respect to all re-
maining leaders. Our empirical results show that a buffer of capacity K points (where
K is the desired result size) for each leader, is sufficient to produce a near-optimal so-
lution. The additional memory requirement for the buffers is small for typical values of
K and D (e.g., for K=10 and D=10, and using 8 bytes to store each attribute value, we
need only 8K bytes of additional storage).

Given this additional set of dedicated followers, we adopt the heuristic that a current
leader, L;, is replaced in the result set by its dedicated followers F}', F2, ..., F?(j > 1)
as leaders if (a) these dedicated followers are all mutually diverse, and (b) incorporation
of these followers as leaders does not result in the premature disqualification of future
leaders. The first condition is necessary to ensure that the result set contains only diverse
points, while the second is necessary to ensure that we do not produce solutions that are
worse than Immediate Greedy. For example, if in Figure 1, point P5 had happened to
be only a little farther than point P4 such that DIV (P, P5,V(Q)) = true, then the
replacement of P, by Ps and Py could be the wrong choice since {P;, P2, Ps} may
turn out to be the best solution.

To implement the second condition, we need to know when it is “safe” to go ahead
with a replacement i.e., when it is certain that all future leaders will be diverse from
the current set of followers. To achieve this, we take the following approach: For each
point, we consider a hypothetical sphere that contains all points in the domain space
that may be non-diverse with respect to it. That is, we set the radius R, of the sphere to
be equal to the distance of the farthest non-diverse point in the domain space. Note that
this sphere may contain some diverse points as well, but our objective is to take a con-
servative approach. Now, the replacement of a leader by selected dedicated followers
can be done as soon as we have reached a distance greater than R, with respect to the
farthest follower from the query — this is because all future leaders will be diverse with
respect to selected dedicated followers and there is no possibility of disqualification
beyond this point. To clarify this technique, consider the following example:

Example 3. In Figure 2, the circles around P, and P, show the areas that contain all
points that are not diverse with respect to P, and P, respectively. Due to distance
browsing technique, when we access the point 7T),¢,, (Figure 2), we know that all future
points will be diverse from P; and P,. At this time, if P; and P, are dedicated followers
of L and mutually diverse, then we can replace L by {Py, P»}.

The integration of Buffered Greedy with distance browsing as well as pruning op-
timizations for minimizing the database processing are discussed in [6]. Further, the
complexity of Buffered Greedy is shown to be O(NK?) in [6].

4 Experiments

We conducted a detailed suite of experiments to evaluate the quality and efficiency of
the MOTLEY algorithm with regard to producing a diverse set of answers. While a
variety of datasets were used in our experiments (see [6] for details), we report on only
one dataset here, namely Forest Cover [10], a real dataset containing 581,012 tuples and
4 attributes representing Elevation, Aspect, Slope, and Distance.

Our experiments involve uniformly distributed point queries across the whole data
space, with the attribute domains normalised to the range [0, 1]. The default value of
K, the desired number of answers, was 10, unless mentioned otherwise, and MinDiv
was varied across [0, 1]. In practice, we expect that MinDiv settings would be on the
low side, typically not more than 0.2, and we therefore focus on this range in our exper-
iments. The decay rate (a) of the weights (Equation 2) was set to 0.1, Harmonic Mean
was used for the Agg function (Equation 3), and spatial distances were computed using
the Euclidean metric. The R-tree (specifically, the R* variant [1]) was created with a fill
factor of 0.7 and branching factor 64.

Result-set Quality We begin by characterizing the quality of the result set provided
by MOTLEY, which is a greedy online algorithm, against an off-line brute-force opti-
mal algorithm. This performance perspective is shown in Figure 3, which presents the
average and worst case ratio of the result set scores. As can be seen in the figure, the
average case is almost optimal (note that the Y-axis of the graph begins from 0.8), indi-
cating that MOTLEY typically produces a close-to-optimal solution. Moreover, even in

—
o

1 2.0
w
o]
é % 15
n I
w09 a 10
] o
g z 05
0.8 7 T 0.0
Worst Case Average Case 0.0 0.1 0.2 0.3 0.4
MinDiv
Fig.3. MOTLEY vs. Optimal Fig.4. MOTLEY vs. KNN

the worst-case, the difference is only around 10 percent. Importantly, even in the situa-
tions where MOTLEY did not provide the complete optimal result set, the errors were
mostly restricted to only one or two points, out of the total of ten answers.

Figure 4 shows, as a function of MinDiv, the average distance of the points in MOT-
LEY s result set — this metric effectively captures the cost to be paid in terms of distance
in order to obtain result diversity. The important point to note here is that for values of
MinDiv up to 0.2, the distance increase is marginal, with respect to the traditional KNN
query (MinDiv = 0). Since, as mentioned earlier, we expect that users will typically use
MinDiv values between 0 and 0.2, it means that diversity can be obtained at relatively
little cost in terms of distance.

Execution Efficiency Having established the high-quality of MOTLEY answers, we
now move on to evaluating its execution efficiency. In Figure 5, we show the average
fraction of tuples read to produce the result set as a function of MinDiv. Note firstly
that the tuples scanned are always less than 15% of the complete dataset. Secondly, at
lower values of MinDiv, the number of tuples read are small because we obtain K di-
verse tuples after processing only a small number of points, whereas at higher values of
MinDiyv, pruning is more effective and hence the number of tuples processed continues
to be small in comparison to the database size.

100 100 7

M MinDiv = 0.1 [[] MinDiv = 0.2

80
60
40

80
60
40 —

20 20

Percentage of tuple scanned
Percentage of tuples scanned

0 0.1 0.2 0.3 0.4
MinDiv

K=1 K=5 K=10 K=50 K=100

Fig. 5. Execution Efficiency of MOTLEY Fig. 6. Effect of K

Effect of K We also evaluated the effect of K, the number of answers, on the algorith-
mic performance. Figure 6 shows the percentage of tuples read as a function of MinDiv
for different values of K ranging from 1 to 100. For K = 1, it is equivalent to the tradi-
tional NN search, irrespective of MinDiv, due to requiring the closest point to form part
of the result set. As the value of K increases, the number of tuples read also increases,
especially for higher values of MinDiv. However, we can expect that users will specify
lower values of MinDiv for large K settings.

5 Conclusions

In this paper, we introduced the problem of finding the K Nearest Diverse Neighbors
(KNDN), where the goal is to find the closest set of answers such that the user will find
each answer sufficiently different from the rest, thereby adding value to the result set.
We provided a quantitative notion of diversity that ensured that two tuples were diverse
if they differed in at least one dimension by a sufficient distance, and presented a two-
level scoring function to combine the orthogonal notions of distance and diversity.

We described MOTLEY, an online algorithm for addressing the KNDN problem,
based on a buffered greedy approach integrated with a distance browsing technique.
Pruning optimizations were incorporated to improve the runtime efficiency. Our exper-
imental results demonstrated that MOTLEY can provide high-quality diverse solutions
at a low cost in terms of both result distance and processing time. In fact, MOTLEYs
performance was close to the optimal in the average case and only off by around ten
percent in the worst case.

Acknowledgements This work was supported in part by a Swarnajayanti Fellowship from the
Dept. of Science & Technology, Govt. of India.

References

1. N. Beckmann, H. Kriegel, R. Schneider and B. Seeger, The R* -tree: An efficient and robust
access method for points and rectangles, Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, 1990.

2. 1. Gower, A general coefficient of similarity and some of its properties, Biometrics 27, 1971.

3. M. Grohe, Parameterized Complexity for Database Theorists, SIGMOD Record 31(4), De-
cember 2002.

4. A. Guttman, R-trees: A dynamic index structure for spatial searching, Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, 1984.

5. G. Hjaltason and H. Samet, Distance Browsing in Spatial Databases, ACM Trans. on
Database Systems, 24(2), 1999.

6. A. Jain, P. Sarda and J. Haritsa, Providing Diversity in K-Nearest Neighbor Query Results,
Tech. Report TR-2003-04, DSL/SERC, Indian Institute of Science, 2003.

7. R. Kothuri, S. Ravada and D. Abugov, Quadtree and R-tree indexes in Oracle Spatial: A
comparison using GIS data, Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
2002.

8. N. Roussopoulos, S. Kelley and F.Vincent, Nearest Neighbor Queries, Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, 1995.

9. www.thefreedictionarity.com.

10. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype

