
Reducing Rule Covers with Deterministic Error
Bounds

�

Vikram Pudi Jayant R. Haritsa
vikram@dsl.serc.iisc.ernet.in haritsa@dsl.serc.iisc.ernet.in

Database Systems Lab, SERC
Indian Institute of Science
Bangalore 560012, India

Abstract

The output of boolean association rule mining algorithms is often too large for
manual examination. For dense datasets, it is often impractical to even generate
all frequent itemsets. The closed itemset approach handles this information over-
load by pruning “uninteresting” rules following the observation that most rules can
be derived from other rules. In this paper, we propose a new framework, namely,
the generalized closed (or � -closed) itemset framework. By allowing for a small
tolerance in the accuracy of itemset supports, we show that the number of such re-
dundant rules is far more than what was previously estimated. Our scheme can be
integrated into both levelwise algorithms (Apriori) and two-pass algorithms (AR-
MOR). We evaluate its performance by measuring the reduction in output size as
well as in response time. Our experiments show that incorporating g-closed item-
sets provides significant performance improvements on a variety of databases.

1 Introduction

The output of boolean association rule mining algorithms is often too large for manual
examination. For dense datasets, it is often impractical to even generate all frequent
itemsets. Among recent approaches [16, 15, 9, 6, 8, 5, 4] to manage this gigantic output,
the closed itemset approach [16, 15] is attractive in that both the identities and supports
of all frequent itemsets can be derived completely from the frequent closed itemsets.
However, the usefulness of this approach critically depends on the presence of frequent
itemsets that have supersets with exactly the same support. This causes the closed
itemset approach to be sensitive to noise in the database – even minor changes can result
in a significant increase in the number of frequent closed itemsets. For example, adding
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a select 5% transactions to the mushroom dataset (from the UC Irvine Repository)
caused the number of closed frequent itemsets at a support threshold of 20% to increase
from 1,390 to 15,541 – a factor of 11 times! The selection of transactions was made so
as to break exact equalities in itemset supports.

In order to overcome this limitation, we propose in this paper the generalized closed
(or � -closed) itemset framework, which is more robust to the database contents. In our
scheme, although we do not output the exact supports of frequent itemsets, we estimate
the supports of frequent itemsets within a deterministic, user-specified “tolerance” fac-
tor. A side-effect of allowing for a tolerance in itemset supports is that the supports of
some “borderline” infrequent itemsets may be over-estimated causing them to be incor-
rectly identified as frequent. Since our typical tolerance factors are much less than the
minimum support threshold, this is not a major issue. Further, an extra (quick) database
pass can always be made to check these borderline cases.

We provide theoretical arguments to show why the � -closed itemset scheme works
and substantiate these observations with experimental evidence. Our experiments were
run on a variety of databases, both real and synthetic, as well as sparse and dense. Our
experimental results show that even for very small tolerances, we produce exponentially
fewer rules for most datasets and support specifications than the closed itemsets, which
are themselves much fewer than the total number of frequent itemsets.

Our scheme can be used in one of two ways: (1) as a post-processing step of the
mining process (like in [9, 6]), or (2) as an integrated solution (like in [17, 11]). We
show that our scheme can be integrated into both levelwise algorithms as well as the
more recent two-pass mining algorithms. We chose the classical Apriori algorithm [2]
as a representative of the levelwise algorithms and the recently-proposed ARMOR [14],
as a representative of the class of two-pass mining algorithms. Integration into Apriori
yields a new algorithm, � -Apriori and into ARMOR, yields � -ARMOR. Our exper-
imental results show that these integrations often result in a significant reduction in
response-time, especially for dense datasets.

We note that integration of our scheme into two-pass mining algorithms is a novel
and important contribution because two-pass algorithms have several advantages over
Apriori-like levelwise algorithms. These include: (1) significantly less I/O cost, (2)
significantly better overall performance as shown in [12, 14], and (3) the ability to
provide approximate supports of frequent itemsets at the end of the first pass itself, as
in [7, 14]. This ability is an essential requirement for mining data streams [10] as it is
infeasible to perform more than one pass over the complete stream.

2 Generalized Closed Itemsets

In addition to the standard boolean association rule mining inputs (� , the set of database
columns, � , the set of database rows and �����	��

� , the minimum support), the frequent
� -closed itemset mining problem also takes as input � , the user-specified tolerance fac-
tor. It outputs a set of itemsets (that we refer to as the frequent � -closed itemsets) and
their supports. The frequent � -closed itemsets are required to satisfy the following prop-
erties: (1) The supports of all frequent itemsets can be derived from the output within
an error of � . (2) If ����� , the output is precisely the frequent closed itemsets.
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Note that the set of � -closed itemsets may not be unique for a given database and
mining parameters. We are interested in obtaining any set of itemsets that satisfies the
above properties since that would ensure that the frequent itemsets and their supports
can be estimated sufficiently accurately.

2.1 � -equal Support Pruning

The key concept in the � -closed itemset framework lies in the generalized openness
propagation property, which is stated as a corollary to the following theorem

�
. Here,

the supports of itemsets
�

and � are said to be approximately equal or � -equal (denoted
as ��
 � �������
	 ����
 ��

�
�������
	�� � ) iff � ��
 � �������
	 ����� � 
 � �������
	�� � ��� � . Also, we refer
to the allowable error in itemset counts as tolerance count. The term “tolerance” is
reserved for the allowable error in itemset supports and is equal to the tolerance count
normalized by the database size.

Theorem 2.1 If � and � are supersets of itemset
�

, then ��

�
�������
	�� ��� ��
 � �������
	����
� � � ��

�
�������
	 ����� ��

�
�������
	�� � .
Corollary 2.1 If

�
and � are itemsets such that � � � and ��

�
�������
	 ����


� 
 � �������
	�� � , then for every itemset � �!�"� � , ��

�
�������
	�� �#
 ��

�
�������
	��$�%� � .

This result suggests a general technique to incorporate into mining algorithms,
which we refer to as � -equal support pruning: If an itemset

�
has an immediate su-

perset � , with � -equal support, then prune � and avoid generating any candidates that
are supersets of � . The support of any of these pruned itemsets, say & , will be � -equal
to one of its subsets, 	�& � � � � � . The remaining unpruned itemsets are referred to
as generators. Note that this is a generalization of the notion of generators proposed in
[11] and would reduce to it when � � � .

2.2 Generating ' -Closed Itemsets When �)(+*
We now present a simple technique to generate closed itemsets from their generators.
This technique does not involve an additional database scan as is required in the A-
Close algorithm [11] for generating frequent closed itemsets. Also, the technique will
directly carry over to the � -closed itemset case. For any closed itemset � with generator�

, the following theorem enables us to determine � �,� using information that could
be gathered while performing � -equal support pruning. We refer to � ��� as

�.- ��� 
 �0/�1 .
Theorem 2.2 Let � be a closed itemset and

�32 � be the generator of � . Then
for each item 4 in � �5� ,

� �%6�487 would be pruned by the equal support pruning
technique. No other immediate supersets of

�
would be pruned by the same technique.

Therefore, in order to generate a closed itemset � from its generator
�

, it is suf-
ficient to compute

�.- �9� 
 �0/�1 while performing � -equal support pruning. Note that if:
Proofs of theorems are available in [13]
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some subset & of
�

had a proper subset � with equal support, then & would be
pruned using the � -equal support pruning technique. It would then be necessary to in-
clude all the items in � - ��� 
 �0/�1 in

�.-
�9� 
 �0/�1 . That is, the ��� 
 �0/�1 value of any itemset

needs to be propagated to all its supersets.

2.3 Generating ' -Closed Itemsets When ��� *
The technique outlined above for ��� � will not produce correct results when / � ������� ���
� – the supports of all frequent itemsets will not be derivable even approximately from
the output. This is because Corollary 2.1 considers for any itemset

�
, only one superset

� with � -equal support. If
�

has more than one superset (say � ��� �
	 � - - - � �
� ) with
� -equal support then approximation error accumulates. A naive interpretation of the
generalized openness propagation property would seem to indicate the following: Every
itemset � � �
� ��� ���� �
� ��� ��� - - - � , also has a proper superset � � ��� � �
� �,�
with � -equal support. Although this is valid when � � � , in the general case, it is
not necessarily true. However, the following theorem reveals an upper bound on the
difference between the supports of � � ��� � �
�!� � and � .

Theorem 2.3 If � � � � 	 � - - - � � � � � are supersets of itemset
�

, then
� 
 � �������
	�� � � ��
 � �������
	 � � ��� � ���!� � � ��� ���� � 	 � 
 � �������
	 ��� � ��

�
�������
	���� � � .

In our approach we solve the problem of approximation error accumulation by en-
suring that an itemset is pruned using the � -equal support pruning technique only if
the maximum possible cumulative error in approximation does not exceed � . Whenever
an itemset

�
, having more than one immediate superset � � � � 	 � - - - � � � , with � -equal

support is encountered, we prune each superset � � only as long as the sum of the dif-
ferences between the supports of each pruned superset and

�
is within tolerance.

While performing the above procedure, at any stage, the sum of the differences
between the support counts of each pruned superset and

�
is denoted by

� - 1 /�� � . Re-
call from Section 2.2 that these pruned supersets are included in

� - ��� 
 �0/�1 . Since�.- ��� 
 �0/�1 needs to be propagated to all unpruned supersets of
�

, it becomes neces-
sary to propagate

�.- 1 /�� � as well.
For any itemset

�
,
� � �.- �9� 
 �0/�1 is referred to as its corresponding � -closed

itemset and will have � -equal support. This is a natural extension of the closed itemset
concept because when � � � ,

� � � - ��� 
 �0/�1 is the closed itemset corresponding to
�

.

2.4 Rule Generation

Given the frequent � -closed itemsets and their associated supports, it is possible to
generate association rules with approximate supports and confidences. This is stated in
the following theorem:

Theorem 2.4 Given the � -closed itemsets and their associated supports, let � and ��
be the estimated confidence and support of a rule

� � �
! � 	 , and  and � be its
actual confidence and support. Then, �� � � � � �"�� ; and � $#&% �  �'� )(*% where% � 	+� � � ( �����	��

� � .
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Further, it has been shown earlier [15, 16] that it suffices to consider rules among
adjacent frequent closed itemsets in the itemset lattice since other rules can be inferred
by transitivity. This result carries over to frequent � -closed itemsets.

3 Incorporation in Levelwise Algorithms

In the previous sections we presented the � -closed itemset framework and the theory
supporting it. In this section we show that the framework can be integrated into lev-
elwise algorithms. We chose the classical Apriori algorithm as a representative of the
levelwise mining algorithms. Integration of our scheme into Apriori yields � -Apriori,
an algorithm for mining frequent � -closed itemsets.

The � -Apriori algorithm is obtained by combining the � -equal support pruning tech-
nique described in Section 2.1 with the subset-based pruning of Apriori. The pseudo-
code of the � -Apriori algorithm is shown in Figure 1 and works as follows: The code
between lines 1–9 of the algorithm, excluding lines 6 and 7, consists of the classical
Apriori algorithm. The SupportCount function (line 4) takes a set of itemsets as input
and determines their counts over the database by making one scan over it.

Every itemset
�

in � � (the set of candidate � -itemsets), � � (frequent � -generators)
and � (the frequent generators produced so far) has an associated counter,

�.-  � 
 � � ,
to store its support count during algorithm execution. Every itemset

�
in � has two

fields in addition to its counter: (1)
�.- ��� 
 �0/�1 (described in Section 2.2). (2)

�.- 1 / � � :
an integer value to check the accumulation of approximation error in itemset supports.

The Prune function is applied on � � (line 6) before the 	 ��� � � -candidates � ��� �
are generated from it using AprioriGen (line 8). Its responsibility is to perform � -equal
support pruning while ensuring that approximation error in the supports of itemsets is
not accumulated. The pseudo-code for this function is shown in Figure 2 and it performs
the following task: it removes any itemset

�
from � � if

�
has a subset � with � -equal

count, provided � - 1 / � � remains within tolerance.
The code in lines 1–9, excluding line 7, is analogous to the A-Close algorithm [11]

for generating frequent closed itemsets. At the beginning of line 10, � would contain
the equivalent of the “generators” of the A-Close algorithm.

The PropagatePruned function is applied on � � (line 7) and it ensures that the
�9� 
 �0/�1 value of each itemset

�
in � � is appended with the �9� 
 �0/�1 values of each

immediate subset of
�

. The pseudo-code for this function is shown in Figure 3. The
necessity for performing this function was explained in Section 2.2, where we showed
that the �9� 
 �0/�1 value of an itemset should be propagated to all its supersets.

Finally, in lines 10–11, the � -closed itemsets are output.

4 Incorporation in Two Pass Algorithms

In this section we show that the � -closed framework can be incorporated into two-pass
mining algorithms. As mentioned in the Introduction, this is a novel and important con-
tribution because two pass algorithms are typically much faster than level-wise algo-
rithms and also because they can be tweaked to work on data streams [10]. We selected
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� -Apriori ( � , �������	��

����������� )
Input: Database � , Set of Items � , Minimum Support ���	��

��� , Tolerance Count �����
Output: Generalized Closed Itemsets
1. � : = set of all 1-itemsets;
2. � = � ;
3. for ( � = 1; � ������ "! ; �$#%# )
4. SupportCount( � � , � ); // Count supports of � � over �
5. � � = Frequent itemsets in � �
6. Prune( � � , � , tol);
7. PropagatePruned( �$� , � , tol);
8. � �
& : = AprioriGen( � � );
9. � = �"'�� � ;
10. for each itemset ( in �
11. Output ( ()'�(+* ��,-���/.10 , (+* 23�-���4� );

Figure 1: The � -Apriori Algorithm

Prune ( � � , � , ����� )
Input: Frequent � -itemsets � � , Generators � , Tolerance Count �����
Output: Remove non-generators from � �
1. for each itemset ( in � �
2. for each 56� (7�-8"91: -subset ; of ( , in �
3. 0<.1=>� = ;?* 23�-���4�@8A(+* 2>�����4� ;
4. if ( 0<.1=B�/#C;D* 0<.1=B�FEC����� )
5. � � = � � 87GH(JI
6. ;?* ��,-���/.H0 = ;?* ��,��K��.10L'J5M(N8A;O:
7. ;?* 0<.1=>� += 0<.1=>�

Figure 2: Pruning Non-generators from � �
PropagatePruned ( �P� , � , ����� )
Input: Frequent � -itemsets � � , Generators � , Tolerance Count �����
Output: Propagate pruned value to generators in � �
1. for each itemset ( in � �
2. for each 56� (7�-8"91: -subset ; of ( , in �
3. if ( (+* 0<.1=>��#7;?* 0<.1=>�DE%����� )
4. (+* ��,��K��.10 = (+* ��,-���/.10Q'R;?* ��,��K��.10
5. (+* 0<.H=B�6#TSU;?* 0<.1=>�

Figure 3: Propagate Pruned Value to Supersets

the recently-proposed ARMOR [14] as a representative of the class of two-pass mining
algorithms. Integration of the � -closed framework into ARMOR yields � -ARMOR, a
two-pass algorithm for mining frequent � -closed itemsets.
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4.1 The ARMOR Algorithm

We first review the overall structure of the ARMOR algorithm – its details are available
in [14]. In this algorithm, the database is conceptually partitioned into disjoint blocks
and data is read from disk and processed partition by partition.

In the first pass, the algorithm starts with the set of all 1-itemsets as candidates.
After processing each partition, the set of candidates (denoted as � ) is updated – new
candidates may be inserted and existing ones removed. The algorithm ensures that
at any stage, if 1 is the database scanned so far, then the frequent itemsets within 1
(also called 1 -frequent itemsets) are available. The algorithm also maintains the partial
counts of these itemsets – the partial count of an itemset is its count within the database
scanned so far from the point it has been inserted into � .

In the second pass, complete counts of the candidates obtained at the end of the first
pass are determined. During this pass, there are no new insertions into � . However,
candidates that can no longer become frequent are removed at each stage.

4.2 Details of Incorporation

In ARMOR, the complete supports of candidate itemsets are not available during the
first pass. However, for each candidate

�
, its partial support is available representing

its support over the portion of the database that has been processed so far starting from
the point where the candidate was inserted into � . The rule that we follow in the
integrating the � -closed itemset framework is simple 	 : While processing a partition
during the first pass, if we find the partial support of an itemset

�
to be � -equal to that

of its superset � , then prune every proper superset of � from � while ensuring that the
approximation error does not accumulate beyond the tolerance limit. That is, whenever
an itemset

�
, that has more than one immediate superset � � � � 	 � - - - � � � , with � -equal

partial support is encountered, we prune each superset � � only as long as the sum of
the differences between the partial supports of each pruned superset and

�
is within � .

Next, if after processing a few more partitions, the supports of
�

and � are no
longer � -equal, then regenerate the pruned supersets of � as follows: For every 1 -
frequent itemset � in � such that � � � � � �� � , insert a new candidate � � � into
� . The partial support of the new candidate should be set equal to that of � .

5 Performance Study

In the previous sections, we have described the � -closed itemset framework along with
the � -Apriori and � -ARMOR algorithms. We have conducted a detailed study to assess
the utility of the framework in reducing both the output size and the response time of
mining operations. Our experiments cover a range of databases and mining workloads
including the real datasets from the UC Irvine Machine Learning Database Repository,
the synthetic datasets from the IBM Almaden generator, and the real dataset, BMS-
WebView-1 from Blue Martini Software. Due to lack of space, we show only repre-
sentative samples of our results. The complete results are available in [13].

�

The resulting pseudo-code is not shown here due to lack of space, but is available in [13]
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All the algorithms were coded in C++ and the experiments were conducted on a
700-MHz Pentium III workstation running Red Hat Linux 6.2, configured with 512
MB main memory and a local 18 GB SCSI 10000 rpm disk. The same data-structures
(hashtrees [2]) and optimizations (using arrays to store itemset counters in the first two
database passes) were used in both � -Apriori and Apriori to ensure fairness. We chose
tolerance count values ranging from zero (corresponding to the exact closed itemset
case) to 1000. While higher values of tolerance are uninteresting, their inclusion is
useful in studying the effect of increasing tolerance on the output size.

5.1 Experiment 1: Output Size Reduction
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Figure 4: Output Size Reduction

We now report on our experimental results. In our first experiment, we measure the
output size reduction obtained with the � -closed itemset framework as the percentage of
frequent itemsets pruned to result in frequent � -closed itemsets. The results of this ex-
periment are shown in Figures 4a–b. The x-axis in these graphs represents the tolerance
count values, while the y-axis represents the percentage of frequent itemsets pruned.

In these graphs, we first see that the pruning achieved is significant in most cases.
For example, on the chess dataset (Figure 4a) for a minimum support of 80%, the
percentage of pruned itemsets is only 38% at zero tolerance (closed itemset case). For
the same example, at a tolerance count of 50 (corresponding to a maximum error of
1.5% in itemset supports), the percentage of pruned itemsets increases to 90%!

The pruning achieved is significant even on the sparse datasets generated by the
IBM Almaden generator. For example, on the T10I4D100K dataset (Figure 4b) for
a minimum support of 0.1%, the percentage of pruned itemsets is only 12% at zero
tolerance, whereas it increases to 41.5% at a tolerance count of 10 (corresponding to a
maximum error of 0.01% in itemset supports).

An interesting trend that we notice in all cases is that the percentage of pruned
itemsets increases dramatically at low tolerances and then plateaus as the tolerance is
increased further. This trend is significant as it indicates that the maximum benefit
attainable using the � -closed itemset framework is obtained at low tolerances. The
reason for this trend is as follows:
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As the length of an itemset
�

increases, its subsets increase exponentially in num-
ber. This means that the chance of one of the subsets being � -equal to one of its subsets
becomes exponentially high. Hence most of the long generators get pruned at low tol-
erances itself. This accounts for the initial steep rise in the curve. Shorter generators
get pruned at a slower pace with regard to the increase in tolerance. This accounts for
the gradual upward slope in the curve after the initial exponential increase.

5.2 Experiment 2: Response Time Reduction
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Figure 5: Response Time Reduction

In our second experiment, we measure the performance gain obtained from the � -
closed itemset framework. This is measured as the percentage reduction in response
time of � -Apriori over Apriori. The results of this experiment are shown in Figures 5a–
b. The x-axis in these graphs represents the tolerance count values, while the y-axis
represents the performance gain of � -Apriori over Apriori.

In all these graphs, we see that the performance gain of � -Apriori over Apriori is sig-
nificant. In fact, the curves follow the same trend as in Experiment 1. This is expected
because the bottleneck in Apriori (and other frequent itemsets mining algorithms) lies
in the counting of the supports of candidates. Hence any improvement in pruning would
result in a corresponding reduction in response-time.

5.3 Experiment 3: Response Times of ' -ARMOR

In our third experiment, we measure the response times of � -ARMOR and compare
them against those of Apriori. The results of this experiment are shown in Figures 6a–
b. The x-axis in these graphs represents the tolerance count values, while the y-axis
(plotted on a log-scale) represents response times in seconds.

In all these graphs, we see that the response times of � -ARMOR are over an order
of magnitude faster than Apriori. We also notice that the response times become faster
with an increase in tolerance count values. As in Experiment 2, this is expected because
more candidates are pruned at higher tolerances. The reduction in response time is not
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Figure 6: Response Times of � -ARMOR

as steep as in Experiment 2 due to the fact that � -ARMOR is much more efficient than
� -Apriori and hence less responsive to a change in the number of candidates.

We do not show the response times of ARMOR in these graphs since it ran out of
main memory for most of the datasets and support specifications used in our evaluation.
This was because most of these datasets were dense, whereas ARMOR, as described in
[14], is designed only for sparse datasets and is memory intensive.

5.4 Experiment 4: Scale-up Experiment
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Figure 7: Scale-up Experiment

In our fourth (and final) experiment, we studied the scalability of � -ARMOR, � -
Apriori and Apriori by measuring their response times for the T10I4D10M database
having 10 million records. The results of this experiment are shown in Figure 7. These
results (when analyzed along with Figures 5b and 6b) show that the performances of all
three algorithms are linear w.r.t. database size. This behaviour is due to the following
reasons: (1) The number of database passes in these algorithms depends only on the
pattern density and not on the number of transactions. (2) The rate at which transactions
are processed in each pass does not depend on the number of transactions but only on the
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distribution from which the transactions are derived, the number of candidate itemsets
and on the efficiency of the data-structure holding the counters of candidates.

6 Related Work

A number of post-mining schemes to discover “redundancy” in association rules have
been proposed – [1, 3, 6, 9]. These schemes are to be applied after frequent itemsets
have been mined. They are therefore inefficient and sometimes even infeasible because
the number of frequent itemsets could be very large, especially for dense databases.

Techniques for pruning uninteresting rules during mining have been previously pre-
sented in [16, 15, 9, 6, 8, 5, 4]. In most of these studies (other than those following
the closed itemset approach), it is sufficient for a rule to be considered uninteresting or
redundant if it has no additional predictive power over another rule with fewer items.
Techniques based on the closed itemset approach [16, 15], on the other hand, have a
tighter requirement for a rule to be considered redundant: A rule is redundant only if its
identity and support can be derived from another “non-redundant” rule.

In this paper, we follow the tighter approach. However, as mentioned in the Intro-
duction, we relax the requirement of deriving exact supports – instead, it is sufficient
if the supports can be estimated within a deterministic user-specified tolerance factor.
This strategy of relaxing the requirement of deriving exact supports has also been con-
sidered in [5, 4]. In [5], the authors develop the notion of freesets along with an algo-
rithm called MINEX to mine them. The bound on approximation error in the freesets
approach increases linearly with itemset length in contrast to the constant bound fea-
tured in our approach. In [4], the authors do not provide any bounds on approximation
error. Further, the focus in [5, 4] is only on highly correlated, i.e. “dense” data sets,
whereas we show that our techniques can be profitably applied even on sparse data sets.
Finally, there was no attempt in [5, 4] to incorporate their scheme into two-pass mining
algorithms, which as mentioned earlier is essential for mining data streams.

The A-Close algorithm [11] for mining frequent closed itemsets is a levelwise algo-
rithm based on Apriori. � -Apriori significantly differs from A-Close (even for the zero
tolerance case) in that it does not require an additional database scan to mine closed
itemsets from their respective generators. This is achieved by utilizing the technique
described in Section 2.2. Our technique also bypasses the additional processing that is
required in the MINEX [5] algorithm to test for “freeness”.

7 Conclusions

In this paper we proposed the generalized closed itemset framework (or � -closed item-
set framework) in order to manage the information overload produced as the output
of frequent itemset mining algorithms. This framework provides an order of magni-
tude improvement over the earlier closed itemset concept. This is achieved by relaxing
the requirement for exact equality between the supports of itemsets and their super-
sets. Instead, our framework accepts that the supports of two itemsets are equal if the
difference between their supports is within a user-specified tolerance factor. We also
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presented two algorithms – � -Apriori (based on the classical levelwise Apriori algo-
rithm) and � -ARMOR (based on a recent two-pass mining algorithm) for mining the
frequent � -closed itemsets. � -Apriori is shown to perform significantly better than
Apriori solely because the frequent � -closed itemsets are much fewer than the frequent
itemsets. Finally, � -ARMOR was shown to perform over an order of magnitude better
than Apriori over all workloads used in our experimental evaluation.
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