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Abstract

A “plan diagram” is a pictorial enumeration of the
execution plan choices of a database query opti-
mizer over the relational selectivity space. In this
paper, we present and analyze representative plan
diagrams on a suite of popular commercial query
optimizers for queries based on the TPC-H bench-
mark. These diagrams, which often appear simi-
lar to cubist paintings, provide a variety of inter-
esting insights, including that current optimizers
make extremely fine-grained plan choices, which
may often be supplanted by less efficient options
without substantively affecting the quality; that
the plan optimality regions may have highly in-
tricate patterns and irregular boundaries, indicat-
ing strongly non-linear cost models; that non-
monotonic cost behavior exists where increasing
result cardinalities decrease the estimated cost;
and, that the basic assumptions underlying the re-
search literature on parametric query optimization
often do not hold in practice.

I ntroduction

Modern database systems useugery optimizerto iden-
tify the most efficient strategy to execute the SQL queries,; [25], or from a color print copy, since the greyscale varsi

that are submitted by users. The efficiency of the strateg,
gies, called “plans”, is usually measured in terms of query
response time. Optimization is a mandatory exercise sinc
the difference between the cost of the best execution pla
and a random choice could be in orders of magnitude. Th
role of query optimizers has become especially critical in

While commercial query optimizers each have their own
“secret sauce” to identify the best plan, the de-facto stan-
dard underlying strategy, based on the classical System R
optimizer [16], is the following: Given a user query, ap-
ply a variety of heuristics to restrict the combinatorially
large search space of plan alternatives to a manageable size
estimate, with a cost model and a dynamic-programming-
based processing algorithm, the efficiency of each of these
candidate plans; finally, choose the plan with the lowest es-
timated cost.

Plan and Cost Diagrams

For a query on a given database and system configuration,
the optimal plan choice is primarily a function of tise-
lectivitiesof the base relations participating in the query —
that is, the estimated number of rows of each relation rele-
vant to producing the final result. In this paper, we use the
term “plan diagram” to denote a color-coded pictorial enu-
meration of the execution plan choices of a database query
optimizer over the relational selectivity space. An exaanpl
2-D plan diagram is shown in Figure 1(a), for a query based
on Query 7 of the TPC-H benchmark, with selectivity vari-
ations on theoRDERSandcUSTOMERrelations.

[Note to Readers: We recommend viewing all diagrams pre-
sented in this paper directly from the color PDF file, availbb

ay not clearly register the various featurés.

In this picture, produced with a popular commercial
uery optimizer, a set of six optinfaplans, P1 through
6, cover the selectivity space. The value associated with
Bach plan in the legend indicates the percentage space cov-
erage of that plan — P1, for example, covers about 38% of

recent times due to the high degree of query complexityhe area whereas P6 is chosen in only 1% of the region.

characterizing current data warehousing and mining ap-
plications, as exemplified by the TPC-H decision suppor

benchmark [20].
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Complementary to the plan diagramis a “cost diagram”,
Shown in Figure 1(b), which is a three-dimensional visual-
ization of the estimated plan execution costs over the same
relational selectivity space (in this picture, the costsraor-
malized to the maximum cost over the space, and the col-
ors reflect the relative magnitudes with blue indicating low
cost, white — medium cost, and red — high cost).

1Specifically, the variation is on theo_total price and
c.acct bal attributes of these relations.

2The optimality is with respect to the optimizer's restrittgearch
space, and not in a global sense.
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Figure 1:Smooth Plan and Cost Diagram (Query 7)

The Picasso Tool made here are perforce speculative in nature and should
, . ) therefore be treated as such. Our intention is primarily to
As part of our ongoing project on developing value- 56t gatabase system designers and developers to the phe-
addition software for query optimization [24], we have cre- o nena that we have encountered during the course of our

ated a tool, callePicasso, that given a query and a rela- gy,qy with the hope that they may prove useful in building
tional engine, automatically generates the associatet plapq next generation of optimizers.

and cost diagrams. In this paper, we report on the fea-
tures of the plan/cost diagrams output by Picasso on a Su“i@eaturasof Plan and Cost Diagrams
of three popular commercial query optimizers for queries
based on the TPC-H benchmark. [Due to legal restrictionsAnalyzing the TPC-H-based query plan and cost diagrams

these optimizers are anonymously identified as OptA, OptBprovides a variety of interesting insights, including tbé f

and OptC, in the sequel.]
Our evaluation shows that a few queries in the bench-

lowing:

mark do produce “well-behaved” or “smooth” plan dia- Fine-grained Choices: Modern query optimizers often

grams, like that shown in Figure 1(a). A substantial remain-
der, however, resultin extremely complex and intricataepla
diagrams that appear similar¢abist painting$, providing
rich material for investigation. A particularly compeliin
example is shown in Figure 2(a) for Query 8 of the bench-
mark with optimizer OptA, where no less than 68 plans
cover the space in a highly convoluted manner! Further,
even this cardinality is aonservativeestimate since it was
obtained with a query grid of 100 x 100 — a finer grid size
of 300 x 300 resulted in the plan cardinality going up to 80
plans!

Before we go on, we hasten to clarify that our goal in
this paper is to provide a broad overview of the intrigu-
ing behavior of modern optimizers, bubtto make judge-
ments on specific optimizers, nor to draw conclusions about
the relative qualities of their execution plans. Furthet, n
being privy to optimizer internals, some of the remarks

SHence, the name of our tool — Pablo Picasso is considered & be
founder of the cubist painting genre [23].
4Operating at its highest optimization level.

make extremelyine-grainedplan choices, exhibiting

a marked skew in the space coverage of the individual
plans. For example, 80 percent of the space is usu-
ally covered by less than 20 percent of the plans, with
many of the smaller plans occupying less thare
percentof the selectivity space. Using the well-known
Gini index [22], which ranges over [0,1], to quantify
the skew, we find that all the optimizeracross the
board exhibit a marked skew in excess of 0.5 for most
queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the
small-sized plans may often be supplanted by larger
siblings without substantively affecting the quality
For example, the plan diagram of Figure 2(a) which
has 68 plans can be “reduced” to that shown in Fig-
ure 2(b) featuring as few asevenplans, without in-
creasing the estimated cost of any individual query
point by more than 10 percent.

Overall, this leads us to the hypothesis that current
optimizers may perhaps be over-sophisticated in that
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Figure 2:Complex Plan and Reduced Plan Diagram (Query 8, OptA)

they are “doing too good a job”, not merited by the Validity of PQO: A rich body of literature exists opara-

coarseness of the underlying cost space. Moreover,
if it were possible to simplify the optimizer to pro-
duce only reduced plan diagrams, it is plausible that
the considerable processing overheads typically asso-
ciated with query optimization could be significantly
lowered.

Complex Patterns. The plan diagrams exhibit a variety

of intricate tessellated patterns, includispeckles
stripes blinds mosaicsandbands among others. For
example, witness the rapidly alternating choices be-
tween plans P12 (dark green) and P16 (light gray)
in the bottom left quadrant of Figure 2(a). Further,
the boundaries of the plan optimality regions can be
highly irregular — a case in point is plan P8 (dark
pink) in the top right quadrant of Figure 2(a). These
complex patterns appear to indicate the presence of
strongly non-linear and discretized cost models, again
perhaps an over-kill in light of Figure 2(b).

Non-Monotonic Cost Behavior: We have found quite a

few instances where, although the base relation selec-
tivities and the result cardinalities are monotonically
increasing, the cost diagram doest show a corre-
sponding monotonic behavidrSometimes, the non-

metric query optimizatiofPQO) [1, 2, 7, 8, 3, 4, 10,
11, 12]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space
at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the
best plan — the expectation is that this would be much
faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
do not find to hold truegven approximatelyin the
plan diagrams produced by the commercial optimiz-
ers.

For example, one of the assumptions is that a plan is
optimal within theentire regionenclosed by its plan
boundaries. But, in Figure 2(a), this is violated by the
small (brown) rectangle of plan P14, close to coordi-
nates (60,30), in the (light-pink) optimality region of
plan P3, and there are several other such instances.

On the positive side, however, we show that some
of the important PQO assumptions do hold approxi-
mately forreducedplan diagrams.

Organization

monotonic behavior arises due to a change in planThe above effects are described in more detail in the re-
perhaps understandable given the restricted searafainder of this paper, which is organized as follows: In

space evaluated by the optimizer. But, more surprisSection 2, we present the Picasso tool and the testbed en-
ingly, we have also encountered situations where aironment. Then, in Section 3, the skew in the plan space

plan shows such behavior evierternalto its optimal-
ity region.

50ur query setup is such that in addition to the result cafidirmono-
tonically increasing as we travel outwards along the selgctaxes, the

result

tuples are alssuperset®f the previous results.

distribution, as well as techniques for reducing the pldn se
cardinalities, are discussed. The relationship to PQO-is ex
plored in Section 4. Interesting plan diagram motifs are
presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize



the conclusions of our study and outline future research avand REGION, which are very small, are not considered).

enues. An additional restriction is that the selected tables sthoul
feature only in join predicates in the query, but not in any
2 Testbed Environment constant predicates. For a given choice of such tables, ad-

) ) . . ditional one-sided range predicates on attributes with-hig
In this section, we overview the Picasso tool and the excardinality domains in these tables are added to the queries
perimental environment under which the plan and cost diato support a fine-grained continuous variation of the asso-

grams presented here were produced. ciated relational selectivities. As a case in point, thepla
. diagram in Figure 2(a) on theuPPLIER and LINEITEM
2.1 Picasso Tool relations, was produced after adding to Q8 the predicates

The Picasso tool is part of our ongoing project on de-S-acctbal < Clandl quantity < C2,whereCl
veloping value-added tools for query optimization [24]. @dC2 are constants that are appropriately set to generate
Through its GUI, users can submigaery templaté], the the desired selectivities on these relations. In the redsain

grid granularity at which instances of this template should®f this paper, for ease of exposition, we will use the bench-
be distributed across the plan space, the relations (axe ark query numbers for referring to the associated Picasso

and their attributes on which the diagrams should be con€mplates. _

structed, and the choice of query optimizer. A snapshot of While plan and cost diagrams have been generated for

the interface for a template based on Query 2 of the TPC-Hnost of the benchmark queries, we focus in tfle rem%mder

benchmark, is shown in Figure 3 (the predicatessi ze  Of this paper only on those queries that have “dense” plan

< Cl”and “ps_suppl ycost < C2” determine the se- diagrams — that is, diagrams whose optimal plan set cardi-

lectivity axes). nality is 10 or more, making them interesting for analysis
With this information, the tool automatically generates— for at least oneof the commercial optimizers. For com-

SQL queries that are evenly spaced across the relationRHtational tractability, a query grid spacing of 100 x 100 is

selectivity space (the statistics present in the databaise c US€d, unless explicitly mentioned otherwise. Further, for

alogs are used to compute the selectivities). For examf@se of presentation and visualization, the query worldoad

ple, with a grid spacing of 100 x 100, a plan diagrama'€ restricted to 2-dimensional selectivity spaces (With t

is produced by firing 10000 queries, each query covering*ception of queries Q1 and Q6, which feature only a sin-

0.01 percent of the plan diagram area. The resulting plangl€ relation, and therefore have a 1-D selectivity space by

are stored persistently in the database, and in the posefinition).

processing phase, a unique color is assigned to each distinc

plan, and the area covered by the plan is also estimate@.3 Relational Engines

The space is then colored according to this assignment, and , , o

the legend shows (in ranked order) the space coverage suite of three popular commermal rellat|onal optimizers

each plan. Differences between specific plans are easilyer€ €valuated, but, as mentioned earlier, we are unable to

identified using @PlanDiff component that only requires provide their details due to legal restrictions. Some of the

dragging the cursor from one plan to the other in the plarffN9ines offer a range of optimization levels that tradeoff
diagram. quality against time, or result latency versus response.tim

For each plan diagram, the corresponding cost diagrarwe have experimented with all these levels, but for ease of
is obtained by feeding the query points and their asso€XPOSition, the diagrams presented here, unless explicitl
ciated costs to a 3-D visualizer — currently, the freewareme”t'oned otherwise, are restricted to those obtained with

Plot3D [21] is used for this purpose. the default optimiz_ation Ievel's. Also, we ensured that the
full choice of candidate algorithms for each query operator
22 Databaseand Query Set was made available. To support the making of infor_med
plan choices, commands were issued to collect statistics on
The database was created using the synthetic generatall the attributes participating in the queries. Finallyy f
supplied with the TPC-H decision support benchmark.every query submitted to the database systems, commands
which represents a commercial manufacturing environwere issued to only “explain” the plan — that is, the plan
ment, featuring the following relation®EGION, NATION,  to execute the query was generated, but not executed. This
SUPPLIER CUSTOMER PART, PARTSUPR ORDERSand s because our focus here is on plan choices, and not on
LINEITEM. A gigabyte-sized database was created on thigvaluating the accuracy of the associated cost estimations
schema, resulting in cardinalities of 5, 25, 10000, 150000,
Ir2(32)13(())"(])1,;800000, 1500000 and 6001215, for the respectivg 4 Computational Platform
All query templates were based on the TPC-H benchA vanilla platform consisting of a Pentium-1V 2.4 GHz
mark, which features a set of 22 queries, Q1 through Q22PC with 1 GB of main memory and 120 GB of hard disk,
To ensure coverage of the full range of selectivities, the rerunning the Windows XP Pro operating system, was used
lational axes in the plan diagrams are chosen only from thén our experiments.  For this platform, the complete set
large-cardinality tables occurring in the query (NaATION of evaluated queries and their associated plan, cost, and
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reduced-plan diagrams, over all three optimizers, ard-avaionly 5 plans each for OptA and OptC. Conversely, OptB
able at [25] — in the remainder of this paper, we discusgequires only 6 plans for Q7, but OptA and OptC employ

their highlights. 13 and 19 plans, respectively. It should also be noted that
a common feature between Q8 and Q9, which both have
3 Skew in Plan Space Coverage large number of plans across all three systems, is that they

are join-intensive nested queries with the outer query fea-
We start off our analysis of plan diagrams by investigatingturing dynamicsource relations (i.e. the relations in the
the skewin the space coverage of the optimal set of plansfrom clauseare themselves the output of SQL queries).
In Table 1, we show for the various benchmark queries, When the fractional cardinality required to cover 80 per-
three columns for each optimizer: First, the cardinality ofcent of the space is considered, we see that on average it
the optimal plan set; second, the (minimum) percentage o in the neighborhood of 20 percent, highlighting the in-
plans required to cover 80 percent of the space; and, thirdsquity in the plan space distribution. This is comprehen-
the Giniindex [22], a popular measure of income inequalitysively captured by the Gini index values, which are mostly
in economics — here we treat the space covered by eagh excess of 0.5, and even reaching 0.8 on occasion, indicat-
plan as its “income”. Our choice of the Gini index is due to ing very high skew in the plan space distribution. Further,
its desirable statistical properties including being e  note that this skew is preserigross the board, in all the
consistent, and bounded on the closed interval [0,1], with Gptimizers
representing no skew and 1 representing extreme skew. We Qerall, the statistics clearly demonstrate that modern
distinguish for each optimizer betwedense querie€l0or  optimizers tend to make extremely fine-grained choices.
more plans in the plan diagram), whose statistics are showpyrther, these numbers acenservativen that they were
in black, and sparse queries, whose statistics are shown thtained with a 100 x 100 grid — with finer-granularity
gray. Finally, the averages across all dense queries are algrids, as mentioned in the Introduction, the number of plans
given at the bottom of Table 1 (the averages are computegften increased even further. For example, using a 1000 x

for each optimizer w.r.t. tds dense queries). 1000 grid for Q9 on OptB, the number of plans increased
These statistics show that the cardinality of the optimalrom 44 to 60!

plan set can reach high values for a significant proportion of

the queries. Eor example, the average (dense) caro!ir@lity 5_1 Plan Cardinality Reduction by Swallowing
considerably in excess ofventy across all three optimiz-
ers. Q9, in particular, results in more than 40 plans for allMotivated by the above skewed statistics, we now look into
the optimizers. But it is also interesting to note that highwhether it is possible to replace many of the small-sized
plan density is not solely query-specific since there carplans by larger-sized plans in the optimal plan set, without
be wide variations between the optimizers on individualunduly increasing the cost of the query points associated
queries —for example, Q18 results in 13 plans for OptB, buwith the small plans. That is, can small plans be “com-



TPC-H OptA OptB OptC
Query Plan 80% Gini Plan 80% Gini Plan 80% Gini
Number Card Coverage Index || Card Coverage Index || Card Coverage Index
2 22 18% 0.76 14 21% 0.72 35 20% 0.77
3 15 26% 0.72 6 17% 0.74 6 50% 0.50
5 21 19% 0.81 14 21% 0.74 18 17% 0.81
7 13 23% 0.73 6 50% 0.46 19 15% 0.79
8 31 16% 0.81 25 25% 0.72 38 18% 0.79
9 63 9% 0.88 44 27% 0.70 41 12% 0.83
10 24 16% 0.78 9 22% 0.69 8 25% 0.75
16 12 42% 0.58 3 67% 0.25 4 25% 0.72
18 5 60% 0.33 13 38% 0.57 5 20% 0.75
21 27 22% 0.74 6 17% 0.80 22 18% 0.81
Avg(dense) | 25.3 21% 0.76 22.0 23% 0.72 28.8 16% 0.8

Table 1: Skew in Plan Space Coverage

pletely swallowed” by their larger siblings, leading to are ¢, as the origin, since these points upper-bound the cost of
duced plan set cardinality, without materially affectihgt the plan at the origin. This is made clear in Figure 4, which
associated queries. shows that, independent of the cost model of the dominat-
To do this, we first fix a threshold\, representing the ing plan, the cost of any foreign query point in the first
maximum percentage cost increase that can be toleratequadrant will be an upper bound on the cost of executing
Specifically, no query point in the original space shouldthe foreign plan at the swallowed point. We now need to
have its cost increasegdpst-swallowingby more than\. find the set of dominating foreign points that are within the
Next, to decide whether a plan can be swallowed, we use threshold, and if such points exist, choose one replace-
the following formulation: ment from among these — currently, we choose the point
with the lowest cost as the replacement. Finallygatire
Cost Domination Principle: Given a pair of distinct plancan be swallowed if and only &l its query points can
query pointsq; (z1,y1) and ¢»(z2,y») in the two-  be swallowed by either a single plan or a group of plans. In
dimensional selectivity space, we say that pajnt our processing, we first order the plans in ascending order
dominatesy;, symbolized byg, = ¢, if and only if  of size, and then go up the list, checking for the possibility
x2 > x1, Y2 > y1, and result cardinality?,, > R,, of swallowing each plan.

(note that result cardinality estimations are, in prin-  Note that the cost domination principle is conservative
ciple, independent of plan choicés)Then, if points i that it does not capture all swallowing possibilitiesgdu

q1(21,y1) andgs(z», y»), are associated with distinct 14 restricting its search only to the first quadrant. But, as
plans P, and P, respectively, in the original space, e will show next, substantial reductions in plan space car-

C?, the cost of executing quem with plan P> is  ginalities can be achieved even with this conservative ap-
upper-bounded by'2, the cost of executing, with proach.

P, ifandonlyifgs = ¢.

100

Intuitively, what is meant by the cost domination prin-
ciple is that we expect the optimizer cost functions to be ¢ *°
monotonically non-decreasing with increasing base rela-
tion selectivities and result cardinalities. Equivalgnt
plan that processes a superset of the input, and produces
superset of the output, as compared to another plan, is est T &0 2005 IR .
mated to be more costly to execute. However, as discusse o, Cost=96 10.22 [ -2
later in Section 5, this (surprisingly) does not always jgrov ,,
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to be the case with the current optimizers, and we therefore 40 ——" 12.01 [l ea

have to explicitly check for the applicability of the prici = ,, Cost-n8 1;: "z

ple. R ' )
Based on the above principle, when considering swal-

lowing possibilities for a query poing,, we only look 10

for replacements by “foreign” (i.e. belonging to a diffeten

plan) query points that are in thiest quadrantrelative to 20 30 40 50 60 70 80 100

ORDERS

6Result cardinalities are usually monotonically non-dasiieg with

increasingz andy, but this need not always be the case, especially for . . .
nested ql?eries. Y y pecialy Figure 4:Dominating Quadrant



For the experiments presented here, welsdghe cost nique may appear equivalent to choosing a coarser opti-
increase threshold, to 10 percent. Note that in any casmization level. However, the two concepts are completely
the cost computations made by query optimizers are thendifferent because the optimal plan sets chosen at different
selves statisticaéstimatesand therefore allowing for a 10 levels by the optimizer may be vastly dissimilar. A strik-
percent “fudge factor” may be well within the bounds of ing example is Q8, wheregoneof the 68 plans chosen by
the inherenterror in the estimation process. In fact, as OptA at the highest level are present among the 8 plans
mentioned recently in [13, 18], cost estimates can often behosen at the lowest level. Further, going to a coarser level
signficantly off due to modeling errors, prompting the newof optimization does nohecessarilyresult in lower plan
wave of “learning” optimizers (e.g. LEO [18]) that itera- cardinalities — a case in point is OptA on Q2, producing
tively refine their models to improve their estimates. only 4 plans at the highest level, but as many as 22 plans at

When the above plan-swallowing technique is imple-a lower level. Again, there is zero overlap between the two
mented on the set of plans shown in Table 1, and withoptimal plan sets.

A = 10%, the resulting reductions (as a percentage) in the In contrast, with plan reduction by swallowing, only
plan cardinalities are shown in Table 2. We see here thaa subset of theoriginal plans chosen by the optimizer
the reductions are very significant — for example, Q8 re-are used to cover the entire plan space. In fact, plan
duces by 87% (31 to 4), 84% (25 to 4) and 86% (38 to 5)reduction fits in perfectly with the query clustering ap-
for OptA, OptB and OptC, respectively. On average overproach previously proposed in our Plastic plan recycling
dense queries, the reductions are of the order of 60% acro$sol [5, 15, 17, 24], where queries that are expected to have
all three optimizers, with OptC going over 70%. (Q16 wasidentical plan templates are grouped together based on sim-
a notable exception to this behavior with plan reduction inilarities in their feature vectors. This is because thetelus
OptA, for which it was a dense query, coming into play regionsinherentlycoarsen the plan diagram granularity.

only when\ was increased to 25%.)

Also note that these reductions anservativbecause 4 Relationship to PQO
when the grid granularity is increased — from 100 x 100
to, say, 1000 x 1000 — the new plans that emerge tend t
be very small and are therefore highly likely to be sub-

fﬁgueergg Sév;'a;lrgnv%dtjr :gsil?slfttl?lg-etll!l’irtdhse(f]? :Longgn;hililmb lational selectivity space at compile time, and subsedyent
g ' P to use at run time the actual selectivity parameter settmgs

a dense plan dlflgram are liable to be eliminated thmughidentify the best plan — the expectation is that this would be
plan swallowing”.

In Table 2. we have al hown thger rcent much faster than optimizing the query from scratch. Most
: avle 2, we have aiso sno UEragepercentage - o this work is based on assuming cost functions that would
increase in the costs of swallowed query points, as well a

) . !l 8Pasult in one or more of the following:
themaximunctost increase suffered across all query points.

Note that, although the threshold is set to 10%,abtial  Plan Convexity: If a plan P is optimal at point A and at

average cost increase is rather low — less than 2%, which  point B, then it is optimal at all points on the straight
means that most of the swallowed query pohesdly suf- line joining the two points;

fer on account of the replacement by an alternative plan. , )

In fact, even the maximum increase does not always reach @ Uniqueness: An optimal plan P appears at only one
the threshold setting. Further, note that these averages an ~ contiguous region in the entire space;

maxima areupper boundsand the real cost estimates of pjan Homogeneity: An optimal plan P is optimal within

the replacement plans at the swallowed points may be even  the entire region enclosed by its plan boundaries.
lower in practice. Overall, our observation is that there ap

A rich body of literature exists oparametric query opti-
%ization(PQO) [1,2,7,8,3,4,10,11,12]. The goal hereis
to apriori identify the optimal set of plans for the entire re

pears to be significant potential thastically reduce the However, we find thahone of the thre@ssumptions
complexity of plan diagrams without materially affecting hold true, even approximately, in the plan diagrams pro-
the query processing quality duced by the commercial optimizers. For example, in Fig-

Akey implication of the above observation is the follow- Ure 2(a), plan convexity is severely violated by the regions
ing: Suppose it were possible to simplify current optimizerscovered by plans P12 (dark green) and P16 (light gray).
to produce only reduced plan diagrams, then the consider] he plan uniqueness property is violated by plan P4 (ma-
able computational overheads typically associated wieh th foon) which appears in two non-contiguouslocations in the
query optimization process may also be substantially low0p left quadrant, while plan P18 appears in finely-chopped
ered We suggest that this may be an interesting avenue tgieces. Finally, plan homogeneity is violated by the small
be explored by the database research community. (brown) rectangle of plan P14, close to coordinates (60,30)
in the (light-pink) optimality region of plan P3.

The prior literature [8, 12] had also estimated thith
plan densitiesare to be expected only along the selectivity
As mentioned earlier, optimizers typically have multiple axes — that is, where one or both base relations in the plan
optimization levels that trade off plan quality versus epti diagram are extremely selective, providing only a few tu-
mization time, and at first glance, our plan reduction techples. However, we have found that high plan densities can

3.2 Plan Reduction # Optimization Levels



OptA OptB OptC

TPC-H Percent  Average Maximum Percent  Average Maximum Percent  Average Maximum

Query Card Cost Cost Card Cost Cost Card Cost Cost

Number Decrease Increase  Increase Decrease Increase  Increase Decrease Increase Increase
2 59.2 1.0 4.4 64.2 0.6 5.9 77.1 3.2 6.4
3 73.3 1.9 8.1 33.3 3.5 7.0 33.3 1.1 1.24
5 67.3 2.6 8.1 42.9 0.1 0.6 61.1 0.2 8.1
7 46.1 0.1 9.5 16.6 0.4 0.7 54.5 1.1 9.5
8 87.6 0.4 9.4 84.0 0.9 9.1 86.8 1.2 8.4
9 84.4 1.6 8.6 36.4 14 8.9 80.5 2.1 8.3
10 67.6 0.8 4.4 44 .4 0.5 6.1 62.5 0.4 2.4
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 40.0 0.1 0.5 46.2 3.7 9.6 0.0 0.0 0.0
21 59.8 0.0 0.2 66.7 0.9 2.5 68.2 0.7 6.9

Avg(dense) 60.6 0.9 5.6 56.9 0.7 6.1 714 14 79

Table 2: Plan Cardinality Reduction by Swallowing

be present elsewhere in the selectivity space also — forex **
ample, see the region between plans P5 (dark brown) an
P11 (orange) in Figure 2(a). This is also the reason for
our choosing a uniform distribution of the query instances, I ™
instead of the exponential distribution towards finer selec ¥
tivity values used in [8]. E g
In the following section, more detailed statistics about
the violations of the above assumptions are presented, ¢ = **

part of a discussion on interesting plan diagram patterns. T 4
E

30

5 Interesting Plan Diagram Patterns M

20
We now move on to presenting representative instances ¢
a variety of interesting patterns that emerged in the plan
diagrams across the various queries and optimizersthatw
evaluated in our study. ’
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.1 Plan Duplicat Plan |
° an Duplicatesand Plan [slands Figure 5:Duplicatesand Idands (Query 10, OptA)

In several plan diagrams, we noticed that a given optimal

plan may haveluplicatesin that it may appear in several in the lower left quadrant of Figure 5. Investigating the

different disjoint locations. Further, these duplicatesym internals of these plans, we find that plan P18 hbash-

also be spatially quite separated. For example, consider thjoin betweercusToMERandNATION followed by ahash-

plan diagram for Q10 with OptA in Figure 5. Here, we join with a sub-tree whose root isreested-loop join. The

see that plan P3 (dark pink) is present twice, being preserinly difference in plan P6 is that it first hash-joins thes-

both in the center, as well as along the right boundary offOMER relation with the sub-tree, and then performs the

the plan space. An even more extreme example is plan Pigash-join withNATION.

(dark green), which is present around the 20% and 95% The number of such duplicates and islands for each opti-

markers on theusTOMERSselectivity axis. mizer, over all dense queries of the benchmark, is presented
A different kind of duplicate pattern is seen for Q5 in Table 3 (Original columns). We see here that all three op-

with OptC, shown in Figure 6, where plan P7 (magenta) igimizers generate a significant number of duplicates; OptA

present in three different locations, all within the confine also generates a large number of islands, whereas OptB and

of the region occupied by plan P1 (dark orange). WherOptC have relatively few islands.

plans P7 and P1 are compared, we find that the former uses In general, the reason for the occurrence of such du-

a nested-loops join between the small relationsaTION plicates and islands is that two or more competing plans

and REGION, whereas the latter employssart-merge- have fairly close costs in that area. So, the optimizer due

join instead. to its extremely fine grained plan choices, obtains plan dia-
Apart from duplicates, we also see that there are ingrams with these features. This is confirmed from Table 3

stances oplan islands where a plan region is completely (Reduced columns), where after application of the plan re-

enclosed by another. For example, plan P18 is a (magenta)uction algorithm, a significant decrease is observed in the

island in the optimality region of the (dark green) plan P6number of islands and duplicates. This also means that
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PQO, which, as mentioned in the previous section, appear V ,,
ill-suited to directly capture the complexities of modepao P

timizers, may turn out to be a more viable propositionin the p ™
space of reduced plan diagrams. 20
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In several plan diagrams, we find lines parallel to the axes 44 Plans

that run through theentire selectivity space, with a plan

shift occurring forall plans bordering the line, when we

move across the line. We will hereafter refer to such lines

as “plan switch-points”. -
In the plan diagram of Figure 7, obtained with Q9 on Join across the\fAT.'ON' SUPPLIER and LINEITEM rela-

OptA, an example switch-point appears at approximatel)}'ogsih BOth v?natlgnls have alnhmst %qual ?St'r;a.‘ted C?St’

30% selectivity of thesupPLIERrelation. Here, we found ?n i €lr cost-mo eslt.are_ ptehr a;t))s |sc(;eb:_zed in-a step-

acommon chang® all plans across the switch-point— the unction manner, resufting in the observed biinds.

hash-join sequenc@ARTSUPPx1 SUPPLIERX PART is al-

tered toPARTSUPP>1 PART > SUPPLIER suggestinganin- g g Footprint Pattern

tersection of the cost function of the two sequences at this

switch-point. A curious pattern, similar to footprints on the beach, shows
For the same Q9 query, an even more interesting switchap in Figure 9, obtained with Q7 on the OptA optimizer,

point example is obtained with OptB, shown in Figure 8.where we see plan P7 exhibiting a thin (cadet-blue) bro-

Here we observe, between 10% and 35% orsthePLIER  ken curved pattern in the middle of plan P2's (orange) re-

axis, six planssimultaneously changing with rapid alterna- gion. The reason for this behavior is that both plans are of

tions to produce a “Venetian blinds” effect. Specifically, roughly equal cost, with the difference being that in plan

the optimizer changes from P6 to P1, P16 to P4, P25 td2, thesurPPLIERTelation participates in sort-merge-

P23, P7 to P18, P8 to P9, and P42 to P47, from one verticgbin at the top of the plan tree, whereas in P7 lthsh-join

strip to the next. operator is used instead at the same location. This is con-
The reason for this behavior is that the optimizer alter-firmed in the corresponding reduced plan diagram where

nates betweenleft-deephash join and aright-deephash  the footprints disappear.

Figure 8:Venetian Blinds Pattern (Query 9, OptB)



the common change in all plans across the switch-point is
that thehash-join between relationsART and PARTSUPP

¢ is replaced by aort-merge-join.

L 36.16 i 1 But, in the same picture, there are switch-points occur-
s e ring at 26% and 50% in theARTSUPPselectivity range,

T w0 . - that result in a counter-intuitiveon-monotonicost behav-

o 1.00 [ o5 ior, as shown in the corresponding cost diagram of Fig-

0.84

26 ure 11(b). Here, we see that although the result cardi-
®1 nalities are monotonically increasing, the estimatedscost
e for producing these results show a marked non-monotonic
10 step-down behavior in the middle section. Specifically,
1 at the 26% switch-point, an addition&ort’ operator
P12 (on ps_suppl ycost) is added, which substantially de-
r13 creases the overall cost — for example, in moving from plan
P2 to P3 at 50%ART selectivity, the estimated cost de-
creases by a factor of 50! Conversely, in moving from P3
to P1 at the 50% switch-point, the cost of the optimal plan
jumps up by a factor of 70 at 50%ART selectivity.
Step-function upward jumps in the cost with increas-
ing input cardinalities are known to occur — for example,
when one of the relations in a join ceases to fit completely
within the available memory — however, what is surprising
in the above is the step-function calcreasat the 26%
switch-point. We conjecture that such disruptive cost be-
havior may arise either due to the presence of rules in the
optimizer, or due to parameterized changes in the search
space evaluated by the optimizer.
66.16 Il’1 The above example showed non-monotonic behavior
33.51 MM ¥2 arising out of a plan-switch. However, more surprisingly,
we have also encountered situations where a plan shows
non-monotonic behavianternal to its optimality region.
A specific example is shown in Figure 12 obtained for Q21
with OptA. Here, the plans P1, P3, P4 and P6, show a re-
duction in their estimated costs with increasing input and
result cardinalities. An investigation of these plans sbdw

0.58
0.49

0.45 P9

noH E

0.09
0.06
0.04

0.03

ORDERS

Figure 9:Footprint Pattern (Query 7, OptA)

PART that all of them feature aested-loops join, whose esti-
mated costlecreasesvith increasing cardinalities of its in-
Figure 10:Speckle Pattern (Query 17, OptA) put relations — this may perhaps indicate an inconsistency
in the associated cost model. Further, such instances of
5.4 Speckle Pattern non-monotonic behavior were observed with all three opti-

Operating Picasso with Q17 on OptA (at its highest opti-Mizers.

mization level) results in Figure 10. We see here that the

entire plan diagram is divided into just two plans, P1 and6 Related Work
P2, occupying nearly equal areas, but that plan P1 (brig .
green) also appears as speckles sprinkled in P2's (red) are the best of our knowledge, there has been no prior work

The only difference between the two plans is that an ad®" the analysis of plan diagrams with regardaal-world

ditional SORT operation is present in P2 on tReRT rela- industrial-strengtrqu_ery _optimizers. Ho_wever, simi_lar_ is-_
tion. However, the cost of this sort is very low, and there-Sues have been studied in the parametric query optimization

fore we find intermixing of plans due to the close and per—g.PQO) IiteSratur.?in ;clhe_coriteﬁogimplifieotllse{lf-craftqau(I) q
haps discretized cost models. imizers. Specifically, in [1, 11, 12], an optimizer modele

along the lines of the original System R optimizer [16] is
used, with the search space restricted to left-deep jodstre
and the workload comprised of pure SPJ queries with “star”
The example switch-points shown earlier, wereabt-  or “linear” join-graphs. The metrics considered include
basedswitch-points, where plans were switched to de-the cardinality and spatial distribution of the set of olm
rive lower execution costs. Yet another example of suctplans — while [1] considered only single-relation selgetiv

a switch-pointis seen in Figure 11(a), obtained with quenyties, [11, 12] evaluated two-dimensional relational silec
Q2 on OptA, at 97% selectivity of theaRT relation. Here, ity spaces, similar to those considered in this paper. Their

5.5 Non-Monotonic Cost Behavior
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results in the 2-D case indicate that for linear queries, thehe optimizer proved relatively insensitive to inaccurate
average number of optimal plans is linear in the number okource costs in terms of plan choices — however, we find
join relations, while for star queries, this number is alinos strong sensitivity with regard teelectivity valuesFurther,
guadratic. Also, the optimal plans are found to be denselynany of the queries for which they did find some degree of
packed close to the origin and the selectivity axes. An analsensitivity also feature in our list of “dense” queries.
ysis of plan reduction possibilities in [1], given a plan op-  Cost-based attempts to reduce the optimizer's search
timality tolerance threshold, indicates that a largertitat ~ space include a “pilot-pass” approach [14], where a com-
of plans can be removed with increasing query complexityplete plan is initially computed and the cost of this plan is
In [7, 8], an optimizer modeled along the lines of the Vol- used to prune the subsequent dynamic programming enu-
cano query optimizer [6] is used, and they find the cardinalmeration by removing all subplans whose costs exceed that
ity of the optimal plan set for queries with two, three and of the complete plan. But, it has been reported [9] that
four-dimensional relational selectivities. They alsoga®  such pruning has only marginal impact in real-world envi-
efficient techniques for approximating the optimal plan set ronments. Finally, a preliminary study of a sampling-based
Finally, a complexity analysis of the optimal plan set cardi approach to find acceptable quality plans, evaluated on a
nality is made in [3] for the specific case of linear (affine) commercial optimizer, is discussed in [19], but its impact
cost functions in two parameters. on theoptimalplan set cardinality is an open issue.

While the above efforts do provide important insights,
the resu!ts presc'anf[ed in this paper mcﬁcgte that plan Q|a7 Condlusions
grams with sophisticated real-world optimizers and querie
show much more variability with regard to both plan set|n this paper, we have attempted to analyze the behavior of
cardinalities and spatial distributions, as compareddseh (1-D and 2-D) plan and cost diagrams produced by mod-
anticipated from the PQO literature. For example, as menern optimizers on queries based on the TPC-H benchmark.
tioned earlier, we find that plan densities can be high eveiour study shows that many of the queries result in highly
in regions far from the plan diagram axes, and that théntricate diagrams, with several tens of plans covering the
optimality region geometries can have extremely irregularspace. Further, there is heavy skew in the relative coverage
boundaries. of the plans, with 80 percent of the space typically covered

There has also been work on characterizing the sensBy 20 percentor less of the plans. We showed that through a
tivity of query optimization to storage access cost parameprocess of plan reduction where the query points associated
ters [13], but this work focuses on the robustness of optimaWwith a small-sized plan are swallowed by a larger plan, it is
plan choices to inaccuracies in the optimizer input paramepossible to significantly bring down the cardinality of the
ters, and when suboptimal choices are made, the impact gflan diagram, without materially affecting the query cost.
these errors. So, the focus is on ptarality, not quantity or We also demonstrated that a variety of complex and in-
spatial distribution. Further, their analysis shows thaéw  tricate patterns are produced in the diagrams, which may
all tables and indexes are on a single device (as in our casd)e an overkill given the coarseness of the underlying cost
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Figure 12:Intra-plan Non-M onotonic Costs (Query 21, OptA)

space. These patterns also indicate that the basic assum4]
tions of parametric query optimization literature do not
hold in practice. However, with reduced plan diagrams, the
gap between theory and practice is considerably narrowed.
Not being privy to the internals of optimizers, our work [5]
is perforce speculative in nature. However, we hope that it
may serve as a stimulus to the database research commu-
nity to investigate mechanisms for pruning the plan searchig]
space so as to directly generate reduced plan diagrams, and
thereby perhaps achieve substantial savings in the signif-
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