
QUEST: An Exploratory Approach to Robust Query
Processing

Anshuman Dutt Sumit Neelam Jayant R. Haritsa∗
Database Systems Lab, SERC/CSA

Indian Institute of Science, Bangalore, INDIA

1. INTRODUCTION
In modern database systems, accurate estimations of predicate

selectivities are a basic requirement for the effective optimization
of declarative SQL queries. For example, consider EQ, the simple
SPJ query shown in Figure 1 – here, the optimizer needs to estimate
the selectivities of a selection predicate (p retailprice < 1000)
and two join predicates (part 1 lineitem, lineitem 1 orders).

select * from lineitem, orders, part
where p partkey = l partkey and l orderkey = o orderkey

and p retailprice < 1000

Figure 1: Example Query (EQ)

In practice, however, compile-time selectivity estimates are of-
ten significantly in error with respect to the actual values subse-
quently encountered during query execution. These errors mislead
the optimizer into making poor execution plan choices, resulting in
substantially inflated query response times.

Over the past few decades, the database research community has
spent considerable efforts to address the above problem, which is
of immediate relevance to currently operational systems. The pro-
posed techniques (see [1] for a comprehensive survey) include so-
phisticated meta-data structures, feedback-based statistical adjust-
ments, and on-the-fly re-optimization strategies. While this rich
body of literature features several innovative formulations, a com-
mon limitation is their inability to provide robust query processing,
as per the following definition.

Robustness Metric. Given a query Q with an associated error-
prone selectivity space ESS, our notion of robustness is the max-
imum performance sub-optimality (MSO) that could occur due to
selectivity estimation errors, as compared to an idealized system
that magically knows the correct values of all selectivities. Specif-
ically, let qe denote the optimizer’s estimated query location in the
ESS, and qa denote the actual run-time location. Also, denote the
∗Contact Author: haritsa@dsl.serc.iisc.ernet.in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

plan chosen by the optimizer at qe by Poe, and the optimal plan at
qa by Poa. Finally, let cost(Pj , qi) represent the execution cost in-
curred at an arbitrary ESS location qi by plan Pj . Then, robustness
is defined by the normalized metric:

MSO(Q) = max
qe,qa∈ESS(Q)

[
cost(Poe, qa)

cost(Poa, qa)
]

which ranges over [1,∞). The reason for considering all possible
(qe, qa) combinations is to ensure that robustness is defined inde-
pendent of both the data distributions (which impact qa) and the
meta-data statistics (which impact qe).

Plan Bouquets. We recently proposed in [2], a new query pro-
cessing concept called “plan bouquets”, which provides guaran-
teed upper bounds on MSO for the first time in the literature. The
basic idea in the bouquet approach is to completely jettison the
compile-time estimation process for error-prone selectivities. In-
stead, these selectivities are systematically discovered at run-time
through a precisely calibrated sequence of cost-limited executions
from a carefully chosen small set of plans, called the plan bouquet.
With this approach, whose construction is delineated in Section 2,
we can prove that MSO ≤ 4 ∗ |PlanBouquet|. Moreover, a de-
tailed empirical assessment indicates that the actual MSO is usually
well within the theoretical bound, even on high-dimensional ESS.

As a case in point, when Query 19 of the TPC-DS benchmark,
which features 5 error-prone join selectivities, is executed on the
native PostgreSQL optimizer, its MSO is an astronomical 106. How-
ever, with the bouquet approach, the MSO is apriori guaranteed to
not exceed 30, and the empirical value is just 10!

Apart from robustness, another unique benefit of the bouquet
mechanism’s choosing to abjure selectivity estimation is that query
execution strategies are repeatable across different invocations, mak-
ing it particularly attractive in industrial applications.

Finally, the bouquet approach can be largely implemented by
leveraging functions, such as selectivity injection and abstract plan
costing, that have already found expression in modern database en-
gines, making it relatively easy to port to current systems.

Demo Features. We have fully incorporated the plan bouquet
concept on the PostgreSQL engine, in a prototype implementation
called QUEST (QUery Execution without Selectivity esTimation).
The various features of QUEST will be visually and interactively
showcased during the demo, as described in detail in Section 3.
These include: (a) The poor MSO of current database engines; (b)
The MSO guarantees of the bouquet approach, and its execution re-
peatability; and (c) Enhancements that further improve the bouquet
performance. A complete video of QUEST in operation is available
at the project website [4].

2. QUEST SYSTEM
The complete architecture of the QUEST system is shown in Fig-

ure 2, divided into a compile-time phase and a run-time phase.1

We explain the working of these two phases through a restricted
1D version of the EQ example query (Figure 1) wherein only the
p retailprice selection predicate is error-prone.

Figure 2: QUEST Architecture

2.1 Compile-time: Bouquet Identification
First, through repeated invocations of the optimizer, and explicit

injection of selectivities, we identify the “Parametric Optimal Set
of Plans” (POSP) over the entire selectivity range (0 – 100%) of the
p retailprice predicate. The costs of these five plans, P1 through
P5, are enumerated in Figure 3, using abstract plan costing over
the range. From these plots, we derive the “POSP Infimum Curve”
(PIC), defined as the trajectory of the minimum cost from among
the POSP plans – this curve represents the ideal performance.

Figure 3: POSP performance (log-log scale)

The next action, which is a distinctive feature of the bouquet ap-
proach, is to discretize the PIC by projecting a graded progression
of isocost (IC) steps onto the curve. For example, in Figure 3, the
dotted horizontal lines represent a geometric progression of isocost
steps, IC1 through IC7, with each step being double the preceding
value. The intersection of each IC with the PIC (indicated by �)
provides an associated selectivity, along with the identity of the best
POSP plan for this selectivity. For example, in Figure 3, the inter-
section of IC5 with the PIC corresponds to a selectivity of 0.65%,
1All diagrams in this paper should be viewed from a color copy to
ensure clarity of their contents.

and POSP plan P2. The subset of POSP plans associated with the
intersections forms the “plan bouquet” for the given query – in Fig-
ure 3, the bouquet consists of {P1, P2, P3, P5}.

2.2 Run-time: Bouquet Execution
The bouquet execution is now presented through an EQ instance

wherein the actual selectivity of p retailprice is 5%, i.e. qa=5%.
We begin by partially executing plan P1, corresponding to the cheap-
est isocost step IC1, until the execution overheads reach IC1 (1.2E4
| 0.015%). Then, we extend our cost horizon to IC2, and continue
executing P1 until the overheads reach IC2 (2.4E4| 0.03%), and so
on until the overheads reach IC4 (9.6E4 | 0.2%). At this juncture,
there is a change of plan to P2 as we look ahead to IC5 (1.9E5 |
0.65%), and during this switching all the intermediate results pro-
duced by plan P1 are jettisoned. The new plan P2 is executed till
the associated overhead limit (1.9E5) is reached. The cost horizon
is now extended to IC6 (3.8E5 | 6.5%), in the process jettisoning
plan P2’s intermediate results, and switching to executing plan P3
instead. In this case, the execution will complete before the cost
limit is reached since the actual location, 5%, is within the selectiv-
ity range covered by IC6.

Figure 4: Sub-Optimality Profiles (log-log scale)

Performance Characteristics. The sub-optimality of the bou-
quet for the above (qa = 5%) execution turns out to be 1.78 since
the exploratory overheads are 0.78 times the optimal cost, and the
optimal plan itself is used for the final execution. In contrast, the
native optimizer can suffer a sub-optimality of 3 when it estimates
qe to be in (0, 0.3%]. Extending this comparison to the entire selec-
tivity range for qa results in Figure 4, where the global robustness
improvement due to the bouquet approach is clearly demonstrated.
In absolute terms, the MSO for the bouquet is only 3.6 (blue line) as
compared to almost 100 for the native optimizer (red line). More-
over, if the enhancements enumerated in [2] are incorporated, the
MSO for the bouquet drops even further to 3.1 (green line).

2.3 Extension to Multiple Dimensions
When the above approach is generalized to multi-dimensional

ESS, the IC steps and the PIC curve become surfaces, and their in-
tersections represent selectivity surfaces on which multiple bouquet
plans may be present. Notwithstanding these changes, the basic
mechanics of the bouquet algorithm remain very similar to the 1D
case. The primary difference is that we jump from one IC surface to
the next only after it is determined that none of the bouquet plans
present on the current IC surface can completely execute the given
query within the associated cost budget. The complete algorithmic
details are available in [2].

3. QUEST DEMONSTRATION
In the demonstration, the audience will engage with a variety of

visual scenarios crafted to highlight the selectivity estimation prob-
lems that plague current database optimizers, and the novel robust-
ness characteristics that the bouquet technique brings to bear on
these chronic problems. A two-dimensional ESS based on Query
5 of the TPC-H benchmark, with selection predicates on Customer
and Lineitem as the error-prone selectivity dimensions, is used as
a running example to explain these scenarios. The evaluation is
carried out on fully-indexed 1 GB TPC-H databases2 hosted on the
PostgreSQL engine.

3.1 Sub-optimality of Native Optimizer
We begin with presenting plausible instances of the native opti-

mizer making large estimation errors, covering both under-estimation
and over-estimation. A sample instance of the corresponding QUEST
interface is shown in Figure 5, where the audience can observe:
• An operator-level comparison between Poe and Poa – in this

instance, Poe features a series of Nested Loop joins while
Poa opts for Hash Joins, and the join orders are different.
• The locations of qa and qe in the ESS, and the large error gap

between them – in this instance, qa=(30.9%, 26.7%) while qe
is a significant underestimate, specifically (0.25%, 3.1%).
• The adverse performance impact due to the estimation error

– in this instance, the sub-optimality is around 17.
We will also highlight a compelling example where the optimizer

makes the same qe estimate for a pair of similar-looking queries
with only a miniscule difference in their query texts – however, in
reality, their actual locations lie at opposite corners of the ESS.
User Interaction. The audience will be supplied with a param-
eterized query template for which they can provide their desired
choices of constants, and the sub-optimality of the native optimizer
will be evaluated on these queries.

Figure 5: Sub-optimality of Native Optimizer

3.2 Bouquet Identification
Turning our attention to the bouquet technique, we start with

the compile-time phase i.e. bouquet identification, whose graphi-
cal display is shown in Figure 6. Here, the left picture captures
the three-dimensional PIC surface of the native optimizer, charac-
terized by a large number of POSP plans and a steep cost-profile
over the ESS. Since the bouquet’s MSO guarantee is a direct func-
tion of the POSP cardinality, the dense cost diagram is subjected to
anorexic reduction [3] – with this operation, the number of plans is
2Both uniform and skewed versions of TPC-H are evaluated.

reduced to a small number without substantively affecting the query
processing quality of any individual query in the ESS. On this re-
duced diagram, the bouquet’s distinctive feature of cost-based dis-
cretization using geometrically increasing isocost planes is applied
– the combined effect of reduction and discretization is presented
in the second picture of Figure 6.

In the example, the original cost diagram has 29 plans with a
PIC covering the cost range from 1.1E4 to 3.2E5. After anorexic
reduction with cost-increase threshold λ = 20% (as recommended
in [3]), the plan cardinality goes down to 6 plans. Finally, the PIC is
geometrically divided using 5 isocost contours with common ratio
r=2, and the plan cardinality distribution on these contours is (4, 4,
4, 3, 1), respectively.
User Interaction. The audience will be able to provide their de-
sired values for the reduction parameter λ and the discretization
parameter r. For the chosen values, the resulting MSO guarantee
will be evaluated and compared against that obtained with the de-
fault values (λ = 20%, r = 2).

Figure 6: Bouquet Identification Interface

3.3 Bouquet Execution
The next segment is the main thrust of the demo – illustrating the

bouquet technique’s calibrated sequence of budgeted partial execu-
tions, starting with plans on the cheapest isocost contour, and then
systematically working our way through the contours until one of
the plans executes the query to completion within its assigned bud-
get. The dynamism of this iterative process is captured in the inter-
face shown in Figure 7, which is continually updated to indicate:
• The ESS region covered by each partial plan execution – sub-

sequent to each such execution, the associated region is shad-
owed with the plan’s color.
• The execution order timeline of the plans, along with their

tree structures – this allows database analysts to carry out
offline replays of the plan execution sequence.
• The contour budgets, which initially appear as white bars of

geometrically increasing height, and are then filled with blue
after the corresponding partial executions (in the figure, after
15 partial executions, plan P6 on Contour 5 completes the
query within the assigned budget).
• The sub-optimality of bouquet execution (for the sample query,

it is around 3.7, depicted by the dark blue bar in Figure 7).
User Interaction. Controls are provided to enable pausing the
bouquet operation after each partial execution so that the specific
progress made through each such execution can be fully assimilated
before continuing to the next step.

Figure 7: Bouquet Execution Interface

3.4 MSO Guarantees and Repeatability
In this scenario, the audience will have the opportunity to ver-

ify for themselves the MSO and repeatability guarantees offered
by the bouquet technique. Firstly, with regard to the MSO guaran-
tee, the audience can fill in any desired location of qa in the text
box shown in Figure 7 (below the isocost contours), and then in-
voke the bouquet algorithm on this query instance to confirm that
the sub-optimality incurred is within the apriori stated bound (for
the sample query, this MSO bound is less than 20, which is orders
of magnitude lower than the empirically determined MSO of 104

obtained with the native optimizer).
Secondly, with regard to repeatability, our goal is to prove that,

unlike the native optimizer, the bouquet execution sequence is only
a function of qa, and not of qe. We will therefore allow the audi-
ence to radically alter, using the CODD metadata editing tool [5],
the distribution histograms of the attributes featured in the query,
while keeping the underlying data unchanged. Subsequent to the
alteration, the bouquet algorithm will be re-executed and confirmed
to behave identically to its prior incarnation.

3.5 Enhanced Bouquet Algorithm
In our final scenario, we showcase an enhanced version of the

bouquet algorithm that explicitly monitors the selectivities encoun-
tered during the partial executions. The monitoring serves to reduce
the number of plan executions incurred in crossing contours, as ex-
plained in [2]. With this reduction in overheads, the sub-optimality
comes down to just 2.7, depicted by the bright green bar in Figure 7.

The audience can visually observe the impact of the enhance-
ments through a graph that continually tracks the monitored selec-
tivity movement in the ESS, as shown in Figure 8. Here, the dotted

line characterizes the trajectory followed by the bouquet in moving
from the origin to the destination qa location.

Figure 8: Enhanced Bouquet with Selectivity Monitoring

Closing Remarks. The QUEST demo provides a visual and in-
teractive tour of how the recently proposed plan bouquet technique
delivers novel performance guarantees that open up new possibili-
ties for robust query processing.

4. REFERENCES
[1] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query

Processing”, Foundations and Trends in Databases, Now
Publishers, 2007.

[2] A. Dutt and J. Haritsa, “Plan Bouquets: Query Processing
without Selectivity Estimation”, ACM SIGMOD Conf., 2014.

[3] Harish D., P. Darera and J. Haritsa, “On the Production of
Anorexic Plan Diagrams”, VLDB Conf., 2007.

[4] dsl.serc.iisc.ernet.in/projects/QUEST
[5] dsl.serc.iisc.ernet.in/projects/CODD

