
Root Rank: A Relational Operator for KWS Result Ranking

Vinay M S
Database Systems Lab, Indian Institute of Science

Bangalore, India
vinayms84@gmail.com

Jayant R. Haritsa
Database Systems Lab, Indian Institute of Science

Bangalore, India
haritsa@iisc.ac.in

ABSTRACT

A popular approach to hosting Keyword Search Systems
(KWS) on relational DBMS platforms is to employ the
Candidate Network framework. The quality of a Candidate
Network-based search is critically dependent on the scoring
function used to rank the relevant answers. In this paper,
we first demonstrate, through a detailed empirical study,
that the Labrador scoring function provides the best user
relevance among contemporary Candidate Network scoring
functions.

Efficiently incorporating the Labrador function, however,
is rendered difficult due to its Result Set Dependent (RSD)
characteristic, wherein the distribution of keywords in the
query results influences the ranking. In this paper, we in-
vestigate addressing the RSD challenge through inclusion of
custom operators within the database engine. Specifically, we
propose and evaluate an operator called Root Rank, which
performs result ranking in the root of the query execution
plan.

The Root Rank operator has been implemented on a Post-
greSQL codebase, and its performance profiled over real-world
data sets, including DBLP and Wikipedia. Our experimental
observations indicate that the Root Rank operator is highly
successful in delivering processing times that are comparable
to, or better than, those of non-RSD implementations. We
expect these results to aid in the organic hosting of KWS
functionality on database systems.

ACM Reference Format:

Vinay M S and Jayant R. Haritsa. 2019. Root Rank: A Relational
Operator for KWS Result Ranking. In 6th ACM IKDD CoDS and

24th COMAD (CoDS-COMAD ’19), January 3–5, 2019, Kolkata,

India. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3297001.3297014

1 INTRODUCTION

Keyword search on RDBMS has been an active area of re-
search for over a decade, due to the critical need of querying
over relational systems through the World Wide Web[1].

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6207-8/19/01. . . $15.00
https://doi.org/10.1145/3297001.3297014

SELECT ∗
FROM Proceeding AS p , Inproceed ing AS i
WHERE p . t i t l e i l i k e ’%data%’ AND
i . t i t l e i l i k e ’%mining%’
AND p . proceed ing id=i . p roceed ing id

Figure 1: CNEQ for 𝐶𝑁1

Many KWS [2–10] are built by using the popular framework
of Candidate Networks (CNs). A CN refers to a joined net-
work of relations, whose result set provides an idiosyncratic
set of answers to the user’s keyword query. Each row of
the CN result set is formed by connecting various tuples of
different relations, and hence constitutes a tuple tree.

To make the concept of CN more concrete, consider the
keyword query Data Mining applied on the DBLP dataset [5],
resulting in the following CN, which is denoted as 𝐶𝑁1:

Proceeding.titleData × InProceeding.titleMining

Here, Data keyword is mapped to the attribute Proceed-
ing.title(p.title) and Mining keyword is mapped to the
attribute InProceeding.title(i.title).

The straightforward implementation technique to provide
top-K tuple trees for the user keyword query involves: (1)
Executing each qualifying CN through SQL query denoted
as CN Execution Query (CNEQ), which is represented in
Figure 1. (2) Each tuple tree of the CN result set is scored
through specified scoring function. (3) Merging and ordering
the tuple trees of all CNs based on their individual scores.

1.1 Result Relevance

In the above process, key aspects of the scoring function
are the (a) quality with regard to result relevance, and (b)
efficiency with regard to implementation. With regard to both
these aspects, we address a scoring function presented in the
literature, which is denoted as Labrador Scoring Function
(LSF) [2]. We show in this paper that, the LSF is empirically
superior in its result quality as compared to the several
scoring functions proposed earlier in the literature (e.g. [4–
6, 8]). Specifically, we demonstrate this desirable behavior
on the popular Coffman-Weaver benchmark [11].

The enhanced quality of the LSF can be attributed to
its unique result set dependent (RSD) feature, wherein the
distribution of keywords in the query results is a primary
factor in the ranking. To make this RSD feature concrete,
consider 𝐶𝑁1:

The LSF for ranking the result set tuple trees of 𝐶𝑁1, is
the Cosine Similarity-based formulation given in Equation 1

103

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India Vinay M S and Jayant R. Haritsa

Proceeding InProceeding

SqScan SqScan

Hash Join

Root Rank Operator

top-K

Figure 2: Root Rank in CNEQ Plan Tree (𝐶𝑁1)

– a complete description of LSF is given in Appendix A. Here,

𝑠𝑐𝑜𝑟𝑒(𝑇) assigns LSF score to the tuple tree 𝑇 ,
−−−→
𝑝.𝑡𝑖𝑡𝑙𝑒 and−−−→

𝑖.𝑡𝑖𝑡𝑙𝑒 denote the vectors which contain only those terms that
∈ keyword query, and 𝑛 is a suitable constant.

𝑠𝑐𝑜𝑟𝑒(𝑇) = 𝑛 * cos(𝑝.𝑡𝑖𝑡𝑙𝑒,
−−−→
𝑝.𝑡𝑖𝑡𝑙𝑒) + cos(𝑖.𝑡𝑖𝑡𝑙𝑒,

−−−→
𝑖.𝑡𝑖𝑡𝑙𝑒)

2
(1)

The Cosine Similarity function requires calculation of
weights for all the terms present in the value of the attribute
mapped to answer the keyword query. The weight calculation
is shown in Equation 2 – here, 𝑤𝑟 is the weight of the term 𝑟
which belongs to the given attribute value, 𝑓𝑟 is its frequency
in the given attribute of the result set, and |𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡| is the
cardinality of the CN result set.

𝑤𝑟 = 𝑙𝑜𝑔(1 +
|𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡|

𝑓𝑟
) (2)

1.2 Computational Efficiency Challenge

The enhanced quality of LSF, however, comes with a catch –
the challenge of providing an efficient implementation. LSF
requires the creation of an inverted index on-the-fly for storing
and accessing term frequencies during the result ranking
process of each CN, whereas the implementation techniques
for the non-RSD scoring functions [4, 5] do not have this
constraint. The original Labrador implementation assumed
a wholly in-memory inverted index platform; however, this
fails to scale to the Big Data environments that are becoming
commonplace.

To address this RSD efficiency challenge, we have designed,
implemented and evaluated an approach; wherein, the data-
base engine is augmented with a custom operator that per-
forms result ranking in the query execution plan of CNEQ.
Specifically, a new first-class query operator called Root
Rank is introduced to implement the LSF. This operator
performs ranking of the CN result set at the root of the
CNEQ plan tree, because at this position, complete result
can be generated for implementing LSF. Figure 2, illustrates
the CNEQ plan tree which utilizes the Root Rank operator

for implementing LSF. Here, the CNEQ plan tree for 𝐶𝑁1 is
considered for illustration. The Root Rank operator builds a
simple hybrid memory-cum-disk resident hash index, wherein
each memory bucket of the hash index is tailed with a hash
file on disk. The terms and their frequencies are stored in
these hash buckets or hash files. The Root Rank operator is
expected to provided better performance than contemporary
techniques [4, 5], due to speeding up access to the inverted
index by utilizing the available memory.

The Root Rank operator has been implemented on the
PostgreSQL platform, and a detailed performance evaluation
has been carried out on the DBLP and Wikipedia datasets.
The results are compared using the implementation tech-
niques recommended for the standard non-RSD scoring func-
tions [4, 5] as the efficiency yardstick. Our results indicate
that the Root Rank operator is highly efficient, delivering
processing times that are comparable to, or better than, those
of non-RSD implementations. We expect these results to aid
in the efficient hosting of KWS functionality on database
systems.

1.3 Organization

The remainder of the paper is organized as follows: Section 2
describes the related work in the KWS domain. The analysis
of scoring function quality is carried out in Section 3. The
Root Rank operator is described in Section 4, followed by a
detailed empirical evaluation in Section 5, using conventional
scoring functions as the yardstick. Finally, we summarize our
conclusions in Section 6, and outline future research avenues.

2 RELATED WORK

The first Information Retrieval (IR) oriented scoring func-
tion designed for CN result ranking was Efficient [4]. Re-
sult pipeline-based implementation techniques, called Single
Pipeline and Global Pipe-line, which facilitated the evalua-
tion of the Efficient scoring function were proposed for single
CN and multiple CNs, respectively.

An improved extension of Efficient, called Spark, was pro-
posed in [5], and Block Pipeline technique was presented for
its implementation, which achieves the dual goal of providing
top-K result set for both individual and group CNs.

All the above three techniques: Single Pipeline, Global
Pipeline and Block Pipeline, are implemented through im-
perative programing, and utilize a disk-based inverted index
to store and access the scoring function parameter values.
Since the RSD property is not found in the scoring functions
of either Efficient or Spark, they do not require on-the-fly
index creation on the result set.

The Effective scoring function, which is also non-RSD, was
proposed in [6], and focuses solely on the result quality – it
exhibited better performance than Efficient with regard to
providing user relevant results. The Effective scoring function
was implemented through straightforward implementation
technique.

The number of qualifying CNs for a keyword query can
be extremely large, especially when the query contains more

104

Root Rank: A Relational Operator for KWS Result Ranking CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

number of query terms or the underlying schema of the
dataset is complex. In such scenarios, two different schemes
are used in the literature to limit the number of generated
CNs. In the first scheme [7, 9], CNs themselves are ranked
based on their potential to produce relevant answers, and
top-ranked CNs are selected for subsequent result produc-
tion. Whereas, in the second scheme [10], the number of
joins involved in the qualifying CNs is controlled through a
threshold. However, in this work, the issues related to CN
result ranking are addressed, and therefore the mechanisms
presented in [7], [9] and [10] are not evaluated in this work.

In [8], an improvement over Block Pipeline, called the LP
technique, was presented, whose goal was to increase the exe-
cution efficiency of result production. The major performance
issue in the: Single, Global and Block pipeline techniques
was that, given a set of tuples that can potentially form a
tuple tree, their join condition is checked through launching
parametrized queries, which can become large in some queries
and result in performance bottlenecks [8]. Hence, the LP tech-
nique utilized memory caching to check for join conditions.
However, if the sizes of the CN result sets are large, it might
not resolve the above outlined performance issue [8].

Apart from CNs, another popular framework to implement
KWS is the Data Graph model [12–18]. In Data Graph sys-
tems, the tuple connectivity information is stored as a graph
in the memory. To answer a keyword query, graph traversal
algorithms are designed to obtain the relevant results, and
these results are sorted by using data graph scoring functions.
However, a major drawback of Data Graph framework is
that the graph has to be materialized and stored in the mem-
ory, which can face serious scalability issues against large
datasets [8].

3 SCORING FUNCTION ANALYSIS

In this section, we focus on the scoring function quality, and
demonstrate that the LSF delivers the best overall perfor-
mance.

A unique component of LSF, intended to improve its user
relevance, is its RSD property. To understand the significance
of RSD property, it is important to analyze the structure of
IR scoring functions. Considering the generic IR systems, the
IR scoring functions are used for ranking the retrieved results
from the document repository WRT user query 𝑄. Let 𝐷
indicate this document depository, and 𝑅 = (𝑑1, 𝑑2,𝑑𝑛)
denote the set of retrieved documents that form the result
set for 𝑄. The IR scoring functions assign weights to query
terms and, in some cases, other terms located in each result
set document 𝑑𝑖(1 ≤ 𝑖 ≤ 𝑛). Let, 𝑤(𝑡𝑗) be the term weight
of 𝑡𝑗 ∈ 𝑑𝑖. The weight assigned to the term is decided on a
special metric called specificity, and this metric is represented
in Equation 3 – here, 𝑠𝑝𝑒𝑐(𝑡𝑗 , 𝐷) denotes the specificity of
𝑡𝑗 in 𝐷, and 𝑖𝑑𝑓(𝐷, 𝑡𝑗) is the number of documents in 𝐷
in-which 𝑡𝑗 occurs. Larger term weights in a document, will
improve the score of the document.

𝑤(𝑡𝑗) ∝ 𝑠𝑝𝑒𝑐(𝑡𝑗 , 𝐷) ∝ 1

𝑖𝑑𝑓(𝐷, 𝑡𝑗)
(3)

Consider a scenario, suppose that 𝑡𝑗 has high specificity in
𝐷. Since 𝑅 ⊆ 𝐷, it can be inferred that 𝑡𝑗 will have similar
specificity, when specificity is calculated by considering only
𝑅. Similar reasoning can be used to analyze the case where
𝑡𝑗 has low specificity. Thus, the specificity of a term in 𝐷 is
generally similar in 𝑅.

The KWS on RDBMS have a different interpretation of
𝐷 and 𝑅 compared to the generic IR systems. This different
interpretation is that, each tuple tree of the CN result set
is considered as a result set document which ∈ 𝑅. Similarly,
each tuple in the base relation is considered as a separate
document which ∈ 𝐷. Thus, all the tuples in base relations
collectively form 𝐷. However, it must be noted that tuple
trees are created by joining tuples from different relations
involved in the CN. So, each tuple of the base relation might
join multiple times with other tuples of different base relations
in forming the result set. Thus, clearly, 𝑅 ̸⊆ 𝐷.

The non-RSD scoring functions [4–6, 8] calculate the speci-
ficity of each required term ∈ 𝑅, by using the base relation
statistics – meaning statistics corresponding to 𝐷. Since,
𝑅 ̸⊆ 𝐷, it might create scenarios where a term 𝑡𝑗 having
a particular specificity (low or high) in the base relation
might demonstrate the opposite specificity (high or low) in
the result set 𝑅. Hence, the non-RSD scoring functions fail
to capture such scenarios. However, the LSF due to its RSD
property can easily account for such scenarios, and deliver
results with high user relevance.

A benchmark framework for evaluating the result effective-
ness WRT user relevance for KWS was proposed in [11]. Here,
the datasets, queries and user relevant results are initially
generated, and a given KWS is subsequently evaluated for
its result quality. The systems that were used in the study
included both CN systems and Data Graph systems, includ-
ing the CN systems presented in [4–6]. The study used three
datasets: IMDB, Mondial and Wikipedia, and each KWS
was subjected to around 50 user queries on the individual
datasets. Two metrics were used for result quality analysis,
Mean Reciprocal Rank (MRR) and Mean Average Precision
(MAP), which are described below.

Consider a keyword query 𝑄. The Reciprocal Rank for
𝑄 is represented in Equation 4. Here, 𝑟𝑎𝑛𝑘𝑄 is the rank of
the first relevant tuple tree of 𝑄 in the retrieved result set,
and 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙(𝑄) is the reciprocal rank for 𝑄. The MRR
for a set of queries, denoted by 𝑄 𝑠𝑒𝑡 = (𝑄1, 𝑄2,𝑄𝑘), is
represented in Equation 5 – here, 𝑀𝑅𝑅(𝑄 𝑠𝑒𝑡) is the MRR
value for 𝑄 𝑠𝑒𝑡.

𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙(𝑄) =
1

𝑟𝑎𝑛𝑘𝑄
(4)

𝑀𝑅𝑅(𝑄 𝑠𝑒𝑡) =

∑︀𝑘
𝑖=1 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙(𝑄𝑖)

𝑘
(5)

The Precision metric for query 𝑄, denoted by 𝑝𝑟𝑒𝑐(𝑄), is
represented in Equation 6. Here, 𝑅 is the result set obtained
for 𝑄, and 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑅) indicates the number of tuple trees
present in 𝑅 which are relevant to 𝑄.

105

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India Vinay M S and Jayant R. Haritsa

Labrador Spark Efficient Effective

0

0.2

0.4

0.6

0.8

1

M
A
P

S
C
O
R
E

IMDB

Wikipedia

Mondial

Figure 3: MAP ranking

𝑝𝑟𝑒𝑐(𝑄) =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑅)

|𝑅| (6)

The Average Precision metric for query 𝑄, denoted by
𝐴𝑃 (𝑄), is represented in Equation 7. Here, 𝑃𝑐(𝑏) is the
Precision calculated until cut-off 𝑏 ≤ |𝑅| in the result set list,
and 𝑟𝑒𝑙(𝑏) = 1 if the tuple tree at rank 𝑏 in the result set is
relevant; otherwise, 𝑟𝑒𝑙(𝑏) = 0.

𝐴𝑃 (𝑄) =

∑︀|𝑅|
𝑏=1 𝑟𝑒𝑙(𝑏)× 𝑃𝑐(𝑏)

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑅)
(7)

The MAP for 𝑄 𝑠𝑒𝑡, denoted by 𝑀𝐴𝑃 (𝑄 𝑠𝑒𝑡), is repre-
sented in Equation 8.

𝑀𝐴𝑃 (𝑄 𝑠𝑒𝑡) =

∑︀𝑘
𝑖=1 𝐴𝑃 (𝑄𝑖)

𝑘
(8)

The benchmark framework evaluates the quality of entire
KWS, which contain multiple components, and the CNs
generated by various KWS to answer a keyword query might
differ[10]. Since, our goal is to evaluate only the quality of the
various CN scoring functions, instead of the entire KWS, we
performed an empirical study using the benchmark technique
on a single set of CNs for each keyword query. Also, the
LP technique [8] is not separately analyzed here, because
it uses the Efficient scoring function [4]; hence, its result
will be exactly the same as that obtained for Efficient [4].
The different scoring functions were applied on the merged
result set of these CNs to perform the quality analysis. For
this setup, the MAP and MRR performance behavior of the
functions are presented in Figures 3 and 4, respectively. As
evident in these figures, LSF clearly performs better than the
scoring functions proposed earlier in the literature: Spark,
Efficient and Effective, with regard to both metrics.

4 ROOT RANK OPERATOR

We move on in this section to considering internal changes to
the database engine in order to facilitate the computation of
RSD-based scoring functions. We start with the design of the
Root Rank operator. Firstly, due to the RSD characteristic,

Labrador Effective Efficient Spark

0

0.2

0.4

0.6

0.8

1

M
R
R

S
C
O
R
E

IMDB

Wikipedia

Mondial

Figure 4: MRR ranking

complete information about the result set is required prior
to computing the LSF. Therefore, the Root Rank operator is
introduced at the root of the CNEQ plan tree. Secondly, the
relational inverted index of SQL-Wrapper is replaced by an
internal data structure that has a memory-based component
for storing term frequencies, backed up by a disk-based com-
ponent which stores the frequencies of those terms that could
not be accommodated within the memory component. This
inverted index is used for both updating and accessing the
term frequencies. Since, the LSF uses string equality opera-
tions to calculate the term frequencies, a hashing technique
is used to build the index. The index construction is delib-
erately kept very simple to ensure that, it is a light-weight
operation within the engine and for evaluation purposes. In
future, more advanced indexes can be considered depending
on the performance requirements.

The logical structure of the index is shown in Figure 5. The
In-Memory hash buckets form the memory component of the
inverted index, while the hash files which are chained to these
In-Memory buckets form the disk component. Each tuple
in the inverted index is composed of 3 fields: term, attribute
and frequency. The field term indicates a particular term
present in the result set, attribute indicates the attribute
of the result set to which the term belongs and frequency
indicates the frequency of the term in the result set. Each
memory bucket stores a single inverted index tuple. If a
collision occurs, the new tuple will be stored in the hash file
attached to the memory bucket. Since each inverted index
tuple requires very little memory, a large number of tuples
can be accommodated in the memory buckets. Also, hashing
is invoked for disk storage, which results in limited number
of disk I/Os to update or access term frequencies.

The execution details of the Root Rank operator are out-
lined in Algorithm 1. Let, 𝑄 and 𝐶 indicate the submitted
keyword query, and one of the CN qualified for answering 𝑄,
respectively. Let, 𝑄 contain 𝑛 keyword query terms. Initially,
the plan tree 𝑝𝑙𝑎𝑛 𝑡𝑟𝑒𝑒(𝐶), for executing the CNEQ corre-
sponding to 𝐶 is generated by the query optimizer through:
𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝐶), and 𝑃𝐿 indicates the root node of the

106

Root Rank: A Relational Operator for KWS Result Ranking CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

Hash Function

Bucket n

Bucket 3

Bucket 2

Bucket 1

Hash File n

Hash File 3

Hash File 2

Hash File 1

Main Memory Buckets

Attached Hash Files

Figure 5: Memory and Disk-resident Inverted Index

𝑝𝑙𝑎𝑛 𝑡𝑟𝑒𝑒. Empty 𝑝𝑙𝑎𝑛 𝑡𝑟𝑒𝑒 node 𝑟𝑛𝑜𝑑𝑒 is created to accom-
modate the Root Rank operator through 𝑐𝑟𝑒𝑎𝑡𝑒 𝑝𝑙𝑎𝑛 𝑛𝑜𝑑𝑒().
The 𝑃𝐿 can be made as either the left child or right child
of 𝑟𝑛𝑜𝑑𝑒; however, just for convenience 𝑃𝐿 is made the left
child of 𝑟𝑛𝑜𝑑𝑒 and the right child of 𝑟𝑛𝑜𝑑𝑒 is set to 𝑁𝑈𝐿𝐿.

Specifically, there are two passes involved in Algorithm
1. The first pass is involved in inverted index construction;
whereas, in the second pass, the actual scoring and rank-
ing of tuple trees is performed. In the first pass, each tu-
ple tree denoted by 𝑇 , is extracted from 𝑟𝑛𝑜𝑑𝑒 through
𝑡𝑢𝑝𝑙𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝑟𝑛𝑜𝑑𝑒.𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑). Let (𝐴1, 𝐴2,𝐴𝑛) indicate
the attributes of 𝑇 to which 𝑄 is mapped. Each 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑛)
is tokenized through 𝑠𝑝𝑙𝑖𝑡(𝐴𝑖) to produce the token or term
set {𝑡𝑖𝑗}. Each 𝑡𝑖𝑗 is hash-mapped to a unique in-memory
hash bucket indicated by 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 of the proposed inverted
index through ℎ𝑎𝑠ℎ(𝑡𝑖𝑗). There are basically three mutually
exclusive cases after mapping of 𝑡𝑖𝑗 to 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 . In the first
case, 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 does not contain any stored term, which is
indicated through 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑖𝑙𝑙 = 0. Hence, 𝑡𝑖𝑗 is stored in
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 using the variable 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑡𝑒𝑟𝑚. Correspondingly,
the attribute to which 𝑡𝑖𝑗 belongs, and its initial frequency
is stored in 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 and 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, re-
spectively. To indicate that 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 already contains a term,
the variable setting 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑖𝑙𝑙 = 1 is used. In the sec-
ond case, the 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 already stores the same term 𝑡𝑖𝑗 ,
which is identified through the conditions: 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑖𝑙𝑙 = 1,
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐴𝑖𝑗 and 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑡𝑒𝑟𝑚 = 𝑡𝑖𝑗 . Hence, the
frequency of 𝑡𝑖𝑗 is updated through 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ++.
In the final case, the 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 contains another term than
𝑡𝑖𝑗 . In this case, 𝑡𝑖𝑗 is stored in the hash file appended to
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 indicated by 𝑓𝑖𝑙𝑒𝑖𝑗 by opening the required hash file
through 𝑜𝑝𝑒𝑛(𝑓𝑖𝑙𝑒𝑖𝑗), and updating the term frequency of 𝑡𝑖𝑗
through 𝑢𝑝𝑑𝑎𝑡𝑒(𝑓𝑖𝑙𝑒𝑖𝑗 , 𝑡𝑖𝑗 , 𝐴𝑖). Clearly, these three handling
cases of 𝑡𝑖𝑗 will ensure that the term frequencies for each 𝑡𝑖𝑗
will be updated correctly in the inverted index. Finally, 𝑇

is stored in the disk using 𝑠𝑡𝑜𝑟𝑒(𝑑𝑖𝑠𝑘, 𝑇) for retrieving and
using it in the second pass.

In the second pass, the disk-stored tuple trees during
the first pass are retrieved one-by-one through the func-
tion: 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑡𝑢𝑝𝑙𝑒 𝑡𝑟𝑒𝑒(𝑑𝑖𝑠𝑘). Each extracted tuple tree in-
dicated by 𝑇 is again subjected to tokenization on the same
attributes used in first pass, which results in the produc-
tion of token/term set. Each 𝑡𝑖𝑗 is subjected to hash bucket
mapping inside the proposed inverted index as outlined in
the first pass. For each 𝑡𝑖𝑗 , there are two mutually exclu-
sive cases to identify its term frequencies. In the first case,
𝑡𝑖𝑗 is found inside 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 identified through conditions:
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐴𝑖𝑗 and 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑡𝑒𝑟𝑚 = 𝑡𝑖𝑗 . Here, the
frequency of 𝑡𝑖𝑗 indicated by 𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is assigned with
the value 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. In the second case, 𝑡𝑖𝑗 is lo-
cated inside 𝑓𝑖𝑙𝑒𝑖𝑗 . Here, 𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is calculated through
the disk access function 𝑠𝑒𝑒𝑘(𝑓𝑖𝑙𝑒𝑖𝑗 , 𝑡𝑖𝑗 , 𝐴𝑖). It is clear that,
these two handling cases of 𝑡𝑖𝑗 will ensure that, the term
frequencies for each 𝑡𝑖𝑗 is retrieved correctly from the inverted
index. Finally, after calculating all the term frequencies for the
terms ∈ 𝑇 , the LSF is applied on 𝑇 through 𝐿𝑆𝐹 𝑠𝑐𝑜𝑟𝑒(𝑇),
and final top-K tuples trees are computed by sorting the tuple
trees based on their LSF scores through 𝐿𝑆𝐹 𝑠𝑜𝑟𝑡({𝑇}).

The correctness of Algorithm 1 is proved in Theorem 4.1.

Theorem 4.1. (Algorithm Correctness)
For a given CN 𝐶, the Root Rank operator produces the

exact top-K tuple trees corresponding to LSF scored result set
of 𝐶.

Proof. Suppose the exact top-K tuples tree list for 𝐶
be indicated as 𝐿𝐶 = (𝑇1, 𝑇2, ...𝑇𝑘). The Algorithm 1 can-
not produce 𝐿𝐶 under exactly two scenarios. In the first
scenario, some of the tuple trees in 𝐿𝐶 are not considered
for scoring. However, this scenario is not plausible because
𝑡𝑢𝑝𝑙𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝑟𝑛𝑜𝑑𝑒.𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑) ensures that, every tuple
tree for 𝐶 is considered for the scoring process. In the second
scenario, some of the term frequencies might not be correctly
calculated. However, again this scenario is not plausible be-
cause the three handling cases for 𝑡𝑖𝑗 in the first pass of
Algorithm 1 ensures that, every term belonging to result set
of 𝐶 is correctly updated along with its frequency in the
inverted index. Similarly, the two handling cases for 𝑡𝑖𝑗 in
second pass ensure that, the exact term frequency is retrieved.
Thus immediately proving the Theorem.

�

5 EXPERIMENTAL EVALUATION

For simplicity, the Root Rank operator is introduced by
overloading the ilike operator, without making any addition to
the SQL language, inside PostgreSQL (9.1.2). The presence of
an 𝑖𝑙𝑖𝑘𝑒 operator inside the SQL query, signals the optimizer
to utilize the Root Rank operator to create the plan tree. The
𝑖𝑙𝑖𝑘𝑒 operator overloading is optional, which can be disabled
through configuration parameters.

107

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India Vinay M S and Jayant R. Haritsa

Algorithm 1 Root Rank Operator Execution Algorithm

/*Plan Tree Modification/*
𝑝𝑙𝑎𝑛 𝑡𝑟𝑒𝑒(𝐶) = 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝐶)
𝑟𝑛𝑜𝑑𝑒 = 𝑐𝑟𝑒𝑎𝑡𝑒 𝑝𝑙𝑎𝑛 𝑛𝑜𝑑𝑒()
𝑟𝑛𝑜𝑑𝑒.𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑 = 𝑃𝐿
𝑟𝑛𝑜𝑑𝑒.𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑 = 𝑁𝑈𝐿𝐿
/*First Pass/*
while 𝑡𝑢𝑝𝑙𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝑟𝑛𝑜𝑑𝑒.𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑)! do

𝑇 = 𝑡𝑢𝑝𝑙𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝑟𝑛𝑜𝑑𝑒.𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑)
for 𝑖 = 1 → 𝑛 do.

𝑠𝑝𝑙𝑖𝑡(𝐴𝑖).
for each 𝑡𝑖𝑗 ∈ 𝐴𝑖 do.

𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 = ℎ𝑎𝑠ℎ(𝑡𝑖𝑗)
if 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑖𝑙𝑙 = 0 then

𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑡𝑒𝑟𝑚 = 𝑡𝑖𝑗
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐴𝑖

𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑖𝑙𝑙 = 1
else if 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑖𝑙𝑙 = 1 AND 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑡𝑒𝑟𝑚 =

𝑡𝑖𝑗 AND 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐴𝑖 then
𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ++

else
𝑜𝑝𝑒𝑛(𝑓𝑖𝑙𝑒𝑖𝑗)
𝑢𝑝𝑑𝑎𝑡𝑒(𝑓𝑖𝑙𝑒𝑖𝑗 , 𝑡𝑖𝑗 , 𝐴𝑖)

end if
end for

end for
𝑠𝑡𝑜𝑟𝑒(𝑑𝑖𝑠𝑘, 𝑇)

end while
/*Second Pass/*
while 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑡𝑢𝑝𝑙𝑒 𝑡𝑟𝑒𝑒(𝑑𝑖𝑠𝑘)! do

𝑇 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑡𝑢𝑝𝑙𝑒 𝑡𝑟𝑒𝑒(𝑑𝑖𝑠𝑘)
for 𝑖 = 1 → 𝑛 do.

𝑠𝑝𝑙𝑖𝑡(𝐴𝑖).
for each 𝑡𝑖𝑗 ∈ 𝐴𝑖 do.

𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 = ℎ𝑎𝑠ℎ(𝑡𝑖𝑗)
if 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑡𝑒𝑟𝑚 = 𝑡𝑖𝑗 AND

𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐴𝑖 then
𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

else
𝑜𝑝𝑒𝑛(𝑓𝑖𝑙𝑒𝑖𝑗)
𝑡𝑖𝑗 .𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑠𝑒𝑒𝑘(𝑓𝑖𝑙𝑒𝑖𝑗 , 𝑡𝑖𝑗 , 𝐴𝑖)

end if
end for

end for
𝐿𝑆𝐹 𝑠𝑐𝑜𝑟𝑒(𝑇)

end while
𝐿𝑆𝐹 𝑠𝑜𝑟𝑡({𝑇}).

Figure 6, shows an example of a SQL query which utilizes
the Root Rank operator to obtain the top-K results of the
CN:

Proceeding.titledata × Inproceeding.titlemining×
Publisher.namespringer(DBLP).

SELECT ∗
FROM Proceeding AS p , Inproceed ing AS i ,
Pub l i she r AS l WHERE p . t i t l e i l i k e
’%data%’ AND i . t i t l e i l i k e ’%mining%’
AND l . name i l i k e ’%sp r i ng e r%’
AND p . proceed ing id=i . p roceed ing id
AND l . p ub l i s h e r i d=i . pub l i s h e r i d
LIMIT 10 ;

Figure 6: Top-K SQL query for Keyword Search

All the four techniques discussed in our study – that is,
the Single Pipeline [4], Global Pipeline [4], Block Pipeline [5]
techniques from the literature, and the Root Rank operator
proposed here – were implemented and subjected to a detailed
performance evaluation. Specifically, the Effective [6] scoring
function was implemented through straightforward implemen-
tation technique. The Single Pipeline, Global Pipeline and
Block Pipeline techniques were also implemented through
the imperative programing construction described in [4, 5].

Due to our focus on addressing execution efficiency, the
DBLP [5] and Wikipedia [11] datasets were used in our
experiments; specifically, they produce CNs with large result
sets, when compared to the other datasets used in this work
– IMDB and Mondial. Due to space limitations, the details
regarding DBLP and Wikipedia datasets are not outlined,
and the complete details of these datasets are outlined in [5]
and [11] respectively. Since benchmark keyword queries for
performance evaluation do not readily exist for these datasets,
we constructed queries from three sources:

(1) Queries used for identifying experts in [19]. This pro-
cedure involves finding the experts in different fields
by using the DBLP dataset. The field names on which
the expert finding algorithm was executed were used
as keyword queries in this experiment.

(2) Queries which were used in other KWS [14].
(3) Queries which were used for result quality evaluation

in the benchmark of [11].

5.1 Single CN Scenario

Our experimental analysis begins with a simple case in which
keyword queries with only 2 terms are analyzed. Subsequently,
complex cases involving a large number of terms are consid-
ered. For every keyword query, only a single CN which has
a large result cardinality is selected. These CNs involve a
single join of two relations. The execution performance of
the various implementation techniques for different CNs is
illustrated in Figures 7 and 8, where the different CNs are
indicated through numbers. The top-100 CN tuple trees were
retrieved from each technique.

In the performance figures, it is clear that the Root Rank
operator performs the best among all techniques. The Single
Pipeline and Block Pipeline techniques also exhibit good
performance; however, they do not scale to the performance
level of Root Rank, because, as described in Section 2, both

108

Root Rank: A Relational Operator for KWS Result Ranking CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

2 4 6
0

0.5

1

1.5

2

CN Number

T
im

e(
lo
g
se
c)

Effective

Root Rank

Single Pipeline

Block Pipeline

Figure 7: CN Execution(DBLP)

2 4 6
0

1

2

3

CN Number

T
im

e(
lo
g
se
c)

Root Rank

Effective

Single Pipeline

Block Pipeline

Figure 8: CN Execution(Wiki)

these techniques require large number of parametric queries
to probe and produce the top-K results [5]. Requirement of
executing such large number of parametric queries can result
in performance degradation, whereas Root Rank completely
avoids executing parametric queries. Also, when top-100 re-
sults are increased to top-200 or more, the performance
penalty due to the execution overhead of parametric queries
in Single Pipeline and Block Pipeline techniques, becomes
more severe. Finally, the Effective technique exhibits mediocre
performance, due to the lack of a specialized implementation
mechanism.

5.2 Multi-Term Keyword Query Scenario

The performance of different techniques when executed on
CNs generated for multi-term keyword queries, featuring
between 3 and 5 terms, is illustrated in Figures 9 and 10 for
the DBLP and Wikipedia datasets, respectively. Each CN
had more than two joins, and the top-100 tuple trees were
retrieved from each technique.

1 2 3 4 5
0

1

2

3

CN Number

T
im

e(
lo
g
se
c)

Root Rank

Single Pipeline

Block Pipeline

Effective

Figure 9: CN Execution(DBLP)

1 2 3 4 5
0

1

2

3

CN Number

T
im

e(
lo
g
se
c)

Root Rank

Single Pipeline

Block Pipeline

Effective

Figure 10: CN Execution(Wikipedia)

We again observe that the Root Rank operator performs
clearly better than the other techniques, for the same reasons
as those explained for the single CN scenario in Section 5.1.

5.3 Complete Execution Scenario for
Keyword Query

Until now, only the execution performance of different tech-
niques WRT individual CNs was discussed. However, answer-
ing a keyword query also involves the scoring of the result
set of all qualifying CNs. In order to perform integration of
Root Rank operator in this framework, we construct a simple
Operator-K technique, which provides the top-K answers by
executing every qualified CN with the Root Rank operator,
and merging the result sets of all the CNs. Similarly, the
Effective-K technique obtains the top-K results of each CN
through the application of Effective scoring function[6], and
merges the results to obtain the final top-K result set.

The performance of different techniques in the above sce-
nario are shown in Figures 11 and 12, for the DBLP and
Wikipedia datasets, respectively (the queries are identified
by numbers in the figures). The top-100 tuple trees were

109

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India Vinay M S and Jayant R. Haritsa

1 2 3 4 5
1

2

3

4

Keyword Query Number

T
im

e(
lo
g
se
c)

Operator-K

Global Pipeline

Block Pipeline

Effective-K

Figure 11: KWS Query Execution(DBLP)

1 2 3 4 5
1

2

3

4

Keyword Query Number

T
im

e(
lo
g
se
c)

Operator-K

Global Pipeline

Block Pipeline

Effective-K

Figure 12: KWS Query Execution(Wiki)

retrieved from each technique. We observe in the figures that
the Operator-K technique is the clear winner WRT keyword
query answering performance. The Global-Pipeline technique,
like Single Pipeline and Block Pipeline techniques, suffers due
to execution overhead of large number of parametric queries.
Wherease, the Effective-K technique exhibits mediocre per-
formance, again due to lack of a specialized implementation
mechanism.

6 CONCLUSION

In this work, the superior user relevance quality of LSF
has been demonstrated. A new relational operator called
Root Rank has been introduced to perform KWS result
ranking using LSF. The Root Rank operator has justified
its introduction by providing excellent execution efficiency
benefits over other contemporary techniques.

Looking to the future, there is a need of new operators not
just in the traditional RDBMS, but also in nascent systems
such as columnar and probabilistic databases. These advanced
database systems currently do not even have result scoring
functions. By developing scoring functions and operators,

complete integration of IR result ranking techniques with all
kinds of database systems can be achieved.

Appendix A LSF [2]

For the DBLP dataset [5], an example Candiadte Network:
Proceeding.titleData × InProceeding.titleMining is generated, and
the LSF for ranking the result set is given in Equation 9.

𝑠𝑐𝑜𝑟𝑒(𝑇) = 𝑛 * cos(𝑝.𝑡𝑖𝑡𝑙𝑒,
−−−→
𝑝.𝑡𝑖𝑡𝑙𝑒) + cos(𝑖.𝑡𝑖𝑡𝑙𝑒,

−−−→
𝑖.𝑡𝑖𝑡𝑙𝑒)

2
(9)

cos(𝑝.𝑡𝑖𝑡𝑙𝑒,
−−−→
𝑝.𝑡𝑖𝑡𝑙𝑒) =

𝑤𝑑𝑎𝑡𝑎√︀∑︀
𝑤2

𝑘

𝑤𝑘 = 𝑙𝑜𝑔(1 +
|𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡|

𝑓𝑘
)

𝑤𝑑𝑎𝑡𝑎 = 𝑙𝑜𝑔(1 +
|𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡|

𝑓𝑑𝑎𝑡𝑎
)

cos(𝑖.𝑡𝑖𝑡𝑙𝑒,
−−−→
𝑖.𝑡𝑖𝑡𝑙𝑒) =

𝑤𝑚𝑖𝑛𝑖𝑛𝑔√︀∑︀
𝑤2

𝑟

𝑤𝑚𝑖𝑛𝑖𝑛𝑔 = 𝑙𝑜𝑔(1 +
|𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡|
𝑓𝑚𝑖𝑛𝑖𝑛𝑔

)

𝑤𝑟 = 𝑙𝑜𝑔(1 +
|𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡|

𝑓𝑟
)

Here, 𝑇 indicates a tuple tree, and 𝑠𝑐𝑜𝑟𝑒(𝑇) is its LSF
score, 𝑛 is a positive constant, |𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡| is the cardinal-
ity of the CN result set, 𝑤𝑘 is the weight of the term 𝑘
∈ p.title(Proceeding.title) of the result set, 𝑤𝑟 is the weight of
the term 𝑟 ∈ i.title(Inproceeding.title) of the result set, 𝑤𝑑𝑎𝑡𝑎 is
the weight of the term 𝑑𝑎𝑡𝑎 ∈ p.title of the result set, 𝑤𝑚𝑖𝑛𝑖𝑛𝑔

is the weight of the term 𝑚𝑖𝑛𝑖𝑛𝑔 ∈ i.title of the result set, 𝑓𝑘
is the frequency of the term 𝑘 ∈ p.title in the result set, 𝑓𝑟 is
the frequency of the term 𝑟 ∈ i.title in the result set, 𝑓𝑑𝑎𝑡𝑎 is
the frequency of the term 𝑑𝑎𝑡𝑎 ∈ p.title in the result set, and
𝑓𝑚𝑖𝑛𝑖𝑛𝑔 is the frequency of the term 𝑚𝑖𝑛𝑖𝑛𝑔 ∈ i.title in the
result set.

For a 𝑚 term keyword query, the LSF assumes the form
given in Equation 10. Here, 𝐴1, 𝐴2.....𝐴𝑚 are the attributes
on which the keyword query terms are mapped, and number
of relations involved in the tuple tree 𝑇 is given by 𝑠𝑖𝑧𝑒(𝑇).

𝑠𝑐𝑜𝑟𝑒(𝑇) = 𝑛 *
∑︀𝑚

𝑖=1 cos(𝐴𝑖,
−→
𝐴𝑖)

𝑠𝑖𝑧𝑒(𝑇)
(10)

REFERENCES
[1] P. Jaehui, and L. Sang-goo. Keyword Search in Relational

Databases. Knowledge and Information Systems, Volume 26, Issue
2, pp 175–193, doi: 10.1007/s10115-010-0284-1, 2010.

[2] C. Pável, Da Silva A. S., M. Filipe, De-Moura E. S., and Laender
A. H. F. LABRADOR: Efficiently Publishing Relational Databases
on the Web by using Keyword-based Query Interfaces. Informa-
tion Processing and Management, Volume 43, pp 983–1004, doi:
10.1016/j.ipm.2006.09.018, 2007.

110

Root Rank: A Relational Operator for KWS Result Ranking CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

[3] H. Vagelis, and P. Yannis. Discover: Keyword Search in Relational
Databases. In Proceedings of the 28th International Conference
on Very Large Data Bases, Hong Kong, China, pp 670–681, 2002.

[4] G. Luis, H. Vagelis, and P. Yannis. Efficient IR-style Keyword
Search over Relational Databases. In Proceedings of the 29th In-
ternational Conference on Very large Databases, Berlin, Germany,
pp 850–861, 2003

[5] L. Yi, L. Xuemin, W. Wei, and Z. Xiaofang. Spark: Top-k Keyword
Query in Relational Databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Beijing,
China, pp 115–126, doi: 10.1145/1247480.1247495, 2007.

[6] C. Abdur, L. Fang, Y. Clement, and M. Weiyi. Effective Keyword
Search in Relational Databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Chicago,
IL, USA, pp 563–574, doi: 10.1145/1142473.1142536, 2006.

[7] M. Kargar, A. An, N. Cercone, P. Godfrey, J. Szlichta, and X.
Yu. Meaningful Keyword Search in Relational Databases with
Large and Complex Schema. In Proceedings of the 31st IEEE
International Conference on Data Engineering (ICDE), pp 411-
422, doi:10.1109/ICDE.2015.7113302, 2015.

[8] Y. Xu. Scalable Top-k Keyword Search in Relational Databases.
Cluster Computing, The Journal of Networks, Software Tools
and Applications, doi: 10.1007/s10586-017-1232-6, 2017.

[9] P. D. Oliveira, A. D. Silva, and E. D. Moura. Ranking Can-
didate Networks of Relations to Improve Keyword Search over
Relational Databases. In Proceedings of IEEE 31st Interna-
tional Conference on Data Engineering, Seoul, pp 399–410, doi:
10.1109/ICDE.2015.7113301, 2015.

[10] B. Akanksha, R. Ian, L. Jiexing, D. AnHai, and N. Jeffrey. To-
wards Scalable Keyword Search over Relational Data. In Pro-
ceedings of VLDB Endowment, Volume 3, pp 140–149, doi:
10.14778/1920841.1920863, 2010.

[11] C. Joel, and Weaver A. C. A Framework for Evaluating Database
Keyword Search Strategies. In Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management,
Toronto, Canada, pp 729–738, doi: 10.1145/1871437.1871531, 2010.

[12] Aditya B., B. Gaurav, C. Soumen, H. Arvind, N. Charuta, Parag,
and Sudarshan S. BANKS: Browsing and Keyword Searching in
Relational Databases. In Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong, China, pp
1083–1086, 2002.

[13] C. Soumen, K. Varun, P. Shashank, Sudarshan S., D. Rushi, and K.
Hrishikesh. Bidirectional Expansion for Keyword Search on Graph
Databases. In Proceedings of the 31st International Conference
on Very Large Databases, Trondheim, Norway, pp 505–516, 2005.

[14] H. Hao, W. Haixun, Y. Jun, and Yu P. S. BLINKS: Ranked Key-
word Searches on Graphs. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing, China,
pp 305–316, doi: 10.1145/1247480.1247516, 2007.

[15] B. Ding, Yu J.X., S. Wang, Q. Lu, X. Zhang, and X. Lin. Finding
Top-k Min-Cost Connected Trees in Databases. In IEEE 23rd
International Conference on Data Engineering, pp 836-845, doi:
10.1109/ICDE.2007.367929, 2007.

[16] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian. Top-k Nearest
Keyword Search on Large Graphs. In Proceedings of VLDB En-
dowment, Volume 6, pp 901-912, doi: 10.14778/2536206.2536217,
2013.

[17] Y. Yuan, X. Lian, L. Chen, Jeffery X. Y., G. Wang, and Y. Sun.
Keyword Search over Distributed Graphs with Compressed Signa-
ture. IEEE Transactions on Knowledge and Data Engineering
(TKDE), pp 1212-1225, doi: 10.1109/TKDE.2017.2656079, 2017.

[18] X. Yu, and H. Shi. CI-Rank: Ranking Keyword Search Results
based on Collective Importance. In Proceedings of IEEE 28th
International Conference on Data Engineering, pp 78-89, doi:
10.1109/ICDE.2012.69, 2012.

[19] C. Pavel, M. Catarina, and M. Bruno. Learning to Rank for
Expert Search in Digital Libraries of Academic Publications. In
Progress in Artificial Intelligence: 15th Portuguese Conference on
Artificial Intelligence, Proceedings, Lisbon, Portugal, pp 431–445,
doi: 10.1007/978-3-642-24769-9-32, 2011.

111

