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ABSTRACT 

In a recent study, we have shown that in real-time database 
systems that discard late transactions, optimistic concurrency 
control outperforms locking. Although the optimistic algorithm 
used in that study, OPT-BC, did not factor in transaction dead- 
lines in making data conflict resolution decisions, it still outper- 
formed a deadline-cognizant locking algorithm. In this paper, 
we discuss why adding deadline information to optimistic algo- 
rithms is a non-trivial problem, and describe some alternative 
methods of doing so. We present a new real-time optimistic con- 
currency control algorithm, WAlT-50, that monitors transaction 
conflict states and gives precedence to urgent transactions in a 
controlled manner. WAIT-50 is shown to provide significant 
performance gains over OPT-BC under a variety of operating 
conditions and workloads. 

1. INTRODUCTION 

A Real-Time Database System (RTDBS) is a transaction 

processing system that attempts to satisfy the timing constraints 

associated with each incoming transaction. Typically, a wn- 

straint is expressed in the form of a deadline, that is, the user 

submitting the transaction would like it to be completed before a 

certain time in the future. Accordingly. greater value is associ- 

ated with processing transactions before their deadlines as com- 

pared to completing them late. Therefore, in contrast to a wn- 

ventional DBMS where the goal usually is to minimi ze response 

times, the emphasis here is on satisfying the timing constraints 
of transactions. 

The problem of scheduling transactions in an RTDBS with 
the objective of minimizing the percentage of late transactions 

was first addressed in [Abbo88, Abbo89]. Their work focused 

on evaluating the performance of various real-time scheduling 

policies. All these policies enforced data consistency by using a 

two-phase locking protocol as the underlying concurrency wn- 

trol mechanism. Performance studies of concurrency control 

methods for conventional DBMSs (e.g.[Agra87]) have wn- 

eluded that locking protocols, due to their conservation of 

resources, perform better than optimistic techniques when 

resources are limited. In a recent study [Hari90a], we investi- 

gated the behavior of these concurrency control schemes in a 

real-time environment. The study showed that for firm deadline 
real-time database systems, where late transactions are 
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immediately discarded, optimistic wncurrency control outper- 

forms locking over a wide range of system loading and resource 

availability. The key reason for this surprising result is that the 

optimistic approach, due to its validation stage conflict resolu- 

tion, ensures that eventually discarded transactions do not restart 

other transactions. The locking approach, on the other hand, 

allows these soon-to-be-discarded transactions to cause other 

transactions to be either blocked or restarted due to lock 

wnflicts, thereby increasing the number of late transactions. 

An important difference between the locking algorithm and 

the optimistic algorithm that were compared in the above study 

lies in their use of transaction deadline information. The locking 

algorithm used this information, which was encoded in the form 

of transaction priorities, to provide preferential treatment to 
urgent transactions. The optimistic algorithm, however, was just 

the conventional broadcast commit optimistic scheme [Mena82, 

Robi82], and ignored transaction priorities in resolving data wn- 
tention. The study therefore concluded that, in the firm real-time 

domain, a “vanilla” optimistic algorithm can perform better than 

a locking algorithm that is “tuned’ to the real-time environment. 

The following question then naturally arises: How can we use 

priority information to improve the performance of the optimis- 

tic algorithm and thus further decrease the number of late tran- 

sactions? 

A simple answer to this question would be to use priority 

information in the resolution of data conflicts, that is, to resolve 

data wnflicts always in favor of the higher priority transaction. 

This solution, however, has two problems: First, giving pre- 

ferential treatment to high priority transactions may result in an 

increase in the number of missed deadlines. This can happen, 

for example, if helping a high priority transaction to make its 

deadline causes several lesser priority transactions to miss their 

deadlines. Second, if fluctuations can occur in transaction prior- 

ities, repeated wnllicts between a pair of transactions may be 

resolved in some cases in favor of one transaction and in other 

cases in favor of the other transaction This would hinder the 

progress of both transactions and hence degrade performance. 

Therefore, a priority-cognizant optimistic algorithm must 

address these two problems in order to perform better than a 

simple optimistic scheme. 

In this paper, we report on our efforts to develop such an 
algorithm, and present a new optimistic concurrency control 

algorithm, called WAIT-50. The algorithm incorporates a 

priority wair mechanism that makes low priority transactions 

wait for conflicting high priority transactions to complete, thus 

enforcing preferential treatment for high priority transactions. 
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To address the first problem raised above, WAIT-50 features a 

wait control mechanism. This mechanism monitors transaction 

conflict states and, with a simple “50 percent” rule, dynamically 

controls when and for how long a transaction is made to wait. 

The second problem is handled by having the priority wait 

mechanism resolve conflicts in a manner that results in the com- 

mit of at least one of the conflicting transactions. Simulation 

results show that WAIT-50 performs significantly better than 

OFT-BC, the optimistic algorithm used in our earlier study. 

The remainder of this paper is organized in the following 

fashion: Section 2 reviews our earlier study. In Section 3, we 

discuss deficiencies of OPT-BC. The new optimistic algorithm, 

WAITJO, is presented in Section 4. Then, in Section 5, we 

describe our RTDBS model and its parameters, while Section 6 

highlights the results of the simulation experiments. Finally, 
Section 7 sumrnariz.es the main conclusions of the study. 

2. BACKGROUND 

Our earlier study [Hari90a] investigated the relative perfor- 
mance of locking protocols and optimistic techniques in an 

RTDBS environment. In particular, the performance of a lock- 

ing protocol, 2PL-HP, was compared with that of an optimistic 

technique, OPT-BC. These particular instances were chosen 

because they are of comparable complexity and are general in 

their applicability since they make no assumptions about 

knowledge of transaction semantics or resource demands. The 

details of these algorithms are explained below. 

In 2PL-HP, classical two phase locking [Eswa76] is aug- 

mented with a High Priority [Abbo88] conflict resolution 

scheme to ensure that high priority transactions are not delayed 

by low priority transactions. This scheme resolves all data 

confiicts in favor of the transaction with the higher priority. 

When a transaction requests a lock on an object held by other 

transactions in a conflicting lock mode, if the requester’s priority 

is higher than that of all the holders, the holders are restarted and 

the requester is granted the lock; otherwise, the requester waits 

for the lock holders to release the object. The High Priority 

scheme also serves as a deadlock prevention mechanism.’ 

In OPT-BC, classical optimistic concurrency control 

[Kung81] is modified to implement the notion of a Broudcust 

Commit [Mena82, Robi82]. Here, when a transaction commits, 
it notifies other running transactions that conflict with it and 

these transactions are immediately restarted. Since there is no 

need to check for conflicts with already committed transactions, 

a transaction which has reached the validation stage is 

guaranteed to commit. The broadcast commit method detects 

conflicts earlier than the basic optimistic algorithm, resulting in 

less wasted resources and earlier restarts; this increases the 
chances of meeting transaction deadlines. An important point to 

note is that transaction priorities are not used in resolving data 

CQtiCtS. 

’ This is true only for do not 

The results of our study showed that both the policy for deal- 

ing with late transactions and the availability of resources have a 

significant impact on the relative behavior of the algorithms. In 

particular, for ajirm deadline system, where late transactions sre 

discarded without being run to completion, OPT-BC outper- 

formed 2PL-HP over a wide range of system loading and 

resource availability. Figures 1 and 2 present sample graphs of 

how the percentage of late transactions varies as a function of 

the transaction arrival rate. These graphs were derived for the 

baseline model of the study, which characterized an RTDBS 

system with high data contention, under conditions of limited 

resources and plentiful resources, respectively. 

In the above scenario, 2PL-HP suffered from two major 

problems: wasted restarts and mutual restarts. A “wasted res- 

tart” occurs when an executing transaction is restarted by 
another transaction that later misses its deadline. Such restarts 

are useless and cause performance degradation. In OPT-BC, 

however, we are guaranteed the commit of any transaction that 
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reaches the validation stage. Since only validating transactions 

can cause restarts of other transactions, all restarts generated by 

the OPT-BC algorithm are useful. 

The problem of “mutual restarts” arises when fluctuations 

occur in transaction priority profiles. For certain types of 

dynamic transaction priority assignment schemes (e.g. Least 

Slack [Jens86]), it is possible for a pair of concurrently running 

transactions to have opposite priorities relative to each other at 

different points in time during their execution. We will refer to 

this phenomenon as “priority reversal”.2 For algorithms like 

2PL-HP, which use transaction priorities to resolve data 

confhcts, priority reversals may lead to “mutual restarts” - a pair 

of transactions restart each other, thus hindering the progress of 

both transactions. Since OPT-BC does not use transaction prior- 

ities in resolving data contention, such problems simply do not 
arise. 

3. PROBLEMS WITH OPT-BC 

In this section, we will motivate why there is room for 

improvement on the OPT-BC algorithm. The validation algo- 

rithm of OPT-BC can be succinctly written as: 

restart all conflicting transactions; 
commit the validating transaction; 

Although this algorithm provides immunity from priority 

dynamics due to its unilateral commit. it does not allow for 
using transaction priorities to further decrease the number of 

missed deadlines. To illustrate this problem, consider the 

scenario in Figure 3, where the execution profile of two con- 

currently executing transactions, X and Y, is shown. X has an 

arrival time Ax and deadline Dx, and Y has an arrival time AY 
and deadline Dr. Also, assume that transaction X, by virtue of 

its earlier deadline, has a higher priority than transaction Y. 

Now, consider the situation where at time t = Vr, when transac- 

tion X is close to completion, transaction Y reaches its validation 

point and detects a conflict with X. Under the OPT-BC algo- 

rithm, Y would immediately commit and in the process restart X. 

Restarting X at this late stage guarantees that it has no chance of 

meeting its deadline. 

Time 

Figure 3: Poor OPT-BC data conflict decision 

’ This is different from priority inversion [Sha87], which refers to 
the situation where a transaction is blocked (due to data or resource 
conflict) by another transaction with a lower priority. 

If a priority-cognizant algorithm had been used instead, it 

would have recognized that x’s priority was higher than that of 

Y. Then in some fashion it would have prevented Yjiom com- 
mitting until X had completed. With this decision, we could 

possibly gain the completion of both transactions X and Y before 

their deadlines, as shown in Figure 3 where X completes at time 

t = Cx and Y completes later at time t = Cr. 

The above example shows how OPT-BC’s indifference to 

transaction priorities can degrade performance. Another draw- 

back of OPT-BC is that it has an inherent bias against long tran- 

sactions, just like the classical optimistic algorithm. The use of 

priority information in resolving conflicts can help counter this 
bias. 

4. PRIORITY-COGNIZANT ALGORITHMS 

As explained in the previous sections, although the OPT-BC 

algorithm highlights some major strengths of optimistic con- 

currency control in real-time database systems, there remains 

potential for improving its performance. We therefore tried to 

develop new optimistic algorithms that address the problems of 

OFT-BC without sacrificing the performance-beneficial aspects 

of the broadcast commit scheme. These algorithms are 

described in this section Jn the subsequent discussion, we will 

use the term corJlict sef to denote the set of currently running 

transactions that cordlict with a validating transaction. The acro- 

nym CHP (Conjicting Higher Priority) will be used to refer to 

transactions that are in the conflict set and have a higher priority 

than the validating transaction. Similarly, the acronym CLP 

(ConJicting Lower Priority) will be used to refer to transactions 
that are in the conflict set and have a lower priority than the vali- 

dating transaction. Jn this section, our aim is to motivate the 
development of the algorithms and discuss, at an intuitive level, 

their potential strengths and weaknesses. 

The example in Section 3, illustrating poor conflict decisions 

by OPT-BC, showed that we need a scheme to prevent low 

priority transactions that conflict with higher priority transac- 

tions from unilaterally committing. The following two options 

are available: 

(1) Restart: The low priority transaction is restarted. 

(2) Blcxk: The low priority transaction is blocked. 

Two algorithms, OPT-SACRIFICE and OPT-WAJT, were 

developed based on these options. WAlT-50 was then 

developed as an extension of the OPT-WAIT algorithm. These 

three algorithms are presented below. 

4.1. OPT-SACRIFICE 

In this algorithm, when a transaction reaches its validation 

stage, it checks for conflicts with currently executing transac- 

tions. Jf conflicts are detected and at least one of the transac- 

tions in the conllict set is a CHP transaction, then the validating 

transaction is restarted - that is, it is sucri$iced in an effort to 

help the higher priority transactions make their deadlines. The 

validation algorithm of OPT-SACRIFICE can therefore be writ- 

ten as: 
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if CHP transactions in conflict set then 
restart the validating transaction; 

else 
restart transactions in conflict set; 
commit the validating transaction; 

Referring back to Figure 3, if we were using OPI’-SACRIFICE, 

then at time t = V,, transaction Y would restart itself due to the 

conflict with the higher priority transaction X. 

OPT-SACRIFICE is priority-cognizant and satisfies the goal 

of giving preferential treatment to high priority transactions. It 

suffers, however, from two potential problems. Fist, there is 

the problem of wasted sacrijices, where a transaction is 

sacrificed on behalf of another transaction that is later discarded. 

Such sacrifices are useless and cause performance degradation. 

Second, the algorithm does not have immunity to priority 

dynamics. For example, the situation may arise where transac- 

tion A is sacrificed for transaction B because B’s priority is 

currently greater than that of A, and transaction B at a later time 

is sacrificed for transaction A because A’s priority is now 
greater than that of B. Therefore, priority reversals may lead to 

mutual sacrifices. These two drawbacks are analogous to the 

“wasted restarts” and “mutual restarts” problems of 2PL-HP. 

4.2. OPT-WAIT 

This algorithm incorporates a priority wait mechanism: a 

transaction that reaches validation and finds CHP transactions in 

its conflict set is “put on the shelf ‘, that is, it is made to wait and 

not allowed to commit immediately. This gives the higher prior- 

ity transactions a chance to make their deadlines first. While a 

transaction is waiting, it is possible that it will be restarted due 

to the commit of one of the CHP transactions. The validation 

algorithm of OFT-WAIT can therefore be written as: 

while CHP transactions in conflict set do 
wait; 

restart transactions in conflict set; 
commit the validating transaction; 

Referring back to Figure 3, if we were using OPT-WAIT, then 

at time t = V,. transaction Y would wait, without committing, for 

transaction X to complete 6rst. Of course, x’s completion may 

cause Y to be restarted. 

There are several reasons that suggest that the priority wait 

mechanism may have a positive impact on performance, and 

these are outlined below: 

(1) In keeping with the original goal, precedence is given to 

high-priority transactions. 

(2) The problem of “wasted sacrifices” does not exist 

because if a CHP transaction is discarded due to missing 

its deadline, or is restarted by some other transaction 

then the waiter is immediately “taken off the shelf” and 

committed if no other CHP transactions remain. 

(3) Priority reversals are not a problem because, if a CHP 

transaction being waited for were to become a CLP tran- 

saction, the waiting transaction will no longer wait for it_ 

and will immediately commit if no other CHP transac- 

tions remain. 

(4) Since transactions wait instead of immediately restart- 

ing, a blocking effect is derived - this results in conser- 

vation of resources, which can be beneficial to perfor- 

mance [Agra87]. 

(5) The fact that a CHP transaction commits does not neces- 

sarily imply that the waiting transaction has to be res- 

tarted (!). 

The last point requires further explanation: The key observa- 

tion here is that if transaction A conflicts with transaction B, it 

does not necessarily mean that the converse is true [Robi82]. 

This is explained as follows: Under the broadcast commit 

scheme, a validating transaction A is said to conflict with 
another transaction B if and only if 

WriteSet~ n ReadSet, # I$ (1) 

We will denote such a conflict from transaction A to E by A 4. 

For transaction B to also conflict with transaction A, i.e. for 

B+A, it is necessary that 

WriteSerB A Rea&etA z @ (2) 

As is obvious from Equations (1) and (2), A43 does not imply 

B +A. Therefore, if in fact B -+A is not true, then by committing 

the transactions in the order @,A) instead of the order (A$), 

both transactions can be committed without restarting either one. 

As per the explanation given above, it is possible with our 

waiting scheme for the CHP transaction and the waiting transac- 

tion to commit in that order without either transaction being res- 

tarted. Therefore, the priority wait mechanism has a potential to 

actually elitninute some data conflicts. (A simple probabilistic 

analysis of the extent to which waiting can reduce data conflicts 

is presented in [HarMlb]). 

Although the waiting scheme has many positive features, it is 

not an unmixed blessing. One potential drawback is that if a 

transaction finally commits after waiting for some time, it causes 

all of its CLP transactions to be restarted at a later point in time. 

This decreases the chances of these transactions meeting their 

deadlines, and also wastes resources. A second drawback is that 

the validating transaction may develop new conflicts during its 

waiting period, thus causing an increase in conflict set sixes and 

leadiig to more restarts. Another way to view this is to realize 

that waiting causes objects to be, in a sense, “locked” for longer 

periods of time. Therefore, while waiting has the capability to 

reduce the probability of a restart-causing conflict between a 

given pair of transactions, it can simultaneously increase the 

probability of having a larger nwnber of conflicts per transac- 

tion. This increase may be substantial when there are many con- 

currently executing transactions in the system. 

4.3. WAIT-SO 

The WAIT-50 algorithm is an extension of OPT-WAIT - in 

addition to the priority wait mechanism, it incorporates a wait 

control mechanism. This mechanism monitors transaction 

conflict states and dynamically decides when, and for how long, 

a low priority transaction should be made to wait for its CHP 

transactions. A transaction’s conflict state is assumed to be 

97 



characterized by the index HPpercent, which is the percentage 

of the transaction’s total conflict set size that is formed by CHP 

transactions. The operation of the wait mechanism is condi- 
tioned on the value of this index. In WAIT-50, a simple “50 

percent” rule is used - a validating transaction is made to wait 

only while HPpercent 1 50, that is, while half or more of its 

conflict set is composed of higher priority transactions. The 

validation algorithm of WAIT-50 can therefore be written as: 

while CHP transactions in conflict set and 
HPpercent 2 50 do 

wait; 
restart transactions in conflict set; 
commit the validating transaction; 

The aim of the wait control mechanism is to detect when the 

beneficial effects of waiting, in terms of giving preference to 

high priority transactions and decreasing pairwise conflicts, are 

outweighed by its drawbacks, in terms of later restarts and an 

increased number of conflicts. Therefore, while OPT-WAIT and 

OPT-BC represent the extremes with regard to waiting - OPT- 

WAIT always waits for a CHP transaction, and OPT-BC never 

waits - WAIT-50 is a hybrid algorithm that controls the amount 
of waiting based on transaction conflict states. In fact, we can 

view OPT-WAIT, WAIT-50, and OPT-BC as all being special 

cases of a general algorithm WAIT-X, where X is the cutoff 

HPpercent level, with X taking on the values 0, 50, and =, 

respectively, for these algorithms. 

We conducted experiments to evaluate the performance of 

the various optimistic algorithms, and the following sections 

describe our experimental framework and results. 

5. REAL-TIME DBMS MODEL 

The real-time database system model employed here is the 

same as that of our earlier study - in this model, the system wn- 

sists of a shared-memory multiprocessor DBMS operating on 

disk resident data.3 The database itself is modeled as a collection 

of pages. Transactions arrive in a Poisson stream and each tran- 

saction has an associated deadline. Each transaction consists of 

a sequence of page read and write accesses. A read access 

involves a concurrency control request to get access permission, 

followed by a disk I/O to read the page, followed by a period of 

CPU usage for processing the page. Write requests are handled 

similarly except for their disk r/O - their disk activity is deferred 

until the transaction has committed. The following two subsec- 

tions describe the workload generation process and the hardware 

resource configuration. 

5.1. Workload Model 

The workload model characterizes transactions in terms of 

the pages that they access and the number of pages that they 

update. Table 1 summarizes the key workload parameters. 

ArrivalRate specifies the rate of transaction arrivals. 

3 It is assumed, for simplicity, that all data is accessed from disk 
and buffer pool considerations are therefore ignored. 

Databas&ze gives the number of pages in the database. The 

number of pages accessed by a transaction varies uniformly 

between half and one-and-a-half times the value of PageCow. 
Page requests are generated from a uniform distribution span- 
ning the entire database. WriteProb gives the probability that a 

page that is read will also be updated. 

We use two transaction deadline assignment formulas in this 

study. The first formula, which is the same as the one used in 

our previous study, is: 

D,=A,+SF * RT @Fl) 

where DT, AT, and RT are the deadline, arrival time and resource 

time, respectively, of transaction T, while SF is a slack factor. 

The resource time is the total service time at the resources that 

the transaction requires for its data processing. The slack factor 
is a constant that provides control over the tightness/slackness of 

deadlines. The formula ensures that all transactions, indepen- 

dent of their service requirement, have the same slack ratio - 
this is detined to be the ratio (DT -AT) I RT. Therefore, all tran- 

sactions have SF as their slack ratio. 

In order to evaluate the effects of variability in transaction 

slack ratios, a second deadline assignment formula is used in the 

present study. This formula is: 

f Ar + LSF * Rr 

DT= AT+HSF*RT 
I 

(DW 

With this formula, transactions will have a slack factor of either 

LSF or HSF, with both choices being equally likely. Therefore, 

the slack ratio for a transaction will be either LSF or HSF. The 
LSF and HSF workload parameters set the slack factors to be 

used in the deadline formulas. (For DFl, these two parameters 

have the same value). 

The transaction priority assignment scheme used in all the 

experiments reported here is Earliest Deadline - transactions 

with earlier deadlines have higher priority than transactions with 

later deadlines. The system operates under Grm deadlines, and 

therefore discards late transactions. It is important to note that 

while the workload generator uses transaction resource require- 

ments in assigning deadlines, we assume that the system itself 

lacks any knowledge of these requirements. This implies that a 

transaction is detected as being late only when it actually misses 

its deadline. 

Table 1: Workload Model Parameters 

Parameter 

ArrivalRate 
DatabaseSize 
PageCount 
WriteProb 
DeadlineFormula 
LSF 
HSF 

Meaning 

Transaction arrival rate 
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5.2. Resource Model rather than cost, is usually the driving consideration. 

The physical resources in our model consist of multiple We began our experiments by evaluating the various 

CPUs and multiple disks. There is a single queue for the CPUs optimistic algorithms for the baseline model of our earlier study. 
and the service discipline is preemptive-resume, with preemp- This was done to provide continuity from that study to the 

tion being based on transaction priorities. Each of the disks has present work. Subsequently, for reasons explained in the fol- 

its own queue and is scheduled accordmg to a priority-based lowing discussion, we moved to a new baseline model. After 

variant of the elevator disk scheduling algorithm [Care89]. initial experiments with this model, further experiments were 

Requests at each diik are grouped into priority levels and the constructed around it by varying a few parameters at a time. 

elevator algorithm is applied within each priority level; requests These experiments evaluated the impact of data contention, 

at a priority level are served only when there are no pending resource contention, deadline slack variation, transaction write 

requests at higher priority levels. The details of our implemen- probabilities, and the wait control mechanism parameter. We 

tation of this algorithm are described in [HarNb]. The data will hereafter refer to the old baseline model as FIX-SR (Fixed 

pages are modeled as being uniformly distributed across all the Slack Ratio), and the new baseline model as VAR-SR (Variable 

disks and across all tracks within a disk. Slack Ratio). 

6. EXPERIMENTS and RESULTS 

In this section, we present performance results for our simu- 

lation experiments comparing the various optimistic algorithms 

in a real-time database system environment. Our experiments 

evaluated the algorithms under a variety of operating conditions, 

workloads, and data access patterns [Hari9Ob]. We present only 

a subset of the results here due to space limitations. The perfor- 

mance metric is MissPercent, which is the percentage of transac- 

tions that do not complete before their deadline. MissPercent 

values in the range of 0 to 20 percent are taken to represent sys- 

tem performance under “normal” loadings, while MissPercent 

values in the range of 20 to 100 percent represent system perfor- 

mance under “heavy” loading.4 The simulations also generated a 

host of other statistical information, such as the number of data 

conllicts, the time spent in priority waiting, etc. These secon- 
dary measures help explain the behavior of the algorithms under 

various loading levels. The resource parameter settings are such 

that the CPU time to process a page is 10 milliseconds while 

disk access times are between 15 and 30 milliseconds, depend- 

ing on the level of disk utilization. Disk access times depend on 

disk utilization due to the elevator scheduling policy. 

For experiments that were intended to factor in the effect of 

resource contention on the performance of the algorithms, the 

number of processors and number of disks were set to 10 and 

20. respectively. For experiments intended to isolate the effect 

of data contention, we approximately simulated an “infinite” 

resource situation [Agra87], that is. where there is no queueing 

for resources. This was done by increasing twenty-fold the 

number of processors and the number of disks, i&n their base- 

line values of 10 and 20 to 200 and 400, respectively. A point to 

note here is that while abundant resources are usually not to be 

expected in conventional database systems, they may be more 

common in RTDBS environments since many real-time systems 

are sired to handle transient heavy loading. This directly relates 

to the application domain of RTDBSs, where functionality, 

’ Any long-tern operating region where the miss percent is large 
is obviously unmlistic for a viable RTDBS. Exercising the system to 
high miss levels, however, provides valuabIe information on the 
response of the algorithms to brief periods of stress loading. 

6.1. FIX-SR Baseline Model 

The settings of the workload parameters and resource param- 

eters for the FIX-SR baseline model are listed in Tables 2 and 3. 

These settings generate an appreciable level of both data conten- 

tion and resource contention. For this model, Figures 4a and 4b 

show MissPercent behavior under normal load and heavy load, 

respectively. When the same experiment is carried out under 

infinite resources, Figures 5a and 5b are obtained. From this set 

of graphs, we can make the following observations: 

(1) OPT-SACRIFICE performs significantly worse than the 
wait-based algorithms over the entire operating region, 

and for the most part, also performs worse than OPT- 

BC. The poor performance of this algorithm is primarily 

due to the problem of “wasted sacrifices”, discussed in 

Section 4. Also, in the inlinite resource case, the 

sacrifice policy generates a steep rise in the number of 

data conflicts by causing a significant increase in the 

average number of transactions in the system. This is 
brought out quantitatively in Figure 5c, which plots the 

average number of conflicts per input transaction. 

(2) OPT-WAIT, due to its priority cognizance, performs 

very well at low levels of data contention (FigsAa, 5a). 

As data contention increases, however, its performance 

Table 2: FIX-SR Baseline Model Workload Settings 

Parameter 

Datahsdize 

) Value 

I 1OOOpages 
PageCount 16 pages 
WriteProb 0.25 
DeadlineFormula DFl 
shckFactor, 4.0 
sIackFactorL 4.0 

Table 3: FIX-SR Baseline Model Resource Settings 

Parameter Value 

NwnCPUs 10 
NudXsks 20 
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(3) 

(4) 

steadily degrades. Finally, at high contention levels 
under infmite resources (Fig.Sb), it performs 

significantly worse than OPT-BC. The reason for OF’T- 

WAIT’s poor performance in this region is that its prior- 

ity wait mechanism, just like the sacrifice policy, causes 

an increase in the average number of transactions in the 

system. This population increase generates a 

corresponding rise in the number of data conflicts (see 

Fig. 5~). resulting in higher miss percentages. 

WAIT-50 provides the best overall performance. At 

low data contention levels, it behaves like OFT-WAIT, 

and at high contention levels it behaves like OPT-BC. 

The explanation for this behavior is given in the next 
section. 

Under high resource contention (Fig.4b). WAIT-50 and 

OPT-WAIT behave identically to OPT-BC. This is 

because, with heavy resource contention, it is uncom- 

mon for a low priority transaction to reach its validation 

stage much before its deadline, and therefore the wait- 

times of transactions are mostly small. Accordingly, the 

priority wait mechanism has very limited impact, and 

WAIT-50, OFT-WAIT, and OPT-BC become essen- 

tially the same algorithm. 

The above results are encouraging because they show that 

there are performance benefits to be gained by using priority- 

cognizant algorithms. It is all the more encouraging that these 

performance improvements are obtained despite all transactions 

having the same slack ratio (from using deadline formula DFl). 
A fixed transaction slack ratio reduces the likelihood of a vali- 

dating transaction fmding a higher priority transaction in its set 

of conflicting transactions. This creates favorable circumstances 

for OPT-BC since the detrimental effects of its priority insensi- 

tivity are reduced. 

6.2. VAR-SR Baseline Model 

In order to generate a workload with variation in transaction 

slack ratios, the VAR-SR baseline model was developed for the 

current study. This model uses deadline assignment formula 

DF2 to generate variation in transaction slack ratios. The work- 

load parameters LSF and HSF are set at 2.0 and 6.0. respec- 

tively? The remaining workload parameter settings and resource 

parameter settings are the same as those for the FIX-SR baseline 

model (see Tables 2 and 3). In the subsequent discussions, we 

will compare the performance of only the OFT-BC. OPT-WAIT 

and WAIT-50 algorithms since OFT-SACRIFICE invariably 

performed worse than the wait-based algorithms. 

For the VAR-SR baseline model, Figures 6a and 6b show the 

behavior of the algorithms under normal load and heavy load, 

respectively. When the same experiment was carried out under 

infmite resources, Figures 7a and 7b were obtained. From this 

set of graphs we can make the following observations: 

’ These parameter selections ensure that the mean slack ratio is 
the same as that of the FM-SR baseline model, namely 4.0. 

(1) 

(2) 

The priority-cognizant algorithms, WAIT-50 and OPT- 
WAIT, now perform significantly better than OF’T-BC 

under normal loads. 

WAIT-50 again turns in the best overall performance by 

behaving like OFT-WAIT at low data contention levels 

and like OPT-BC at high data contention levels. 

As can be seen from this experiment, and will be further 

cormrmed in subsequent experiments, WAIT-50 provides per- 
formance close to either OFT-BC or OPT-WAIT in operating 

regions where they behave well, and provides the same or 

slightly better performance at intermediate points. Therefore, in 

an overall sense, WAIT-SO effectively integrates priority and 
waiting into the optimistic concurrency control framework. The 

control mechanism is clearly quite competent at deciding when 

the benefits of waiting, in terms of helping high priority transac- 

tions to make their deadlines, are outweighed by the drawbacks 

of causing an increased number of conflicts. In Figure 7c, we 

plot the “wait factor” of OPT-WAIT and WAITJO, which 

measures the total time spent in priority-waiting due to each 

algorithm, normalized by the waiting time of OFT-WAIT. As 

can be seen from this figure, WAIT-SO’s wait factor is close to 

that of OFT-WAIT at low contention levels but decreases 

steadily as the data contention level is increased. Therefore, 
while OPT-WAIT and OPT-BC represent the extremes with 

regard to waiting, WAIT-50 gracefully controls the waiting to 

match the data contention level in the system. 

6.3. Write Probability 

All the previously described experiments were carried out for 

a write probability of 0.25. The next set of experiments look 

into the performance effects of varying transaction write proba- 

bilities. In the f&t experiment, the write probability was 

increased to 1.0, keeping the other parameters the same as those 

of the baseline model. This experiment was conducted for both 

&rite resource and in6nite resource scenarios, and the results are 

shown in Figures 8 and 9a. From this set of figures, we can 

make the following observations: 

(1) OPT-WAIT suffers a substantial performance degrada- 

tion and does worse than OPT-BC dver almost the entire 

operating region. There are two reasons for this: First, 

the increased write probability generates higher levels of 

data contention which, in combination with the popula- 

tion increase effect of the priority wait mechanism, 

results in a steep increase in the number of conflicts. 

Second, the conflict-elimination capability of OFT- 

WAIT vanishes since all conflicts are now bi- 

directional. These effects are captured dramatically in 

Figure 9b, which profiles the average number of 

conflicts per input transaction under infinite resources. 

(2) Although WAIT-50 also employs the priority wait 

mechanism it does not suffer OPT-WAIT’s perfor- 

mance degradation. This is due to its control mechan- 

ism, which ensures OFT-BC-like behavior when high 

data contention levels are reached by sharply reducing 

its wait factor. Figure 9c, which plots the wait factor of 

the algorithms for the inlinite resources case, shows thii 
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effect quantitatively. 

In the second experiment, the write probability was varied 

from 0.0 to 1.0, keeping the arrival rate constant at 20 

transactions/set. Figures 10 and 11 show how the algorithms 

behave under conditions of finite and infinite resources, respec- 

tively. These graphs clearly show that while OPT-WAIT per- 

forms well at low conflict levels, OPT-BC does much better at 

high conflict levels. We also observe that WAIT-50 again pro- 

vides good performance over the entire range. 

6.4. Wait Control Mechanism 

The final experiment presented here examines the effect of 

the choice of 50 as the cutoff value for the HPpercent control 

index. Keeping all parameters the same as those of the baseline 

model, we measured the performance of WAIT-25 and WAIT- 

75 under conditions of infinite resources. Figures 12a and 12b 
give the results of this experiment under normal load and heavy 

load, respectively. From these graphs, we can make the follow- 

ing observations: 

(1) Lowering the cutoff value to 25 percent results in a 

slight improvement of normal load performance, but 

worsens the heavy load performance. This behavior is 

due to the increased wait factor that is delivered by the 

lowered cutoff value. 

(2) Raising the cutoff value to 75 percent has the opposite 

effect: the normal load performance becomes worse, 
while there is a slight improvement in heavy load perfor- 

mance. This behavior is due to the decreased priority 

cognizance that is delivered by the increased cutoff 

value. 

A 50 percent cutoff, therefore, appears to establish a reason- 

able tradeoff between these opposing forces, providing good 

performance across the entire range of loading. The basic philo- 

sophy is that at light loads, when data contention levels are low, 

waiting is always beneficial. At heavy loads, however, when 

data contention levels are high, waiting is the wrong thing to do. 

WAIT-50 is effective in dynamically making this transition. 

7. CONCLUSIONS 

In this paper, we have addressed the problem of incorporat- 

ing transaction deadline information into optimistic concurrency 

control algorithms. We presented a new real-time optimistic 

concurrency control algorithm, called WAIT-50, that uses tran- 

saction deadline information to improve data cordlict resolution 

decisions. The algorithm features a priority wait mechanism 

that gives precedence to urgent transactions. This mechanism 

forces low priority transactions to wait for conflicting high prior- 
ity transactions to complete. thus enforcing preferential treat- 

ment for high priority transactions. We showed that the 

mechanism has a capacity to eliminate some data conflicts due 

to its wait component, which causes changes to be made to the 

commit order of transactions. The priority-wait mechanism pro- 

vides immunity to priority fluctuations by resolving contlicts in 

a manner that results in the commit of at least one of the 

conflicting transactions. 

While the priority wait mechanism works well at low system 

contention levels, it can cause signitlcant performance degrada- 

tion at high contention levels by generating a steep increase in 

the number of data conflicts. A simple wait con@01 mechanism 
consisting of a “50 percent” rule is used in the WAIT-50 algo- 

rithm to address this problem. The “50 percent” rule is the fol- 

lowing: If half or more of the transactions conflicting with a 

transaction are of higher priority, the transaction is made to wait; 

otherwise, it is allowed to commit. 

Using a simulation model of a RTDBS, we studied the per- 

formance of the WAIT-50 algorithm over a range of workloads 

and operating conditions. WAIT-50 was shown to provide 

significant performance gains over OPT-BC, a priority- 

insensitive optimistic algorithm. The wait control mechanism of 

WAIT-50 was found to be effective in maintaining good perfor- 

mance, even at high data contention levels. In summary, we 

conclude that the WAIT-50 algorithm utilizes transaction prior- 

ity information to stably provide improved performance. 
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