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ABSTRACT 

Barlier studies have observed that in moderately-loaded 
real-time database systems, using an Barliest Deadline policy to 
schedule tasks results in the fewest missed deadlines. When the 
real-time system is overloaded however, an Earliest Deadhne 
schedule performs worse than most other policies. This is due to 
Earliest Deadhm? giving the highest Jriority to transactions that 
are close to missing their deadlines. In this paper, we present a 
new priority assigmnent algorithm called Adaptive Earliest 
DeadEne (ABD), which features a feedback control mechanism 
that detects overload conditions and modifies transaction pritity 
assignments accor&gly. Using a detailed simulation model we 
compare the performance of ABD with respect to Barliest Dead- 
line and other Axed priority schemes. We also present and 
evahtate an extension of the ABD algorithm called Hierarchical 
Earliest Deadline (HED). which is designed to handle spplica- 
tions that assign different values to transactions and where the 
goal is to maximize the total value of the in-time transactions. 

1. INTRODUCTION 

A Real-Tie Databsse System (RTDBS) is a transaction 

processing system that is designed to handle transactions with 

completion deadlines. Several Jxevious RTDBS studies (e.g. 

[Abbo88. Abbo89]) have addressed the issue of scheduling tran- 

sactions with the objective of minimizing the number of late 

tmnsactions. A common observation of these studies has been 

that assigning priorities to transactions according to sn Earliest 

Deadhne [Jiu73] policy minimizes the number of late transac- 

tions in systems operating under low or moderate levels of 

resource and data contention. This is due to Barliest Deadline 

giving the highest priority to transactions that have the least 

remaining time in which to complete. These studies have also 

observ4 however, that the performance of Earliest Deadline 

steeply degrades in an overloaded system. This is because, 

under heavy loading. transactions gain high priority only when 
they are close to their deadlines. Gaming high priority at this 

late stage may not leave sufficient time for transactions to com- 

plete before their de&.nes. Under heavy loads, then, a funda- 

mental we&tress of the Earliest Deadline Jxiority policy is that it 

assigns the highest priority to transactions that are close to miss- 

ing their deadlines, thus delaying other trsnsactions that might 
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still he able to meet their deadlines. 

From the above discussion, the following question naturally 

arisea: Clm a priority assignment policy be developed based on 

the Earliest Deadl& approach that stabilizes its overload perfor- 
mance without sacrificing its light-load virtues? A well- 

constructed scheme based on simple real-time principles was 
pesented in [Jens85] for realixing this objective. In order to use 

this scheme, which was developed in the context of task 

scheduling in real-time operating systems, a-priori knowledge of 

task processing requirements is necessary. Unfortunately, 

knowledge about transaction resource and data requirements is 

usually unavailable in database applications [Stan88]. There- 

fore, the [Jens85] solution cmmot be used and methods applica- 

ble to tratmction scheduling in real-time database systems have 

to be developed. 

In this paper, we present a new priority assignment algorithm 

called Adaptive Earliest Deadline (ABD) that stabilizes the over- 

load performance of Earliest Deadline in an RTDBS environ- 

ment. The ABD algorithm uses a feedback control mechanism 
to achieve this objective and does not require knowledge of tran- 

saction characteristics. Using a detailed simulation model, we 
compare the performance of the ABD algorithm with that of 

Earliest Deadhne and other fixed priority mappings. 

There are real-time database applications that may assign dif- 

ferent values to tramactions. where the value of a transaction 

reflects the return the application expects to receive if the tran- 

saction commits before its deadline [Husn89]. For such applica- 

tions, the goal of the RTDBS is to maximize the value realized 

by the in-time transactions. Mimmixing the number of late tran- 

sactions is a secondary concern in this environment. A funda- 

mental problem here is how to establish a priority ordering 

among transactions that are distinguished by both values and 
deadlines piya88, Hari9lal. In particular, it is not clear what 

&&@should be established between transaction values and 

&adlines in generating the priority ordering. 

We present here an extension of the ABD algorithm, called 

Hierarchical Earliest Deadhne (HBD), for integrating the value 

and deadline characteristics of transactions. The HED algorithm 

adaptively varies the tradeoff between value and deadline. based 

on transaction deadline miss levels, to maximize the value real- 

ixed by the system. We compare the performance of the HED 

algorithm to that of mappings which establish fixed tradeoffs 
between value and deadline. 



Gur simulation model implements a database system archi- 

tecture that incorporates a prioriry mqpper unit. The priority 

mapper assigns a priority to each transaction on its anivab these 

priorities are used by the system schedulers in resolving trans~c- 

tion contention for hardware resources and data objects. This 

@rity architecture is modular since it separates priority gen- 

ffation from priority usage. 

In this paper, we restrict our aftenlion to real-time database 

systems that executefvm de&line applications. For such appli- 

cations, a transaction that misses its deadline loses its value. 

Ihis means that transactions are discarded when the RTDBS 

detects that the transaction cannot complete before its deadline. 
In our model, a transaction is discarded only when it octvauy 

misses its deadline since the system has no advance knowledge 

of transaction service requirements. Examples of applications 
with flnn deadlines are given in [Abbo88]. 

2. Priority Mappings 

In order to resolve contention for hsrdware resources and 

data, an RTDBS has to establish a priority ordering among the 

transactions. Apart from the previously discussed Earliest 
De&line policy, there are a few other mappings described in the 

literature that fit our operating constraints. These msppings are 
described first in this section. Subsequently. our new priority 

mapping, Adaptive Earliest Deadline, is presented. In the fol- 

lowing discussion, AT. Dr. and Pr are used to denote the arrival 
time, deadline, and priority of transaction 2’. respectively. The 

priority assignments of all the mappings are such that smaller Pr 
values reflect higher system priority. The details of the map- 
pings are presented below. 

2.1. Earliest Deadline (ED) 

The Earliest Deadline mapping assigns higher priority to 
transactions with earlier deadlines, and the transaction priority 

assignment is Pr = D,. 

22. Latest Deadline (LD) 

The Latest Deadline mapping is the opposite of the Earliest 

Deadhne mapping. It gives higher priority to trsnsactions with 

later deadlines, and the transaction priority assignment is Pr = 

1lDr. We expect that, for many real-time applications, newly- 

submitted transactions will tend to have later deadhnes than 

transactions already executing in the system. Therefore, it 

seems plausible that the Latest Deadline mapping would rectify 
the overload drawback of Earliest Deadline by giving transac- 

tions high priority early on in their execution. 

2.3. Random Priority (RP) 

The Random Priority mapping randomly assigns priorities to 

transactions without taking any of their characteristics into 

account The tmnsaction priority assignment is Pr = Random 
(0. -). The performance obtained with this mapping reflects the 

impact of the mere existence of sufne fixed ordering among the 

transactions. 

2.4. No Priority (NP) 

The No Fkiority mapping gives all transactions the same 

piority. and the transaction priority assignment is Pr = 0. This 
effwtively means that scheduling at each resource is done in 
order of arrival to the resource (i.e., local FCFS). The perfor- 

msnce obtained ruder this mapping should be inteqreted as the 

performance that would be observed if the real-time dambase 
system were replaced by a conventional DBMS (and the feature 

of discarding late transactions was retained). 

2.5. Adaptive Earliest Deadline (AED) 

The Adaptive Earliest Deadline priority assignment algo- 
rithm modifies the classical Earliest Deadline mapping based on 

the following observation: Given a set of tasks with deadhnes 

that can all sanehaw be me& an Earliest Deadline priority order- 
ing will also meet all (or most of) the deadlines [Jens85]. The 

implication of this observation is that in order to maximixe the 

number of in-time transactions, an Earliest Deadline schedule 

should be used among the largest set of transactions that can sll 

be completed by their deadlines. The flaw of the pure ED msp- 

ping is that it uses this schedule among all transactions in the 
system, even when the system is overloaded. The AED slgo- 

rithm tries to address this flaw by using a feedback control pro- 

cess to estimate the number of transactions that are sustainable 

under an ED schedule. 

2.5.1. Group Assignment 

In the AED algorithm, transactions executing in the system 
are collectively divided into two groups, HIT and MISS, as 

shown in Figure 1. Each transaction, upon arrival, is assigned to 
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Figure 1: AED priority Mapping 



one of the groups. The assignment is done in the following 
mamten The newly-arrived transaction is assigned a randomly- 

chosen unique integer key, IT. The transaction is then inserted 

into a key-ordfrred list of the transactions currently in the sys- 
tem, and its position in the list, par,. is noted. If pasr is less 

than or equal to HITcopacity, which is a dynamic control vari- 

able of the ABD algorithm, the new transaction is assigned to 
the HIT group; otherwise. it is assigned to the MISS group. 

25.2. Priority Assignment 

Afte.r a new transaction is assigned to a group, it is then 

assigned a priority using the following formula: 

1 

(0. Dr. Ir) if Grorcp = HIT 

Pr = 

(1. 0. I,) ii Group =MISS 

With this priority assignment scheme, all transactions in the HIT 
group have a higher Priority than transactions in the MISS group. 

(Since the priority is a vector. priority comparisons are made in 
lexicographic order.) Within the HIT group, the transaction 

priority ordering is Earliest Deadline. In contrast, the priority 

ordering in the MISS group is Random Priority since the fr’s are 

selected randomly. The Ir component of the priority serves to 

break the tie for transactions in the HIT group that may have 
identical deadlines, thus ensuring a totd priority ordering. Tran- 

sactions retain their initial priority assignments for the entire 

duration of their residence in the system. 

2.53. Discussion 

The goal of the AED algorithm is to collect the largest set of 

transactions that can be completed before their deadhnes in the 

HIT group. It trys to achieve this by controlling the size of the 
HIT group, using the HlTca&ty setting as the control variable. 

Then, by having an Earliest Deadline priority ordering within 

the HIT group, the algorithm incorporates the observation made 
in [Jens85] that was discussed earlier. Transactions that cannot 

be accomodated in the HIT group are estimated to miss their 
deadlines and are therefore assigned to the MISS group. The 

motivation for having a Random Priority mapping in the MISS 

group is explained in Section 5. 

We define the “hit ratio” of a transaction group to be the frac- 

tion of transactions in the group that meet theii deadlines. Using 

this terminology, we would ideally like to have a (steady-state) 

hit ratio of 1 .O in the HIT group and a hit ratio of 0.0 in the MISS 

group, since this combination of hit ratios ensures that dl the 
“doable” transactions, and drily these transactions, are in the HIT 
group. Achieving this goal would require absolute accuracy in 

predicting the right HlTcapcity size; this is impossible as the 

RTDBS has no knowledge of transaction characteristics. From a 

practical standpoinf therefore, our aim is to maintain a high hit 

ratio in the HlT group and a low hit ratio in the MISS group. 
The key to achieving this lies in the HkTcupucity computation, 

which is discussed next. 

2.5.4. HIT Capacity Computation 

A feedback process that employs system output measure- 

ments is used to set the HlTcupacity control variable. The meas- 

uremans used are HltRatio(HIT) and IUtRatlo(ALL). 
HitRatio is the fraction of transactions in the HIT group 
tha are making their deadline, while HitRatio(ALL) is the 

corresponding measurement over dl transactions in the system. 

Using these measurem ems. and denoting the number of transac- 

tions currently in the system by NwnTrww the HfTcqacify is 
set with the following two-step computation: 

(1) HITcapacity I= HitRatio(HlT) * HlTcapcity * 1.05; 
(2) if HitRatiu@LL.) < 0.95 then 

HlTcapcity := Min (HkTcqmcity, 
HitRatio(~UL) * NumTram * 1.25 ); 

STEP 1 of the HlTcqmacity computation incorporates the 
feedback process in the setting of this control variable. By wn- 

ditioning the new HlTcapcity setting based on the observed hit 

ratio in the HlT group, the size of the HIT group is adaptively 

changed to achieve a 1.0 hit ratio. Our goal, however, is not just 
to have a HitRatio(HlT) of 1.0. but to achieve this goal with the 

Iargeti possible transaction population in the HIT group. It is 

for this reason that STEP 1 includes a 5 percent expansion fac- 

tor. This expansion factor ensures that the HITcupcity is 
steadily increased until the number of transactions in the HIT 
group is large enough to generate a HitRatio(HlT) of 0.95. At 

this point, the transaction population size in the HIT group is 

close to the required number. and the HITcqmcity remains sta- 
bilized at this setting (since 0.95 * 1.05 = 1 .O). 

STEP 2 of the HITcapacity computation is necessary to take 

care of the following special scenario: If the system experiences 

a long period where HitRatio(AJ..L) is close to 1.0 due to the 
system being lightly loaded, it follows that HitRatio(HlT) will 

be virtually 1.0 over this extended period. In this situation, the 

HITcqacity can become very large due to the 5 percent expan- 

sion factor, that is, there is a ‘runaway” effect. If the transaction 

arrival rate now increases such that the system becomes over- 

loaded (signaled by HitRatio(ALL) falling below 0.95), incre- 

mentally bringing the HkTcqocity down from its artificially 

high value to the right level could take a considerable amount of 

time (with the feedback process of STEP 1). This means that 

the system may enter the unstable high-miss region of Earliest 

Deadline as every new transaction will be assigned to the HlT 
group due to the high HlTcapbty setting. To prevent this from 

occurring, an upper bound on the HITcapacity value is used in 
STEP 2 to deal with the fianrifion from a lightly-loaded condi- 

tion to sn overloaded condition. The upper bound is set to be 25 

percent greater than an estimate of the “right” HitCapacity 
value, which is derived by computing the number of transactions 

that are currently making their deadlines. (The choice of 25 per- 

cent is based on our expectation that the estimate is fairly close 

to the “right” value.) After the HITcapacity is quickly brought 

down in this fashion to near the appropriate setting, the 

HitRatioQIlT) value then takes over ss the “fine tuning” 
mechanism in determining the Hffcapacity setting. 



2.55. Feedback Process 

The feedback process for setting the HlTcqmcity control 

variable has two parameters, HITbntch and ALLbatch. These 
parameters determine the size-s of transaction batches that are 
used in complting the output hit ratios. The feedback process 

operates in the following manner: Assume that the priorily 
-per has just set the HlTcapacity value. The next HITbatch 
transactions that are assigned to the HIT section of the bucket 

are marked with a special label. At the RTDBS outplt, the com- 

pletion status (m-time or late) of these specially-marked transac- 

tions is monitored. When the last of these HiTimch transactions 
exits the system, HitRatio(HIT) is measured as the fraction of 

these transactions that completed before their deadline. The 

HitRatio(ALL) is continuously measured at the output as the hit 

ratio of the last ALLbatch mnsactions that exited from the sys- 

tem. After each measurement of HitRatio(HlT). the 

HitRatio(HlT) value is fed back to the priority mq~per along 

with the current HitRatio(ALL) value. The priori9 mqper then 

reevaluates the HITcupucity setting. aftex which the whole pro- 

cess is repeated. 

3. Concurrency Control 

Several different mechanisms are available for implementing 
concurrency wntrol. including locking, timestamps. and 

optimistic concurrency control [Bern87]. While we have shown 

in previous studies [Hari90a, Hari90b] that optimistic algorithms 

can outperfomr locking algorithms in a firm deadline RTDBS, 
we will consider only the 2PL-HP prioritized locking algorithm 

[Abbo88] here. The reason is that the interaction of optimistic 

algorithms and priority policies is somewhat complicated and 

space limitations prevent us from presenting these complexities 
here. For the workloads considered in this study, however, we 

have observed optimistic algorithms to perform better than 

2PL-HP (see [Hati9lb]). 

In 2PL-HP. classical two-phase locking [Eswa76]. where 

transactions hold locks until wmmit time, is augmented with a 

High Priority [Abbo88] wnllict resolution scheme. This 

scheme ensures that high priority transactions are not delayed by 

low priority transactions by resolving all data conflicts in favor 

of the transaction with the higher priority. When a transaction 

requests a lock on an object held by other transactions in a 

wnfhcting lock mode, if the requester’s priority is higher than 
that of all the lock holders, the holders are restarted and the 

requester is granted the lock, otherwise, the requester waits for 

the lock holders to release the object. 

4. RTDBS Performance Model 

A detailed model of a real-time database system was used to 

study the performance of the various priority mappings. We 

briefly describe the model in this section (see [Hari9lb] for 

details). In this model, the database system consists of a 

shared-memory multiprocessor operating on disk resident data 

(for simplicity, we assume that all data is accessed from disk and 

buffer pool considerations are therefore ignored). The database 

itself is modeled as a collection of pages. Transactions srrive in 

a Poisson stream and each transaction has an associated dead- 

line. A transaction consists of a sequence of read and write page 

accesses. A read access involvea a concurrency control request 

to get access permission followed by a disk IJD to read the 

page. followed by a period of CPU usage for processing the 
page. Write requests are handled similarly except for their disk 

m - their disk activity is deferred tmtil the transaction has com- 

mitted, A transaction that is restarted due to data wnflict fol- 

lows the same data Bccess pattern as the original transaction. If 

a transaction has not completed by its deadline, it is immediately 

aborted and discarded. 

Table 1 summa&e s the key parameters of the workload 

model. The AfrivalRate parameter specifies the mean rate of 

transaction arrivals. The number of pages accessed by a transac- 
tion varies uniform.ly between 0.5 end 1.5 times TramSize. 
Page requests are generated from a uniform distribution (without 

replacement) spanning the entire database. WrifeProb gives the 

probability of a page that is read being also updated. 

In our experiments, 

line assignment: 

we used the following formula for dead- 

DT=AT+SFT * R, 

where D7. and At are the deadline and arrival time of transaction 
T, respectively, and R, is the expected execution time of the 

largest possible transaction (a transaction accessing 1.5 * 

TramSize pages). SF, is a slack factor that varies uniformly 

over the range set by the workload parameters LIiF and HSF. 
and it determines the tighmess/slackness of deadlines. 

The physical resources in our model consist of multiple 
CPUs and multiple disks. There is a common queue for the 

CPUs and the service discipline is priority preemptive-Resume. 

Each of the disks has its own queue and the service discipline is 
priority Head-Of-Line. Table 2 summarizes the key parameters 

of the system model. The DatabuseSize parameter gives the 

number of pages in the database, and the data pages are modeled 

as being uniformly distributed across all of the disks. The 

Table 1: workload Parameters 

Parameter ] Meaning 

Databadize 1 Number of pages in database 

Table 2: System Parameters 



NwnCPUs and NwnDidm parameters specify the hardware 

resource composition, while the PageCPiJ and PageDisk param- 
etas capture CPU and disk processing times per data page. 

5. Experiments and Results 

In this section. we present simulation performance results for 

our experiments comparing the various priority mappings in a 

real-time database system environment. The performance 
metric used in this set of experiments is Miss Percent. which is 

the percentage of input transactiona that the system is unable to 

complete before their deadbne. Miss Percent values in the range 

of 0 to 20 pacent are taken to represent system performance 

under *normaP lo*gs, while Miss Percent values in the rsnge 
of 20 to 100 percent represent system performance under 

‘heavy” loading. All the experiments evaluate the Miss Percent 
as a function of the transaction arrival rate. (The Miss Percent 

graphs show mean values with relative half-widths about the 

mean of less than 5% at the 90% conlidence interval.) 

While describing the AED algorithm in Section 2.5, we men- 

tioned two parameters, HfTbatch and ALLbutch, that are used to 
determine the sample size in computing transaction hit ratios. 

These parameters were both set to 20 in the experiments 

described here (we comment on this choice in Section 8). 

5.1. Resource Contention (RC) 

Our first experiment investigated the performance. of the 
priority mappings when resource contention is the sole perfor- 

mance limiting factor. The settings of the workload parameters 

and system parameters for this experiment are listed in Table 3. 

The WritePmb parameter, which gives the probability that an 

accessedpageisupdatedissettoO.Otoensurethatthereisno 

data contention. Therefore, no concurrency control is required 

in this experiment since all trsnsactions belong to the qlcery 

(read-only) class. 

For this experiment, Figures 2a and 2b show the Miss Per- 

cent results under normal load and heavy load conditions, 

respectively. From this set of graphs, we observe that at normal 

loads. the ED (Earliest Deadline) mapping misses the fewest 

deadlines among the lixed priority mappings. As the system 

load is increased, however, the performance of ED steeply 
degrades. and its performance actually is close to that of NP (No 

Priority) at heavy loads. This is because at heavy loads, where 

the resources become saturated, transactions under ED and NP 

Workload System 
Parameter Value Parameter Value 

TnznsSize 16 pages DatabawSize 1000 paw 
Wrireprob 0.0 NuntCPUs 8 

Table 3: RC Parameter Settings 

make progress at similar average rates. This is explained as fol- 

lows: Under NP. every transaction makes slow but steady pro- 

gress from the moment of arrival in the system since all hansac- 

tions have the same priority. Under ED, however, a new tram 

sactionus~yhasalowpioritysinceitfdeadlinetendstobe 

later than those of the transactions already in the system. lhere- 

fore, transactions tend to start off at low priority and gain high 

priority only as their deadline draws close. This results in Iran- 

sactions making little progress initially, but making fast progress 

as their deadhne approaches. The net progress made under ED, 

however, is about the same as that tmder NP. This was experi- 
mentally con6rmed by measuring the average progress that had 

been made (i.e. mimber of steps executed) by transactions that 

missed their deadline; indeed, we found that once the resources 

are saturated, the average progress made by transactions is virtu- 

ally the same for NP and ED. 

Turning our attention to the RP (Random Priority) mapping, 

we observe that it behaves poorly at normal loads since it does 

not take transaction time constraints into account At heavy 

loads, however, it surprisingly performs significantly better than 

ED. The reason for this behavior is the following: Under ED, 

as discussed above, transactions gain priority slowly. At heavy 
loads, this gradual process of gaining priority causes most tran- 

sactions to miss their deadlines. The RP mapping, on the other 

hand, due to its static random assignment of priorities, allows 
some transactions to have a high priority right from the time 

they arrive in the system. Such transactions tend to make their 

deadlines, and therefore there is always a certain fraction of the 
transactions in the system that are virtually guaranteed to make 

their deadlines. 

Focusing next on the LD (Latest Deadline) mapping, we 

observe that it performs worse than all the other algorithms at 

normal loads. The reason is that this mapping gives the highest 

priority to transactions that have loose time constraints, thus 

tending to miss the deadlines of transactions that have tight time 

constraints. At heavy loads, it performs better than ED, how- 

ever, since transactions with loose time constraints continue to 

make their deadhnes as they retain high priority for a longer 

period of time. 

Moving on to the adaptive AED mapping, we note that at 

normal loads it behaves identically to Earliest Deadline. As the 

overload region is entemd, it changes its behavior to be qualita- 

tively similar to that of RP, and in fact, performs even better 

than RP. Therefore+ in an overall sense, it delivers the best per- 

formance. In Figure 2c, the hit ratios in the HIT and MISS 
groups are shown. It is clear from this figure that a hit ratio of 

more than 0.90 in the HIT group and less than 0.10 in the MZSS 

group is achieved through the entire loading range. This indi- 

cates that the feedback mechanism used to divide transactions 

into HIT and MISS groups is effective and achieves the goal of 

having a high hit ratio in the HIT group and a low hit ratio in the 

MISS group. In Figure 2d, the average number of transactions in 

the HIT group and the average number of transactions in the 

whole system are plotted. From this figure, we can wnclude 

that for the given workload, the RTDBS can successfully 
schedule about 60 wncurrently executing transactions under an 
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Earliest Deadline schedule. For system loadings above this 

level, a pure Earliest Deadline schedule causes most transactions 

to miss their deadhne since they receive high priority only when 
they are close to missing their deadline. The AED mapping. 

however, by its division of transactions into different priority 

groups, creates a “core set” of transactions in the HIT group that 

are virtually certain to make their deadlines independent of sys- 

tem loading conditions. Viewed from a different perspective, 

we have revisited the classic multi-programming thrashing prob- 

lem where increasing the number of transactions in a system can 

lead to decrecrsed throughput. In our framework, adding tnm- 
sactions to a set of &msactions that can just be completed with 

an Earliest Deadline schedule causes more missed deadlines. 

As promised in the description of the AED algorithm in Sec- 

tion 2.5, we now provide the rationale for using a Random Prior- 

ity mapping in the MISS group. The reason is the following: 

Transactions assigned to the MISS group essentially “see” a 
heavily-loaded system due to having lower priority than transac- 

tions of the HIT group. Since our experiments show Random 

Priority to have the best performance among the non-adaptive 
algorithms at heavy loads, we have chosen this priority ordering 

for the MISS group. The reason that AED does better than the 

pure RP mapping at heavy loads is that the transaction popula- 
tion in the HIT group is sufficiently large that using ED, instead 

of RP, among this set has an appreciable performance effect. As 
the loading level is increased even further, however, the perfor- 

mance of AED would asymptotically reach that of RP since the 

munber of transactions in the HIT group would be small com- 

pared to the total number of trasnactions in the system. 

Summarizing the results of the above set of experiments. we 
can draw the following conclusions for the query workloads 

examined in this sectiox~ Fist. the AED mapping provides the 

best overall performance. Its feedback mechanism is effective 

in detecting overload conditions and limiting the size of the HIT 

group to a level that can be handled by an Earliest Deadline 

schedule. Second, at normal loads, the Earliest Deadline priority 

ordering meets most transaction deadhnes and is therefore the 

right priority mapping in this region. At heavy loads, however, 
the Random Priority algorithm delivers the best performance 

among the non-adaptive algorithms due to guaranteeing the 

completion of high-priority transactions. 

As in this experimenk we observed No Priority and Latest 

Deadhne to perform poorly for the other workloads that we con- 

sidered. Therefore, we will present further results only for the 

Earliest Deadline., Random Priority and Adaptive Earliest Dcad- 

line priority mappings. 

5.2. Resource and Data Contention (RC + DC) 

Our next experiment explored the situation where both 

resource contention und data contention contribute towards sys- 

tem performance degradation. This was done by changing the 

write probability from 0.0 to 0.25, which implies that one-fourth 

of the data items that are read will also be updated. The 2PL-HP 

algorithm (see Section 4) is used as the concurrency control 

mechanism since the workload now includes transactions that 

belong to the updater class. 

For this experiment, Figures 3a and 3b show the Miss Per- 

cent results for the vsrious priority mappings under normal load 
and heavy load conditions, respectively. From these figures it is 
evident that Earliest Deadline performs the best at low loads, 

while Random Priority is superior at heavy loads. The AED 

mapping behaves almost as well as ED at low loads and behaves 

like RP in the overload region. thus providing the best overall 

performance. In this experimmL the increased contention levels 

cause the population in the HIT group to be quite small com- 

pared to the overall system population at heavy loads. There- 

fore, using ED instead of RP in this group does not have an 
appreciable performance effect. We therefore see that the per- 

formance of AED approaches that of RP at a lower load than in 

the pure resource contention experiment (see Figure 2b). 

From the above set of experiments, we observe that the AED 
algorithm is capable of performing well under both resource 

contention and data contention. We conducted further experi- 

ments to examine the effects of changes in deadline assign- 

ments, transaction write probabilities, hardware resource quanti- 

ties, etc. The results of these experiments reinforced the general 

conclusions given above. We also conducted a few preliminary 
experiments to determine how well the AED algorithm could 

adapt to bursty transaction arrival patterns. In these experi- 
ments, the AED algorithm proved to be robust in its perfor- 

mance [Hari9lb]. 

We have seen that the AED algorithm exhibits ED-like 

behavior in the light-load region and RP-like behavior in the 

overload region. From these results, it might appear that a much 

simpler approach than AED would be to switch from ED to RP 

(for all transactions) when the transaction miss percentage 

exceeds a threshold. The threshold, of course, would be the 

miss level at which RP starts performing better than ED. The 
problem with this approach is that we do not a-priori know this 

changeover threshold. Also, the threshold is a function of work- 

load characteristics and may vary dynamically with changes in 

the input workload. For example, in the pure resource contm- 

tion experiment, the ED to RP changeover miss percent thres- 

hold is about 25 percent (see Figure 2a); in the resource plus 

data contention experiment, however, the threshold is about 50 

percent (see Figure 3b). Therefore, while the AED algorithm is 

complicated, the complexity appears necessary to make the 

priority assignment edapt to changing workload and system con- 
ditions. 

6. Extending AED for Transaction Values 

In this se&on, we consider the case where transactions have 

different values assigned to them. The goal here is to maximize 

the sum of the values of those transactions that commit by their 

deadline, and minimizing the number of missed deadlines 

bccomea a secondary concern. A fundamental problem when 

transactions are characterized by both value and deadhne is how 

to construct a priority ordering since this requires a tradeoff to 

be established between these two orthogonal characteristics. In 

[Hari9la]. several priority mappings that establish different, but 



fixed, tradeoffs between value and deadline were investigated. 
It was found that one of two mappings - either Earliest Deadline 

(ED) or Highest Value (HV), which implement extreme trade- 

offs - almost always provided the best performance. The Earli- 

transaction values are not taken into account. In the Highest 

Value mapping, transactions with higher value are given higher 
priority. and transaction deadlines are ignored. For transaction 

workloads with a limited uniform stead in their values, Earli- 

est Deadline provided the best performance at light loads. 
Under heavy loads, however, the Highest Value mapping gen- 
erated the most value. For workloads that had a large spread or 

pronounced skew in transaction values, the Highest Value map- 

ping was found to deliver the best performance throughout virtu- 

ally the entire loading range. 

In this section, we pesent a value-based extension of the 

AED algorithm called Hierarchical Earliest Deadline (HED), 
which adaptively varies the tradeoff between value and deadline 

to maximize the value realized by the system. Informally, the 

HED algorithm groups transactions. based on their values, into a 
hierarchy of prioritized buckets. It then uses an AED-like algo- 

rithm within each bucket to determine the relative priority of 

transactions belonging to the bucket. The details of the HED 

algorithm are described below. after which the rationale behind 
the construction of the algorithm is discussed. 

6.1. Bucket Assignment 

The HED algorithm functions in the following manner: The 

priority mapper unit maintains a value-based dynamic list of 

buckets, as shown in Figure 5. Every transaction, upon arrival, 
is assigned based on its value to a particular bucket in this list. 

Figure 5: HED Bucket Hierarchy 

Each bucket in the list has an associated MinVdue and Max- 

v&e attribute - these attrilxnes bound the values that hansac- 

tions assigned to the bucket may have. Each bucket also has an 

identilier, and bucket identifiers in the list are in monotonically 

increasing order. There are two special buckets, TOP and BOT- 

TOM, that are always at the head and tail of the list, respec- 

tively. The MinVdue and UuxVdue attributes of TOP are set to 

0~. while the MinVdue and MaxVdne attibutes of BtYITOM 
are set to zero. Since we assume that all transaction values are 

linite and positive, no tmnsactions are ever assigned to these 

buckets, and their function is merely to serve as permanent list 
boundaries. The identifiers of the TOP and BCJITOM buckets 

arepresettoOandMAXINT, respectively. 

When a new tmnsaction, T,. arrives in the system, it is 

assigned to the bucket closest to TOP that satisfies the constraint 

MWalue 5 vall&?_ _ < MaxVdue. If no such bucket exists. a 

new bucket is inserted in the list between the bucket closest to 

TOP that satisfies MinVdue < Value,_ and its predecessor. and 

the transaction is assigned to this bucket A newly created 
bucket is assigned its identilier by halving the sum of the 

identifiers of its predecessor and successor buckets. For exam- 

ple, a bucket inserted between buckets with identiliers 256 and 

512 will have 384 as its identifier. When a transaction leaves 

the system, it is removed from its assigned bucket. A bucket 

that becomes empty is deleted from the bucket list. 

The MinVdue and MaxVdue attributes of a bucket are set as 

follows: Each bucket maintains an AvgVdue attribute that mon- 

itors the average value of the set of transactions that are 

currently assigned to the bucket. The MinVdue and MaxVdue 

attributes of the bucket are then computed as 
(AvgVduelSpreadFactor) and (AvgVdue*SpreadFactor). 

respectively, where SpreadFactor is a parameter of the HED 

algorithm. The SpreadFactor parameter controls the maximum 

spread of values allowed within a bucket. Whenever a transac- 

tion enters or leaves the system, the associated bucket updates 

its AvgVdue. MinVdue and MaxVdue attributes. 

6.2. Group Assignment 

In similar fashion to the AED algorithm, transactions in each 

bucket are divided into HIT and MISS groups, with the HlT 

group size controlled by a HITcapaity variable. After a new 

transaction has beeJl assigned to a bucket its group assignment 

within the bucket is as follows: The transaction is first given a 

randomly chosen unique integer key, Ir. It is then inserted into 

a value-ordered list of transactions belonging to the bucket, with 

transactions that have identical values being ordered by their IT 

keys. The position of the new transaction in the list, ~0%. is 

noted. If posr is less than or equal to the HITcapacity of the 
bucket, the new transaction is assigned to the HlT group in the 

bucket; otherwise, it is assigned to the MISS group. The 

HlTcqmcity computation in each bucket is implemented with a 

separate feedback process; each feedback process is identical to 

that described for the AED algorithm in Section 2.5. 



6.3. Priority Assignment 

After its bucket and group assignmen& a new transaction is 

assigned its priority using the following formula: 

Pr = 

@r. 1. 1% Ir) ifGrorrp =MISs 

where BT is the iderhh of the transaction’s bucket. 

The above priority assignment results in transactions of 

bucket i having higher piarity than all transactions of bucket j 
for j > i. and lower priority than all transactions of bucket g for 

g < i. Within each bucket, transactions in the HIT group have a 

higher priority than transactions in the MISS group. The tran- 

saction priority ordering in the HIT group is Earliest Deadline, 

while the piority or&ring in the MISS group is Highest Value. 

The IT priority wmponent serves to break the tie for transactions 

in the HIT or MISS group that have identical deadlines or values, 

respectively. This ensurea a total priority o&ring of all han- 

sactions in the system. 

As mentioned earlier, the priority assignment process within 
each bucket is similar to that of the AED algorithm. There are, 

however, two important differences: Fibs4 the transaction list 

within a bucket is or&red based on tmnsaction values, instead 
of transaction keys. Second, the priority ordering within the 

MISS group is Highest Value instead of Random Priority. 

6.4. Discussion 

The wre principle of the AED mapping is to use an Earliest 

D&line schedule among the largest possible set of transactions 

that can be completed by their &adline, i.e. the HIT group. The 

HED mapping extends this principle in two ways: Fmt, within 

a bucket, it ensures that higher-valued transactions are given 

pecedence in populating the HIT group. as this should increase 
the realized value. Second, by creating a value-based hierarchy 

of buckets, the HED algorithm ensures that transactions with 

substantially different values are not assigned to the same 
bucket. The reason for doing this is the following: The AED 

algorithm only approximates a hit ratio of 1.0 in the HIT group. 
Therefore, there is always the risk of losing an extremely high- 

valued transaction since transactions within the Hfl group are 
prioritized by deadline and not by value. Missing the deadlines 

Of Such “golden” transactions can seriously affect the realixed 

value; our solution is to establish a value-based bucket hierar- 

chy, thus ensuring the completion of high-valued transactions. 

7. Experiments and Results 

In this section, we present performance results for our exper- 

iments comparing the Earliest Deadline, Highest Value and 
Hierarchical Earliest Deadhne priority mappings when transac- 

tions have different values. The performance metric used now is 

Loss Percent. which is the ratio of the sum of the values of late 

transactions to the total input value, i.e., it is the percentage of 

the offered value that is not real&d by the system, Just as for 

the earlier Miss Percent figures, Loss Percent values in the range 

ofOto2Opementand20to1OOpercentaretakentorepre5mt 

system performance under “normal” loadings and “heavy” load- 

ings. respectively. 

We experimented with two value assignment distributions: 

Uniform and Skewed. In the Uniform distribution. transactions 
were randomly assigned values from a uniform distribution 

ranging between 50 and 150. In the Skewed distribution. 10 

percent of the transactions wnstituted 90 percent of the offered 

value. Transactions belonging to this group had values ranging 

uniformly between 450 and 1350, while the remaining 90 per- 
cent had values ranging between 6 and 16. The average value of 

a transaction for both distributions is thus the same, namely 100. 

While we evald the performance of the mappings for a 

variety of workloads, due to space constraints we will discuss 

only the results obtained for the case where system performance 

is limited by both resource wntention and data contention. The 

settings of the workload and system parameters are the same as 

those for the experiment of Section 5.2. The SpmadFuctof 
parameter of the HED algorithm is set to 3 in the experiments 

described here (we comment on this choice in Section 8). 

7.1. Uniform Value Distribution 

Our lirst experiment investigated the performance of the 

priority mappings for the Unifmm transaction value workload. 
For this experiment, Figures 6a and 6b show the Loss Percent 

results under normal load and heavy load wnditions. respec- 

tively. From this set of graphs, it is clear that at normal loads, 
the Earliest Deadline (ED) mapping delivers the moat value. 

This might be considered surprising since ED is a value- 

indifferent mapping, while the Highest Value (HV) mapping is 

valuecognizant The reason for ED’s good performance is that 

it misses the deadlines of very few (if any) transactions and 

therefore delivers the most value. In wntrast, the Highest Value 

mapping focuses its effort on completing the high-value transac- 

tions. In the process. it prevents some lower value transactions 

from making their deadlines, even though most of these dead- 

lines could have been met (as demonstrated by ED), thereby los- 

ing more of the offered value. As the system load is increased, 

however, the performance of ED steeply degrades, while the 

performance of HV becomes wnsiderably superior. This is 

because following the Highest Value principle is a better idea at 

high loads since the system has sufficient resources to handle 

only a fraction of the transactions in the system. In such a situa- 

tion, the transactions that should be run are those that can deliver 

high value. 

Moving on to the HED mapping, we note that at normal 

loads it behaves almost identically to Earliest Deadline. Then, 

as the overload region is entered it changes its behavior to be 

similar to that of Highest Value. Therefore, in an overall sense, 

the HFD mapping delivers the best performance. It should be 
noted that for this uniform workload all tmnsactions are 

assigned to the same bucket since transaction values are all 

within a factor of 3 (the SpreadFactor setting) of each other. 

Summarizing the above results, we can draw the following 

wnclusions for the uniform value workload: First, the HED 
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mapping provides the beat overall performsnce. Its feedback 

mechanism is effective in detecting overload conditions and lim- 

iting the size of the HIT group to a manageable munber. It also 

real&s a high value by populating the HIT group with higher- 

valued tranmctions. Second. under normal loads, the Earliest 
Deadhne priority ordering meets most transaction deadlines and 

is therefore the right schedule in this region. Under high loads. 
however. the Highest Value mapping delivers good performance 

as it guaranteea the completion of high-value transactions. 

7.2. Skewed Value Distribution 

The next experiment examined the effect of having a skew in 

the transaction value distribution. For this experiment, the 

Skewed value distribution was used to assign values to transac- 

tions. The Loss Percent results for this experiment are shown in 

Figures 7a and 7b. From these figures we note that the perfor- 

mance of the Earliest Deadline (ED) mapping remains the same 

as for the Uniform value distribution (compare with Figures 6a 
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and 6b). This is because the ED mapping is value-indifferent. 

The figures also show that the performance of the Highest Value 

(HV) mapping improves greatly as compared to the Uniform 

case. Note that even at low load, the HV mapping performs 

almost as well as the ED mapping. The HV mapping, by mak- 

ing certain that all of the (few) high-value transactions make 
their deadline. ensures that it always realixes at least 90 percent 

of the offered value. In addition. at low loads, the value of the 

missed transactions constitutes a very small fraction of the total 

value, and the performance impact of having a higher number of 

missed deadlinea than ED is therefore negligible. 

If we now consider the HED mapping, we observe that it 

performs better than both ED and HV over the entire loading 

range. The reason for its good Performance is twofold: First, 

the bucket hierarchy construction ensures that the few high- 

valued transactions sre assigned to a separate higher priority 

bucket. This guarantees that these transactions are completed 

and therefore their value is realized. Second, using the AJZD 
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policy within each bucket results in more deadlines being made 
and a corrt?sponding incmase in the realixed value. 

8. Conclusions 

In this paper. we have addressed the issue of stabilixing the 

overload performance of Earliest Deadline in real-time dambase 
systems for applications with Rrm deadlines. Our operating con- 

straint is that a-priori knowledge of transaction resource require- 
ments or data access pattems is not available. We introduced 

the Adaptive Earliest Deadline (AED) priority assignment algo- 

rithm and using a detailed simulation model of a real-time data- 

base system studied its performance relative to Earliest Dead- 

line and other fixed ~xiority mappings. Our experiments showed 
that for the workloads considered in this study, which examined 

both resource contention in isolation and in association with data 

contention, the AED algorithm delivaed the best overall perfor- 

mance. At light loads, it behaved exactly like Earliest Deadline, 

at high loads its behavior was similar to that of Random priority, 
which was the best performer among the fixed priority map- 

pings. The feedback control mechanism of AED was found to 
be accurate in estimating the number of transactions that could 
be sustained under an ED schedule. AED’s policy of restricting 

the use of the Earliest Deadline approach to the HTT group 

delivered stabilized performance at high loads. The AED algo- 

rithm has also been observed to be robust to limited fluctuations 

in the transaction arrival pattern. 

Jn some real-time applications, different transactions may be 

assigned different values. Assigning priorities to transactions 

when they are character&d by both values and deadhnes is a 

challenging problem. We introduced the Hierarchical Earliest 

Deadhne (HED) priority assignment algorithm here to address 

this issue. The HED algorithm groups transactions. based on 

their value. into a hierarchy of prioritixed buckets; it then uses 
the AED algorithm within each bucket Using our RTDBS 

simulation model, we evahutted the performance of HED with 

respect to mappings that establish fixed tradeoffs between values 
and deadlines. Gur experiments showed that, both for work- 

loads with limited spread in transaction values and for work- 

loads with pronounced skew in transaction values, the HED 

algorithm provided the best overall performance. At light loads, 

its behavior was identical to that of Earliest Deadline, while at 

heavy loads its performance was better than that of Highest 

Value. Use of the AED algorithm within the transactions of a 

bucket decreased the number of missed deadlines. Also, by giv- 

ing preference to more valuable transactions in populating the 

HIT group of each bucket, the HED algorithm increased the 
realii value. For workloads with pronounced skew in transac- 

tion values, the hierarchical nature of the HED algorithm was 
effective in ensuring that “golden” (high-valued) transactions 
were completed and their value real&d. 

While the AED and HED algorithms appear promising in 

their approach and performance. they have some limitations in 
their current form. In particular, they have several algorithmic 

parameters (HITbatch, SpreadFactor, etc.) that need to be set by 

the database administrator. The settings in the experiments 

discussed here were atrived at aftex experimentation with several 

different choices. However, these senings may not prove suit- 

able for other workloads and enviromnents. Therefore. a 
mechanism that adaptively generates the right settings is 
requited Another limitation of the algorithms is that they 

assume a transaction workload that is homogeneous in its 

characteristics, which is not always the case in practice. We 
lqe to address these limitations in our future research 
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