Commit Processing in Distributed Real-Time Database Systems

Ramesh Gupta * Jayant Haritsa *

Abstract

We investigate here the performance implications of
supporting transaction atomicity in o distributed real-
time database system. Using a detailed simulation
model of a firm-deadline distributed real-time database
system, we profile the real-time performance of a repre-
sentative set of commit protocols. A new commit proto-
col that is designed for the real-time domain and allows
transactions to “optimistically” read uncommitted data
is also proposed and evaluated,

The experimental results show that data distribution
has a significant influence on the real-time performance
and that the choice of commit protocol clearly affects
the magnitude of this influence. Among the protocols
evaluated, the new optimistic commit protocol provides
the best performance for a variety of workloads and sys-
tem configurations.

1. Introduction

Many real-time database applications, especially in
the areas of communication systems and military sys-
tems, are inherently distributed in nature [15]. Incor-
porating distributed data into the real-time database
framework incurs the well-known additional complex-
ities that are associated with transaction concurrency
control and database recovery in distributed database
systems [3, 11]. While the issue of distributed real-
time concurrency control has been considered to some
extent(e.g. [13, 16, 18]), comparatively little work
has been done with regard to distributed real-time
database recovery. In this paper, we investigate the
performance implications of supporting transaction
atomicity in a distributed real-time database system
(RTDBS). To the best of our knowledge, this is the
first quantitative evaluation of this issue.

Distributed database systems implement a trans-
action commit protocol to ensure transaction atomic-

*SERC, Indian Institute of Science, Bangalore 560012, India
tCOINS, University of Massachussetts, Amherst 01003, USA
tCSE, Indian Institute of Technology, Bombay 400076, India

1052-8725/96 $5.00 © 1996 IEEE

220

Krithi Ramamritham { S. Seshadri ¢

ity. Over the last two decades, a variety of commit
protocols have been proposed by database researchers.
These include the classical two phase commit (2PC)
protocol [6], its variations such as presumed commit
and presumed abort [10], and three phase commit [14].
To achieve their functionality, these commit protocols
typically require exchange of multiple messages, in mul-
tiple phases, between the participating sites where the
distributed transaction executed. In addition, several
log records are generated, some of which have to be
“forced”, that is, flushed to disk immediately. Due {o
these costs, commit processing can result in a signif-
icant increase in transaction execution times, making
the choice of commit protocol an important design de-
cision for distributed database systems.

From a performance perspective, commit protocols
can be compared on the following two issues: First, the
extent to which the commit protocol affects the normal
distributed transaction processing performance. That
is, how expensive is it to provide atomicity? Second,
in the event of a site failure, the ability of the opera-
tional sites to correctly terminate the transaction with-
out waiting for recovery of the failed site. That is, is
the protocol “blocking” or “non-blocking”?

With respect to the above issues, the performance
of a representative set of commit protocols has been
analyzed to a limited extent in [4, 10]. These studies
were conducted in the context of a conventional DBMS
where transaction throughput or response time is the
primary performance metric. In a RTDBS, however,
performance is usually measured in terms of the num-
ber of transactions that complete before their dead-
lines. Due to the difference in objectives, the perfor-
mance of commit protocols has to be reevaluated for
the real-time environment.

In the real-time domain, there are two major ques-
tions that need to be explored: First, how do we adapt
the commit protocols to the real-time domain? Sec-
ond, how do the real-time variants of the commit pro-
tocols compare in their performance? In this paper, we
address these questions for the “firm-deadline” appli-
cation framework (8], wherein transactions that miss
their deadlines are considered to be worthless and are

immediately “killed”, that is, aborted and discarded
from the system without being executed to comple-
tion. Using a detailed simulation model of a dis-
tributed database system, we compare the real-time
performance of a representative set of commit proto-
cols. The performance metric is the steady-state per-

Anand e nn AL dn PR | OV Ry " - .|
ccuua.gc Ul LIdlsSdCLion ueadulllles ulldl 41re LHIsSSed.
1.1. Related Work

The design of real-time commit protocols has been
investigated earlier in [17, 19]. These papers are based
on a common theme of allowing individual sites to uni-
laterally commit — the idea is that unilateral commit-
ment results in greater timeliness of actions. If it is
later found that the decision is not consistent glob-
ally, “compensation” transactions are executed to rec-
tify the errors.

While the compensation-based approach certainly
appears to have the potential to improve timeliness,
there are quite a few practical difficulties: First, the
standard notion of transaction atomicity is not sup-
ported — instead, a “relaxed” notion of atomicity [9] is
provided. Second, the design of a compensating trans-
action is an application-specific task since it is based
on application semantics. Third, compensation trans-
actions need to be designed in advance so that they can
be executed as soon as errors are detected — this means
that the transaction workload must be fully character-
ized @ priori. Fourth, “real actions” such as firing a
weapon or dispensing cash may not be compensatable
at all [9]. Finally, no performance studies are available
to evaluate the effectiveness of this approach.

Due to the above limitations, we focus here instead
on improving the real-time performance of the stan-
dard mechanisms for maintaining distributed transac-
tion atomicity.

2. Distributed Commit Protocols

A common model of a distributed transaction is that
there is one process, called the master, which is exe-
cuted at the site where the transaction is submitted,
and a set of other processes, called cohorts, which ex-
ecute on behalf of the transaction at the various sites
that are accessed by the transaction. For this model,
a variety of transaction commit protocols have been
devised, most of which are based on the classical two
phase commit (2PC) protocol [6]. In this section,
we briefly describe the 2PC protocol and a few popular
variations of this protocol — complete descriptions are
available in [10, 14].

221

2.1. Two Phase Commit Protocol

The master initiates the first phase of the protocol
by sending PREPARE (to commit) messages in par-
allel to all the cohorts. Each cohort that is ready to
commit first force-writes a prepare log record to its lo-
cal stable storage and then sends a YES vote to the
master. At this stage, the cohort has entered a pre-
pared state wherein it cannot unilaterally commit or
abort the transaction but has to wait for the final deci-
sion from the master. On the other hand, each cohort
that decides to abort force-writes an abort log record
and sends a NO vote to the master. Since a NO vote
acts like a veto, the cohort is permitted to unilaterally
abort the transaction without waiting for a response
from the master.

After the master receives the votes from all the co-
horts, it initiates the second phase of the protocol. H all
the votes are YES, it moves to a committing state by
force-writing a commit log record and sending COM-
MIT messages to all the cohorts. Each cohort after
receiving a COMMIT message moves to the commit-
ting state, force-writes a commit log record, and sends
an ACK message to the master.

If the master receives even one NO vote, it moves to
the aborting state by force-writing an abort log record
and sends ABORT messages to those cohorts that are
in the prepared state. These cohorts, after receiving
the ABORT message, move to the aborting state, force-
write an abort log record and send an ACK message
to the master.

Finally, the master, after receiving acknowledge-
ments from all the prepared cohorts, writes an end log
record and then “forgets” the transaction.

2.2. Presumed Abort

A variant of the 2PC protocol, called presumed
abort (PA) [10], tries to reduce the message and log-
ging overheads by requiring all participants to follow a
“in case of doubt, abort” rule. That is, if after coming
up from a failure a site queries the master about the
final outcome of a transaction and finds no information
available with the master, the transaction is assumed
to have been aborted. With this assumption, it is not
necessary for cohorts to either send acknowledgments
for ABORT messages from the master or to force-write
the abort record to the log. It is also not necessary for
the master to force-write the abort log record or to
write an end log record after abort.

In short, the PA protocol behaves identically to 2PC
for committing transactions, but has reduced message
and logging overheads for aborted transactions.

2.3. Presumed Commit

A variation of the presumed abort protocol is based
on the observation that, in general, the number of com-
mitted transactions is much more than the number of
aborted transactions. In this variation, called pre-
sumed commit (PC) [10], the overheads are reduced
for committing transactions rather than aborted trans-
actions by requiring all participants to follow a “in case
of doubt, commit” rule. In this scheme, cohorts do not
send acknowledgments for the commit global decision,
and do not force-write the commit log record. In ad-
dition, the master does not write an end log record.
However, the master is required to force-write a collect-
ing log record before initiating the two-phase protocol.
This log record contains the names of all the cohorts
involved in executing that transaction.

The above optimizations of 2PC have been imple-
mented in a number of commercial products and are
now part of transaction processing standards.

2.4. Three Phase Commit

A fundamental problem with all the above proto-
cols is that cohorts may become blocked in the event
of a site failure and remain blocked until the failed site
recovers. For example, if the master fails after initi-
ating the protocol but before conveying the decision
to its cohorts, these cohorts will become blocked and
remain so until the master recovers and informs them
of the final decision. During the blocked period, the
cohorts may continue to hold system resources such as
locks on data items, making these unavailable to other
transactions, which in turn become blocked waiting for
the resources to be relinquished. It is easy to see that,
if the blocked period is long, it may result in major
disruption of transaction processing activity.

To address the blocking problem, a three phase
commit (3PC) protocol was proposed in [14]. This
protocol achieves a nonblocking capability by insert-
ing an extra phase, called the “precommit phase”, in
between the two phases of the 2PC protocol. In the
precommit phase, a preliminary decision is reached re-
garding the fate of the transaction. The information
made available to the participating sites as a result of
this preliminary decision allows a global decision to be
made despite a subsequent failure of the master. Note,
however, that the nonblocking functionality is obtained
at an increase in the communication overhead since
there is an extra round of message exchange between
the master and the cohorts. In addition, both the mas-
ter and the cohorts have to force-write additional log
records in the precommit phase.

222

3. Real-Time Commit Processing

The commit protocols described above were de-
signed for conventional database systems and do not
take transaction priorities into account. In a real-time
environment, this is clearly undesirable since it may
result in priority inversion [12], wherein high priority
transactions are made to wait by low priority trans-
actions. Priority inversion is usually prevented by re-
solving all conflicts in favor of transactions with higher
priority. Removing priority inversion in the commit
protocol, however, is not fully feasible. This is because,
once a cohort reaches the PREPARED state, it has to
retain all its data locks until it receives the global deci-
sion from the master — this retention is fundamentally
necessary to maintain atomicity. Therefore, if a high
priority transaction requests access to a data item that
is locked by a “prepared cohort” of lower priority, it
is not possible to forcibly obtain access by preempt-
ing the low priority cohort. In this sense, the commit
phase in a distributed RTDBS is inherently susceptible
to priority inversion. More importantly, the priority in-
version interval is not bounded since the time duration
that a cohort is in the PREPARED state can be arbi-
trarily long (due to network delays). To address these
issues, we have designed a modified version of the 2PC
protocol, described below.

3.1. Optimistic Commit Protocol

In our modified protocol, transactions requesting
data items held by lower priority transactions in the
prepared state are allowed to access this data. That
is, prepared cohorts lend uncommitted data to higher
priority transactions. In this context, two situations
may arise:

Lender Receives Decision First : Here, the lend-
ing cohort receives its global decision before the
borrowing cohort has completed its execution. If
the global decision is to commit, the lending cohort
completes its processing in the normal fashion. If
the global decision is to abort, then the lender is
aborted in the normal fashion. In addition, the
borrower is also aborted since it has utilized in-
consistent data.

Borrower Completes Execution First : Here, the
borrowing cohort completes its execution before
the lending cohort has received its global decision.
The borrower is now “put on the shelf”, that is,
it is made to wait and not allowed to send a YES
vote in response to its master’s PREPARE mes-
sage. The borrower has to wait until either the

lender receives its global decision or its own dead-
line expires, whichever occurs earlier. In the for-
mer case, if the lender commits, then the borrower
is “taken off the shelf” and allowed to respond
to its master’s messages. However, if the lender
aborts, then the borrower is also aborted imme-
diately since it has read inconsistent data. In the
latter case (borrower’s deadline expires while wait-
ing), the borrower is killed in the normal manner.

In summary, the protocol allows transactions to read
uncommitted data held by lower priority prepared
transactions in the “optimistic” belief that this data
will eventually be committed!. In the remainder of
this paper, we refer to this protocol as OPT.

The primary motivation, as described above, for
permitting access to uncommitted data was to reduce
priority inversion. However, if we believe that lender
transactions will typically commit, then this idea can
be carried further to allowing all transactions, includ-
ing low priority transactions, to borrow uncommitted

data. This may further help in improving the real-time -

performance since the waiting period of transactions is
reduced, and is therefore incorporated in OPT.

3.2. Additional Features of OPT

The following features have also been included in
the OPT protocol since we expect them to improve its
real-time performance:

Active Abort : In the basic 2PC protocol, cohorts
are passive in that they inform the master of their
status only upon explicit request by the master.
In a real-time situation, it may be better for an
aborting cohort to immediately inform the master
so that the abort at the other sites can be done ear-
lier. Therefore, cohorts in OPT inform the master
as soon as they decide to abort locally.

Silent Kill : For a transaction “kill”, that is, an abort
that occurs due to missing the deadline, there is
no need for the master to invoke the abort proto-
col since the cohorts of the transaction can inde-
pendently realize the missing of the deadline (as-
suming global clock synchronization). Therefore,
in OPT, aborts due to kills are done “silently”
without requiring any communication between the
master and the cohorts.

Presumed Abort/Commit : The optimizations of
Presumed Commit or Presumed Abort discussed

1A similar, but unrelated, strategy of allowing access to un-
committed data has also been used to improve real-time concur-
rency control performance [2].

223

earlier for 2PC can also be used in conjunction
with OPT to reduce the protocol overheads. We
consider both options in our experiments.

An important point to note here is that the pol-
icy of using uncommitted data is generally not recom-
mended in database systems since this can potentially
lead to the well-known problem of cascading aborts [3]
if the transaction whose dirty data has been accessed
is later aborted. However, in our situation, this prob-
lem is alleviated due to two reasons: First, the lending
transaction is typically expected to commit because (a)
the lending cohort is in prepared state and cannot be
aborted due to local data conflicts, and (b) the sibling
cohorts are also expected to eventually vote to commit
since they have survived? all their data conflicts that
occurred prior to the initiation of the commit protocol
(Active Abort policy). Second, even if the lender does
eventually abort (e.g. due to deadline expiry), it only
results in the abort of the immediate borrower(s) and
does not cascade beyond this point (since borrowers are
not in the prepared state which is the only situation in
which uncommitted data can be accessed). In short,
the abort chain is bounded and is of length one.

4. Simulation Model

To evaluate the performance of the various commit
protocols described in the previous sections, we devel-
oped a detailed simulation model of a distributed real-
time database system. Our model is based on a loose
combination of the distributed database model pre-
sented in [5] and the real-time processing model of [8].
A summary of the parameters used in the model are
given in Table 1.

The database is modeled as a collection of DBSize
pages that are uniformly distributed across all the
NumSites sites. At each site, transactions arrive in
an independent Poisson stream with rate ArrivalRate,
and each transaction has an associated firm deadline.
The deadline is assigned using the formula Dr
A1+ SF xRy, where Dy, Ay and Ry are the deadline,
arrival time and resource time, respectively, of transac-
tion T, while SF is a slack factor. The resource time is
the total service time at the resources that the trans-
action requires for its execution®. The SlackFactor
parameter is a constant that provides control over the
tightness/slackness of transaction deadlines.

2We assume a locking-based concurrency control mechanism.

33ince the resource time is a function of the number of mes-
sages and the number of forced-writes, which differ from one
commit protocol to another, we compute the resource time as-
suming execution in a centralized system.

Each transaction in the workload has the “single
master — multiple cohort” structure described in Sec-
tion 2. The number of sites at which each transac-
tion executes is specified by the DistDegree param-
eter. The master and one cohort reside at the site
where the transaction is submitted whereas the remain-
ing DistDegree — 1 cohorts are set up at sites chosen
at random from the remaining NumSites — 1 sites.
The cohorts execute one after another in a sequential
fashion. At each of the execution sites, the number of
nagna nnnnaand hoy +ha trangastinn’a anhart varing 1113

PGJBUD ALLTOOTU VY UiiT LI AlDalLIVLL S LLULIUL G VAL ITD Ul

formly between 0.5 and 1.5 times CohortSize. These

pages are chosen randomly from among the database

pages located at that site. A page that is read is up-
dated with probability WriteProb. A transaction that
is restarted due to a data conflict makes the same data
accesses as its original incarnation.

A read access involves a concurrency control request
to get access permission, followed by a disk I/O to read
the page, followed by a period of CPU usage for pro-
cessing the page. Write requests are handled similarly
except for their disk I/O - the writing of the data pages
takes place asynchronously after the transaction has
committed. We assume sufficient buffer space to allow
the retention of updates until commit time.

The commit protocol is initiated when the transac-
tion has completed its data processing. If the trans-
action’s deadline expires either before this point, or
before the master has written the global decision log
record, the transaction is killed (the precise semantics
of firm deadlines in a distributed environment are de-
fined in [7]).

As mentioned earlier, transactions in a RTDBS are
typically assigned priorities in order to minimize the
number of missed deadlines. In our model, all the co-
horts of a transaction inherit the master transaction’s
priority. Further, this priority, which is assigned at
arrival time, is maintained throughout the course of
the transaction’s existence in the system (including the
commit processing stage, if any).

The physical resources at each site consist of
NumCPUs CPUs and NumDisks disks. There is a
single common queue for the CPUs and the service dis-
cipline is Pre-emptive Resume, with preemptions being
based on transaction priorities. Each of the disks has
its own queue and is scheduled according to a Head-
Of-Line (HOL) policy, with the request queue being
ordered by transaction priority. The PageCPU and
PageDisk parameters capture the CPU and disk pro-
cessing times per data page, respectively.

The communication network is simply modeled as
a switch that routes messages since we assume a lo-
cal area network that has high bandwidth. However,

224

Table 1. Simulation Model Parameters

NumSites Number of sites in the database
DBSize Number of pages in the database
ArrivalRate | Transaction arrival rate / site
SlackFactor | Slack Factor in Deadline formula
DistDegree | Degree of Distribution
CohortSize | Avg. cohort size (in pages)
WriteProb Page update probability
NumCPUs | Number of CPUs per site
NumDisks | Number of disks per site
PageCPU CPU page processing time
PageDisk Disk page access time

MsgCPU Message send / receive time

the CPU overhead of message transfer is taken into ac-
count at both the sending and the receiving sites. This
means that there are two classes of CPU requests —
local data processing requests and message processing
requests. We do not make any distinction, however,
between these different types of requests and only en-
sure that all requests are served in priority order. The
CPU overhead for message transfers is captured by the
MsgC PU parameter.

With regard to logging costs, we explicitly model
only forced log writes since they are done syn-
chronously and suspend transaction operation until
their completion.

5. Experiments and Results

Using the distributed firm-deadline RTDBS model
described in the previous section, we conducted an ex-
tensive set of simulation experiments comparing the
performance of the various commit protocols presented
earlier. Due to space limitations, we discuss only a rep-
resentative set of results here — the complete details are
available in [7].

The performance metric of our experiments is
MissPercent, which is the percentage of input trans-
actions that the system is unable to complete before
their deadlines. MissPercent values in the range of 0 to
20 percent are taken to represent system performance
under “normal” loads, while MissPercent values in the
range of 20 percent to 100 percent represent system
performance under “heavy” loads. The transaction
priority assignment used in all of the experiments de-
scribed here is Earliest Deadline, wherein transactions
with earlier deadlines have higher priority than trans-
actions with later deadlines. For concurrency control,
the 2PL High Priority scheme [1] is employed.

5.1. Comparative Protocols

To help isolate and understand the effects of dis-
tribution and atomicity on MissPercent performance,
and to serve as a basis for comparison, we have also
simulated the performance behavior for two additional
scenarios. These scenarios are:

Centralized System : Here, we simulate the per-
formance that would be achieved in a centralized
database system that is equivalent (in terms of
database size and resources) to the distributed
database system. In a centralized system, mes-
sages are obviously not required and commit pro-
cessing only requires force-writing a single decision
log record. Modeling this scenario helps to isolate
the effect of distribution on MissPercent perfor-
mance.

Distributed Processing, Centralized Commit :
Here, data processing is executed in the normal
distributed fashion but the commit processing is
like that of a centralized system, requiring only the
force-writing of the decision log record at the mas-
ter. While this system is clearly artificial, model-
ing it helps to isolate the effect of distributed com-
mit processing on MissPercent performance (as
opposed to the centralized scenario which isolates
the entire effect of distributed processing).

In the following experiments, we will refer to the
performance achievable under the above two scenarios
as CENT and DPCQC, respectively.

5.2. Expt. 1: Baseline Experiment

The settings of the workload parameters and sys-
tem parameters for our baseline experiment are listed
in Table 2 . These settings were chosen to ensure sig-
nificant data and resource contention in the system,
thus helping to bring out the performance differences
between the various commit protocols, without having
to generate very high transaction arrival rates.

Table 2. Baseline Parameter Settings

NumSites 8 NumCPUs | 2
DBSize 2400 pages | NumDisks | 4
SlackFactor | 4.0 PageCPU | 10 ms
DistDegree | 3 PageDisk 20 ms
CohortSize | 6 pages MsgCPU 10 ms
WriteProb 0.5 — -

225

For the baseline experiment, Figures 1a and 1b show
the MissPercent behavior under normal load and heavy
load conditions, respectively. In these graphs, we first
observe that there is considerable difference between
centralized performance (CENT) and the performance
of the standard commit protocols throughout the load-
ing range. For example, at an arrival rate of 2 trans-
actions per second at each site, the centralized sys-
tem misses virtually no deadlines whereas 2PC and
3PC miss in excess of 30 percent of the deadlines.
This difference highlights the extent to which a con-
ventional implementation of distributed processing can
affect real-time performance.

Moving on to the relative performance of 2PC and
3PC, we observe that there is a noticeable but not large
difference between their performance at normal loads.
The difference arises from the additional message and
logging overheads involved in 3PC. Under heavy loads,
however, the performance of 2PC and 3PC is virtually
identical. This is explained as follows: Although their
commit processing is different, the abort processing of
3PC is identical to that of 2P C. Therefore, under heavy
loads, when a large fraction of the transactions wind
up being killed (aborted) the performance of both pro-
tocols is essentially the same. Since their performance
difference is not really large for normal loads also, it
means that, in the real-time domain, the price paid
during normal processing to purchase the nonblocking
functionality is comparatively modest.

Shifting our focus to the PA and PC variants of the
2PC protocol, we find that their performance is only
marginally different to that of 2PC. This means that
although these optimizations are expected to perform
considerably better than basic 2PC in the conventional
DBMS environment, these expectations do not carry
over to the RTDBS environment. The reason for this is
that performance in an RTDBS is measured in boolean
terms of meeting or missing the deadline. So, although
PA and PC reduce overheads under abort and commit
conditions, respectively, all that happens is that the re-
sources released by this reduction only allow executing
transactions to execute further before being restarted
or killed but is not sufficient to result in many more
completions. This was confirmed by measuring the
number of forced writes and the number of acknowl-
edgements, on a per transaction basis, shown in Figures
1d and le. In these figures we see that PA has signifi-
cantly lower overheads at heavy loads (when aborts are
more) and PC has significantly lower overheads at nor-
mal loads (when commits are more). Moreover, while
PA always does slightly better than 2PC, PC actu-
ally does worse than 2PC at heavy loads since PC has
higher overheads than 2PC for aborts.

Fig 1a : Normal Load (Baseline)

A
|
]
3R
n
122}
=
0 0.5 1 1.5 2
Arrival Rate/Site —>
o -© 3PC
*—x 2PC /g\
+ -+ PA £
[3°]
SRR b4 PC ml
(7]
e—o OPT §
x— =X DPCC 3
% — % CENT

Fig 1d : Forced Writes (Baseline)

15¢

A

I

i

2

& 10}

i~

S

.E

3 5

a

o

(s}

IL -

\i‘—_"_

0 i A 2 3
o1 3 5 75 10

Arrival Rate/Site —>

226

Fig 1b : Heavy Load (Baseline)
100¢ >

80}
60}
.11
20
3 4 5 7.5 10
Arrival Rate/Site ——>
Fig 1¢ : Success Ratio (Baseline)
1¢
0.8¢
0.6t
04}
0.2t
0 " i i i A 3
01 2 3 5 7.5 10
Arrival Rate/Site ——>
Fig 1e : Acks (Baseline)
3 -

il SR
—

3 5 7.5
Arrival Rate/Site ——>

10

Finally, turning our attention to the new protocol,
OPT, we observe that its performance is considerably
better than that of the standard algorithms over most
of the loading range and especially so at normal loads.
An analysis of its improvement showed that it arises
primarily from the optimistic access of uncommitted
data and from the active abort policy. The silent kill
optimization (not sending abort messages for aborts
arising out of deadline misses), however, gives only a
very minor improvement in performance. At low loads,
this is because the number of deadline misses are few
and the optimization does not come into play; at high
loads, the optimization’s effect is like that of PA and
PC for the standard 2PC protocol — although there is
a significant reduction in the number of messages, the
resources released by this reduction only allow trans-
actions to proceed further before being restarted but
does not result in many more completions. This was
confirmed by measuring the number of pages that were
processed at the CPU - it was significantly more when
silent kill was included.

As part of this experiment, we wanted to quan-
tify the degree to which the OPT protocol’s optimism
about accessing uncommitted data was well-founded —
that is, is OPT safe or foolhardy? To evaluate this,
we measured the “success ratio”, that is, the fraction
of times that a borrowing was successful in that the
lender committed after loaning the data. This statis-
tic is shown in Figure 1c and clearly shows that un-
der normal loads, optimism is the right choice since
the success ratio is almost one. Under heavy loads,
however, there is a decrease in the success ratio — the
reason for this is that transactions reach their commit
phase only close to their deadlines and in this situation,
a lending transaction may often abort due to missing
its deadline. These results indicate that under heavy
loads, the optimistic policy should be modified such
that transactions borrow only from “healthy” lenders,
that is, lenders who still have considerable time to their
deadline — we intend to address this issue in our future
work.

Another interesting point to note is the following:
In Figures 1a and 1b the difference between the CENT
and DPCC curves shows the effect of distributed data
processing whereas the difference between the commit
protocol curves and the DPCC curve shows the effect of
distributed commit processing. We see in these figures
that the effect of distributed commit is considerably
more than that of distributed data processing, even
for the OPT protocol. These results clearly highlight
the necessity for designing high-performance real-time
commit protocols. .

227

5.3. Expt. 2: Pure Data Contention

The goal of our next experiment was to isolate the
influence of data contention on the real-time perfor-
mance. Therefore, for this experiment, the physical
resources were made “infinite”, that is, there is no
queueing for the physical resources. The other param-
eter values are the same as those used in the baseline
experiment. The MissPercent performance results for
this system configuration are presented in Figures 2a
and 2b, and the supporting statistics are shown in Fig-
ures 2c through 2e. We observe in these figures that
the relative performance of the various protocols re-
mains qualitatively similar to that seen under finite
resources in the previous experiment. The difference
in performance between 3PC and 2PC under normal
loads is further reduced here since the additional re-
source overheads present in 3PC have lesser influence
as resource contention is not an issue. We also ob-
serve that OPT maintains its superior performance as
compared to the standard algorithms over the entire
loading range. Moreover, its success ratio does not
go below 70 percent even at the highest loading levels
(Figure 2c).

5.4. Expt. 3: OPT-PC and OPT-PA

The implementation of OPT used in the previous
experiments incorporated only the optimistic access,
active abort and silent kill optimizations. We also con-
ducted an experiment to investigate the effect of adding
the PA or PC optimizations to OPT. The results of
showed that just as PA and PC provided little im-
provement on the performance of standard 2PC, here
also they provide no tangible benefits to the perfor-
mance of the OPT protocol and for the same reasons.
While OPT-PA is very slightly better than basic OPT,
OPT-PC performs worse than OPT under heavy loads,
especially with infinite resources.

5.5. Expt. 4: Non-Blocking OPT

In the previous experiments, we observed that OPT,
which is based on 2PC, performed significantly better
than the standard protocols. This motivated us to eval-
uate the effect of incorporating the same optimizations
in §PC. The results showed OPT-3PC’s performance
to be noticeably but not greatly worse than that of
OPT-2PC. Moreover, under infinite resources, the dif-
ference between OPT-3PC and OPT-2PC virtually dis-
appears. These results indicate that, in the real-time
domain, nonblocking functionality which is extremely
useful in case of failures can be purchased at a relatively
modest increase in routine processing cost.

Forced Writes/Trans. ——>

Fig 2a : Normal Load (Data Contention)

30

(

Fig 2d : Forced Writes (Data Contention)

¢ = :
0.5 1 1.5 2 25
Arrival Rate/Site —>

e -© 3PC
»—x 2PC
+ -+ PA
XX PG
6—o OPT
X---x DPCC
% — % CENT

15¢
X Mool %
10}
% o
53¢ LA
-~ - -
=+
0 . ' . s N
0 1 3 5 75 10

Arrival Rate/Site —>

Fig 2b : Heavy Load (Data Contention)
1007

80}
"
i 60}
2
)
0 40t
=
20%
253 4 5 75 10
Arrival Rate/Site —>
Fig 2c : Success Ratio (Data Contention)
1 €
A 0.81
i
(o]
3 0.6}
c
2
@ 0.4 [
8
=]
9 0.2}
0 . M 2 N ' N J
01 2 3 5 75 10
Arrival Rate/Site ——>
Fig 2e : Acks (Data Contention)
3 .
A
S PO
= YN e
S N X
=AY B N
X S e
hT4 e
o - " 2 i i —d
0 1 3 5 7.5 10

Arrival Rate/Site ——>

228

6. Conclusions

In this paper, we have proposed and evaluated new
mechanisms for designing high performance real-time
commit protocols that do not, unlike previous efforts,
require transaction atomicity requirements to be weak-
ened. Using a detailed simulation model of a firm-
deadline RTDBS, we evaluated the deadline miss per-
formance of a variety of standard commit protocols in-
cluding 2PC, Presumed Abort, Presumed Commit, and
3PC. We also developed and evaluated a new commit
protocol, OPT, that was designed specifically for the
real-time environment and included features such as
controlled optimistic access to uncommitted data, ac-
tive abort and silent kill. To the best of our knowledge,
these are the first quantitative results in this area.

Our experiments demonstrated the following: First,
distributed commit processing can have considerably
more effect than distributed data processing on the
real-time performance. This highlights the need for
developing commit protocols that are tuned to the real-
time domain. Second, the standard 2PC and 3PC al-
gorithms perform poorly in the real-time environment
due to their passive nature and due to preventing access
to data held by cohorts in the prepared state. Third,
the PA and PC variants of 2PC, although reducing pro-
tocol overheads, fail to provide tangible benefits in the
real-time environment*. This is in marked contrast to
the conventional DBMS environment where they have
been implemented in a number of commercial prod-
ucts and standards. Fourth, the new protocol, OPT,
provides significantly improved performance over the
standard algorithms. Its good performance is attained
primarily due to its optimistic borrowing of uncom-
mitted data and active abort policies. The optimistic
access significantly reduces the effect of priority inver-
sion which is inevitable in the prepared state. Sup-
porting statistics showed that OPT’s optimism about
uncommitted data is justified, especially under normal
loads. The other optimizations of silent kill and pre-
sumed commit/abort, however, had comparatively lit-
tle beneficial effect. Finally, experiments combining
the optimizations of OPT with 3PC indicate that the
nonblocking functionality can be obtained in the real-
time environment at a relatively modest cost in normal
processing performance. This is especially encouraging
given the high desirability of the nonblocking feature
in a real-time environment.

In summary, our results have shown that in the
firm-deadline real-time domain, the performance rec-

4This conclusion is limited to the completely update trans-
action workloads considered here. PA and PC have additional
optimizations for fully or partially read-only transactions [10].

229

ommendations for distributed commit processing can
be considerably different from those for the correspond-
ing conventional database system.

References

[1] R. Abbott and H. Garcia-Molina, “SchedulinglRJeal-Time
Transactions: a Performance Evaluation”, Proc. of 14th
VLDB Conf., August 1988.

A. Bestavros, “Multi-version Speculative Concurrency Con-
trol with Delayed Commit”, Proc. of Inti. Conf. on Com-
puters and their Applications, March 1994.

P. Bernstein, V. Hadzilacos and N. Goodman, Concur-
rency Control and Recovery in Database Systems, Addison-
Wesley, 1987.

E. Cooper, “Analysis of Distributed Commit Protocols”,
Proc. of ACM Sigmod Conf., June 1982.

M. Carey and M. Livny, “Distributed Concurrency Con-
trol Performance: A Study of Algorithms, Distribution, and
Replication”, Proc. of 14th VLDB Conf., August 1988.

J. Gray, “Notes on Database Operating Systems”, Operat-
ing Systems: An Advanced Course, Lecture Notes in Com-
puter Science, 60, 1978,

R. Gupta, J. Haritsa, K. Ramamritham and S. Se-
shadri, - “Commit Processing in Distributed RTDBS”,
TR-96-01, DSL/SERC, Indian Institute of Science
(http://dsl.serc.iisc.ernet.in/reports.html).

J. Haritsa, M. Carey, and M. Livny, “Data Access Schedul-
ing in Firm Real-Time Database Systems”, Real-Time Sys-
tems Journal, 4 (3), 1992.

E. Levy, H. Korth and A. Silberschatz, “An optimistic
commit protocol for distributed transaction management”,
Proc. of ACM SIGMOD Conf., May 1991.

C. Mohan, B. Lindsay and R. Obermarck, “Transaction
Management in the R* Distributed Database Management
System”, ACM TODS, 11(4), 1986.

M. Oszu and P. Valduriez, Principles of Distributed
Database Systems, Prentice-Hall, 1991.

L. Sha, R. Rajkumar and J. Lehoczky, “Priority inheritance
protocols: an approach to real-time synchronization”, Tech.
Report CMU-CS-87-181, Carnegie Mellon University.

L. Sha, R. Rajkumar and J. Lehoczky, “Concurrency Con-
trol for Distributed Real-Time Databases”, ACM SIGMOD
Record, 17(1), March 1988,

D. Skeen, “Nonblocking Commit Protocols”, Proc. of ACM
SIGMOD Conf., June 1981.

S. Son, “Real-Time Database Systems: A New Challenge”,
Data Engineering, 13(4), December 1990.

S. Son and S. Kouloumbis, “Replication Control for Dis-
tributed Real-Time Database Systems”, Proc. of 12th Intl.
Conf. on Distributed Computing Systems, 1992.

N. Soparkar, E. Levy, H. Korth and A. Silberschatz, “Adap-
tive Commitment for Real-Time Distributed Transactions”,
TR-92-15, CS, Univ. of Texas (Austin}, 1992.

O. Ulusoy and G. Belford, “Real-Time Lock Based Concur-
rency Control in a Distributed Database System”, Proc. of
12th Intl. Conf. on Distributed Computing Systems, 1992,

Y. Yoon, “Transaction Scheduling and Commit Processing
for Real-Time Distributed Database Systems”, Ph.D. The-
sis, Korea Adv. Inst. of Science and Technology, May 1994.

(2

3

[4
(8l

Y

(8]

(10]

(11]

(12]

[13]

(14]
(18]

[16]

(17)

(18]

(19]

