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ABSTRACT tary and conceptually different approach, which we consider in this
Estimates of predicate selectivities by database query optimizersP2Per. is to identifyobust planshat are relatively less sensitive to
such selectivity errors. In a nutshell, to “aim for resistance, rather

often differ significantly from those actually encountered during h " by identifvi | h id vel d
query execution, leading to poor plan choices and inflated responset1an cure”, by identifying plans that provide comparatively goo

times. In this paper, we investigate mitigating this problem by perf_ormance over Igrge _regions of the_selectiyity space. Such plan
replacing selectivity error-sensitive plan choices with alternative choices are es_pemally important for industrial _\Norl_doads where
plans that provide robust performance. Our approach is based ondlobal stability is as much a concern as local optimality [18].

the recent observation that even the complex and dense “plan di- (_)ver_the last decade, a varlgty of strategies have been proposed
agrams” associated with industrial-strength optimizers can be ef- to identify ro.busf[ plans, |ng|ud|ng the L.east Expected Cost [6, 8],
ficiently reduced to “anorexic” equivalents featuring only a few Robu_st Cardlnal_lty Estimation [2] and Rio [3, 4] _approaches. '_I'hes_e
plans, without materially impacting query processing quality. techniques provide novel and elegant formulations (summarized in

Extensive experimentation with a rich set of TPC-H and TPC- Sec_tion 6), but ha_ve to _contend_ \.Nith the foIIc_Jwing Issues: o
DS-based query templates in a variety of database environments F_|rstly, they argnt_ruswergquwmg, to varying degre_es,_ m.Odm'
indicate that plan diagram reduction typically retains plans that are pa;tlons t.o theboptlmk:zer enkgljlneoi Se(;:/onda/, they reqsmr?r:ﬁllzed
substantially resistant to selectivity errors on the base relations. information about the workioad and/or t. € system which may r_1c_)t
However, it can sometimes also be severely counter-productive, ?'Ways be easy to obtain or model. Thlrdly, the'.r query capabili-
with the replacements performing much worse. We address this fies may l_)dlmn_ed compared t_o _the original op_tlmlzer_— e.g., only
problem through a generalized mathematical characterization of SPJ queries with _key-based joins were considered in [2, 3]. Fur-
plan cost behavior over the parameter space, which lends itself tother: [3] has beenimplemented and evaluated on a non-commercial
efficient criteria of when it is safe to reduce. Our strategies are fully

optimizer. Finally and most importantly, as explained in Section 6,
non-invasive and have been implemented in the Picasso optimizer"on€ Of them provide, on an individugliery basis, quantitative
visualization tool.

guaranteeon the quality of their final plan choice relative to the
original (unmodified) optimizer’s selection. That is, they “cater to
the crowd, not individuals”.

1. INTRODUCTION _ _
The query execution plan choices made by database engines of 1€ SEER_Algorithm.In this paper, we presenSEER

ten turn out to be poor in practice because the optimizer's selec- (S_electivity-Estimate-Error-Res_istance), anew strate_gy for identi-
tivity estimates are significantly in error with respect to the actual fy|ng robust plans that can be dwgctly used on operational database
values encountered during query execution. Such errors, which can€Vironments. More concretely, it

even be in orders of magnitude in real database environments [19],
arise due to a variety of reasons [24], including outdated statistics,
attribute-value independence assumptions and coarse summaries.

e Treats the optimizer as a black-box and therefore is inher-
ently (a) completely non-intrusive, and (b) capable of han-
dling whatever SQL is supported by the system. Further, it

Robust Plans.To address this problem, an obvious approach is to does not expect to have any additional information beyond

improve the quality of the statistical meta-data, for which several that provided by the engine interface.

techniques have been presented in the literature ranging from im-

proved summary structures [1] to feedback-based adjustments [24]

to on-the-fly reoptimization of queries [16, 19, 3]. A complemen-

e Provides plan performance guarantees thatiraavidually
applicable to queries in the selectivity space.

" - . ] e Considers only theparametric optimal set of plans
Contact Author: haritsa@dsl.serc.iisc.ernet.in (POSP) [13] as replacement candidates and therefore deliv-

ers, for errors that lie within the replacement plan’s optimal-

ity region, robustness “for free”. In contrast, the previously

Permission to copy without fee all or part of this material @rged provided proposed algorithms in the literature may evaluate plans that
that the copies are not made or distributed for direct commexdisantage, are not optimal anywhere in the space.

the VLDB copyright notice and the title of the publicatiordits date appear,
and notice is given that copying is by permission of the VerygeaData e Is validated orcommercialoptimizers on both the classical

Base Endowment. To copy otherwise, or to republish, to postervers TPC-H [26] and the recent TPC-DS [27] benchmarks.

or to redistribute to lists, requires a fee and/or speciahpgsion from the

publisher, ACM. . . . .

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand We hasten to add that SEER, due to its non-intrusive design ob-

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/GD/0 jective, only attempts to address selectivity errors that occur on the



select ayear, sum(case when nation = 'BRAZIL then volume else 0 end) / runtim? tum_OUt to be Signiﬁcan'tly different, say (50%,40%),
sum(volume) . ' executing withP70, whose cost increases steeply with selec-
from (select YEAR(corderdate) as gear, Lextendedprice * (1 -_Hiscount) ag tivity, would be disastrous. In contrast, this error would have
volume, n2.nname as nation . . . .
o had no impact with the reduced plan diagram of Figure 2(b),
from part, supplier, lineitem, orders, customer, . . 0% 10 .
nation n1, nation n2, region sinceP1, the replacement plan choice at (14%,1%), remains
where ppartkey = Lpartkey and suppkey = Isuppkey and_brderkey| the preferred plan for a large range of higher values, includ-
= oorderkey and custkey = ccustkey and mationkey = ing (50%,40%). Quantitatively, at the run-time location, plan
nl.nnationkey and nl.megionkey = rregionkey and sationkey| . . .
= n2.nnationkey and.name = 'AMERICA and ptype = 'ECON- P1 has a cost of 135, whilB70’s cost of 402 is abouhree
OMY ANODIZED STEEL and timesmore expensive.
s_acctbal :variesandl_extendedprice :varies
) as allnations . .
group by ayear It is easy to see, as in the above example, that the replacement
order by ayear plan will, by definition be a robust choice for errors that lie within
its optimality region, i.e. itSendo-optimal” region. This is the ad-
Figure 1: Example Query Template: QT8 vantage, mentioned earlier, of considering replacements only from

the POSP set of plans. The obvious question then is whether the
sizes of these regions are typically large enough to materially im-
prove the system performance.
base relationssimilar to [1]. However, since these base errors are A second, and even more important question, is: What if the er-
often the source of poor plan choices due to the multiplier effect as rors are such that the run-time locations 4®o-optimal” w.r.t.
they progress up the plan-tree [15], minimizing their impact could the replacement plan? For example, if the run-time location hap-
be of significant value in practical environments. Further, since pens to be at (80%,90%), which is outside the optimality region of
SEER is a purely compile-time approach, it can be used in conjunc- p1? In this situation, nothing can be said upfront — the replacement
tion with run-time techniques such as adaptive query processing [9] could be much better, similar or much worse than the original plan.
for addressing selectivity errors in the higher nodes of the plan tree. Therefore, ideally speaking, we would like to have a mechanism
through which one could assess whether a replacemeiuliglly

Anorexic Reduction of Plan Diagrams. SEER is based on the .
safeover the entire parameter space.

anorexic reduction of plan diagrams notion that was recently

presented and analyzed in [11]. Specifically, a “plan diagram” [22] Contributions. In this paper, we address the above issues from
is a color-coded pictorial enumeration of the plan choices of the hoth theoretical and empirical perspectives. We have conducted
optimizer for a parametrized query template over the relational se- extensive experimentation on a leading commercial optimizer with
lectivity space. That s, it visually captures the POSP geometry. 3 rich suite of multi-dimensional TPC-H and TPC-DS based query
For example, consider QT8, the parametrized 2D query tem- templates operating on a variety of logical and physical database
plate shown in Figure 1, based on Query 8 of TPC-H. Selectivity designs. Our results demonstrate thiain diagram reduction typi-
variations on thesuPPLIERANdLINEITEM relations are specified  cally produces plan choices that substantially curtail the adverse
through thes_acctbal :varies andl- extendedprice :varies pred- effects of selectivity estimation errorsTherefore, it clearly has
icates, respectively. The associated plan diagram for QT8 is shownpotential to improve performance in general, for both the endo-
in Figure 2(a), produced with the Picasso optimizer visualization optimal and exo-optimal regions.
tool [21] on a popular commercial database engine. However, we have also encountered occasional situations where
As evident from Figure 2(a) plan diagrams can be extremely 3 replacement plan performs much worse in its exo-optimal region
complex and dense, with a large number of plans covering the than the original optimizer choice, highlighting the need to estab-
space — several such instances spanning a representative set gfsh an efficient criterion of when a specific swallowing is globally
benchmark-based query templates on industrial-strength optimiz-safe. To achieve this objective, we present a generalized mathe-
ers are available at [21]. However, these dense diagrams can typi-matical model of the behavior of plan cost functions over the se-
cally be “reduced” to much simpler pictures featuring significantly |ectivity space. The model, although simple, is sufficient to capture
fewer plans,without materially degrading the processing quality  the cost behavior of all plans that have arisen from our query tem-
of any individual query For example in Figure 2(a), if users are  plates. Using this model, we then prove that checks on only the
willing to tolerate a minor cost increasg)(of at most 10% forany  perimeterof the selectivity space are sufficient to decide the safety
query point in the diagram, relative to its original cost, the picture of reduction over the entire space. These checks involve the cost-
could be reduced to Figure 2(b), where only 7 plans remain — that ing of “foreign plans”, that is, of costing plans in their exo-optimal
is, most of the original plans have been “completely swallowed” by regions, a feature that has become available in the current versions
their siblings, leading to a highly reduced plan cardinality. of several industrial-strength optimizers, including DB2[28] (Op-

A detailed study of the plan diagram reduction problem was pre- timization Profile), SQL Server[29] (XML Plan) and Sybase[30]
sented in [11], and it was shown that a cost increase threshold of (Apstract Plan).

only 20 percents usually amply sufficient to bring down the abso-  Apart from providing reduction safety, foreign-plan costing is
lute number of plans in the final reduced picturathin or around additionally leveraged to both (a) enhance the reduction levels of
ten In short, that complex plan diagrams can be made “anorexic” the plan diagram, and (b) improve the complexity characteristics of
while retaining acceptable query processing performance. the reduction process, as compared to our earlier CostGreedy re-

duction algorithm [11]. Note that the increased diagram reduction
automatically impliesarger within-\-of-optimal regiongor the re-
tained plans, upfront guaranteeing more robustness.

In summary, we present in this paper SEER, an efficient, effec-
tive and safe mechanism for identifying robust plans that are resis-
1The figures in this paper should ideally be viewed from a color tant, as compared to the optimizer's original choices, to errors in
copy, as the grayscale version may not clearly register the featuresthe base relation selectivity estimates. Through a detailed study

Example. We now show an example of how anorexic reduction
helps to identify selectivity-error-resistant plans: In Fig-
ure 2(a), estimated selectivities of around (14%,1%) lead to
a choice of plarP70. However, if the actual selectivities at
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Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

of benchmark-based query templates on commercial optimizers,follows [11]: Given an input plan diagram, and a maximum-
we empirically demonstrate that SEER provides robust good per- cost-increase threshokl(A > 0), find a reduced plan diagraR
formance for industrial-strength database environments. We alsowith minimum cardinalitysuch that for every pla®; in P,

present LiteSEER, a (complexity-wise) optimally efficient heuris- 1. EitherP, € R, or

tic algorithm, which delivers comparable robustness to that offered

by SEER. Both SEER and LiteSEER have been implemented inthe 2. V ¢ € P;, the assigned replacement pl&n € R guarantees
freely-available Picasso optimizer visualization tool [21]. cj(q) < (14N

ci(q)

Organization. The remainder of this paper is organized as follows: o . . o
In Section 2, we present the overall problem background, frame- 1hat is, find the maximum possible subset of the planB iinat
work and motivation. The plan cost models and the checks for can be completely “swallowed” by their sibling plans in the POSP
replacement safety are discussed in Section 3. The design of the>el: A point worth reemphasizing here is that the threshold con-
SEER reduction algorithm and its analysis are presented in Sec-Straint applies on amdividual querybasis. For example, setting
tion 4. The LiteSEER variant is introduced in Section 4.3. Our * = 10% stipulates that the cost eichquery point in the reduced
experimental framework and performance results are highlighted didgram is withinl. 1 times its original value.

in Section 5. Related work is overviewed in Section 6. Finally, _ It Was proved in [11] that the above problem is NP-Hard.
in Section 7, we summarize our conclusions and outline future re- 1€refore, an efficient heuristic-based online algorithm, called
search avenues. CostGreedy, was proposed and shown to deliver near-optimal
“anorexic” levels of reduction, wherein the plan cardinality of the
reduced diagram usually came down to around 10 or less Jer a
2. PROBLEM _F_RAMEWOR_K _ _ ~ threshold of only 20%. In a nutshell, complex plan diagrams can
For ease of exposition, we assume in the following discussion pe easily made very simple without materially affecting the query
that the SQL query template is 2-dimensional in its selectivity vari- processing quality.

ations — the extension to higher dimensions is straightforward. .. ) )
2.2 Selectivity Estimation Errors

2.1 Plan and Reduced Plan Diagrams Consider a specific query poigt, whose optimizer-estimated

From a query templat®, a plan diagranP is produced on a  |ocation inS is (z.,y.). Denote the optimizer's optimal plan
2-dimensional0, 1] selectivity spaces by making repeated calls  choice at point. by P,.. Due to errors in the selectivity estimates,
to the optimizer. The selectivity space is represented by a grid of theactuallocation ofg. could be different at execution-time — de-
points where each poig{x, y) corresponds to a unique query with  note this location by, (., . ), and the optimizer’s optimal plan
selectivitiesz, y in the X and Y dimensions, respectively. Eagh choice aty, by P,.. Assume thaP,. has been swallowed by a sib-
is associated with an optimal (as determined by the optimizer) plan ling plan during the reduction process and denote the replacement
P;, and a cost;(q) representing the estimated effort to exeapte  plan assigned tg. in R by P,.. Finally, extend the definition of
with plan P;. Corresponding to each plap is a unique colot.;, query cost (which applied to the optimal plan) to hayg) denote
which is used to color all the query points that are assigndd to the cost of an arbitrary POSP pld# at an arbitrary query poirit
As mentioned earlier, the plan diagram is essentially a visual char-in S.
acterization of the parametric optimal set of plans (POSP) [13]. We  With respect toR, the actual query poinj, will be located in
useP andS interchangeably in the remainder of the paper based one of the following disjoint regions d®.. that together coves:

on the context. . . . . .
Endo-optimal region of P..: Here,q, is located in the optimal-

Plan Diagram Reduction Problem This problem is defined as ity region of the replacement plah.., which also implies
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that P = P,q. Sincecre(qa) = coal(qa), it follows that the error since the performanceBf. is close to that of théocally

the cost OfP,c at qa, ¢cre(ga) < coc(ga) (by definition of optimal planP,, throughout the space, although the endo-optimal
a cost-based optimizer). Therefore, improved resistance to region of P.. constitutes only a very small fraction of this space.
selectivity errors is alwayguaranteedn this region. To demonstrate that the benefits anticipated from the compile-
] ) . ) time analysis do translate to corresponding improvemantsin-
Swallow-region of P>..: Here, g, is located in the region “swal-  {ime we show in Figure 3(b) the query response times (again mea-
lowed” by P, durlng the reduction process. Due to the g ed on dog scalg of P,. (P45),P,. (P17) andP,, at the same
A-threshold constraint, we are assured that(q.) < qa locations. It is vividly clear in this picture that huge savings in
(I + A)coa(ga), and by implication that,.(q.) < (1 + processing time are obtained by using the replacement plan instead
A)Coe(qa). NoOw, there are two possibilities: H(q.) < of the optimizer's original choice, and that the replacement’s per-
coe(4a), then the replacement plan is again guaranteed to im- formance is virtually indistinguishable from the optimal choices.
prove the resistance to selectivity errors. On the other hand, While performance improvements are usually the order of the
if Coe(ga) < cre(ga) < (1+ A)coe(qa), the replacementis — gay there are occasional situations wherBin performs worse
guaranteed to not cause any real harm, given the small valuesinan p, . atq,. A particularly egregious example, arising from the
of A that we consider in this paper. sameplan diagram described above, is shown in Figure 4(a) for
Exo-optimal region of P... Here,q, is located outside both the 9= = (0.03, 0'1_4) — We see here tha_t itis now the replacemen_t plan
endo-optimal and swallow-regions Bf.. At such locations, Pre (P34), which |sord¢r_s-of-magn|tu_dworse_tha_nPoe (P26) in .
we cannot apriori predicP,.’s behavior, and therefore the the presence pf sglectlvny errors. This compile-time assgssment is
replacement may not always be a good choice — in principle, corroborat(_ad in Figure 4(b) which shows the corresponding query
it could bearbitrarily worse Therefore, we would like to ~ f€SPonse times.
ensure that even if the replacement does not provide any im- 9 4 Robust Reduction
provement, it is at least guaranteed to not do any harm. That
is, theexo-optimal region should have the same performance
guarantees as the swallow-regioie show in Section 3 how
this objective can be efficiently achieved through simple but
powerful checks to decide when replacement is advisable.

From the above discussion, it is clear that we need to ensure that
only safe replacements are permitted. This means that replacement
should be permitted only if thé threshold criterion is satisfied not
just at the estimated point, bat all locationsin the selectivity
space. At the same time, it is important to ensure that the safety
2.3 Motivational Scenarios check is not unnecessarily conservative, preventing most plan re-
placements, and in the process losing all the error-resistance ben-
efits. Therefore, the overall goal is to maximize plan diagram re-
duction without violating safety considerations. More formally, our
problem formulation is:

Given the above framework, we now present example scenarios
to motivate (a) the error-resistance utility of plan diagram reduc-
tion, and (b) the need for safety in this process.

Our first scenario, typical of that seen in most of our experiments,
demonstrates how the replacement pfap can provide extremely  Robust Reduction Problem.Given an input plan diagram, and
substantial improvementhroughout the selectivity spac8pecif- a maximum cost-increase-threshal@\ > 0), find a reduced plan
ically, on a vanilla PC with a popular commercial optimizer, we diagramR with minimum plan cardinalitysuch that for every plan
generated a plan diagram for a query template based on TPC-H Q5,P; in P,
with selectivity variations on theusTOMER and SUPPLIERrela-
tions, and carried out reduction with= 10%. On this diagram, 1. PeR,or
considerge = (0.36,0.05) and a sample set of actual locations

! N ) . 2. VY q € P, the assigned replacement pl&n € R guarantees
(g.) — for instance, along the principal diagonal®fFor this sce- ¢ 9 P PIEn 9

/
nario, the costs of,. (P45),P,. (P17) andP,, (the optimal plan V query points;’ € P, cj(q,) <A+
at eachy, location) are shown in Figure 3(a) — note that the costs ci(¢)
are measured onlag scale Thatis, find the minimum-sized error-resistant “cover” of plans that
It is clear from Figure 3(a) that the replacement pRn pro- reduces the plan diagramwithout increasing the cost of any reas-
vides orders-of-magnitudéenefit w.r.t. P,.. In fact, the error- signed query point by more than the cost increase threshmge,

resistance is to the extent that it virtually provides “immunity” to  spective of the actual location of the query at run-time



It is easy to see that the Robust Reduction problem is NP-Hard, Independent Nodes: These are all the remaining nodes in the tree
just like the standard Plan Diagram Reduction problem, and there- that do not belong to either of the above two categories.
fore we present a heuristic-based algorithm later in Section 4. But,
prior to that, we show in the following section how replacement 3.2 Node Cost Models

safety can be checked efficiently. We now enumerate the cost models that can be associated with

the above node categories on the 2-D selectivity sgac@ur for-
3. ENSURING ROBUST REDUCTION mulation is based on detailed observations of cost behavior of in-
To find an error-resistant cover of the plan diagram, we need to ?'V'qual cr)]peratc_)rzlon con;merual da(tjabaze optlmlhzersf. In_the |f0|'
evaluate the behavior of each replacement gtan w.r.t. its swal- owing, .t. € variablest andy are usec to denote the (fractional)
lowing targetP,., atall pointsin S. This requires, in principle, selectivities on the respective dimensions.
finding the costs o, and all potentialP.. at every point in the
diagram. Of course?,. and P, need not be costed in their respec- Independent Nodes: Since these nodes do not have a Selectivity

tive endo-optimalregions, since these values are already known Node in their sub-tree, variations inandy do not change
through the plan diagram production process. The remaieog their inputs, and consequently their outputs. Therefore, for a
optimalcosts can be obtained using thereign-Plan-Costindea- given plan, the costs at these nodes remain the same through-
ture, hereafter referred to &°C, that is now supported in several outS.

industrial-strength optimizers, as mentioned in the Introduction.
While the above solution is conceptually feasible, it is prac- Selectivity Nodes: The input cardinalities for these nodes will be

tically unviable due to its enormous computational overheads. constant (equal to the corresponding base relation’s cardi-
Plan-costing is certainly cheaper than the optimizer’s standard nality n) while the output cardinality is directly dependent
optimal-plan-searching process [14], but the overall overhead is on the selectivity value. Therefore, the cost behavior can be
still O(nm) wheren andm are the number of plans and the num- captured by the simple linear model involving coefficients
ber of points, respectively, iR. Typical values of: range from the andas shown in Table 1. For exampl€&able-Scanswvill have
several tens to several hundreds, whiles at least in thousands, a1 = 0, while Index-Scansre likely to have non-zero values
making an exhaustive approach impractical. for both constants.

The above situation motivates us to study whether it is possible,
based on using FPC at onlyfew select locationgo infer the be- ~ pependent Unary Nodes: The input cardinalities for these nodes
havior in the rest of the space. In the remainder of this section, will be a function ofz and/ory, and the associated fam-
we describe our strategy for making such an inference. We begin ily of cost models is as shown in Table 1. For operators
by designing a parametrized mathematical model for characterizing such asAggregates Arithmetic ExpressionsScalar func-
plan cost behavior. Our model is grossly simplified in comparison tions etc. the simple linear model will apply, whereas the
to those used in real optimizers, which are much more complex [20, logarithmic model would apply to operators suctSastand
19]. However, what we have found in practice (with several hun- Group Bythat require multiple passes over the data.

dred distinct plans arising out of TPC-H and TPC-DS-based query
templates on industrial optimizers) is that with appropriate settings
of the parameters, our simple model is quite accurate, both behav-
iorally and quantitatively. The reasons are that (a) in our prob-
lem space all parameters, barring the selectivitiescanstantre-
sulting in complex models degenerating to comparatively simple

Dependent Binary Nodes: These are the nodes that represent bi-
nary set operators such dsin, Union, Minus etc. The
different types of input possibilities and the associated cost
models are shown in Table 1.

equivalents; (b) we arfitting the model to the observed cost be- Note that we deliberately do not consider the case whetie
haviors, rather than trying tpredict them; and (c) our modeling the inputs to the binary node are functionseofor y or xy).

is at the level of entire plans, aggregating the effects of several in- This is because it is easy to prove [12] that such a situation is
dividual operators, thereby reducing the variability. Moreover, the not possible unless operators hdieary outputs- we have
quantitative accuracy is a bonus — it is not really required since only not encountered any such operators in our study.

behavioralaccuracy is necessary for our scheme to work.
3.2.1 Cost Model of a Complete Plan

The cost function of the entire plan is the aggregate sum of the
costs of the individual nodes. Considering all possible cost models

a node can have, we can conclude that the overall cost model of a
plan for a 2D selectivity space is of the form

3.1 Modeling Plan Cost Functions

For ease of presentation, we will initially assume that our objec-
tive is to model the cost behavior of plans with respect to a 2-D se-
lectivity space (e.g. Figure 2(a)) corresponding to distinct relations
R, andR,. The extension to higher dimensions is straightforward
and given in Appendix B. Cost(z,y) =a1z + a2y + aszy + aszlogz + asylog y+

In current optimizers, the operators in the execution plan are all
typically eitherunary or binary with regard to their inputs. There-
fore, given a specific plan operator tree we can define the following whereay, az, as, a4, as, as, a7 are coefficients, and, y represent

types of nodes: the selectivities oR?,, andR,,, respectively.
Modeling a specific plan requires suitably choosing the seven
Selectivity Nodes: These are the unary nodes that implement the coefficients, and this is achieved through standard surface-fitting
selection operations on relatiofs. andR,. techniques, described in Section 5. The extension of Equation 1 to
a generati-dimensional space is straightforward (Appendix B.1),
Dependent Nodes:These are the nodes in the tree that have at with the number of parameters in the cost model béitfg* — 1)
least one Selectivity Node in the sub-tree below them. — for example, 3D cost functions are modeled using 15 parameters.

asxylog xy + ar (2)



| Node Type [ Input Cardinalities | Cost Model |

| Selectivity Node § = x) ” n [ ainx + az ‘
- a1niT + az
1
Dependant Unary Node amzlogmiz + az

a1niTy + az

mry arnizylognizy + a2
nixe n2 ainix + asnz + asnin2x + aq
Dependant Binary Nodeg nixy T2 a1n1xTyY + azn2 + aznNin2TyY + a4
nix nay a1nN1xT + a2n2y + aznin2xy + aq

Table 1: Cost Models for Various Node Types

3.3 Replacement Safety Conditions Left Right Top Botiom
. - . Boundary | Boundary Boundary | Boundary
For the 2D scenario, using the aboioefficient cost model, SC1 Safe Safe ") >0 | £ (z) >0
our goal now is to come up with an efficient mechanism to assess, g§¢c2 @) <0 Safe Zi (z) <0 Zi (z) <0
given an optimal plarP,., candidate replacement pldh. and a & Safe
cost-increase thresholl whether it would be safe from global SC3 Safe f,; (z2) >0 ;’2 () <0 ;’1 () <0
perspective to hav®,.. swallow P,.. & Safe
Let the cost functions foP,. and P,. be SCA| />0 /7l (y)>0 Safe Safe
fre(z,y) = a1z+a2y+aszytaqzx log z+asylog y+aszy log xy+ar SC5 9/2,1 (y) <0 92/2 (y) <0 f;éyé)a]% 0 Safe
and @ Iscsl <o [ I <o Sae | Fi{u) <0
& Safe

foe(x,y) = biz+boy+bsxy—+baxlog z+bsylog y+bery log zy—+br

. . o @) Table 2: Safety Satisfaction Conditions
respectively. Now consider thfeafety function

(@, 9) = fre = (L4 A o @ LEMMA 2 (SLOPEBEHAVIOR). If the slope of the safety
which captures the differences between the costB.efand a\- function, f; (x), is non-decreasing (resp. decreasing) along the
inflated version ofP,. in the selectivity space. All points where  line-segmenty = 1, andy = y», then it is non-decreasing (resp.
f(z,y) < 0 are referred to aSafePointsvhereas points that have  decreasing) for all line segments in the intergal , y2). A similar
f(z,y) > 0 are calledViolatingPoints For a replacement to be  result holds forf.(y).
globally safe, there should be no ViolatingPoint anywhere in the
selectivity space. The test criteria of Theorem 1 are utilized for determining reduc-

In the following, we will use LR-Boundaries to collectively de- tion safety in the SafetyCheck algorithm, described next. A related
note the left and right boundaries of the selectivity space, and TB- point to note here is that these checks @saservativen that it is
Boundaries to collectively denote the top and bottom boundaries of possible to have global safety even if none of the conditions are met

the space. —i.e. the test is sufficient, but not necessary.
For a specific value ofj, the safety functionf(z,y) can be
rewritten as 4., THE SEER ALGORITHM
fu(@) = g1 % T+ g2 % wlogz + g3 In this section, we first describe the safety checking procedure,

) o o . which given a plan-pair®,., Pr.), responds whether the replace-
for appropriate coefficients:, g2, g3. Similarly, we can define  ment ofp,, by P, is globally safe throughout the selectivity space
fz(y). With this terminology, the following theorem provides us g e then present and analyze the SEER algorithm which uses this
with conditions for checking whether the selectivity space is safe procedure to perform error-resistant plan diagram reduction.

for the plan-pair Loe, Pre) with regard to replacement. In the following, we will assume that the selectivity spaés
THEOREM 1. For a plan-pair (Poe, Prc) and a selectivity space ~ 'ePresented by a grié, with m = r x r points, i.e. the grid
S with corners|(z1, y1), (x1,y2), (x2,y2), (x2,31)], the replace- resolution in each dimensionis

ment is safe (i.e., within-threshold) inS if any one of the condi- 4.1 Safety Checking

tions, SC1 through SC6, given in Table 2 is satisfied. i = i
To implement safe reduction in a 2-D plan diagram, we need to

The proof of the above theorem uses the following two lemmas be able to check for the satisfaction of any of the conditions (SC1
— the first provides us with a condition that is sufficient to ensure through SC6) stipulated in Theorem 1. A straightforward way to
safety of all points on the straight line segment joining a pair of achieve this is the followingerimeter Tesprocedure:

safe points, while the second describes the behavior of the slope of

the safety function. We defer the proofs to Appendix A. Perimeter Test. First compute the safety function at all points

on theperimeterof G — this is obtained through the foreign-plan-

LEMMA 1 (LINE SAFETY). Given afixedy = y,, and a pair costing (FPC) feature. Then, compute the slope behavior (non-
of safe points(z1,y,) and (z2,y.) with z2 > z1, the straight decreasing or decreasing) along all the grid lines — this is achieved
line joining the two points is safe if the slogé (z) is either (i) by evaluating the slopes at the matching end-points on the perime-
monotonically non-decreasing, OR (ii) monotonically decreasing ter and comparing the values. The slope at a perimeter point is
with f, (z1) < 0or f,; (xz2) > 0. A similar result holds whem approximated by computing the value of the safety function at its

is fixed. immediate internal neighbor —i.e., along the “inner perimeter”, and



evaluating the slope of the line segment joining these two points.
Finally, use these results to verify whether any of the 6 safety con-
ditions are satisfied.

In the Perimeter test, the number of FPC operatio@isigr —1)
for the perimeter (the is due to having to compute botfi..
and f,.), while the computation of the slopes takes an additional
2 = 4(r — 3) costings of the inner perimeter, leading to a total of
approximatelyl6r. Note that this is much less than the? FPC
operations required by a brute-force approach of costing both plans|
at all points in the diagram. For example, with= 100, the over-
head is brought down by over an order of magnitude.

An obvious minor improvement that could be carried out on the

16r overhead is to perform the inner perimeter costings only when
conditions SC1 and SC4 are violated. In this case, only one of SC2
or SC3 (resp. SC5 or SC6) can be valid. Hence, we need to perform
FPC operations only dtvo boundaries of the inner perimeter, one
along each dimension. This reduces the FPC overheg2ito

Wedge Test. We now present a powerful optimization, called
Wedge Testthat allows conditions SC1 and SC4 to be checked
with a constantnumber of FPC, specificallg4, irrespective of
the resolution This is based on the observation that the slope of
the safety function is a monotonic function (Equation 5 in Ap-
pendix A). Thus, by comparing the slopes at the corners of the

SEER (Plan DiagramP, Threshold \)
1.

Create a Set-Cover Instande (U, S), where S
{S1,52,....,5.}, U = {1,2,...,n}, corresponding to the
plans in the original plan diagram

. Seteactp; = {i},Vi=1..n

3. For each pair of plangP;, P;) do
if WEDGE_TEST (P;,P;,)\) == Safe) then
S = 8; U{4}
else if (PERIMETERTEST (P;,P;,)\) == Safe) then
Si = S {4}

. Solve the Set-Cover instanfaising the Greedy Set-Cover alg
rithm to identify the plans retained R.

Figure 5: The SEER Reduction Algorithm

very favorably with those of the CostGreedy reduction algorithm

[11], which has time complexit@)(nm) and approximation factor
of O(log m), since typicallyn << m.

The extension of the SEER algorithm to higher dimensions is
provided in Appendix B.2.

4.3 LiteSEER: A Fast Variant

space, we can infer the slope behaviour of the safety function along The SEER design makes conscious efforts, as described above,
its boundaries. Applying Lemma 1, the safety of the boundaries to minimize the computational overheads, but these overheads do
can also be inferred. Hence, it is sufficient to perform FPC only at grow with increasing dimensionality of the query template. There-

each corner of the space and its two adjacent points on the perimefore, we have also designed and evaluated LiteSEER, a light-weight

ter boundaries — that is, at the “corner wedges”.
Based on the above observations, we employ a two-stage pro-

heuristic-based algorithm that trades SEER'’s safety guarantee for
providing rapid running-times. In LiteSEER, a replacement is sim-

cess of safety-checking — in the first stage, use the extremely cheapply assumed to be safe &l the corner points of the selectivity

Wedge Test check, and only if it fails, use the more expensive
Perimeter Test to verify replacement safety.

Note that once a plan is costed at a given location, we store this
cost in a cache for reuse later, ensuring no redundant computations

4.2 Plan Diagram Reduction

We now show how the above safety checks are integrated into the
SEER procedure for plan diagram reduction. Note that SEER’s de-
sign is completely different from that of CostGreedy [11] because
now reduction is permitted only if it satisfies a safety criterion that
is applicable ovefs, whereas CostGreedy’s attention is limited to
only P,.’s endo-optimal region.

The complete SEER algorithm is shown in Figure 5. Here, a
Set-Cover instance is first created from the input plan diaglam
Then the two-stage global safety checking procedure of the Wedge
Test, followed by the Perimeter Test, is implemented to evaluate
replacement possibilities across each pair of planB,imand the
Set-Cover instance is updated accordingly. Finally, the resulting

space are safeThe intuition behind this observation is that when
two points are safe, then the straight line joining them is also usu-
ally safe (see Appendix A for the justification). This is corrobo-
rated by our experimental results (Section 5) which indicate that the
heuristic provides almost the same safety as that obtained through
the strict-checking criteria of SEER.

Given ad-dimensional plan diagrar® with n plans, the Lite-
SEER algorithm only computes the safety function at2heor-
ners of the associated selectivity space. It immediately follows that
its overall complexity i$D(2%n +n?). Since, in most practical sce-
narios of interest2? << n (e.g. in the 2-D cas@? = 4, while n
is typically in the several tens, if not more), the effective complex-
ity turns out to beO(n?). Note that, in principle, in the absence
of any apriori information, this is theninimum workrequired to be
executed byany reduction algorithm. Therefore, LiteSEER is an
optimal algorithm (complexity-wise) w.r.t. efficiency.

[Note: A generalized variant of SEER called Partial SEER, which
permits guaranteed safety to be limited to a user-defined fractional

instance is solved using the standard greedy techniques [23, 10] toarea ofS, is outlined in Appendix D.]

obtain the reduced plan diagraf

Analysis. As discussed earlier, each replacement assessment of a5 EXPERIMENTAL RESULTS

plan-pair P,c,P,.) requires atmosO(r) FPCs to be performed.
There areO(n?) such comparisons performed by the algorithm.

The testbed used in our experiments is the Picasso optimizer
visualization tool [21], executing on a Sun Ultra 20 workstation

However, since we cache the already obtained costs, the amortizecequipped with an Opteron Dual Core 2.5GHz processor, 4 GB of

number of FPC to be performed per plariér). Thus, for gridG
with m = r x r points, the comparison of all plan pairs requires
only O(ny/m + n?) time. Solving the Set-Cover problem using
the Greedy Set-Cover algorithm [23, 10] requie¥%:*) time. This
results in arO(n/m -+ n?) reduction algorithm. Further, since the
set cover instance created H&§ = n, the approximation factor of
this reduction algorithm i©(log n).

The above bounds and approximation factors for SEER compare

main memory and 720 GB of hard disk, running the Windows XP
Pro operating system. The experiments were conducted over plan
diagrams produced from a variety of two and three-dimensional
TPC-H andTPC-DS-based query templates operating on the Opt-
Com commercial optimizer. The TPC-H database contaims
formly distributed data of size 1GB, while the TPC-DS database
hostsskeweddata that occupies 100GB. The cost-increase thresh-
old used in all the plan diagram reductions\is= 20%.



; ; ; i _ Dimension Number Maximum Average
Phy5|c_al Design. Folloyvmg a method_ology S|mllar to that_advo of Plans | RMS Error (%) | RMS Error(%)
cated in [5], we considered three different physical design con- 2D (TPC-H) 614 14.20 182
figurations in our studyPrimaryKey (PK), Allindex (Al) , and 2D (TPC-DS) 168 7.31 2.87
Tunedindex (TI). PK represents the default physical design of 3D (TPC-H) 28 6.98 1.92

3D (TPC-DS) 100 2.71 1.58

our database engine, wherein a clustered index is created on
each primary key. Al, on the other hand, represents an “index-
rich” situation wherein (single-column) indices are available on all
query-related schema attributes. Finally, Tl represents the index
environment obtained by implementing the recommendations of featuring in the plan diagrams arising from our suite of multi-
the database engine’s index tuning advisor (which include multi- dimensional query templates. The consistently low RMS values
column indices). While the results for PK and Al are presented in suggest that the model is sufficiently accurate for our purposes.
this section, the Tl performance is provided in Appendix C.2. Finally, as an additional precaution, we deliberately searched for

In the subsequent discussion, we usex@irefer to a query tem- plan cost functions with complex shapes to assess the quality-of-fit
plate based on Quenyof the TPC-H benchmark, and DS®To in these difficult cases. An example is documented in Appendix C.1
refer to a query template based on Quef the TPC-DS bench- and the fit is shown to retain its high quality.

mark, operating in the default PK configuration. We prefix Al and . . .
D o g P 5.2 Plan Diagram Reduction Quality

Tl to the query template identifiers in describing our results for
these specialized configurations. A potentially worrisome aspect of our quest to obtain globally
robust reduction is whether it might result in losing out on the
anorexic reduction levels observed in the localized reduction pro-
cesses of [11]. This concern is quantitatively allayed in Table 4,
which presents a comparison between SEER and CostGreedy (CG)
of the number of plans in the reduced diagram for a diverse suite
of multi-dimensional query templates on the TPC-H database. The
PK physical design configuration was operational in these experi-
ments.

At first glance, SEER might have been expected to perform
worse than CostGreedy because its additional safety checks may
prevent some plan swallowings permitted by CostGreedy— in fact,
this was the source of our concern. However, in Table 4, we ac-
[Note: For completeness, we have also conducted all the experi- tually find theconverse- while CostGreedy does provide anorexic
ments with auniformdistribution of query locations —these results, reduction, SEER does even better. The reason for this is that Cost-
which are qualitatively similar to those presented here, are detailed Greedy follows a conservative cost-bounding approach to estimate
in Appendix C.] the costs of plans outside their endo-optimal regions (details in
[11]). SEER, on the other hand, uses the foreign-plan-costing fea-
ture to obtain the exact costs in these regions, and therefore has
superior reduction possibilities. Therefore, the FPC feature comes
in handy from both quality and safety perspectives.

A question that immediately arises is how SEER would com-
pare against a CostGreedy variant that also utilized the FPC feature.
This issue is also addressed in Table 4, where the performance of
51 Validity of Plan Cost Model this variant (CG-FPC) is presented. We see that CG-FPC does per-

form better or as well as SEER, as should be expected — however,

The validity of the plan cost model presented in Equation 1 was : : ; .
- - the gap, if any, is always very small. A related point to note here is
assessed by atte_mptlng to fit the C.OStS of plar_ls _genera_ted by Opt'that the SEER reduction quality remains excellent even for the 3D
Com. The experimental data consisted of optimizer-estimated ex-

ecution costs over the selectivity space of the plans that appeare uery templates, in spite of the fact that the additional dimension
in ltjhl variou Vlan dia ramsIVIter ?1 from b thpex n ntiaIFI)p and ncreases the possibility of the safety conditions being violated.

e us p 9 (take oth exponentally Finally, we observe in Table 4 that the LiteSEER fast variant hap-
uniformly distributed query templates). As mentioned earlier, the

foreian-nlan ting (EPC) feature w d to evaluate plan tpens to provide reduction quality identical to SEER. Under the Al
oreign-plan-costing (FPC) feature was used to evaluate plans ou “(and TI) configurations, however, it occasionally performs slightly
side of their endo-optimal regions.

The surface fitting was carried out with the classical Linear Least It:aest;esrtr(;zznsteirﬁtglgvii'r?élr) ész Csehrgglrisbe expected due to its being
Squares method [17] and implemented using Matlab 7.4 [25]. An '
example 2-D fitted cost function is:

Cost(z,y) = 17.9x + 45.9y + 1046zy — 39.5z log x +
4.5ylogy + 27.6xy log xy + 97.3

Table 3: RMS Errors in Fitted Cost Surfaces

Query Location Distribution. All the performance results shown

in this section are for plan diagrams generated withonentially
distributed locations for the query points across the selectivity
space, resulting in higher query densities near the selectivity axes
and towards the origin. This choice is based on earlier observations
in the literature (e.g. [13, 14, 22]) that plans tend to be densely
packed in precisely these regions of the selectivity space. From a
performance perspective, these diagrams represent the “tagh-n
challenging situations with respect to obtaining anorexic reduction
due to their high plan densities and substantially broader range of
plan cost values.

Performance Metrics. In the remainder of this section, we evalu-
ate the SEER reduction algorithm with regard to the following per-
formance parameters: (a) Diagram Reduction Quality, (b) Error-
resistance obtained through Reduction, (c) Safety of Reduction,
and (d) Computational Efficiency. As a precursor, we first evaluate
the validity of the plan cost function model (Section 3.1).

TPC-DS Results. The above results were generated on the TPC-
H database, which has uniformly distributed data. Table 5 shows
a corresponding set of results for plan diagrams generated on the
TPC-DS database, which features skewed data. It is immediately
For this plan, the complete plots of the actual cost surface and theevident that the reduction profiles of the various reduction algo-
fitted cost surface, as a function of the selectivities of the two base rithms are very similar to those seen with TPC-H.
relations, are shown in Figure 6. It is visually evident that the fit is . . . . .
very good. 5.2.1 Reduction Quality with Allindex Configuration
As further evidence of the accuracy of our model, Table 3 shows  While the PK configuration had only 8 primary-key indices,
the quality-of-fit, measured in terms of the maximum and aver- Allindex includes an additional 53 (non-clustered) single-column
ageRoot-Mean-Square(RMS@Jrors, over a large number of plans  indices covering all the remaining query-related schema attributes.
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Figure 6: Plan Cost Function Modeling

Tgrﬁggte Ng”(?f";f‘;ns CG | CG-RPC | SEER | LIteSEER Another point to note in Table 6 is that we now see LiteSEER
QT2 2D) 50 12 3 3 3 occasionally permitting slightly greater reduction than SEER, due
QTS5 (2D) 51 7 2 2 2 to its relaxed constraint in allowing replacements.

QT8 (2D) 121 7 2 2 2

STTfo((Zz%)) e 5 3 . . 5.3 Error-resistance and Safety

QT16 (2D) 32 11 3 3 3 Having established the retention of diagram reduction quality,
8% ggg 16981 g g g g we now move on to assessing the extent to which resistance to se-
QT10 (3D) 75 10 3 4 4 lectivity errors is provided through SEER reduction. We begin with

defining a metric that quantitatively captures this effect:

Table 4: Plan Diagram Reduction Quality (TPC-H) Error Resistance Metric. Given an estimated query locatign

and an actual locatiog,, the Selectivity Error Resistance Factor

Query Original | CG | CG-FPC | SEER | LiteSEER (SERPF) of a replacement pla®,. w.r.t. the optimal planP,. is

Template No. of plans defined
DSQT12 (2D) %5 6 3 2 2 efined as,
DSQT18 (2D) 114 13 2 2 2
DSQT19 (2D) 55 1 3 4 4 SERF _1_ _ ¢relda) = Coalga)

(de; qa)
DSQT12 (3D) 33 11 2 2 2 (1 4+ X)coe(ga) — Coa(qa)
DSQT18 (3D) 222 15 2 4 4
DSQT19 (3D) 98 15 2 4 4 Intuitively, SERF captures the fraction of the performance gap be-
) ) ) tweenP,. andP,, thatis closed by>,... In principle, SERF values
Table 5: Plan Diagram Reduction Quality (TPC-DS) can range ovef—oo, 1], with the following interpretations: SERF
in the rangg )\, 1] indicates that the replacement is beneficial, with

Query Original CG | CG-FPC | SEER [ LiteSEER values close to 1 implying “immunity” to the selectivity error. For
ATS?SI?E No. %ff'ans - . . . SERF in the rangf®, \], the replacement is indifferent in that it nei-
AIQT5 EZD; 126 14 2 6 5 ther helps nor hurts, while SERF values belbhighlight a harmful
AIQTS (2D) 121 7 3 3 3 replacement that materially worsens the performance.
AlQT9 (2D) 132 14 3 4 3 The above formula applies to a specific instance of replacement.
AIQT10(2D) 3 8 4 > > T ture the net impact of reduction on improving the resistan
AIQT16 (2D) 35 9 N > 5 To capture the net impact of reduction o proving the resistance
AIQT5 (3D) 139 14 5 7 5 in anentire plan diagramwe compute the following
AIQTS (3D) 168 14 4 6 5
AIQT10 (3D) 77 16 7 8 8 quEMP(P) aneemoe(m SERF(qe,qa)

AvgSERF = 5 > 1
Table 6: Plan Diagram Reduction Quality (TPCH-AI) qe€rep(P) £<qa€ezooe (P)

whererep(P) is the set of points in the plan diagranthat were
replaced during the reduction process, amd..(P) is the set of
The reduction quality results for this index-rich configuration are points lying in the exo-optimal region defined with respecPto,
shown in Table 6. We first notice that the number of plans in the the optimizer's plan choice fof.. The normalization is with re-
original diagram usually increases, often substantially, as should spect to the number of possible selectivity errors in the diagram.
be expected since the optimizer’s search space has increased due {d@o ensure meaningful AvgSERF values from a robustness per-
the availability of the additional indices. For example, the number spective, we exclude the uninteresting scenarios whereindypth
of plans for AIQT5(2D) goes up to 125 from 51, while AIQT5(3D) andc,. have extremely low absolute values, or are both witkin
jumps to 139 from 68. However, when we consider the reduction threshold ofc,,.)
quality of the various algorithms, we find that they continuent Note that in the above formulation, we assume for simplicity that
terially adhere to anorexic levelalthough the actual cardinalities  the actual location, is equally likely to be anywhere iR,.’s exo-
may have gone up by a couple of plans. For example, SEER onoptimal space, that is, that the errors are uniformly distributed over
AIQT5(2D) retains 6 plans as compared to 2 under PK. this space. However, our conceptual framework is also applicable



Query CG SEER LiteSEER
Template MInSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MInSERF | AvgSERF | MaxSERF
QT2 (2D) -58.6 0.2 1 0 0.38 0.98 0 0.38 0.98
QT5 (2D) -15.6 0.5 1 0.14 0.51 0.99 0.14 0.51 0.99
QT8 (2D) -2.9 0.82 1 0.3 0.93 1 0.3 0.93 1
QT9 (2D) -46.3 0.37 1 0 0.77 1 0 0.77 1
QT10 (2D) -23.8 0.09 1 0 0.35 1 0 0.35 1
QT16 (2D) -132.5 0.03 0.99 0.04 0.33 0.96 0.04 0.33 0.96
QT5 (3D) -15.4 0.6 1 0.03 0.38 1 0.03 0.38 1
QT8 (3D) -177.7 -0.5 1 0 0.63 1 0 0.63 1
QT10 (3D) -130.7 -2 1 0 0.45 1 0 0.45 1

AIQT2 (2D) -202 -1.1 0.99 0 0.8 0.99 0 0.8 0.99
AIQT5 (2D) -1336 -3.1 1 0 0.58 1 -10 0.54 1
AIQT8 (2D) -62.4 0.35 1 0 0.54 1 0 0.54 1
AIQT9 (2D) -9486 -3.1 1 0 0.62 1 -5 0.66 1
AIQT10 (2D) -20.2 0.24 1 0 0.25 0.98 0 0.25 0.98
AIQT16 (2D) -76 0.07 1 0 0.75 1 0 0.75 1
AIQT5 (3D) -2151 0.24 1 0.05 0.62 1 -2 0.66 1
AIQT8 (3D) -103.7 0.43 1 0 0.44 1 -6 0.44 1
AIQT10 (3D) -4680 -4.4 1 0 0.33 1 0 0.33 1
DSQT12 (2D) -4 0.61 1 0.07 0.44 1 0.06 0.44 1
DSQT18 (2D) -194.75 -2 1 0.07 0.81 1 0.07 0.81 1
DSQT19 (2D) -86 0.17 1 0 0.63 1 0 0.63 1
DSQT12 (3D) -142 -0.32 1 0.06 0.53 1 0.06 0.53 1
DSQT18 (3D) -3104 -0.14 1 0 0.85 1 0 0.85 1
DSQT19 (3D) -106.6 0.33 1 0.02 0.82 1 0.02 0.82 1

Table 7: Characterization of Error-Resistance through Reductian

to the more generic case where the error locations have an associpictures in Figure 7, corresponding to the same example.
ated probability distribution. Assuming that the actual location of a query at run-times

. . uniformly distributed overS, Figure 7(a) shows thexpected cost
Resistance Results.For CostGreedy, SEER and LiteSEER, we : s Co
show in Table 7, the AvgSERF, as defined above, as well as Min- for each query poing., when executed with its optimizer-selected

L . plan P,.. Note that the peaks in the picture correspond to situations
SERF and MaxSERF, _the minimum and maximum values of SERF where the plan-choice is highly sensitive to selectivity errors.
over all replacement instances, for the various query templates.

' . : Then, Figure 7(b) shows the expected cost of each query @oint
:{Ve f.'rSt seeblhere that ft%r atl)l th% alg?onthr_rés, plan d|ia1g1ra_m redu_;:- when executed withP.. from the reduced plan diagram obtained
Ihc/)Ir;)I(SSE??pI?te?],cl?ncr?(s)sl tg seolzz:ti’vic; zrrcr)(\)”rslg)gr ;%T/FI) diael 'rrenT;Cne'_y using CostGreedy. Note that virtually all the peaks in Figure 7(a)
( . gtol) ye P ._are substantively eliminated through the replacement choices in the
ment instances. Secondly, and more importantly, the AvgSERF is

- - ) reduced plan diagram — for example, the dark-blue peak at the left-
also quite substantial for SEER. For example, in DSQT18, on aver- top corner of Figure 7(a) is largely removed. However, on the
age, more than three-quarters of the performance gap due to selec;,

2 o . down side, some plans suffer injurious replacements — for e.g., the
t'vw.ti"gs Lzbrldged byt:]he ?EEﬁ]re%uiﬂonfro;Ezsl.: . _ earth-brown colored plan in the left-bottom corner of Figure 7(a) is
ativell ve?s Jg? gﬁc(i)gcczs?onzll’l Zr\]/eh n(ee a\t/ig\J/el Thcalsirr?og;ﬁfr:t now replaced by the fluorescent-green colored plan in Figure 7(b),
point);o no){epher,e is that these Iovz averageiJ are én artifac? arisingWhose expected cost is orders of magnitude greater. That is, Cost-
out of a small fraction of points (around 10-20%) whose perfor- Greedy in the process of eliminating existing peaks, may introduce

mance is grossly adversely affected by plan replacement. That is,new peaks

plan reduction does help in the vast majority of cases but the “few Finally, in Figure 7(c), we show the performance of SEER re-
very bad apples”, reflected by the hugely negative MinSERF val- duction. We see here that (a) it removes all the peaks of Figure 7(a)

: . . : lik r n i not intr ny new k r-
ues (which sometimes even run into the thousands), ruin the over- e CostGreedy, and (b) it does not introduce any new peaks cou

i h tesy its safety criterion. In a nutshell, “it provides virtually all the
all performance statistics. More pertinently, these results serve to 0 "
Y - - good, and doesn’t introduce any harm”.
guantitatively and vividly substantiate the need for safe replace-
ment, the motivation underlying our design of the SEER algorithm. o )
Finally, turning our attention to LiteSEER, we see that its error- 5.4 Efficiency of Reduction Process
resistance profile is very similar to that of SEER — in fact, the  \we now move on to profiling the time taken to complete the re-

AvgSERF and MaxSERF numbers are identical for most templates. qyction process by SEER as compared to CostGreedy. These re-
Further, although like CostGreedy it does not guarantee safety, asqits are shown in Table 8 for our query template suite.

testified to by the negative values in the MInSERF column, note  gocyssing initially on the 2D query templates, we see that
that (a) the templates having negative values are relatively rare, (b) SEER's performance is quite acceptable in terms of absolute times
even in these cases, unsafe replacements occur only for about 1% few minutes per reduction), especially in comparison to the orig-
of the points, and (c) most importantly, their magnitudes are small jn4| plan diagranproduction time However, it is much slower rel-
in comparison (the maximum is -10 for AIQT5(2D)). ative to CostGreedy, which offers sub-second response times. This
might seem surprising in light of our analysis in Section 4 showing
Safety Example that SEER is ai® (n/m + n?) algorithm, whereas CostGreedy is
In the example of Figure 4, plan diagram reduction without explic- O(nm). The reason for the higher running time of SEER is that
itly checking for safety led to situations wherem).. performed the basic cost-bounding computation in CostGreedy is much faster
much worse thai®,. atq,. The effectiveness of SEER in avoiding  than the foreign-plan-costing operator provided by the commercial
such unsafe replacements is visually highlighted in the sequence ofoptimizers. Our discussions with the development team of OptCom
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Figure 7: Safe Error-resistance with SEER

FH [ : ; ; Query CG | CG-FPC | SEER | LiteSEER
have |_nd|cated th_at this is not due to the costing |_tself_, but is largely Template ms) | (min) (min) (sec)
an artifact of setting up the contexts for the costing, including ver- QT2 2D) 15 £31 36 14.2
ifying the validity of the plan with respect to the query. Therefore, QTS (2D) 16 45.0 1.0 12
it i i i ; QT8 (2D) 17 108 9.6 28.8
it is pos_S|bIe that Tuture t_)ette_r implementations of the FPC feature 379 (20) 13 1224 106 26
may bring SEER'’s running time closer to CostGreedy. (In fact, QT10 (2D) 15 28.7 30 10.3
our own implementation of FPC in a public-domain optimizer in- QT16 (2D) 15 27.9 1.3 7.5
dicates that its cost can be further brought down byoater of QTS5 (3D) 25 67 19.0 32

itudg7].) QT8 (3D) 21 190 65.0 91
magni ) ) QT10 (3D) 17 74 165 45

When we consider the 3D query templates, however, the running AIQTZ (2D) 17 774 5.0 20.6
times of SEER can be quite large. It is here that LiteSEER shows ﬁ:gg ggg ﬁ iég.g g.; gg.g
its worth since its running times are only a few minutes or even AIQTS (2D) 18 1079 o1 314
less, across the board for all the query templates. Taken in con- AIQT10 (2D) 12 32.4 20 86
junction with its good safety performance (Section 5.3), it suggests AIQT16 (2D) || 12 30.6 2.0 8.2
that LiteSEER offers an extremely attractive compromise between AIQTS (3D) I 26 138 37.7 66.2

.o AIQTS (3D) 19 167 473 80.2
the speed of CostGreedy and the robustness of SEER, making it a AIQT10 3D) || 24 76 14.9 365
viable first-cut reduction technique in real-world installations. DSQT12 2D) || 14 216 26 58

Finally, to normalize the effect of the different costing imple- DSQT18(2D) || 13 1017 9.4 27.1
mentations, the running time of the CG-FPC algorithm is also ggggg gg; ;g gg'g 3'3 ﬁ'g
shown in Table 8 — we see here that CG-FPC takes in the order DSQT18 (3D) || 25 2210 | 891 106.1
of several tens or few hundreds of minutessomplete the reduc- DSQT19(3D) || 23 97.0 35.8 46.6
tion process. In comparison, SEER'’s selective usage of the FPC o )
operator, courtesy Theorem 1 and the two-stage checking process, Table 8: Efficiency of Reduction Process

does succeed in substantially bringing down the overheads.

too may be arbitrarily poor for a specific query as compared to the
6. RELATED WORK ) o _ optimizer’s optimal choice.
Over the last decade, a variety edmpile-timestrategies have Finally, in the (initial) optimization phase of the Rio approach [3,

been proposed to identify robust plans. For example, in the Least4], a set of uncertainty modeling rules from [16] are used to clas-

Expected Cost (LEC) approach [6, 8], it is assumed that the dis- sify selectivity errors into one of six categories (ranging from “no

tribution of predicate selectivities is apriori available, and then the uncertainty” to “very high uncertainty”) based on their derivation

plan that has the least-expected-cost over the distribution is cho-mechanisms. Then, these error categories are converted to hyper-

sen for execution. While the performance of this approach is likely rectangular error boxes drawn around the optimizer's point esti-

to be good on average, it could be arbitrarily poor for a specific mate. Finally, if the plans chosen by the optimizer at the corners of

query as compared to the optimizer's optimal choice for that query. the principal diagonal of the box are the same as that chosen at the

Moreover, it may not always be feasible to provide the selectivity point estimate, then this plan #ssumedo be robust throughout

distributions. the box. However, the conditions under which this assumption is
An alternative Robust Cardinality Estimation (RCE) strategy likely to be valid are not outlined.

proposed in [2] is to model the selectivity dependency of the cost

functions of the various competing plan choices. Then, given a

user-specified “confidence thresholdf; the plan that is expected 7. CONCLUSIONS

to have thdeast upper boundvith regard to cost irf” percentile Errors in selectivity estimates are well-documented causes of

of the queries is selected as the preferred choice. The choice ofpoor plan choices by database optimizers. In this paper, we in-

T determines the level of risk that the user is willing to sustain vestigated whether the optimizer’s choices could be replaced by

with regard to worst-case behavior. Like the LEC approach, this alternative plans, more resilient to these errors, from the paramet-
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APPENDIX
A. REPLACEMENT SAFETY THEOREM

behaviour of the safety function when Condition (ii) is satisfied,
and clearly the value of the safety function is again negative in the
given range. (]

THEOREM 1. For a plan-pair (P,.,P,.) and a selectivity space
S with corners|(z1, y1), (z1,y2), (z2,92), (2, y1)], the replace-
ment is safe (i.e., within-threshold) inS if any one of the condi-

In Figure A.1, Curve (d) also corresponds to a safe scenario —
however, it is not possible to differentiate between Curve (d) and
the unsafe case, namely Curve (e), without explicitly computing

tions, SC1 through SC6, given in Table A.1 is satisfied.

the safety function at every point on the given line-segment. Hence,
we conservativelycategorize both cases as unsafe. We have also
observed that the case corresponding to Curve (e) occurs rarely in

Left Right Top Bottom practice.

Boundary | Boundary Boundary | Boundary
SC1|  Safe Safe 2 (@) 20 [ fy (@) >0 LEMMA 2 (SLOPEBEHAVIOR). If the slope of the safety
SC2 fygééfge 0 Safe w2 () <0 | fy () <O function, f, (z), is non-decreasing (resp. decreasing) along the

line-segmentg = y1 andy = y-, then it is non-decreasing (resp.
T 7T 77
SC3 Safe fyg%zm% 01 fual2) <O | fy(x) <O decreasing) for all line segments in the interyal, y2). A similar
It holds forf,, (y).
SC4|[ 7 (y) >0 | [ (y) >0 Safe Safe resu @
SC5 | fii(y) <0 | fi,(y) <O f.ééyé) fZ 0 Safe PROOF. Consider the slope of the safety function
afe

77 7 7 d x

SO LT <0 [ WSO See | TS0 L= oy @

Forz € (0, 1), this slope is monotonic and its behavior depends on
the sign ofg.. From Equations 2 and 3, we know thatcan be
written as the following function of

(as — (L 4+ A)ba) + (as — (1 + N)bs)y
(k1 + kay) (6)

wherek; andk, are constants.
Sincegz(y) is a linear function ofy, the Lemma immediately
follows. [

Table A.1: Safety Satisfaction Conditions

In order to prove the above theorem, we will start with deriving two
lemmas — the first provides us with a condition that is sufficient to 92(y)
ensure safety of all points on the straight line segment joining a —
pair of safe points, while the second describes the behaviour of the
slope of the safety function.

LEMMA 1 (LINE SAFETY). Given afixed; = y,, and a pair
of safe point§z1, yo) and(z2, y,) with z2 > x1, the straight line
joining the two points is safe if the slogig, (z) is either

OR
(i) monotonically decreasing witf{,_(z1) < 0or f, (z2) >0

We now prove Theorem 1 using the LineSafety and SlopeBehav-
ior lemmas:

PROOF. Consider the SC1 condition in Table 2: Sint&xz) >
0 (i.e. slopef, (z) is non-decreasing) at the TB-boundaries, then
from Lemma 2, we know that the slop&(z) is non-decreasing
throughout the rang@y:, y2).

PROOF The various possible behaviors ff(x) are shown in Moving on to the SC2 and SC3 conditions: Sintf(z) < 0
Figure A.1 as Curves (a) through (e). When the slgpgx) is (i.e. slopef,(z) is decreasing) at the TB-boundaries, then from
monotonically non-decreasing (i.e. Condition (i) is satisfied), the Lemma 2, we know that the slop& (z) is decreasing throughout
safety function curve that connects the two safe points is guaranteedthe range(y.,y2). Further, we know that for a givep = y, €
to lie belowthe straight line joining the two points — Curve (&) in  (y1,y2), eitherf,_(z1) < 0(SC2) orf,_(z2) > 0(SC3).

Figure A.1 shows an example of this situation. This ensures that Thus, when SC1, SC2 or SC3 is satisfied, then for all lines be-
the safety function along the given line segment is always negative tween point§z1,y) and(z2,y), y € (y1, y2), the end-points are

and hence safe. safe (because the LR-boundaries are safe), and the slope conditions
given in Lemma 1 are satisfied. Hence, all such line-segments are
safe, the union of which is the given region.

Similar arguments can be used to show safety of the region when
conditions SC4, SC5 or SC6 are satisfied. Hence the theorem.

(i) monotonically non-decreasing,

A similar result holds whem is fixed.

fy(x)

0 !

C]

S
>\
A
2

(©

(b)
@

(

Figure A.1: Behavior of the safety function f, (x)

If, on the other handf,_(z) is monotonically decreasing, then
the possible behaviors of the safety functify () are shown in
Curves (b) through (e) in Figure A.1. Curves (b) and (c) denote the



B. HIGHER DIMENSION EXTENSIONS
B.1 Plan Cost Model

Generalizing the arguments used in the 2D case, we obtain the

following cost model for al-dimensional selectivity space.

= Z(ailxil + biy iy log iy )+

i1

Cost(z1, ..., Tq)

> (@iyinTiy iy + biyin iy Tiy 10g iy Ty )
i1 <i2
+ ...
+ b1z d(z12223..0) lOg (212223 .2 4)
+ ao

+ a12.4(x12273..T4)

@)

where thex’'s andb’s are the(2¢! — 1) coefficients and the;, i =
1...d represent thée relational selectivities.

B.2 The SEER Algorithm

The SafetyCheck algorithm used to verify the safety of the re-
placement ofP,. by P,. in a d-dimensional selectivity space is
given in Figure B.1.

SafetyCheck (Plan DiagramP, Threshold A, Plan P,, Plan Py,
Dimensiond)

1. if(d==2)
(a) if WEDGETEST @,F;,
return true.
else if (PERIMETERTEST P,P;,
return true.
(b) return false.

P;,\) == Safe) then

P;,)\) == Safe) then

2. else
(a) safety = true;
(b) for each(d — 1)-dimension slicé>’ of P

safety = safetyN SafetyCheckR’,lambda, Pye,
Pre,d—1)

3. return safety.

Figure B.1: n-Dimensional SafetyCheck Algorithm

The above algorithm recursively finds the safe area ofdhel )-
dimension “slices” of the inputl-dimension selectivity space.
Whend = 2, the WEDGETEST and PERIMETERTEST meth-
ods are used to check for safety. The SEER algorithm incorporating
this checking mechanism is shown in Figure B.2.

SEER (Plan DiagramP, Threshold \)

1. Create a Set-Cover Instande = (U,S), where S
{51,52,...,5.}, U = {1,2,...,n}, corresponding to the
plans in the original plan diagrafm

2. Seteaclt; = {i},Vi=1..n
3. For each pair of plangP;, P;) do
if (SafetyCheck R, \, P;,P; ,d) == true) then
Sy = 5;U{s}

4. Solve the set-cover instanéausing the Greedy Setcover algo-
rithm to identify the plans retained R.

Figure B.2: n-Dimensional SEER Reduction Algorithm

C. ADDITIONAL EXPERIMENTS
C.1 Plan Cost Model

In order to confirm the validity of our cost model, we deliber-
ately searched for plans with complex cost functions to assess the
quality-of-fit in these difficult cases. A sample additional case is
shown in Figure C.1, and we see that even here, the fit is of high
quality (the RMS Error is only around 10%). This can be attributed
to the fact that our cost model has 7 parameters which gives suffi-
cient freedom to fit most of the plan cost functions found in prac-
tice.
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(b) Fitted Cost Function

Cost(z,y) = 184.3x 4+ 619.9y + 524.5xy — 1090z log = —
1179.9y log y — 836.2zy log xy — 1000

RM SError = 10.96%

Figure C.1: Complex Plan Cost Function



C.2 Tuned-Index Configuration
The results presented in the main paper were forRtimary

KeyandAll Indexphysical design configurations. We present here

the corresponding results for thieined Index(TI) configuration

which implements the recommendations of the index tuning advi-
sor shipped with OptCom. The parameters of the tuning advisor

were set to their default values, and the TPC-H benchmark queries

(generated with the QGen utility) formed the input workload. For

this setup, the advisor recommended 20 additional indices beyond
the default Primary Key configuration.

The results obtained on the Tl database configuration for our

suite of query templates are presented in Tables C.1 through C.3.

We see here that the performance profile is very similar to that ob-
tained with the PK and Al configurations, testifying to SEER’s con-

sistent behavior over a wide variety of database environments.

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
TIQT2 (2D) 52 10 4 5 5
TIQT8 (2D) 108 16 3 3 3
TIQT9 (2D) 101 16 6 5 5
TIQT10 (2D) 50 10 4 2 2
TIQT16 (2D) 36 14 4 6 6
TIQT5 (3D) 84 10 i 5 5
TIQTS (3D) 181 14 4 6 5
TIQT10 (3D) 78 12 6 8 7

Table C.1: Plan Diagram Reduction Quality (TPC-H)

Query CG SEER LiteSEER
Template MIinSERF | AvgSERF | MaxSERF || MIinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF
TIQT2 (2D) -161.3 -0.12 0.99 0.01 0.32 0.94 0.01 0.32 0.94
TIQT8 (2D) -550.1 -3.4 1 0 0.54 1 0 0.54 1
TIQT9 (2D) -87.5 0.01 1 0 0.44 1 0 0.44 1
TIQT10 (2D) -671.4 -15.7 1 0 0.27 0.99 0 0.27 0.99
TIQT16 (2D) -14.4 0.11 0.99 0.02 0.39 0.97 0.02 0.39 0.97
TIQT5 (3D) -166.3 -1.42 1 0 0.71 1 0 0.71 1
TIQT8 (3D) -4188.5 -4.23 1 0 0.61 1 -1.3 0.61 1
TIQT10 (3D) -574 -4.97 1 0 0.31 1 -8.9 0.31 1

Table C.2: Characterization of Error-Resistance through Re-

duction (TPC-H)

Query CG | CG-FPC | SEER | LiteSEER

Template (ms) (min) (min) (sec)
TIQT2 (2D) 18 45.9 2.9 12.2
TIQT8 (2D) 12 96.3 4.9 257
TIQT9 (2D) 16 90.0 7.2 24.0
TIQT10 (2D) 14 44.1 2.6 11.8
TIQT16 (2D) 12 31.5 2.0 8.4
TIQT5 (3D) 28 83 20.8 39.8
TIQT8 (3D) 24 180 67.8 86.4
TIQT10 (3D) 19 78 15.9 37.0

Table C.3: Efficiency of Reduction Process (TPC-H)




Query CG SEER LiteSEER
Template MInSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MInSERF | AvgSERF | MaxSERF
QT2 (2D) 0 0.76 0.98 0.02 0.62 0.98 0.02 0.62 0.98
QT5 (2D) 0.99 0.99 0.99 0.96 0.98 1 0.96 0.98 1
QT8 (2D) -0.47 0.73 0.99 0.27 0.44 0.99 0.27 0.44 0.99
QT9 (2D) -55.3 -0.56 1 0.86 0.99 1 0.86 0.99 1
QT10 (2D) -0.81 0.4 0.99 0.14 0.34 0.60 0.14 0.34 0.60
QT16 (2D) -0.33 0.49 0.97 0.04 0.46 0.92 0.04 0.46 0.92
QT5 (3D) 0 0.01 0.02 0.78 0.95 1 0.78 0.95 1
QT8 (3D) -22.6 0.41 1 0.15 0.36 0.99 0.15 0.36 0.99
QT10 (3D) -5.5 0.43 1 0.19 0.69 1 0.19 0.69 1
AIQT2 (2D) -3.95 0.16 0.97 0.15 0.64 0.94 0.15 0.64 0.94
AIQTS (2D) 0.17 0.38 1 0.28 0.51 1 0.28 0.51 1
AIQTS (2D) -0.27 0.48 0.99 0.19 0.46 0.99 0.19 0.46 0.99
AIQT9 (2D) -1999.8 2.1 1 0.96 0.99 1 0.96 0.99 1
AIQT10 (2D) 5.7 0.32 1 0.16 0.33 0.68 0.16 0.33 0.68
AIQT16 (2D) -0.39 0.58 0.96 0 0.58 0.98 0 0.58 0.98
AIQTS (3D) 03 0.6 1 0.05 0.9 1 0.05 0.9 1
AIQTS (3D) -9.25 0.32 0.99 0.03 0.75 0.99 0.03 0.75 0.99
AIQT10 (3D) -24.6 0.44 1 0.08 0.5 1 0.08 0.5 1
DSQT12 (2D) 1 0.16 1 0.25 0.32 0.54 0.25 0.32 0.54
DSQT18 (2D) -12.2 0.38 1 0.59 0.99 1 0.59 0.99 1
DSQT19 (2D) -11.8 0.08 1 0.18 0.47 1 0.18 0.47 1
DSQT12 (3D) 1 1 1 1 1 1 1 1 1
DSQT18 (3D) 0.99 0.99 0.99 0.72 0.86 1 0.72 0.86 1
DSQT19 (3D) -0.53 0.74 1 0.77 0.87 1 0.77 0.87 1
Table C.4: Characterization of Error-Resistance through Redution
i ictri i Query Original CG | CG-FPC | SEER | LiteSEER
C.3 Uniform Query Distribution Tomate || No ot ans
The results in the main paper were produced with an exponential | AIQT2 (2D) 30 8 3 3 3
distribution of query points across the selectivity space. We present 2:8% gg; gg g g g g
here the corresponding results for plan diagrams generated with a | A|gT9 (2p) o5 5 1 1 1
uniformdistribution of query points. Tables C.5 and C.6 show the AIQT10 (2D) 16 4 3 3 3
reduction quality over our suite of query templates on the TPC-H | AIQT16 (2D) 22 14 3 4 4
and TPC-DS _datab_ases, respectively, operating with a Primary Key ﬁ:gg gg; gg g 5 g g
physical configuration. The performance on an All Index configu- AIQT10 (3D) 50 9 4 3 3
ration is detailed in Table C.7. Finally, the error-resistance quality
and the reduction efficiency are shown in Tables C.4 and C.8, re-  Table C.7: Plan Diagram Reduction Quality (TPCH-AI)
spectively.
These results are behaviorally similar to those obtained with the ngg{gte (%GS) C(Grﬁﬁgc %ﬁﬁ? '—'t‘isse'i')fR
exponential distribution. QT2 2D) 5 516 55 =g
QT5 (2D) 14 8.1 0.7 2.2
Query Original CG | CG-FPC | SEER | LiteSEER QT8 (2D) 14 27.0 1.9 7.2
Template No. of plans QT9 (2D) 13 18.0 2.1 4.8
QT2 (2D) 25 5 3 3 3 QT10 (2D) 14 10.8 0.7 2.9
QT5 (2D) 10 3 1 1 1 QT16 (2D) 13 225 1.4 6.0
QT8 (2D) 31 4 2 2 2 QT5 (3D) 25 17.0 5.1 8.2
QT9 (2D) 21 2 1 1 1 QT8 (3D) 21 29.0 10.7 13.9
QT10 (2D) 13 3 2 2 2 QT10 (3D) 22 23.0 7.8 11.0
QT16 (2D) 26 9 2 3 3 AIQT2 (2D) 16 261 28 7.0
QT5 (3D) 18 1 1 1 1 AIQT5 (2D) 16 216 0.7 5.8
QT8 (3D) 18 6 3 3 3 AIQTS (2D) 14 215 2.1 5.8
QT10 (3D) 18 4 2 2 2 AIQT9 (2D) 15 21.6 1.7 5.7
AIQT10(2D) || 13 135 0.7 36
. ; ; ; } AIQT16(2D) || 13 18.9 0.4 5.0
Table C.5: Plan Diagram Reduction Quality (TPC-H) ATOT5 (3D) >3 %5 55 3
AIQTS (3D) 20 38.0 14.0 18.2
AIQT10(3D) || 20 49.0 14.0 235
Query Original CG | CG-FPC | SEER | LiteSEER DSQT12 (2D) || 19 5.4 0.07 14
Template No. of plans DSQT18 (2D) 17 18.0 1.2 4.8
DSQT12 (2D) 7 4 2 2 2 DSQT19 (2D) 14 24.3 1.7 6.5
DSQT18 (2D) 21 3 1 1 1 DSQT12 (3D) || 20 7.0 12 34
DSQT19 (2D) 28 5 2 2 2 DSQT18 (3D) || 30 35.0 7.2 16.8
DSQT12 (2D) 8 2 1 1 1 DSQT19(3D) || 26 63.0 12.7 30.2
DSQT18 (3D) 36 2 1 1 1
DSQT19 (2D) 64 2 1 1 1 Table C.8: Efficiency of Reduction Process

Table C.6: Plan Diagram Reduction Quality (TPC-DS)




D. PartialSEER

The problem formulation for robust reduction in the main paper Other boundaries are safe.

required the replacement plan todglebally safe As a generalized
variant, the safety criteria can be relaxed to allow a pfan to
replace planP,. if P, is safe in at least a user-definednimum
safe fraction (MSFpf the area covered by (M SF < 1).

From Theorem 1 we know that the safe (and violating)

bottom boundaries o are safe. The algorithm is similar when

points

form contiguous regions i when the slope criteria of at least
one of the size conditions are satisfied. Since the left and bottom
boundaries of the grid are safe, thheandy axes form a part of

WEDGE.TEST and PERIMETERTEST checks for global safety.
If this fails, we verify whether the slope criteria of any of the 6 con-
ditions given in Theorem 1 is satisfied. If true, we allow plan

to replace plarP,. if

1. At least two adjacent boundaries in the perimeteSaddre
safe; and

2. TheM SF requirement is met is.

The reason for restricting our attention to situations where at
least two adjacent boundaries are safe is that, for this case, an
efficient algorithm can be set up to check satisfaction of the area
requirement, as described below. Figure D.1 shows the modified
SafetyCheck algorithm that finds the safe area when the left and

PartialSafetyCheck (Plan Diagram P, Threshold X, Area

allowedV'iolation, Plan Py, Plan Py, Dimensiond)

traces the remainder of this boundary.

Figure D.2: The PartialSafetyCheck Algorithm

1. if(d==2)
(a) if (WEDGETEST @,Poc.Pre,A) == Safe) return
allowedViolation
(b) if (PERIMETERTEST @,Poe,Pre,\) == Safe) return
allowedViolation

(c) if the slope criteria of the six conditions of Theorem & aot
satisfiedyeturn —1

(d) if (allowedViolation = 0) return —1

(e) if notwo adjacent boundaries are safeturn —1.

(f) Let the first violating point at the top-boundary of thedy
G occur atx = =z,. Setx = xz,, y = r — 1,
NumViolatingPoints = 0

(g) Whilez # r andy # —1

i. Setcount =0
ii. While current point is violating (i.ef (z,y) > 0) and
y# -1
A. move down (i.ey--)
B. if (NumViolatingPoints +
(r—y—1)x(r—z—1)) > allowedViolation,
return —1
iii. While current point is safe (i.¢(x,y) < 0) andz # r
A. move right (i.e.x++), count++

B. if (NumViolating Points+
count X (r —y — 1)) > allowedV'iolation,
return —1

iv. NumViolatingPoints + = count X (r —y — 1)
(h) allowedViolation — = NumViolatingPoints
@) return allowedViolation

2. else
(a) foreach(d — 1)-dimension slicé®’ of P
i. allowedViolation = PartialSafetyCheck R\,
allowedV'iolation, Poe, Pre,d — 1)
i. if (allowedViolation < 0)
return allowedViolation;

3. return allowedViolation.

Figure D.1: The PartialSafetyCheck Algorithm

Figure D.2 shows the flow of the algorithm while tracing the
boundary between the safe (green) and violating (red) regions of
the selectivity space for a pair of plans. In this figure, the top and
right boundaries of the region violate the safety requirement.

We start from the first violating point on the top-boundary of the
grid, and at each stage either move down or right in the grid. At
each interior point that we move to, we perform the costing of the
plansP,. andP... The algorithm stops when we reach the bottom
or right boundaries of the grid.

The PartialSEER reduction algorithm, which employs the Par-
tialSafetyCheck safety-checking technique, is shown in Figure D.3.

PartialSEER (Plan Diagram P, Threshold A\, MinSafeFraction
MSF)

1. Create a Set-Cover Instande = (U,S), where S =
{S1,S52,...,5n}, U = {1,2,...,n}, corresponding to the
plans in the original plan diagraf

2. Seteaclt; = {i},Vi=1...n
3. For each pair of plangP;, P;) do
(a) SetallowedViolation = (1 — MSF) x Area(P).

(b) if  (PartialSafetyCheck R \allowedViolation,
Pi,Pj,d) > 0) then
Si = 5 U{s}

4. Solve the set-cover instanéaising the Greedy Setcover aldo-
rithm to identify the plans retained R.

Figure D.3: The PartialSEER Reduction Algorithm



