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ABSTRACT
Estimates of predicate selectivities by database query optimizers
often differ significantly from those actually encountered during
query execution, leading to poor plan choices and inflated response
times. In this paper, we investigate mitigating this problem by
replacing selectivity error-sensitive plan choices with alternative
plans that provide robust performance. Our approach is based on
the recent observation that even the complex and dense “plan di-
agrams” associated with industrial-strength optimizers can be ef-
ficiently reduced to “anorexic” equivalents featuring only a few
plans, without materially impacting query processing quality.

Extensive experimentation with a rich set of TPC-H and TPC-
DS-based query templates in a variety of database environments
indicate that plan diagram reduction typically retains plans that are
substantially resistant to selectivity errors on the base relations.
However, it can sometimes also be severely counter-productive,
with the replacements performing much worse. We address this
problem through a generalized mathematical characterization of
plan cost behavior over the parameter space, which lends itself to
efficient criteria of when it is safe to reduce. Our strategies are fully
non-invasive and have been implemented in the Picasso optimizer
visualization tool.

1. INTRODUCTION
The query execution plan choices made by database engines of-

ten turn out to be poor in practice because the optimizer’s selec-
tivity estimates are significantly in error with respect to the actual
values encountered during query execution. Such errors, which can
even be in orders of magnitude in real database environments [19],
arise due to a variety of reasons [24], including outdated statistics,
attribute-value independence assumptions and coarse summaries.

Robust Plans.To address this problem, an obvious approach is to
improve the quality of the statistical meta-data, for which several
techniques have been presented in the literature ranging from im-
proved summary structures [1] to feedback-based adjustments [24]
to on-the-fly reoptimization of queries [16, 19, 3]. A complemen-
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tary and conceptually different approach, which we consider in this
paper, is to identifyrobust plansthat are relatively less sensitive to
such selectivity errors. In a nutshell, to “aim for resistance, rather
than cure”, by identifying plans that provide comparatively good
performance over large regions of the selectivity space. Such plan
choices are especially important for industrial workloads where
global stability is as much a concern as local optimality [18].

Over the last decade, a variety of strategies have been proposed
to identify robust plans, including the Least Expected Cost [6, 8],
Robust Cardinality Estimation [2] and Rio [3, 4] approaches. These
techniques provide novel and elegant formulations (summarized in
Section 6), but have to contend with the following issues:

Firstly, they areintrusiverequiring, to varying degrees, modifi-
cations to the optimizer engine. Secondly, they requirespecialized
information about the workload and/or the system which may not
always be easy to obtain or model. Thirdly, their query capabili-
ties may belimited compared to the original optimizer – e.g., only
SPJ queries with key-based joins were considered in [2, 3]. Fur-
ther, [3] has been implemented and evaluated on a non-commercial
optimizer. Finally and most importantly, as explained in Section 6,
none of them provide, on an individualquery basis, quantitative
guaranteeson the quality of their final plan choice relative to the
original (unmodified) optimizer’s selection. That is, they “cater to
the crowd, not individuals”.

The SEER Algorithm. In this paper, we presentSEER
(Selectivity-Estimate-Error-Resistance), a new strategy for identi-
fying robust plans that can be directly used on operational database
environments. More concretely, it

• Treats the optimizer as a black-box and therefore is inher-
ently (a) completely non-intrusive, and (b) capable of han-
dling whatever SQL is supported by the system. Further, it
does not expect to have any additional information beyond
that provided by the engine interface.

• Provides plan performance guarantees that areindividually
applicable to queries in the selectivity space.

• Considers only theparametric optimal set of plans
(POSP) [13] as replacement candidates and therefore deliv-
ers, for errors that lie within the replacement plan’s optimal-
ity region, robustness “for free”. In contrast, the previously
proposed algorithms in the literature may evaluate plans that
are not optimal anywhere in the space.

• Is validated oncommercialoptimizers on both the classical
TPC-H [26] and the recent TPC-DS [27] benchmarks.

We hasten to add that SEER, due to its non-intrusive design ob-
jective, only attempts to address selectivity errors that occur on the



select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end) /
sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as
volume, n2.nname as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey
= o orderkey and ocustkey = ccustkey and cnationkey =
n1.n nationkey and n1.nregionkey = rregionkey and snationkey
= n2.n nationkey and rname = ’AMERICA’ and ptype = ’ECON-
OMY ANODIZED STEEL’ and
s acctbal :variesandl extendedprice :varies

) as all nations
group by oyear
order by oyear

Figure 1: Example Query Template: QT8

base relations, similar to [1]. However, since these base errors are
often the source of poor plan choices due to the multiplier effect as
they progress up the plan-tree [15], minimizing their impact could
be of significant value in practical environments. Further, since
SEER is a purely compile-time approach, it can be used in conjunc-
tion with run-time techniques such as adaptive query processing [9]
for addressing selectivity errors in the higher nodes of the plan tree.

Anorexic Reduction of Plan Diagrams. SEER is based on the
anorexic reduction of plan diagrams, a notion that was recently
presented and analyzed in [11]. Specifically, a “plan diagram” [22]
is a color-coded pictorial enumeration of the plan choices of the
optimizer for a parametrized query template over the relational se-
lectivity space. That is, it visually captures the POSP geometry.

For example, consider QT8, the parametrized 2D query tem-
plate shown in Figure 1, based on Query 8 of TPC-H. Selectivity
variations on theSUPPLIERand LINEITEM relations are specified
through thes acctbal :varies andl extendedprice :varies pred-
icates, respectively. The associated plan diagram for QT8 is shown
in Figure 2(a), produced with the Picasso optimizer visualization
tool [21] on a popular commercial database engine.

As evident from Figure 2(a)1, plan diagrams can be extremely
complex and dense, with a large number of plans covering the
space – several such instances spanning a representative set of
benchmark-based query templates on industrial-strength optimiz-
ers are available at [21]. However, these dense diagrams can typi-
cally be “reduced” to much simpler pictures featuring significantly
fewer plans,without materially degrading the processing quality
of any individual query. For example in Figure 2(a), if users are
willing to tolerate a minor cost increase (λ) of at most 10% for any
query point in the diagram, relative to its original cost, the picture
could be reduced to Figure 2(b), where only 7 plans remain – that
is, most of the original plans have been “completely swallowed” by
their siblings, leading to a highly reduced plan cardinality.

A detailed study of the plan diagram reduction problem was pre-
sented in [11], and it was shown that a cost increase threshold of
only 20 percentis usually amply sufficient to bring down the abso-
lute number of plans in the final reduced picture towithin or around
ten. In short, that complex plan diagrams can be made “anorexic”
while retaining acceptable query processing performance.

Example. We now show an example of how anorexic reduction
helps to identify selectivity-error-resistant plans: In Fig-
ure 2(a), estimated selectivities of around (14%,1%) lead to
a choice of planP70. However, if the actual selectivities at

1The figures in this paper should ideally be viewed from a color
copy, as the grayscale version may not clearly register the features.

runtime turn out to be significantly different, say (50%,40%),
executing withP70, whose cost increases steeply with selec-
tivity, would be disastrous. In contrast, this error would have
had no impact with the reduced plan diagram of Figure 2(b),
sinceP1, the replacement plan choice at (14%,1%), remains
the preferred plan for a large range of higher values, includ-
ing (50%,40%). Quantitatively, at the run-time location, plan
P1 has a cost of 135, whileP70’s cost of 402 is aboutthree
timesmore expensive.

It is easy to see, as in the above example, that the replacement
plan will, by definition, be a robust choice for errors that lie within
its optimality region, i.e. its“endo-optimal” region. This is the ad-
vantage, mentioned earlier, of considering replacements only from
the POSP set of plans. The obvious question then is whether the
sizes of these regions are typically large enough to materially im-
prove the system performance.

A second, and even more important question, is: What if the er-
rors are such that the run-time locations are“exo-optimal” w.r.t.
the replacement plan? For example, if the run-time location hap-
pens to be at (80%,90%), which is outside the optimality region of
P1? In this situation, nothing can be said upfront – the replacement
could be much better, similar or much worse than the original plan.
Therefore, ideally speaking, we would like to have a mechanism
through which one could assess whether a replacement isglobally
safeover the entire parameter space.

Contributions. In this paper, we address the above issues from
both theoretical and empirical perspectives. We have conducted
extensive experimentation on a leading commercial optimizer with
a rich suite of multi-dimensional TPC-H and TPC-DS based query
templates operating on a variety of logical and physical database
designs. Our results demonstrate thatplan diagram reduction typi-
cally produces plan choices that substantially curtail the adverse
effects of selectivity estimation errors. Therefore, it clearly has
potential to improve performance in general, for both the endo-
optimal and exo-optimal regions.

However, we have also encountered occasional situations where
a replacement plan performs much worse in its exo-optimal region
than the original optimizer choice, highlighting the need to estab-
lish an efficient criterion of when a specific swallowing is globally
safe. To achieve this objective, we present a generalized mathe-
matical model of the behavior of plan cost functions over the se-
lectivity space. The model, although simple, is sufficient to capture
the cost behavior of all plans that have arisen from our query tem-
plates. Using this model, we then prove that checks on only the
perimeterof the selectivity space are sufficient to decide the safety
of reduction over the entire space. These checks involve the cost-
ing of “foreign plans”, that is, of costing plans in their exo-optimal
regions, a feature that has become available in the current versions
of several industrial-strength optimizers, including DB2[28] (Op-
timization Profile), SQL Server[29] (XML Plan) and Sybase[30]
(Abstract Plan).

Apart from providing reduction safety, foreign-plan costing is
additionally leveraged to both (a) enhance the reduction levels of
the plan diagram, and (b) improve the complexity characteristics of
the reduction process, as compared to our earlier CostGreedy re-
duction algorithm [11]. Note that the increased diagram reduction
automatically implieslarger within-λ-of-optimal regionsfor the re-
tained plans, upfront guaranteeing more robustness.

In summary, we present in this paper SEER, an efficient, effec-
tive and safe mechanism for identifying robust plans that are resis-
tant, as compared to the optimizer’s original choices, to errors in
the base relation selectivity estimates. Through a detailed study



(a) Plan Diagram (b) Reduced Diagram (Threshold = 10%)

Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

of benchmark-based query templates on commercial optimizers,
we empirically demonstrate that SEER provides robust good per-
formance for industrial-strength database environments. We also
present LiteSEER, a (complexity-wise) optimally efficient heuris-
tic algorithm, which delivers comparable robustness to that offered
by SEER. Both SEER and LiteSEER have been implemented in the
freely-available Picasso optimizer visualization tool [21].

Organization. The remainder of this paper is organized as follows:
In Section 2, we present the overall problem background, frame-
work and motivation. The plan cost models and the checks for
replacement safety are discussed in Section 3. The design of the
SEER reduction algorithm and its analysis are presented in Sec-
tion 4. The LiteSEER variant is introduced in Section 4.3. Our
experimental framework and performance results are highlighted
in Section 5. Related work is overviewed in Section 6. Finally,
in Section 7, we summarize our conclusions and outline future re-
search avenues.

2. PROBLEM FRAMEWORK
For ease of exposition, we assume in the following discussion

that the SQL query template is 2-dimensional in its selectivity vari-
ations – the extension to higher dimensions is straightforward.

2.1 Plan and Reduced Plan Diagrams
From a query templateQ, a plan diagramP is produced on a

2-dimensional[0, 1] selectivity spaceS by making repeated calls
to the optimizer. The selectivity space is represented by a grid of
points where each pointq(x, y) corresponds to a unique query with
selectivitiesx, y in the X and Y dimensions, respectively. Eachq

is associated with an optimal (as determined by the optimizer) plan
Pi, and a costci(q) representing the estimated effort to executeq

with planPi. Corresponding to each planPi is a unique colorLi,
which is used to color all the query points that are assigned toPi.
As mentioned earlier, the plan diagram is essentially a visual char-
acterization of the parametric optimal set of plans (POSP) [13]. We
useP andS interchangeably in the remainder of the paper based
on the context.

Plan Diagram Reduction Problem. This problem is defined as

follows [11]: Given an input plan diagramP, and a maximum-
cost-increase thresholdλ (λ ≥ 0), find a reduced plan diagramR
with minimum cardinalitysuch that for every planPi in P,

1. EitherPi ∈ R, or

2. ∀ q ∈ Pi, the assigned replacement planPj ∈ R guarantees
cj(q)

ci(q)
≤ (1 + λ)

That is, find the maximum possible subset of the plans inP that
can be completely “swallowed” by their sibling plans in the POSP
set. A point worth reemphasizing here is that the threshold con-
straint applies on anindividual querybasis. For example, setting
λ = 10% stipulates that the cost ofeachquery point in the reduced
diagram is within1.1 times its original value.

It was proved in [11] that the above problem is NP-Hard.
Therefore, an efficient heuristic-based online algorithm, called
CostGreedy, was proposed and shown to deliver near-optimal
“anorexic” levels of reduction, wherein the plan cardinality of the
reduced diagram usually came down to around 10 or less for aλ-
threshold of only 20%. In a nutshell, complex plan diagrams can
be easily made very simple without materially affecting the query
processing quality.

2.2 Selectivity Estimation Errors
Consider a specific query pointqe, whose optimizer-estimated

location in S is (xe, ye). Denote the optimizer’s optimal plan
choice at pointqe by Poe. Due to errors in the selectivity estimates,
theactual location ofqe could be different at execution-time – de-
note this location byqa(xa, ya), and the optimizer’s optimal plan
choice atqa by Poa. Assume thatPoe has been swallowed by a sib-
ling plan during the reduction process and denote the replacement
plan assigned toqe in R by Pre. Finally, extend the definition of
query cost (which applied to the optimal plan) to haveci(t) denote
the cost of an arbitrary POSP planPi at an arbitrary query pointt
in S.

With respect toR, the actual query pointqa will be located in
one of the following disjoint regions ofPre that together coverS:

Endo-optimal region of Pre: Here,qa is located in the optimal-
ity region of the replacement planPre, which also implies
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Figure 3: Beneficial Impact of Plan Replacement

that Pre ≡ Poa. Sincecre(qa) ≡ coa(qa), it follows that
the cost ofPre at qa, cre(qa) < coe(qa) (by definition of
a cost-based optimizer). Therefore, improved resistance to
selectivity errors is alwaysguaranteedin this region.

Swallow-region ofPre: Here,qa is located in the region “swal-
lowed” by Pre during the reduction process. Due to the
λ-threshold constraint, we are assured thatcre(qa) ≤
(1 + λ)coa(qa), and by implication thatcre(qa) ≤ (1 +
λ)coe(qa). Now, there are two possibilities: Ifcre(qa) <

coe(qa), then the replacement plan is again guaranteed to im-
prove the resistance to selectivity errors. On the other hand,
if coe(qa) ≤ cre(qa) ≤ (1 + λ)coe(qa), the replacement is
guaranteed to not cause any real harm, given the small values
of λ that we consider in this paper.

Exo-optimal region of Pre: Here,qa is located outside both the
endo-optimal and swallow-regions ofPre. At such locations,
we cannot apriori predictPre’s behavior, and therefore the
replacement may not always be a good choice – in principle,
it could bearbitrarily worse. Therefore, we would like to
ensure that even if the replacement does not provide any im-
provement, it is at least guaranteed to not do any harm. That
is, theexo-optimal region should have the same performance
guarantees as the swallow-region. We show in Section 3 how
this objective can be efficiently achieved through simple but
powerful checks to decide when replacement is advisable.

2.3 Motivational Scenarios
Given the above framework, we now present example scenarios

to motivate (a) the error-resistance utility of plan diagram reduc-
tion, and (b) the need for safety in this process.

Our first scenario, typical of that seen in most of our experiments,
demonstrates how the replacement planPre can provide extremely
substantial improvementsthroughout the selectivity space. Specif-
ically, on a vanilla PC with a popular commercial optimizer, we
generated a plan diagram for a query template based on TPC-H Q5,
with selectivity variations on theCUSTOMERandSUPPLIERrela-
tions, and carried out reduction withλ = 10%. On this diagram,
considerqe = (0.36, 0.05) and a sample set of actual locations
(qa) – for instance, along the principal diagonal ofS. For this sce-
nario, the costs ofPoe (P45),Pre (P17) andPoa (the optimal plan
at eachqa location) are shown in Figure 3(a) – note that the costs
are measured on alog scale.

It is clear from Figure 3(a) that the replacement planPre pro-
vides orders-of-magnitudebenefit w.r.t.Poe. In fact, the error-
resistance is to the extent that it virtually provides “immunity” to
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Figure 4: Adverse Impact of Plan Replacement

the error since the performance ofPre is close to that of thelocally
optimal planPoa throughout the space, although the endo-optimal
region ofPre constitutes only a very small fraction of this space.

To demonstrate that the benefits anticipated from the compile-
time analysis do translate to corresponding improvementsat run-
time, we show in Figure 3(b) the query response times (again mea-
sured on alog scale) of Poe (P45),Pre (P17) andPoa at the same
qa locations. It is vividly clear in this picture that huge savings in
processing time are obtained by using the replacement plan instead
of the optimizer’s original choice, and that the replacement’s per-
formance is virtually indistinguishable from the optimal choices.

While performance improvements are usually the order of the
day, there are occasional situations whereinPre performs worse
thanPoe at qa. A particularly egregious example, arising from the
sameplan diagram described above, is shown in Figure 4(a) for
qe = (0.03, 0.14) – we see here that it is now the replacement plan
Pre (P34), which isorders-of-magnitudeworse thanPoe (P26) in
the presence of selectivity errors. This compile-time assessment is
corroborated in Figure 4(b) which shows the corresponding query
response times.

2.4 Robust Reduction
From the above discussion, it is clear that we need to ensure that

only safe replacements are permitted. This means that replacement
should be permitted only if theλ threshold criterion is satisfied not
just at the estimated point, butat all locations in the selectivity
space. At the same time, it is important to ensure that the safety
check is not unnecessarily conservative, preventing most plan re-
placements, and in the process losing all the error-resistance ben-
efits. Therefore, the overall goal is to maximize plan diagram re-
duction without violating safety considerations. More formally, our
problem formulation is:

Robust Reduction Problem.Given an input plan diagramP, and
a maximum cost-increase-thresholdλ (λ ≥ 0), find a reduced plan
diagramR with minimum plan cardinalitysuch that for every plan
Pi in P,

1. Pi ∈ R, or

2. ∀ q ∈ Pi, the assigned replacement planPj ∈ R guarantees

∀ query pointsq′ ∈ P,
cj(q

′)

ci(q′)
≤ (1 + λ)

That is, find the minimum-sized error-resistant “cover” of plans that
reduces the plan diagramP without increasing the cost of any reas-
signed query point by more than the cost increase threshold,irre-
spective of the actual location of the query at run-time.



It is easy to see that the Robust Reduction problem is NP-Hard,
just like the standard Plan Diagram Reduction problem, and there-
fore we present a heuristic-based algorithm later in Section 4. But,
prior to that, we show in the following section how replacement
safety can be checked efficiently.

3. ENSURING ROBUST REDUCTION
To find an error-resistant cover of the plan diagram, we need to

evaluate the behavior of each replacement planPre, w.r.t. its swal-
lowing targetPoe, at all points in S. This requires, in principle,
finding the costs ofPoe and all potentialPre at every point in the
diagram. Of course,Poe andPre need not be costed in their respec-
tive endo-optimalregions, since these values are already known
through the plan diagram production process. The remainingexo-
optimalcosts can be obtained using theForeign-Plan-Costingfea-
ture, hereafter referred to asFPC, that is now supported in several
industrial-strength optimizers, as mentioned in the Introduction.

While the above solution is conceptually feasible, it is prac-
tically unviable due to its enormous computational overheads.
Plan-costing is certainly cheaper than the optimizer’s standard
optimal-plan-searching process [14], but the overall overhead is
still O(nm) wheren andm are the number of plans and the num-
ber of points, respectively, inP. Typical values ofn range from the
several tens to several hundreds, whilem is at least in thousands,
making an exhaustive approach impractical.

The above situation motivates us to study whether it is possible,
based on using FPC at only afew select locations, to infer the be-
havior in the rest of the space. In the remainder of this section,
we describe our strategy for making such an inference. We begin
by designing a parametrized mathematical model for characterizing
plan cost behavior. Our model is grossly simplified in comparison
to those used in real optimizers, which are much more complex [20,
19]. However, what we have found in practice (with several hun-
dred distinct plans arising out of TPC-H and TPC-DS-based query
templates on industrial optimizers) is that with appropriate settings
of the parameters, our simple model is quite accurate, both behav-
iorally and quantitatively. The reasons are that (a) in our prob-
lem space all parameters, barring the selectivities, areconstant, re-
sulting in complex models degenerating to comparatively simple
equivalents; (b) we arefitting the model to the observed cost be-
haviors, rather than trying topredict them; and (c) our modeling
is at the level of entire plans, aggregating the effects of several in-
dividual operators, thereby reducing the variability. Moreover, the
quantitative accuracy is a bonus – it is not really required since only
behavioralaccuracy is necessary for our scheme to work.

3.1 Modeling Plan Cost Functions
For ease of presentation, we will initially assume that our objec-

tive is to model the cost behavior of plans with respect to a 2-D se-
lectivity space (e.g. Figure 2(a)) corresponding to distinct relations
Rx andRy. The extension to higher dimensions is straightforward
and given in Appendix B.

In current optimizers, the operators in the execution plan are all
typically eitherunaryor binary with regard to their inputs. There-
fore, given a specific plan operator tree we can define the following
types of nodes:

Selectivity Nodes: These are the unary nodes that implement the
selection operations on relationsRx andRy.

Dependent Nodes:These are the nodes in the tree that have at
least one Selectivity Node in the sub-tree below them.

Independent Nodes:These are all the remaining nodes in the tree
that do not belong to either of the above two categories.

3.2 Node Cost Models
We now enumerate the cost models that can be associated with

the above node categories on the 2-D selectivity spaceS. Our for-
mulation is based on detailed observations of cost behavior of in-
dividual operators on commercial database optimizers. In the fol-
lowing, the variablesx andy are used to denote the (fractional)
selectivities on the respective dimensions.

Independent Nodes:Since these nodes do not have a Selectivity
Node in their sub-tree, variations inx andy do not change
their inputs, and consequently their outputs. Therefore, for a
given plan, the costs at these nodes remain the same through-
outS.

Selectivity Nodes: The input cardinalities for these nodes will be
constant (equal to the corresponding base relation’s cardi-
nality n) while the output cardinality is directly dependent
on the selectivity value. Therefore, the cost behavior can be
captured by the simple linear model involving coefficientsa1

anda2 shown in Table 1. For example,Table-Scanswill have
a1 = 0, while Index-Scansare likely to have non-zero values
for both constants.

Dependent Unary Nodes:The input cardinalities for these nodes
will be a function ofx and/ory, and the associated fam-
ily of cost models is as shown in Table 1. For operators
such asAggregates, Arithmetic Expressions, Scalar func-
tions, etc. the simple linear model will apply, whereas the
logarithmic model would apply to operators such asSortand
Group Bythat require multiple passes over the data.

Dependent Binary Nodes:These are the nodes that represent bi-
nary set operators such asJoin, Union, Minus, etc. The
different types of input possibilities and the associated cost
models are shown in Table 1.

Note that we deliberately do not consider the case whereboth
the inputs to the binary node are functions ofx (or y or xy).
This is because it is easy to prove [12] that such a situation is
not possible unless operators havebinary outputs– we have
not encountered any such operators in our study.

3.2.1 Cost Model of a Complete Plan
The cost function of the entire plan is the aggregate sum of the

costs of the individual nodes. Considering all possible cost models
a node can have, we can conclude that the overall cost model of a
plan for a 2D selectivity space is of the form

Cost(x, y) =a1x + a2y + a3xy + a4x log x + a5y log y+

a6xy log xy + a7 (1)

wherea1, a2, a3, a4, a5, a6, a7 are coefficients, andx, y represent
the selectivities ofRx andRy, respectively.

Modeling a specific plan requires suitably choosing the seven
coefficients, and this is achieved through standard surface-fitting
techniques, described in Section 5. The extension of Equation 1 to
a generald-dimensional space is straightforward (Appendix B.1),
with the number of parameters in the cost model being(2d+1 − 1)
– for example, 3D cost functions are modeled using 15 parameters.



Node Type Input Cardinalities Cost Model
Selectivity Node (σ = x) n a1nx + a2

Dependant Unary Nodes
n1x

a1n1x + a2

a1n1x log n1x + a2

n1xy
a1n1xy + a2

a1n1xy log n1xy + a2

Dependant Binary Nodes
n1x n2 a1n1x + a2n2 + a3n1n2x + a4

n1xy n2 a1n1xy + a2n2 + a3n1n2xy + a4

n1x n2y a1n1x + a2n2y + a3n1n2xy + a4

Table 1: Cost Models for Various Node Types

3.3 Replacement Safety Conditions
For the 2D scenario, using the above7-coefficient cost model,

our goal now is to come up with an efficient mechanism to assess,
given an optimal planPoe, candidate replacement planPre and a
cost-increase thresholdλ, whether it would be safe from aglobal
perspective to havePre swallowPoe.

Let the cost functions forPre andPoe be

fre(x, y) = a1x+a2y+a3xy+a4x log x+a5y log y+a6xy log xy+a7

(2)
and

foe(x, y) = b1x+b2y+b3xy+b4x log x+b5y log y+b6xy log xy+b7
(3)

respectively. Now consider the“safety function”

f(x, y) = fre − (1 + λ)foe (4)

which captures the differences between the costs ofPre and aλ-
inflated version ofPoe in the selectivity space. All points where
f(x, y) ≤ 0 are referred to asSafePointswhereas points that have
f(x, y) > 0 are calledViolatingPoints. For a replacement to be
globally safe, there should be no ViolatingPoint anywhere in the
selectivity space.

In the following, we will use LR-Boundaries to collectively de-
note the left and right boundaries of the selectivity space, and TB-
Boundaries to collectively denote the top and bottom boundaries of
the space.

For a specific value ofy, the safety functionf(x, y) can be
rewritten as

fy(x) = g1 ∗ x + g2 ∗ x log x + g3

for appropriate coefficientsg1, g2, g3. Similarly, we can define
fx(y). With this terminology, the following theorem provides us
with conditions for checking whether the selectivity space is safe
for the plan-pair (Poe,Pre) with regard to replacement.

THEOREM 1. For a plan-pair (Poe,Pre) and a selectivity space
S with corners[(x1, y1), (x1, y2), (x2, y2), (x2, y1)], the replace-
ment is safe (i.e., withinλ-threshold) inS if any one of the condi-
tions, SC1 through SC6, given in Table 2 is satisfied.

The proof of the above theorem uses the following two lemmas
– the first provides us with a condition that is sufficient to ensure
safety of all points on the straight line segment joining a pair of
safe points, while the second describes the behavior of the slope of
the safety function. We defer the proofs to Appendix A.

LEMMA 1 (LINE SAFETY). Given a fixedy = yo, and a pair
of safe points(x1, yo) and (x2, yo) with x2 > x1, the straight
line joining the two points is safe if the slopef ′

yo
(x) is either (i)

monotonically non-decreasing, OR (ii) monotonically decreasing
with f ′

yo
(x1) ≤ 0 or f ′

yo
(x2) ≥ 0. A similar result holds whenx

is fixed.

Left Right Top Bottom
Boundary Boundary Boundary Boundary

SC1 Safe Safe f ′′

y2
(x) ≥ 0 f ′′

y1
(x) ≥ 0

SC2 f ′

y(x1) ≤ 0 Safe f ′′

y2
(x) < 0 f ′′

y1
(x) < 0

& Safe
SC3 Safe f ′

y(x2) ≥ 0 f ′′

y2
(x) < 0 f ′′

y1
(x) < 0

& Safe
SC4 f ′′

x1
(y) ≥ 0 f ′′

x2
(y) ≥ 0 Safe Safe

SC5 f ′′

x1
(y) < 0 f ′′

x2
(y) < 0 f ′

x(y2) ≥ 0 Safe
& Safe

SC6 f ′′

x1
(y) < 0 f ′′

x2
(y) < 0 Safe f ′

x(y1) ≤ 0
& Safe

Table 2: Safety Satisfaction Conditions

LEMMA 2 (SLOPE BEHAVIOR). If the slope of the safety
function, f ′

y(x), is non-decreasing (resp. decreasing) along the
line-segmentsy = y1 andy = y2, then it is non-decreasing (resp.
decreasing) for all line segments in the interval(y1, y2). A similar
result holds forf ′

x(y).

The test criteria of Theorem 1 are utilized for determining reduc-
tion safety in the SafetyCheck algorithm, described next. A related
point to note here is that these checks areconservativein that it is
possible to have global safety even if none of the conditions are met
– i.e. the test is sufficient, but not necessary.

4. THE SEER ALGORITHM
In this section, we first describe the safety checking procedure,

which given a plan-pair (Poe, Pre), responds whether the replace-
ment ofPoe by Pre is globally safe throughout the selectivity space
S. We then present and analyze the SEER algorithm which uses this
procedure to perform error-resistant plan diagram reduction.

In the following, we will assume that the selectivity spaceS is
represented by a gridG, with m = r × r points, i.e. the grid
resolution in each dimension isr.

4.1 Safety Checking
To implement safe reduction in a 2-D plan diagram, we need to

be able to check for the satisfaction of any of the conditions (SC1
through SC6) stipulated in Theorem 1. A straightforward way to
achieve this is the followingPerimeter Testprocedure:

Perimeter Test. First compute the safety function at all points
on theperimeterof G – this is obtained through the foreign-plan-
costing (FPC) feature. Then, compute the slope behavior (non-
decreasing or decreasing) along all the grid lines – this is achieved
by evaluating the slopes at the matching end-points on the perime-
ter and comparing the values. The slope at a perimeter point is
approximated by computing the value of the safety function at its
immediate internal neighbor – i.e., along the “inner perimeter”, and



evaluating the slope of the line segment joining these two points.
Finally, use these results to verify whether any of the 6 safety con-
ditions are satisfied.

In the Perimeter test, the number of FPC operations is2∗4(r−1)
for the perimeter (the2 is due to having to compute bothfre

andfoe), while the computation of the slopes takes an additional
2 ∗ 4(r − 3) costings of the inner perimeter, leading to a total of
approximately16r. Note that this is much less than the2r2 FPC
operations required by a brute-force approach of costing both plans
at all points in the diagram. For example, withr = 100, the over-
head is brought down by over an order of magnitude.

An obvious minor improvement that could be carried out on the
16r overhead is to perform the inner perimeter costings only when
conditions SC1 and SC4 are violated. In this case, only one of SC2
or SC3 (resp. SC5 or SC6) can be valid. Hence, we need to perform
FPC operations only attwo boundaries of the inner perimeter, one
along each dimension. This reduces the FPC overhead to12r.

Wedge Test. We now present a powerful optimization, called
Wedge Test, that allows conditions SC1 and SC4 to be checked
with a constantnumber of FPC, specifically24, irrespective of
the resolution. This is based on the observation that the slope of
the safety function is a monotonic function (Equation 5 in Ap-
pendix A). Thus, by comparing the slopes at the corners of the
space, we can infer the slope behaviour of the safety function along
its boundaries. Applying Lemma 1, the safety of the boundaries
can also be inferred. Hence, it is sufficient to perform FPC only at
each corner of the space and its two adjacent points on the perime-
ter boundaries – that is, at the “corner wedges”.

Based on the above observations, we employ a two-stage pro-
cess of safety-checking – in the first stage, use the extremely cheap
Wedge Test check, and only if it fails, use the more expensive
Perimeter Test to verify replacement safety.

Note that once a plan is costed at a given location, we store this
cost in a cache for reuse later, ensuring no redundant computations.

4.2 Plan Diagram Reduction
We now show how the above safety checks are integrated into the

SEER procedure for plan diagram reduction. Note that SEER’s de-
sign is completely different from that of CostGreedy [11] because
now reduction is permitted only if it satisfies a safety criterion that
is applicable overS, whereas CostGreedy’s attention is limited to
only Poe’s endo-optimal region.

The complete SEER algorithm is shown in Figure 5. Here, a
Set-Cover instance is first created from the input plan diagramP.
Then the two-stage global safety checking procedure of the Wedge
Test, followed by the Perimeter Test, is implemented to evaluate
replacement possibilities across each pair of plans inP, and the
Set-Cover instance is updated accordingly. Finally, the resulting
instance is solved using the standard greedy techniques [23, 10] to
obtain the reduced plan diagramR.

Analysis. As discussed earlier, each replacement assessment of a
plan-pair (Poe,Pre) requires atmostO(r) FPCs to be performed.
There areO(n2) such comparisons performed by the algorithm.
However, since we cache the already obtained costs, the amortized
number of FPC to be performed per plan isO(r). Thus, for gridG
with m = r × r points, the comparison of all plan pairs requires
only O(n

√
m + n2) time. Solving the Set-Cover problem using

the Greedy Set-Cover algorithm [23, 10] requiresO(n2) time. This
results in anO(n

√
m+n2) reduction algorithm. Further, since the

set cover instance created has|U | = n, the approximation factor of
this reduction algorithm isO(log n).

The above bounds and approximation factors for SEER compare

SEER (Plan DiagramP, Threshold λ)

1. Create a Set-Cover InstanceI = (U, S), where S =
{S1, S2, ..., Sn}, U = {1, 2, ..., n}, corresponding to then
plans in the original plan diagramP.

2. Set eachSi = {i}, ∀i = 1...n

3. For each pair of plans(Pi, Pj) do

if (WEDGE TEST (Pi,Pj ,λ) == Safe) then

Si = Si

S

{j}

else if (PERIMETERTEST (Pi,Pj ,λ) == Safe) then

Si = Si

S

{j}

4. Solve the Set-Cover instanceI using the Greedy Set-Cover algo-
rithm to identify the plans retained inR.

Figure 5: The SEER Reduction Algorithm

very favorably with those of the CostGreedy reduction algorithm
[11], which has time complexityO(nm) and approximation factor
of O(log m), since typicallyn << m.

The extension of the SEER algorithm to higher dimensions is
provided in Appendix B.2.

4.3 LiteSEER: A Fast Variant
The SEER design makes conscious efforts, as described above,

to minimize the computational overheads, but these overheads do
grow with increasing dimensionality of the query template. There-
fore, we have also designed and evaluated LiteSEER, a light-weight
heuristic-based algorithm that trades SEER’s safety guarantee for
providing rapid running-times. In LiteSEER, a replacement is sim-
ply assumed to be safe ifall the corner points of the selectivity
space are safe. The intuition behind this observation is that when
two points are safe, then the straight line joining them is also usu-
ally safe (see Appendix A for the justification). This is corrobo-
rated by our experimental results (Section 5) which indicate that the
heuristic provides almost the same safety as that obtained through
the strict-checking criteria of SEER.

Given ad-dimensional plan diagramP with n plans, the Lite-
SEER algorithm only computes the safety function at the2d cor-
ners of the associated selectivity space. It immediately follows that
its overall complexity isO(2dn+n2). Since, in most practical sce-
narios of interest,2d << n (e.g. in the 2-D case,2d = 4, while n

is typically in the several tens, if not more), the effective complex-
ity turns out to beO(n2). Note that, in principle, in the absence
of any apriori information, this is theminimum workrequired to be
executed byany reduction algorithm. Therefore, LiteSEER is an
optimal algorithm (complexity-wise) w.r.t. efficiency.

[Note: A generalized variant of SEER called PartialSEER, which
permits guaranteed safety to be limited to a user-defined fractional
area ofS, is outlined in Appendix D.]

5. EXPERIMENTAL RESULTS
The testbed used in our experiments is the Picasso optimizer

visualization tool [21], executing on a Sun Ultra 20 workstation
equipped with an Opteron Dual Core 2.5GHz processor, 4 GB of
main memory and 720 GB of hard disk, running the Windows XP
Pro operating system. The experiments were conducted over plan
diagrams produced from a variety of two and three-dimensional
TPC-H andTPC-DS-based query templates operating on the Opt-
Com commercial optimizer. The TPC-H database containsuni-
formly distributed data of size 1GB, while the TPC-DS database
hostsskeweddata that occupies 100GB. The cost-increase thresh-
old used in all the plan diagram reductions isλ = 20%.



Physical Design.Following a methodology similar to that advo-
cated in [5], we considered three different physical design con-
figurations in our study:PrimaryKey (PK) , AllIndex (AI) , and
TunedIndex (TI) . PK represents the default physical design of
our database engine, wherein a clustered index is created on
each primary key. AI, on the other hand, represents an “index-
rich” situation wherein (single-column) indices are available on all
query-related schema attributes. Finally, TI represents the index
environment obtained by implementing the recommendations of
the database engine’s index tuning advisor (which include multi-
column indices). While the results for PK and AI are presented in
this section, the TI performance is provided in Appendix C.2.

In the subsequent discussion, we use QTx to refer to a query tem-
plate based on Queryx of the TPC-H benchmark, and DSQTx to
refer to a query template based on Queryx of the TPC-DS bench-
mark, operating in the default PK configuration. We prefix AI and
TI to the query template identifiers in describing our results for
these specialized configurations.

Query Location Distribution. All the performance results shown
in this section are for plan diagrams generated withexponentially
distributed locations for the query points across the selectivity
space, resulting in higher query densities near the selectivity axes
and towards the origin. This choice is based on earlier observations
in the literature (e.g. [13, 14, 22]) that plans tend to be densely
packed in precisely these regions of the selectivity space. From a
performance perspective, these diagrams represent the “tough-nut”
challenging situations with respect to obtaining anorexic reduction
due to their high plan densities and substantially broader range of
plan cost values.

[Note: For completeness, we have also conducted all the experi-
ments with auniformdistribution of query locations – these results,
which are qualitatively similar to those presented here, are detailed
in Appendix C.]

Performance Metrics. In the remainder of this section, we evalu-
ate the SEER reduction algorithm with regard to the following per-
formance parameters: (a) Diagram Reduction Quality, (b) Error-
resistance obtained through Reduction, (c) Safety of Reduction,
and (d) Computational Efficiency. As a precursor, we first evaluate
the validity of the plan cost function model (Section 3.1).

5.1 Validity of Plan Cost Model
The validity of the plan cost model presented in Equation 1 was

assessed by attempting to fit the costs of plans generated by Opt-
Com. The experimental data consisted of optimizer-estimated ex-
ecution costs over the selectivity space of the plans that appeared
in the various plan diagrams (taken from both exponentially and
uniformly distributed query templates). As mentioned earlier, the
foreign-plan-costing (FPC) feature was used to evaluate plans out-
side of their endo-optimal regions.

The surface fitting was carried out with the classical Linear Least
Squares method [17] and implemented using Matlab 7.4 [25]. An
example 2-D fitted cost function is:

Cost(x, y) = 17.9x + 45.9y + 1046xy − 39.5x log x +
4.5y log y + 27.6xy log xy + 97.3

For this plan, the complete plots of the actual cost surface and the
fitted cost surface, as a function of the selectivities of the two base
relations, are shown in Figure 6. It is visually evident that the fit is
very good.

As further evidence of the accuracy of our model, Table 3 shows
the quality-of-fit, measured in terms of the maximum and aver-
ageRoot-Mean-Square(RMS)errors, over a large number of plans

Dimension Number Maximum Average
of Plans RMS Error (%) RMS Error(%)

2D (TPC-H) 614 14.20 1.82
2D (TPC-DS) 168 7.31 2.87
3D (TPC-H) 28 6.98 1.92
3D (TPC-DS) 100 2.71 1.58

Table 3: RMS Errors in Fitted Cost Surfaces

featuring in the plan diagrams arising from our suite of multi-
dimensional query templates. The consistently low RMS values
suggest that the model is sufficiently accurate for our purposes.

Finally, as an additional precaution, we deliberately searched for
plan cost functions with complex shapes to assess the quality-of-fit
in these difficult cases. An example is documented in Appendix C.1
and the fit is shown to retain its high quality.

5.2 Plan Diagram Reduction Quality
A potentially worrisome aspect of our quest to obtain globally

robust reduction is whether it might result in losing out on the
anorexic reduction levels observed in the localized reduction pro-
cesses of [11]. This concern is quantitatively allayed in Table 4,
which presents a comparison between SEER and CostGreedy (CG)
of the number of plans in the reduced diagram for a diverse suite
of multi-dimensional query templates on the TPC-H database. The
PK physical design configuration was operational in these experi-
ments.

At first glance, SEER might have been expected to perform
worse than CostGreedy because its additional safety checks may
prevent some plan swallowings permitted by CostGreedy– in fact,
this was the source of our concern. However, in Table 4, we ac-
tually find theconverse– while CostGreedy does provide anorexic
reduction, SEER does even better. The reason for this is that Cost-
Greedy follows a conservative cost-bounding approach to estimate
the costs of plans outside their endo-optimal regions (details in
[11]). SEER, on the other hand, uses the foreign-plan-costing fea-
ture to obtain the exact costs in these regions, and therefore has
superior reduction possibilities. Therefore, the FPC feature comes
in handy from both quality and safety perspectives.

A question that immediately arises is how SEER would com-
pare against a CostGreedy variant that also utilized the FPC feature.
This issue is also addressed in Table 4, where the performance of
this variant (CG-FPC) is presented. We see that CG-FPC does per-
form better or as well as SEER, as should be expected – however,
the gap, if any, is always very small. A related point to note here is
that the SEER reduction quality remains excellent even for the 3D
query templates, in spite of the fact that the additional dimension
increases the possibility of the safety conditions being violated.

Finally, we observe in Table 4 that the LiteSEER fast variant hap-
pens to provide reduction quality identical to SEER. Under the AI
(and TI) configurations, however, it occasionally performs slightly
better (see Section 5.2.1), as should be expected due to its being
less stringent in allowing replacements.

TPC-DS Results.The above results were generated on the TPC-
H database, which has uniformly distributed data. Table 5 shows
a corresponding set of results for plan diagrams generated on the
TPC-DS database, which features skewed data. It is immediately
evident that the reduction profiles of the various reduction algo-
rithms are very similar to those seen with TPC-H.

5.2.1 Reduction Quality with AllIndex Configuration
While the PK configuration had only 8 primary-key indices,

AllIndex includes an additional 53 (non-clustered) single-column
indices covering all the remaining query-related schema attributes.



(a) Actual Cost Function (b) Fitted Cost Function

Figure 6: Plan Cost Function Modeling

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans
QT2 (2D) 60 14 3 6 6
QT5 (2D) 51 7 2 2 2
QT8 (2D) 121 7 2 2 2
QT9 (2D) 137 9 3 4 4
QT10 (2D) 44 3 3 3 3
QT16 (2D) 32 11 3 3 3
QT5 (3D) 68 8 3 3 3
QT8 (3D) 191 8 3 3 3
QT10 (3D) 75 10 3 4 4

Table 4: Plan Diagram Reduction Quality (TPC-H)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

DSQT12 (2D) 25 6 3 2 2
DSQT18 (2D) 114 13 2 2 2
DSQT19 (2D) 55 11 3 4 4
DSQT12 (3D) 33 11 2 2 2
DSQT18 (3D) 222 15 2 4 4
DSQT19 (3D) 98 15 2 4 4

Table 5: Plan Diagram Reduction Quality (TPC-DS)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

AIQT2 (2D) 87 12 2 2 2
AIQT5 (2D) 126 14 4 6 5
AIQT8 (2D) 121 7 3 3 3
AIQT9 (2D) 132 14 3 4 3
AIQT10 (2D) 37 8 4 5 5
AIQT16 (2D) 35 9 2 2 2
AIQT5 (3D) 139 14 5 7 5
AIQT8 (3D) 168 14 4 6 5
AIQT10 (3D) 77 16 7 8 8

Table 6: Plan Diagram Reduction Quality (TPCH-AI)

The reduction quality results for this index-rich configuration are
shown in Table 6. We first notice that the number of plans in the
original diagram usually increases, often substantially, as should
be expected since the optimizer’s search space has increased due to
the availability of the additional indices. For example, the number
of plans for AIQT5(2D) goes up to 125 from 51, while AIQT5(3D)
jumps to 139 from 68. However, when we consider the reduction
quality of the various algorithms, we find that they continue toma-
terially adhere to anorexic levels, although the actual cardinalities
may have gone up by a couple of plans. For example, SEER on
AIQT5(2D) retains 6 plans as compared to 2 under PK.

Another point to note in Table 6 is that we now see LiteSEER
occasionally permitting slightly greater reduction than SEER, due
to its relaxed constraint in allowing replacements.

5.3 Error-resistance and Safety
Having established the retention of diagram reduction quality,

we now move on to assessing the extent to which resistance to se-
lectivity errors is provided through SEER reduction. We begin with
defining a metric that quantitatively captures this effect:

Error Resistance Metric. Given an estimated query locationqe

and an actual locationqa, theSelectivity Error Resistance Factor
(SERF) of a replacement planPre w.r.t. the optimal planPoe is
defined as,

SERF (qe, qa) = 1 − cre(qa) − coa(qa)

(1 + λ)coe(qa) − coa(qa)

Intuitively, SERF captures the fraction of the performance gap be-
tweenPoe andPoa that is closed byPre. In principle, SERF values
can range over(−∞, 1], with the following interpretations: SERF
in the range(λ, 1] indicates that the replacement is beneficial, with
values close to 1 implying “immunity” to the selectivity error. For
SERF in the range[0, λ], the replacement is indifferent in that it nei-
ther helps nor hurts, while SERF values below0 highlight a harmful
replacement that materially worsens the performance.

The above formula applies to a specific instance of replacement.
To capture the net impact of reduction on improving the resistance
in anentire plan diagram, we compute the following

AvgSERF =

P

qe∈rep(P)

P

qa∈exooe(P) SERF (qe, qa)
P

qe∈rep(P)

P

qa∈exooe(P) 1

whererep(P) is the set of points in the plan diagramP that were
replaced during the reduction process, andexooe(P) is the set of
points lying in the exo-optimal region defined with respect toPoe,
the optimizer’s plan choice forqe. The normalization is with re-
spect to the number of possible selectivity errors in the diagram.
(To ensure meaningful AvgSERF values from a robustness per-
spective, we exclude the uninteresting scenarios wherein bothcre

andcoe have extremely low absolute values, or are both withinλ-
threshold ofcoa.)

Note that in the above formulation, we assume for simplicity that
the actual locationqa is equally likely to be anywhere inPoe’s exo-
optimal space, that is, that the errors are uniformly distributed over
this space. However, our conceptual framework is also applicable



Query CG SEER LiteSEER
Template MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF
QT2 (2D) -58.6 0.2 1 0 0.38 0.98 0 0.38 0.98
QT5 (2D) -15.6 0.5 1 0.14 0.51 0.99 0.14 0.51 0.99
QT8 (2D) -2.9 0.82 1 0.3 0.93 1 0.3 0.93 1
QT9 (2D) -46.3 0.37 1 0 0.77 1 0 0.77 1
QT10 (2D) -23.8 0.09 1 0 0.35 1 0 0.35 1
QT16 (2D) -132.5 0.03 0.99 0.04 0.33 0.96 0.04 0.33 0.96
QT5 (3D) -15.4 0.6 1 0.03 0.38 1 0.03 0.38 1
QT8 (3D) -177.7 -0.5 1 0 0.63 1 0 0.63 1
QT10 (3D) -130.7 -2 1 0 0.45 1 0 0.45 1
AIQT2 (2D) -202 -1.1 0.99 0 0.8 0.99 0 0.8 0.99
AIQT5 (2D) -1336 -3.1 1 0 0.58 1 -10 0.54 1
AIQT8 (2D) -62.4 0.35 1 0 0.54 1 0 0.54 1
AIQT9 (2D) -9486 -3.1 1 0 0.62 1 -5 0.66 1
AIQT10 (2D) -20.2 0.24 1 0 0.25 0.98 0 0.25 0.98
AIQT16 (2D) -76 0.07 1 0 0.75 1 0 0.75 1
AIQT5 (3D) -2151 0.24 1 0.05 0.62 1 -2 0.66 1
AIQT8 (3D) -103.7 0.43 1 0 0.44 1 -6 0.44 1
AIQT10 (3D) -4680 -4.4 1 0 0.33 1 0 0.33 1
DSQT12 (2D) -4 0.61 1 0.07 0.44 1 0.06 0.44 1
DSQT18 (2D) -194.75 -2 1 0.07 0.81 1 0.07 0.81 1
DSQT19 (2D) -86 0.17 1 0 0.63 1 0 0.63 1
DSQT12 (3D) -142 -0.32 1 0.06 0.53 1 0.06 0.53 1
DSQT18 (3D) -3104 -0.14 1 0 0.85 1 0 0.85 1
DSQT19 (3D) -106.6 0.33 1 0.02 0.82 1 0.02 0.82 1

Table 7: Characterization of Error-Resistance through Reduction

to the more generic case where the error locations have an associ-
ated probability distribution.

Resistance Results.For CostGreedy, SEER and LiteSEER, we
show in Table 7, the AvgSERF, as defined above, as well as Min-
SERF and MaxSERF, the minimum and maximum values of SERF
over all replacement instances, for the various query templates.
We first see here that for all the algorithms, plan diagram reduc-
tion is capable, across the board, of providing complete immunity
(MaxSERF tending to 1) to selectivity errors for individual replace-
ment instances. Secondly, and more importantly, the AvgSERF is
also quite substantial for SEER. For example, in DSQT18, on aver-
age, more than three-quarters of the performance gap due to selec-
tivity errors is bridged by the SEER reduction process.

With CostGreedy, on the other hand, the AvgSERF is compar-
atively very poor, and occasionally even negative! The important
point to note here is that these low averages are an artifact arising
out of a small fraction of points (around 10-20%) whose perfor-
mance is grossly adversely affected by plan replacement. That is,
plan reduction does help in the vast majority of cases but the “few
very bad apples”, reflected by the hugely negative MinSERF val-
ues (which sometimes even run into the thousands), ruin the over-
all performance statistics. More pertinently, these results serve to
quantitatively and vividly substantiate the need for safe replace-
ment, the motivation underlying our design of the SEER algorithm.

Finally, turning our attention to LiteSEER, we see that its error-
resistance profile is very similar to that of SEER – in fact, the
AvgSERF and MaxSERF numbers are identical for most templates.
Further, although like CostGreedy it does not guarantee safety, as
testified to by the negative values in the MinSERF column, note
that (a) the templates having negative values are relatively rare, (b)
even in these cases, unsafe replacements occur only for about 1%
of the points, and (c) most importantly, their magnitudes are small
in comparison (the maximum is -10 for AIQT5(2D)).

Safety Example
In the example of Figure 4, plan diagram reduction without explic-
itly checking for safety led to situations whereinPre performed
much worse thanPoe atqa. The effectiveness of SEER in avoiding
such unsafe replacements is visually highlighted in the sequence of

pictures in Figure 7, corresponding to the same example.
Assuming that the actual location of a query at run-timeqa is

uniformly distributed overS, Figure 7(a) shows theexpected cost
for each query pointqe, when executed with its optimizer-selected
planPoe. Note that the peaks in the picture correspond to situations
where the plan-choice is highly sensitive to selectivity errors.

Then, Figure 7(b) shows the expected cost of each query pointqe

when executed withPre from the reduced plan diagram obtained
using CostGreedy. Note that virtually all the peaks in Figure 7(a)
are substantively eliminated through the replacement choices in the
reduced plan diagram – for example, the dark-blue peak at the left-
top corner of Figure 7(a) is largely removed. However, on the
down side, some plans suffer injurious replacements – for e.g., the
earth-brown colored plan in the left-bottom corner of Figure 7(a) is
now replaced by the fluorescent-green colored plan in Figure 7(b),
whose expected cost is orders of magnitude greater. That is, Cost-
Greedy in the process of eliminating existing peaks, may introduce
new peaks.

Finally, in Figure 7(c), we show the performance of SEER re-
duction. We see here that (a) it removes all the peaks of Figure 7(a)
like CostGreedy, and (b) it does not introduce any new peaks cour-
tesy its safety criterion. In a nutshell, “it provides virtually all the
good, and doesn’t introduce any harm”.

5.4 Efficiency of Reduction Process
We now move on to profiling the time taken to complete the re-

duction process by SEER as compared to CostGreedy. These re-
sults are shown in Table 8 for our query template suite.

Focussing initially on the 2D query templates, we see that
SEER’s performance is quite acceptable in terms of absolute times
(a few minutes per reduction), especially in comparison to the orig-
inal plan diagramproduction time. However, it is much slower rel-
ative to CostGreedy, which offers sub-second response times. This
might seem surprising in light of our analysis in Section 4 showing
that SEER is anO(n

√
m + n2) algorithm, whereas CostGreedy is

O(nm). The reason for the higher running time of SEER is that
the basic cost-bounding computation in CostGreedy is much faster
than the foreign-plan-costing operator provided by the commercial
optimizers. Our discussions with the development team of OptCom
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Figure 7: Safe Error-resistance with SEER

have indicated that this is not due to the costing itself, but is largely
an artifact of setting up the contexts for the costing, including ver-
ifying the validity of the plan with respect to the query. Therefore,
it is possible that future better implementations of the FPC feature
may bring SEER’s running time closer to CostGreedy. (In fact,
our own implementation of FPC in a public-domain optimizer in-
dicates that its cost can be further brought down by anorder of
magnitude[7].)

When we consider the 3D query templates, however, the running
times of SEER can be quite large. It is here that LiteSEER shows
its worth since its running times are only a few minutes or even
less, across the board for all the query templates. Taken in con-
junction with its good safety performance (Section 5.3), it suggests
that LiteSEER offers an extremely attractive compromise between
the speed of CostGreedy and the robustness of SEER, making it a
viable first-cut reduction technique in real-world installations.

Finally, to normalize the effect of the different costing imple-
mentations, the running time of the CG-FPC algorithm is also
shown in Table 8 – we see here that CG-FPC takes in the order
of several tens or few hundreds of minutesto complete the reduc-
tion process. In comparison, SEER’s selective usage of the FPC
operator, courtesy Theorem 1 and the two-stage checking process,
does succeed in substantially bringing down the overheads.

6. RELATED WORK
Over the last decade, a variety ofcompile-timestrategies have

been proposed to identify robust plans. For example, in the Least
Expected Cost (LEC) approach [6, 8], it is assumed that the dis-
tribution of predicate selectivities is apriori available, and then the
plan that has the least-expected-cost over the distribution is cho-
sen for execution. While the performance of this approach is likely
to be good on average, it could be arbitrarily poor for a specific
query as compared to the optimizer’s optimal choice for that query.
Moreover, it may not always be feasible to provide the selectivity
distributions.

An alternative Robust Cardinality Estimation (RCE) strategy
proposed in [2] is to model the selectivity dependency of the cost
functions of the various competing plan choices. Then, given a
user-specified “confidence threshold”T , the plan that is expected
to have theleast upper boundwith regard to cost inT percentile
of the queries is selected as the preferred choice. The choice of
T determines the level of risk that the user is willing to sustain
with regard to worst-case behavior. Like the LEC approach, this

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)
QT2 (2D) 15 53.1 3.6 14.2
QT5 (2D) 16 45.0 1.0 12
QT8 (2D) 17 108 9.6 28.8
QT9 (2D) 13 122.4 10.6 32.6
QT10 (2D) 15 38.7 3.0 10.3
QT16 (2D) 15 27.9 1.3 7.5
QT5 (3D) 25 67 19.0 32
QT8 (3D) 21 190 65.0 91
QT10 (3D) 17 74 16.5 4.5
AIQT2 (2D) 17 77.4 5.0 20.6
AIQT5 (2D) 12 112.5 3.7 30.0
AIQT8 (2D) 11 108.0 6.9 28.8
AIQT9 (2D) 18 107.9 9.1 31.4
AIQT10 (2D) 12 32.4 2.0 8.6
AIQT16 (2D) 12 30.6 2.0 8.2
AIQT5 (3D) 26 138 37.7 66.2
AIQT8 (3D) 19 167 47.3 80.2
AIQT10 (3D) 24 76 14.9 36.5
DSQT12 (2D) 14 21.6 2.6 5.8
DSQT18 (2D) 13 101.7 9.4 27.1
DSQT19 (2D) 14 48.6 6.4 13.0
DSQT12 (3D) 20 32.0 7.4 15.4
DSQT18 (3D) 25 221.0 89.1 106.1
DSQT19 (3D) 23 97.0 35.8 46.6

Table 8: Efficiency of Reduction Process

too may be arbitrarily poor for a specific query as compared to the
optimizer’s optimal choice.

Finally, in the (initial) optimization phase of the Rio approach [3,
4], a set of uncertainty modeling rules from [16] are used to clas-
sify selectivity errors into one of six categories (ranging from “no
uncertainty” to “very high uncertainty”) based on their derivation
mechanisms. Then, these error categories are converted to hyper-
rectangular error boxes drawn around the optimizer’s point esti-
mate. Finally, if the plans chosen by the optimizer at the corners of
the principal diagonal of the box are the same as that chosen at the
point estimate, then this plan isassumedto be robust throughout
the box. However, the conditions under which this assumption is
likely to be valid are not outlined.

7. CONCLUSIONS
Errors in selectivity estimates are well-documented causes of

poor plan choices by database optimizers. In this paper, we in-
vestigated whether the optimizer’s choices could be replaced by
alternative plans, more resilient to these errors, from the paramet-



ric optimal set over the selectivity space. In particular, the recently
proposed notion of anorexic reduction of plan diagrams was used to
provide replacements that had large endo-optimal regions, making
them error-resistant by definition in these areas. Further, the em-
pirical evidence suggested that error-resistance was provided even
in the exo-optimal regions in the vast majority of the cases. How-
ever, there were occasional situations where the replacement could
turn out to be significantly worse. To prevent this, we developed a
simple but accurate model of plan cost behavior. To our knowl-
edge, this model is the first such characterization for industrial-
strength query optimizers. Using this formulation, we devised ef-
ficient checks that operate only on the boundaries of the space to
decide safety in the entire space. These checks are implemented
utilizing foreign-plan costing, a recent feature addition in commer-
cial database engines. A particularly attractive feature of our ap-
proach is that the safety guarantee applies on anindividual query
basis. As a bonus, the foreign-plan costing, in addition to providing
safety, was leveraged to further improve the quality and complexity
of the plan diagram reduction process.

The above techniques were integrated into the SEER algorithm
and the intended benefits validated on a representative range of
TPC-H and TPC-DS-based query templates on a leading commer-
cial optimizer. We observed that typically at least one-third of
the performance gap due to selectivity errors was bridged by the
SEER reduction process, while in some instances, virtuallycom-
plete immunityagainst selectivity errors was obtained. Our results
remained consistent across different data distributions and physical
design configurations.

Overall, SEER provides an effective and safe compile-time
mechanism for substantially increasing resistance to selectivity er-
rors on base relations, without requiring modifications to the opti-
mizer or specialized knowledge of the workload/system. We also
presented LiteSEER, an optimally efficient light-weight heuristic
version of SEER that very cheaply provides a high degree of safety
by restricting its attention to only the corners of the selectivity
space. LiteSEER could be viably used in practice as a first-cut
almost-safe reduction technique, especially if running time is a crit-
ical concern.

Currently, SEER operates as a post-processor after production
of the plan diagram. In our future work, we intend to investigate
how optimizers could internalize these ideas and be redesigned
to directly produce safe reduced plan diagrams. Also, while we
assumed a uniform distribution of selectivity estimation errors,
it would be interesting to extend our results to incorporate user-
defined probability distributions.
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APPENDIX

A. REPLACEMENT SAFETY THEOREM

THEOREM 1. For a plan-pair (Poe,Pre) and a selectivity space
S with corners[(x1, y1), (x1, y2), (x2, y2), (x2, y1)], the replace-
ment is safe (i.e., withinλ-threshold) inS if any one of the condi-
tions, SC1 through SC6, given in Table A.1 is satisfied.

Left Right Top Bottom
Boundary Boundary Boundary Boundary

SC1 Safe Safe f ′′

y2
(x) ≥ 0 f ′′

y1
(x) ≥ 0

SC2 f ′

y(x1) ≤ 0 Safe f ′′

y2
(x) < 0 f ′′

y1
(x) < 0

& Safe
SC3 Safe f ′

y(x2) ≥ 0 f ′′

y2
(x) < 0 f ′′

y1
(x) < 0

& Safe
SC4 f ′′

x1
(y) ≥ 0 f ′′

x2
(y) ≥ 0 Safe Safe

SC5 f ′′

x1
(y) < 0 f ′′

x2
(y) < 0 f ′

x(y2) ≥ 0 Safe
& Safe

SC6 f ′′

x1
(y) < 0 f ′′

x2
(y) < 0 Safe f ′

x(y1) ≤ 0
& Safe

Table A.1: Safety Satisfaction Conditions

In order to prove the above theorem, we will start with deriving two
lemmas – the first provides us with a condition that is sufficient to
ensure safety of all points on the straight line segment joining a
pair of safe points, while the second describes the behaviour of the
slope of the safety function.

LEMMA 1 (LINE SAFETY). Given a fixedy = yo, and a pair
of safe points(x1, yo) and(x2, yo) with x2 > x1, the straight line
joining the two points is safe if the slopef ′

yo
(x) is either

(i) monotonically non-decreasing, OR

(ii) monotonically decreasing withf ′

yo
(x1) ≤ 0 or f ′

yo
(x2) ≥ 0

A similar result holds whenx is fixed.

PROOF. The various possible behaviors offy(x) are shown in
Figure A.1 as Curves (a) through (e). When the slopef ′

yo
(x) is

monotonically non-decreasing (i.e. Condition (i) is satisfied), the
safety function curve that connects the two safe points is guaranteed
to lie belowthe straight line joining the two points – Curve (a) in
Figure A.1 shows an example of this situation. This ensures that
the safety function along the given line segment is always negative
and hence safe.
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Figure A.1: Behavior of the safety functionfy(x)

If, on the other hand,f ′

yo
(x) is monotonically decreasing, then

the possible behaviors of the safety functionfyo
(x) are shown in

Curves (b) through (e) in Figure A.1. Curves (b) and (c) denote the

behaviour of the safety function when Condition (ii) is satisfied,
and clearly the value of the safety function is again negative in the
given range.

In Figure A.1, Curve (d) also corresponds to a safe scenario –
however, it is not possible to differentiate between Curve (d) and
the unsafe case, namely Curve (e), without explicitly computing
the safety function at every point on the given line-segment. Hence,
we conservativelycategorize both cases as unsafe. We have also
observed that the case corresponding to Curve (e) occurs rarely in
practice.

LEMMA 2 (SLOPE BEHAVIOR). If the slope of the safety
function, f ′

y(x), is non-decreasing (resp. decreasing) along the
line-segmentsy = y1 andy = y2, then it is non-decreasing (resp.
decreasing) for all line segments in the interval(y1, y2). A similar
result holds forf ′

x(y).

PROOF. Consider the slope of the safety function

f
′

yo
(x) =

dfyo
(x)

dx
= g1 + g2(1 + log x) (5)

Forx ∈ (0, 1), this slope is monotonic and its behavior depends on
the sign ofg2. From Equations 2 and 3, we know thatg2 can be
written as the following function ofy

g2(y) = (a4 − (1 + λ)b4) + (a6 − (1 + λ)b6)y

= (k1 + k2y) (6)

wherek1 andk2 are constants.
Sinceg2(y) is a linear function ofy, the Lemma immediately

follows.

We now prove Theorem 1 using the LineSafety and SlopeBehav-
ior lemmas:

PROOF. Consider the SC1 condition in Table 2: Sincef ′′

y (x) ≥
0 (i.e. slopef ′

y(x) is non-decreasing) at the TB-boundaries, then
from Lemma 2, we know that the slopef ′

y(x) is non-decreasing
throughout the range(y1, y2).

Moving on to the SC2 and SC3 conditions: Sincef ′′

y (x) < 0
(i.e. slopef ′

y(x) is decreasing) at the TB-boundaries, then from
Lemma 2, we know that the slopef ′

y(x) is decreasing throughout
the range(y1, y2). Further, we know that for a giveny = yo ∈
(y1, y2), eitherf ′

yo
(x1) ≤ 0 (SC2) orf ′

yo
(x2) ≥ 0 (SC3).

Thus, when SC1, SC2 or SC3 is satisfied, then for all lines be-
tween points(x1, y) and(x2, y), y ∈ (y1, y2), the end-points are
safe (because the LR-boundaries are safe), and the slope conditions
given in Lemma 1 are satisfied. Hence, all such line-segments are
safe, the union of which is the given region.

Similar arguments can be used to show safety of the region when
conditions SC4, SC5 or SC6 are satisfied. Hence the theorem.



B. HIGHER DIMENSION EXTENSIONS

B.1 Plan Cost Model
Generalizing the arguments used in the 2D case, we obtain the

following cost model for ad-dimensional selectivity space.

Cost(x1, ..., xd) =
X

i1

(ai1xi1 + bi1xi1 log xi1)+

X

i1<i2

(ai1i2xi1xi2 + bi1i2xi1xi2 log xi1xi2)

+ ... + a12..d(x1x2x3..xd)

+ b12..d(x1x2x3..xd) log(x1x2x3..xd)

+ a0 (7)

where thea’s andb’s are the(2d+1−1) coefficients and thexi, i =
1...d represent thed relational selectivities.

B.2 The SEER Algorithm
The SafetyCheck algorithm used to verify the safety of the re-

placement ofPoe by Pre in a d-dimensional selectivity space is
given in Figure B.1.

SafetyCheck (Plan DiagramP, Threshold λ, Plan Poe, Plan Pre,
Dimensiond)

1. if(d == 2)

(a) if (WEDGE TEST (P,Pi,Pj ,λ) == Safe) then

return true.

else if (PERIMETERTEST (P,Pi,Pj ,λ) == Safe) then

return true.

(b) return false.

2. else

(a) safety = true;

(b) for each(d − 1)-dimension sliceP’ of P

safety = safety∧ SafetyCheck (P’,lambda, Poe,
Pre, d − 1)

3. return safety.

Figure B.1: n-Dimensional SafetyCheck Algorithm

The above algorithm recursively finds the safe area of the(d−1)-
dimension “slices” of the inputd-dimension selectivity space.
Whend = 2, the WEDGETEST and PERIMETERTEST meth-
ods are used to check for safety. The SEER algorithm incorporating
this checking mechanism is shown in Figure B.2.

SEER (Plan DiagramP, Threshold λ)

1. Create a Set-Cover InstanceI = (U, S), where S =
{S1, S2, ..., Sn}, U = {1, 2, ..., n}, corresponding to then
plans in the original plan diagramP.

2. Set eachSi = {i}, ∀i = 1...n

3. For each pair of plans(Pi, Pj) do

if (SafetyCheck (P,λ,Pi,Pj ,d) == true) then

Si = Si

S

{j}

4. Solve the set-cover instanceI using the Greedy Setcover algo-
rithm to identify the plans retained inR.

Figure B.2: n-Dimensional SEER Reduction Algorithm

C. ADDITIONAL EXPERIMENTS

C.1 Plan Cost Model
In order to confirm the validity of our cost model, we deliber-

ately searched for plans with complex cost functions to assess the
quality-of-fit in these difficult cases. A sample additional case is
shown in Figure C.1, and we see that even here, the fit is of high
quality (the RMS Error is only around 10%). This can be attributed
to the fact that our cost model has 7 parameters which gives suffi-
cient freedom to fit most of the plan cost functions found in prac-
tice.
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Cost(x, y) = 184.3x + 619.9y + 524.5xy − 1090x log x −
1179.9y log y − 836.2xy log xy − 1000

RMSError = 10.96%

Figure C.1: Complex Plan Cost Function



C.2 Tuned-Index Configuration
The results presented in the main paper were for thePrimary

KeyandAll Indexphysical design configurations. We present here
the corresponding results for theTuned Index(TI) configuration
which implements the recommendations of the index tuning advi-
sor shipped with OptCom. The parameters of the tuning advisor
were set to their default values, and the TPC-H benchmark queries
(generated with the QGen utility) formed the input workload. For
this setup, the advisor recommended 20 additional indices beyond
the default Primary Key configuration.

The results obtained on the TI database configuration for our
suite of query templates are presented in Tables C.1 through C.3.
We see here that the performance profile is very similar to that ob-
tained with the PK and AI configurations, testifying to SEER’s con-
sistent behavior over a wide variety of database environments.

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

TIQT2 (2D) 52 10 4 5 5
TIQT8 (2D) 108 16 3 3 3
TIQT9 (2D) 101 16 6 5 5
TIQT10 (2D) 50 10 4 2 2
TIQT16 (2D) 36 14 4 6 6
TIQT5 (3D) 84 10 4 5 5
TIQT8 (3D) 181 14 4 6 5
TIQT10 (3D) 78 12 6 8 7

Table C.1: Plan Diagram Reduction Quality (TPC-H)

Query CG SEER LiteSEER
Template MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF

TIQT2 (2D) -161.3 -0.12 0.99 0.01 0.32 0.94 0.01 0.32 0.94
TIQT8 (2D) -550.1 -3.4 1 0 0.54 1 0 0.54 1
TIQT9 (2D) -87.5 0.01 1 0 0.44 1 0 0.44 1
TIQT10 (2D) -671.4 -15.7 1 0 0.27 0.99 0 0.27 0.99
TIQT16 (2D) -14.4 0.11 0.99 0.02 0.39 0.97 0.02 0.39 0.97
TIQT5 (3D) -166.3 -1.42 1 0 0.71 1 0 0.71 1
TIQT8 (3D) -4188.5 -4.23 1 0 0.61 1 -1.3 0.61 1
TIQT10 (3D) -574 -4.97 1 0 0.31 1 -8.9 0.31 1

Table C.2: Characterization of Error-Resistance through Re-
duction (TPC-H)

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)

TIQT2 (2D) 18 45.9 2.9 12.2
TIQT8 (2D) 12 96.3 4.9 25.7
TIQT9 (2D) 16 90.0 7.2 24.0
TIQT10 (2D) 14 44.1 2.6 11.8
TIQT16 (2D) 12 31.5 2.0 8.4
TIQT5 (3D) 28 83 20.8 39.8
TIQT8 (3D) 24 180 67.8 86.4
TIQT10 (3D) 19 78 15.9 37.0

Table C.3: Efficiency of Reduction Process (TPC-H)



Query CG SEER LiteSEER
Template MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF
QT2 (2D) 0 0.76 0.98 0.02 0.62 0.98 0.02 0.62 0.98
QT5 (2D) 0.99 0.99 0.99 0.96 0.98 1 0.96 0.98 1
QT8 (2D) -0.47 0.73 0.99 0.27 0.44 0.99 0.27 0.44 0.99
QT9 (2D) -55.3 -0.56 1 0.86 0.99 1 0.86 0.99 1
QT10 (2D) -0.81 0.4 0.99 0.14 0.34 0.60 0.14 0.34 0.60
QT16 (2D) -0.33 0.49 0.97 0.04 0.46 0.92 0.04 0.46 0.92
QT5 (3D) 0 0.01 0.02 0.78 0.95 1 0.78 0.95 1
QT8 (3D) -22.6 0.41 1 0.15 0.36 0.99 0.15 0.36 0.99
QT10 (3D) -5.5 0.43 1 0.19 0.69 1 0.19 0.69 1
AIQT2 (2D) -3.95 0.16 0.97 0.15 0.64 0.94 0.15 0.64 0.94
AIQT5 (2D) 0.17 0.38 1 0.28 0.51 1 0.28 0.51 1
AIQT8 (2D) -0.27 0.48 0.99 0.19 0.46 0.99 0.19 0.46 0.99
AIQT9 (2D) -1999.8 -2.1 1 0.96 0.99 1 0.96 0.99 1
AIQT10 (2D) -5.7 0.32 1 0.16 0.33 0.68 0.16 0.33 0.68
AIQT16 (2D) -0.39 0.58 0.96 0 0.58 0.98 0 0.58 0.98
AIQT5 (3D) 0.3 0.6 1 0.05 0.9 1 0.05 0.9 1
AIQT8 (3D) -9.25 0.32 0.99 0.03 0.75 0.99 0.03 0.75 0.99
AIQT10 (3D) -24.6 0.44 1 0.08 0.5 1 0.08 0.5 1
DSQT12 (2D) -1 0.16 1 0.25 0.32 0.54 0.25 0.32 0.54
DSQT18 (2D) -12.2 0.38 1 0.59 0.99 1 0.59 0.99 1
DSQT19 (2D) -11.8 0.08 1 0.18 0.47 1 0.18 0.47 1
DSQT12 (3D) 1 1 1 1 1 1 1 1 1
DSQT18 (3D) 0.99 0.99 0.99 0.72 0.86 1 0.72 0.86 1
DSQT19 (3D) -0.53 0.74 1 0.77 0.87 1 0.77 0.87 1

Table C.4: Characterization of Error-Resistance through Reduction

C.3 Uniform Query Distribution
The results in the main paper were produced with an exponential

distribution of query points across the selectivity space. We present
here the corresponding results for plan diagrams generated with a
uniformdistribution of query points. Tables C.5 and C.6 show the
reduction quality over our suite of query templates on the TPC-H
and TPC-DS databases, respectively, operating with a Primary Key
physical configuration. The performance on an All Index configu-
ration is detailed in Table C.7. Finally, the error-resistance quality
and the reduction efficiency are shown in Tables C.4 and C.8, re-
spectively.

These results are behaviorally similar to those obtained with the
exponential distribution.

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans
QT2 (2D) 25 5 3 3 3
QT5 (2D) 10 3 1 1 1
QT8 (2D) 31 4 2 2 2
QT9 (2D) 21 2 1 1 1
QT10 (2D) 13 3 2 2 2
QT16 (2D) 26 9 2 3 3
QT5 (3D) 18 1 1 1 1
QT8 (3D) 18 6 3 3 3
QT10 (3D) 18 4 2 2 2

Table C.5: Plan Diagram Reduction Quality (TPC-H)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

DSQT12 (2D) 7 4 2 2 2
DSQT18 (2D) 21 3 1 1 1
DSQT19 (2D) 28 5 2 2 2
DSQT12 (2D) 8 2 1 1 1
DSQT18 (3D) 36 2 1 1 1
DSQT19 (2D) 64 2 1 1 1

Table C.6: Plan Diagram Reduction Quality (TPC-DS)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

AIQT2 (2D) 30 8 3 3 3
AIQT5 (2D) 25 6 2 2 2
AIQT8 (2D) 25 3 2 3 3
AIQT9 (2D) 25 5 1 1 1
AIQT10 (2D) 16 4 3 3 3
AIQT16 (2D) 22 14 3 4 4
AIQT5 (3D) 37 4 2 2 2
AIQT8 (3D) 39 5 2 3 3
AIQT10 (3D) 50 9 4 3 3

Table C.7: Plan Diagram Reduction Quality (TPCH-AI)

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)
QT2 (2D) 15 21.6 2.2 5.8
QT5 (2D) 14 8.1 0.7 2.2
QT8 (2D) 14 27.0 1.9 7.2
QT9 (2D) 13 18.0 2.1 4.8
QT10 (2D) 14 10.8 0.7 2.9
QT16 (2D) 13 22.5 1.4 6.0
QT5 (3D) 25 17.0 5.1 8.2
QT8 (3D) 21 29.0 10.7 13.9
QT10 (3D) 22 23.0 7.8 11.0
AIQT2 (2D) 16 26.1 2.8 7.0
AIQT5 (2D) 16 21.6 0.7 5.8
AIQT8 (2D) 14 21.5 2.1 5.8
AIQT9 (2D) 15 21.6 1.7 5.7
AIQT10 (2D) 13 13.5 0.7 3.6
AIQT16 (2D) 13 18.9 0.4 5.0
AIQT5 (3D) 23 36.0 12.0 17.3
AIQT8 (3D) 20 38.0 14.0 18.2
AIQT10 (3D) 20 49.0 14.0 23.5
DSQT12 (2D) 19 5.4 0.07 1.4
DSQT18 (2D) 17 18.0 1.2 4.8
DSQT19 (2D) 14 24.3 1.7 6.5
DSQT12 (3D) 20 7.0 1.2 3.4
DSQT18 (3D) 30 35.0 7.2 16.8
DSQT19 (3D) 26 63.0 12.7 30.2

Table C.8: Efficiency of Reduction Process



D. PartialSEER
The problem formulation for robust reduction in the main paper

required the replacement plan to beglobally safe. As a generalized
variant, the safety criteria can be relaxed to allow a planPre to
replace planPoe if Pre is safe in at least a user-definedminimum
safe fraction (MSF)of the area covered byS (MSF ≤ 1).

In order to assess partial safety, we first perform the
WEDGE TEST and PERIMETERTEST checks for global safety.
If this fails, we verify whether the slope criteria of any of the 6 con-
ditions given in Theorem 1 is satisfied. If true, we allow planPre

to replace planPoe if

1. At least two adjacent boundaries in the perimeter ofS are
safe; and

2. TheMSF requirement is met inS.

The reason for restricting our attention to situations where at
least two adjacent boundaries are safe is that, for this case, an
efficient algorithm can be set up to check satisfaction of the area
requirement, as described below. Figure D.1 shows the modified
SafetyCheck algorithm that finds the safe area when the left and

PartialSafetyCheck (Plan Diagram P, Threshold λ, Area
allowedV iolation, Plan Poe, Plan Pre, Dimensiond)

1. if(d == 2)

(a) if (WEDGE TEST (P,Poe,Pre,λ) == Safe) return
allowedV iolation

(b) if (PERIMETERTEST (P,Poe,Pre,λ) == Safe) return
allowedV iolation

(c) if the slope criteria of the six conditions of Theorem 1 are not
satisfied,return −1

(d) if (allowedV iolation = 0) return −1

(e) if no twoadjacent boundaries are safe,return −1.

(f) Let the first violating point at the top-boundary of the grid
G occur at x = xv . Set x = xv , y = r − 1,
NumV iolatingPoints = 0

(g) Whilex 6= r andy 6= −1

i. Setcount = 0

ii. While current point is violating (i.ef(x, y) > 0) and
y 6= −1

A. move down (i.e.y--)
B. if (NumV iolatingPoints +

(r−y−1)× (r−x−1)) > allowedV iolation,
return −1

iii. While current point is safe (i.ef(x, y) ≤ 0) andx 6= r

A. move right (i.e.x++), count++
B. if (NumV iolatingPoints+

count × (r − y − 1)) > allowedV iolation,
return −1

iv. NumV iolatingPoints + = count × (r − y − 1)

(h) allowedV iolation − = NumV iolatingPoints

(i) return allowedV iolation

2. else

(a) for each(d − 1)-dimension sliceP’ of P

i. allowedV iolation = PartialSafetyCheck (P’,λ,
allowedV iolation, Poe, Pre, d − 1)

ii. if (allowedV iolation < 0)
return allowedV iolation;

3. return allowedV iolation.

Figure D.1: The PartialSafetyCheck Algorithm

bottom boundaries ofS are safe. The algorithm is similar when
other boundaries are safe.

From Theorem 1 we know that the safe (and violating) points
form contiguous regions inS when the slope criteria of at least
one of the size conditions are satisfied. Since the left and bottom
boundaries of the grid are safe, thex andy axes form a part of
the boundary of the safe region. The PartialSafetyCheck algorithm
traces the remainder of this boundary.

Figure D.2: The PartialSafetyCheck Algorithm

Figure D.2 shows the flow of the algorithm while tracing the
boundary between the safe (green) and violating (red) regions of
the selectivity space for a pair of plans. In this figure, the top and
right boundaries of the region violate the safety requirement.

We start from the first violating point on the top-boundary of the
grid, and at each stage either move down or right in the grid. At
each interior point that we move to, we perform the costing of the
plansPoe andPre. The algorithm stops when we reach the bottom
or right boundaries of the grid.

The PartialSEER reduction algorithm, which employs the Par-
tialSafetyCheck safety-checking technique, is shown in Figure D.3.

PartialSEER (Plan Diagram P, Threshold λ, MinSafeFraction
MSF )

1. Create a Set-Cover InstanceI = (U, S), where S =
{S1, S2, ..., Sn}, U = {1, 2, ..., n}, corresponding to then
plans in the original plan diagramP.

2. Set eachSi = {i}, ∀i = 1...n

3. For each pair of plans(Pi, Pj) do

(a) SetallowedV iolation = (1 − MSF ) × Area(P).

(b) if (PartialSafetyCheck (P,λ,allowedV iolation,
Pi,Pj ,d) ≥ 0) then

Si = Si

S

{j}

4. Solve the set-cover instanceI using the Greedy Setcover algo-
rithm to identify the plans retained inR.

Figure D.3: The PartialSEER Reduction Algorithm


