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Abstract. Prior solutions for securely handling SQL range predicates
in outsourced cloud-resident databases have primarily focused on passive
attacks in the Honest-but-Curious adversarial model, where the server
is only permitted to observe the encrypted query processing. We con-
sider here a significantly more powerful adversary, wherein the server
can launch an active attack by clandestinely issuing specific range queries
via collusion with a few compromised clients. The security requirement
in this environment is that data values from a plaintext domain of size
N should not be leaked to within an interval of size H. Unfortunately,
all prior encryption schemes for range predicate evaluation are easily
breached with only O(log2)) range queries, where ¢ = N/H. To address
this lacuna, we present SPLIT, a new encryption scheme where the ad-
versary requires ezponentially more — O(1)) — range queries to breach
the interval constraint, and can therefore be easily detected by standard
auditing mechanisms.

The novel aspect of SPLIT is that each value appearing in a range-
sensitive column is first segmented into two parts. These segmented parts
are then independently encrypted using a layered composition of a Se-
cure Block Cipher with the Order-Preserving Encryption and Prefix-
Preserving Encryption schemes, and the resulting ciphertexts are stored
in separate tables. At query processing time, range predicates are rewrit-
ten into an equivalent set of table-specific sub-range predicates, and the
disjoint union of their results forms the query answer. A detailed evalua-
tion of SPLIT on benchmark database queries indicates that its execution
times are well within a factor of two of the corresponding plaintext times,
testifying to its efficiency in resisting active adversaries.

1 Introduction

Cloud computing has led to the emergence of the “Database-as-a-Service”
(DBaaS) model for outsourcing databases to third-party service providers (e.g.,
Amazon RDS, IBM Cloudant). Accordingly, considerable efforts have been made
over the last decade to devise encryption mechanisms that organically support
query processing without materially compromising on data security. Here, we in-
vestigate this issue specifically with regard to range predicates, the core building
blocks of decision-support (OLAP) queries on data warehouses.



Security Architecture A typical DBaaS setup consists of the entities shown
in Figure |1} including: (i) a Service Provider (SP), who maintains the cloud in-
frastructure; (ii) a Data Owner (DO), who is the data source; (iii) a set of Query
Clients (QC), who are authorized to issue queries over the data stored by DO on
SP’s platform, and (iv) a Security Agent (SA), who acts as the bridge connecting
the DO and QC with the SP.
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Fig. 1. System Entities in DBaaS model

The SA is a trusted entity, and could be a simple proxy in the DO’s enterprise
network. Alternatively, it could be located at the SP, implemented using secure
threads or secure co-processors. Although all queries pass through the SA, it
is a light-weight component since it is responsible only for query rewriting and
decryption of the final results.

Adversary Model The SP, on the other hand, is always untrusted and treated
as the primary adversary. We assume that the SP is only interested in deciphering
the encrypted data, and not in affecting the functionality of the database system.
That is, the query processing engine is in pristine condition, and all client queries
are answered correctly and completely. Further, the SP maintains compliance
with the standard access control and auditing mechanisms.

The Query Clients (QC) can either be trusted or untrusted, giving rise to the
following alternative adversarial models:

(a) Honest-but-Curious (HBC), in which the clients are trusted. Here, only
passive attacks by the SP are possible — that is, the SP can try to breach
the plaintext values solely by observing the encrypted data, and the compu-
tations executed by the database engine on this data. This model has been
widely considered in the literature (e.g. [IISITATST2TIIIT]).

(b) Honest-but-Curious with Collusion (HCC), in which the SP can un-
leash active attacks through collusion with a few compromised clients —
specifically, the SP can inject range queries of its choice through the compro-
mised QC, and then observe how these queries are processed by the database
engine hosted at its site. Further, these injected queries can be constructed
adaptively, using the results of previous queries. This powerful attack model
was also recently considered in [8], as an adaptive semi-honest adversary.



CustName LoanAmt Collateral CustName (AES) LoanAmt (OPE)  Collateral (OPE)

Alice 50000 40000 Wsgh5j 5000340 173364
Bob 24576 25000 L 1634009 35463

Charlie 32000 28000 Uywhs@ 4237461 65463

Dave 10000 8000 h7F&al 738263 12073

(a) Plaintext LOAN Table (b) Encrypted LOAN_OPE Table

Fig. 2. Plaintext and OPE Banking Database

1.1 Example Security Breach under HCC

Consider a bank that has outsourced its relational database to the Cloud. Let the
schema include a table LOAN (CustName, LoanAmt, Collateral) capturing the
loans taken by customers, and the collaterals furnished to obtain these loans, as
shown in Figure In order to simultaneously maintain security on the Cloud
and support range query processing, the current practice is to employ one of
the contemporary range encryption schemes — e.g. OPE [5] — on the sensitive
LoanAmt and Collateral data columns, as shown in Figure

Assume that the bank provides a form-based interface to third-parties, such
as auditors, analysts, etc. to query the encrypted data. For instance, a form to
generate a report that lists all the loans of a customer (say Alice) in a given
range — say [15000 : 40000], and the associated collaterals in another range —
say [13000 : 33000]. The corresponding plaintext SQL query that is internally
generated from the Web form is shown in Figure

SELECT * FROM Loan WHERE
LoanAmt BETWEEN 15000 AND 40000 AND
Collateral BETWEEN 13000 AND 33000 AND CustName = ’Alice’;

Fig. 3. Form-based SQL query with range predicates

Now suppose the HCC adversary comprises of the SP and the authorized
auditors of customer Alice. In this setting, the security goal is to protect the
adversary from learning the plaintext values of LoanAmt (and Collateral) for an
unrelated customer from the encrypted LOAN_OPE table. However, the OPE-
based encryption scheme can be easily breached for any target cell with just a
few injected queries by Alice’s auditors on LOAN_OPE. For instance, say the ad-
versary selects the shaded tuple in LOAN_OPE as the target cell — corresponding
to customer Bob. Then the attack proceeds as follows:

— The adversary first injects a query @1, similar to that of Figure (3] with the
LoanAmt range set to [OPE(32768):0PE(65535)], Collateral range set to

! The CustName column is encrypted with AES for additional security.



[OPE(40000):0PE(40000)] ] and CustName set to [AES(’ Alice’)]. When @
is processed by the database engine, the SP observes whether or not Bob’s
encrypted LoanAmt lies in this range (note that the SP has unrestricted
read access over encrypted data).

— Since it happens to lie outside the range, the adversary injects @,
which is identical to @)1 except that the LoanAmt range is now set to
[OPE(16384):0PE(32767)]. When Q- is executed, the SP finds that Bob’s
encrypted LoanAmt lies in the target range.

— The adversary then injects another similar query, QQ3, with LoanAmt now
set to [OPE(24576):OPE(32767)].

— Since OPE(24576) is equal to Bob’s encrypted LoanAmt value in
LoaN_OPE, the HCC adversary learns that Bob’s loan amount is 24576.

The above process is representative of an injection-based binary search attack
(BSA) that becomes feasible via collusion. As explained in [20], it is also the
strongest feasible attack in the HCC environment, and applicable to all security
systems that store the encryption of a plaintext table in a single ciphertext table.

1.2 Range Predicate Security (RPS)

Before we address the above weakness, it is necessary to formalize the security
definition in the HCC model. In this scenario, a plausible security formulation
for SQL range predicates is that data values from a plaintext domain of size NV
should not be leaked to within an interval of size H on this domain. For instance,
the bank may require that no loan amount should be leaked to within an interval
of size 15000 from its actual value. Note that setting H to 1 corresponds to the
special case where a security breach occurs only if a plaintext is fully leaked —
this typically applies to identificatory attributes such as Social Security numbers.

Unfortunately, as highlighted in the BSA attack example, all previous
schemes for range security can be breached under HCC with a sequence of only
O(logat) range queries, where v = N/H. To address this lacuna, we present
here a new encryption scheme, called SPLIT, in which the HCC adversary
requires exponentially more — i.e. O(1)) — range queries to breach the interval
constraint. Such extended query patterns can be easily detected by standard
auditing mechanisms, or incur impractically long durations to achieve covertly,
thereby effectively satisfying the interval security requirement.

We present a detailed evaluation of SPLIT on benchmark databases, and
demonstrate that its execution times are always within twice the correspond-
ing plaintext times, thus providing an attractive security-performance tradeoff
against an extremely strong adversary. Further, while SPLIT does incur large
storage overheads, the extremely low resource costs on the Cloud allow it to
retain viability. Finally, SPLIT is attractive from a deployment perspective also
since it can be implemented as a security layer over existing database engines,
without necessitating internal changes.

2 The Collateral range is fixed to a single value since the objective is to breach
LoanAmt. A similar exercise can be carried out to break the Collateral column.



Organization The rest of the paper is organized as follows: We begin with
the formal problem framework in Section 2] The new SPLIT encryption scheme,
and its associated range query processing technique, are described in Sections
and [ respectively. The security of SPLIT is analysed in Section [§] and the
experimental results are presented in Section [0} Related work is reviewed in
Section [7, and our conclusions are summarized in Section

2 Problem Framework

As mentioned previously, the OPE and PPE schemes are currently in vogue for
the secure handling of range queries, and are defined as follows:

Order-Preserving Encryption [5]: An order-preserving encryption func-
tion E, is a one-to-one function from A C N to B C N with |A| < |B|, such that,
for any two plaintext numbers i,j € A, E,(i) > E,(j) iff ¢ > j.

Prefixz- Preserving Encryption [18]: A prefix-preserving encryption func-
tion E, is a one-to-one function from {0,1}" to {0,1}" such that, given two
plaintext numbers a and b sharing a k-bit prefix, their corresponding cipher-
texts Ej,(a) and E,(b) also share a k-bit prefix.

2.1 Adversary Objective

In accordance with the DBaaS model, the DO provides authorized access to
portions of the data stored on the Cloud to individual QCs, using an access
control mechanism and fixed query form templates. Further, the DO also defines
the interval constraint size H. Given this environment, the adversary (i.e. SP
+ colluding QC) chooses to attack a target cell from an encrypted tuple which
is outside of its authorized access, with the objective of breaching the Range
Predicate Security (RPS) interval constraint H on this target cell.

Formally, the adversary A is given a set M* consisting of m ciphertexts,
and the interval constraint size H. A selects a challenge ciphertext z* € M*
and its objective is to identify a plaintext interval (a,b) containing x* such that
|b —a] < H. In its attack, A is allowed to issue a polynomial(A\) number of
range queries and observe their computations and results — here A is the security
parameter, corresponding to the bit-lengths of the plaintext values.

In the full version of this paper [20], the above attack model is formalized
in the form of a game between the challenger C and the adversary A for a
deterministic encryption scheme SE that supports range query execution. We
hereafter refer to this game as Chosen Range Attack (CRA).

2.2 Notations

The following notations are used in the remainder of this paper:

— ZpTpy1 - - T4 denotes extraction of bits p through ¢ from the (big-endian)
binary representation of x.



— 21||- - - ||zx denotes the concatenation of bits x1, - -+ , xy, from which each x;
is uniquely recoverable.

— P denotes the plaintext domain. Further, given a plaintext value z, its en-
crypted version is denoted by x*.

— N denotes the size of the plaintext domain, and H represents the size of
the RPS interval constraint specified by the Data Owner. The normalized
plaintext domain size is denoted by ¥ =

3 Database Encryption with SPLIT

In this section, we present the design of the SPLIT encryption scheme, which
is conceptually based on two main ideas of splitting and layered encryption.
Subsequently, we describe how a plaintext database is converted to an encrypted
database, followed by a rationale for the design choices.

3.1 Splitting of Data

If we consider plaintexts sourced from an n-bit integer domain, the entire set
of these plaintexts can be represented by a complete binary tree of height n,
referred to as the Plaintext Tree (PT). The leaf level containing 2" nodes
is denoted as Lg, the level above it is denoted as Li, and so on. For example,
consider the plaintext tree for 4-bit integers shown in Figure a). In this case,
n is 4 and PT contains nodes at 5 different levels, Ly through L,. Every node
at the leaf level of PT is associated with n-bits of information characterizing its
path from the root to level L.
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Fig. 4. Basic SPLIT Scheme

SPLIT partitions the levels of the PT into two contiguous groups, referred to
as Range Safe (RS) and Brute-force Safe (BS), respectively, and associated
encrypted tables RS and BS are created based on this partitioning. The RS
partition consists of the top levels of PT. For example, in Figure (a), levels



Lo through L4 belong to the RS partition, and the bits corresponding to these
levels are encrypted for range query processing (this procedure is explained later
in Section . Thus, in the encrypted RS table, for each plaintext value, the
upper bits are encrypted for range query processing and the remaining bits are
blinded using a Secure Block Cipher (SBC). Hence, in this example, nodes at
level Lo effectively serve as leaf nodes and the associated range for every such
node is of granularity 22 integers, as shown in Figure (b)

The BS partition is comprised of the remaining levels of PT from level L
up to the level where the RS partition ends. In the current example, levels Ly
through Ly are assigned to the BS partition, and the bits corresponding to these
levels are encrypted for range query processing. Thus, in the encrypted BS table,
the lower bits are encrypted for range query processing while the upper bits are
blinded using SBC. This represents a set of trees, with the prefixes blinded, as
shown in Figure [4fc).

3.2 Layered Encryption

SPLIT uses three encryption schemes as black boxes, namely, Secure Block
Cipher (£spc), Order Preserving Encryption (£opg) and Prefix Preserv-
ing Encryption (€ppg). The SPLIT encryption scheme for plaintext do-
main P is constructed as a tuple of polynomial-time algorithms SPLIT =
(KeyGen, SBS,5R575530,D35,DRS,D530), where KeyGen is pI‘ObabﬂiStiC
and the rest are deterministic.

Key Generation [sk <+ KeyGen(A,w,d)] KeyGen is a probabilistic al-
gorithm that takes the following as input: The security parameter A, the total
number of table columns w, and the number of columns on which range predi-
cates can be simultaneously applied d. It then outputs the secret key sk, which
consists of d x 2¢ equi-length secret keys (Ké,K%,...,Kg*Qd) of the OPE en-
cryption algorithm (Eppg), d * 2¢ equi-length secret keys (Kb, K3, ...,Kj‘ﬂ*zd)
of the PPE encryption algorithm (Eppg) and w * 2¢ equi-length secret keys
(K&, K32, ..., Kg’*Qd) of a Secure Block Cipher (€spc).

Encryption Algorithms SPLIT incorporates two encryption algorithms Epg
and Erg. Both the algorithms are deterministic and take the following as input:
the plaintext data item m, key for OPE encryption Ko, key for PPE encryption
Kp, key for SBC Kg and number of bits v in the RS partition. The £gg algorithm
outputs the BS ciphertext (cjg) while Egg outputs the RS ciphertext (cfg)
corresponding to message m encrypted under the given keys. Let | = n — u,
m' =myu_1Mmpy_o---my and m” = my;_ymy_s - - - myg, thus, m = m’||m”. Then,

— Encryption for BS [€ps(m, Ko, Kp, Kg, u)]

cis ¢ E6pp(EpEr(Espo(m)Im”) (1)
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RS Ciphertext

Fig. 5. SPLIT Ciphertext Construction

— Encryption for RS [Ers(m, Ko, Kp,Kg, u)]

Chs ¢ Eopu(Epp(m'|€55c(m") 2)

The entire set of data encryption steps for a given plaintext value, as described
above, is pictorially shown in Figure [l The coressponding decryption algorithm
is comprised of similar equations and is presented in [20].

3.3 Data Transformation

Consider a plaintext table with w columns, from which we wish to support
range predicates on d columns. The plaintext values for each of the d columns
are independently encrypted 297! times using £pg and Erg each, thus creating
2¢ ciphertext columns. Further, 27 encrypted tables are created by capturing
all BS and RS combinations of these columns. The remaining columns in the
plaintext table — on which range queries will not be issued, are simply encrypted
using an SBC.

We illustrate this data transformation process with the help of an example.
Say our plaintext table is Loan with schema as enumerated in Figure -
then, w = 3. Assume that range predicates can only be asked on LoanAmt
and Collateral columns, i.e. d = 2. First, we call KeyGen(), 3,2), which returns
secret keys consisting of eight (2x22) OPE keys (K}, K3, ..., K%), eight (2x2?)
PPE keys (K}, K%,...,K%), and twelve (3 x 22) SBC keys (K&, KZ,..., K&).
Next, we create four encrypted tables, as shown in Figure [6] which contain all
combinations of the BS and RS partitions of LoanAmt and Collateral. Further,
the physical row orderings of the tables are randomized to prevent position-based
linkages across their tuples.

3.4 Design Rationale

The motivation for row randomization and layered encryption in SPLIT is to
prevent linkages of tuples across the various encrypted tables. For example,
there should be no linkage between tuples in LOAN_RS_RS and LOAN_BS_RS,
both of which correspond to the RS partition of Collateral. If such a linkage



CustName LoanAmt Collateral CustName LoanAmt Collateral CustName LoanAmt Collateral CustName LoanAmt Collateral
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(a) Loan-BS_BS (b) Loan_BS_RS (c) Loan_RS_BS (d) Loan_RS_RS

Fig. 6. SPLIT Banking Database

exists, it can be used to connect the tuples on the Collateral column in the two
tables, thereby enabling a binary search attack by keeping this column fixed,
and searching on the other LoanAmt column.

Further, the Collateral values are encoded using the same RS Encrypt func-
tion, but with different keys in LOAN_RS_RS and LOAN_BS_RS. This is where
the layered encryption, using OPE and PPE, plays a role. In both these columns,
the lower [ bits are blinded using an SBC with different keys, so it is not possible
to link tuples based on the lower bits. However, if no further encryption is used,
i.e. the upper u bits are kept as plaintext, it would be possible to link the tuples
based on the upper bits. So, further encryption that enables range queries based
on the upper u bits is necessary. Clearly, OPE and PPE are possible schemes
that can be used. However, OPE by itself is not sufficient. Consider a set of val-
ues V encrypted using OPE with two different keys giving sets V; and V. Since
OPE preserves order, the order of encrypted values in V; and Vy is identical.
Thus, by sorting these sets, one could link their values.

Similarly, PPE by itself is not secure since it preserves the structure of the
tree corresponding to the binary representation. In some cases, it may be possible
to map nodes across two PPE trees by using the structure. For example, if in
the plaintext domain, there is a single value with bit n — 1 as 1 and all others
have bit n — 1 as 0, then this value can be linked across different PPE trees,
irrespective of whether bit n — 1 gets flipped or not.

In a nutshell, the advantage of OPE is that it destroys the structure of the
tree and the advantage of PPE is that it destroys the order information. Thus, by
combining OPE with PPE, we remove both order and structure-based linkages.

4 Range Query Processing

In this section, we explain how a range query is executed over a SPLIT-encrypted
database. The main idea is to transform the query range into a disjoint set of
prefix ranges of the form b,_1b,—_2---b;*, where each b; is a bit taking value 0
or 1, and * can match any value. Smaller ranges, corresponding to j < [, are
answered from the BS tables and the larger ranges from the RS tables. Formally
Range Query Processing consists of two main steps — Range Query Mapping and
Range Query Execution, as described below.



4.1 Range Query Mapping

The steps to map range predicates from the plaintext domain to the RS and
BS partitions are shown in RQM Algorithm [I| The mapping process starts by
converting the input range r into a set of ranges R represented by prefixes (Line
[). The maximum number of such ranges is 2 x (n — 1), where n is the number
of bits used for representing the attribute values [I8]. For each prefix in R, a
value with that prefix is chosen — the remaining unspecified bits are set to 0
(Line [4)). Then, depending on the size of the range represented by the prefix,
it is mapped to either the RS or the BS partition. For a BS range, the higher
order bits are encrypted with the SBC (Line . Then the value is encrypted
with PPE encryption (Lines . The lower and upper bounds of the range
in the PPE encrypted domain are computed by replacing the remaining lower
J bits by all 0 and by all 1 (Lines [12|— . Finally, these lower and upper bits
are further encrypted using OPE encryption with the appropriate keys and the
range is added to Rpg or Rrg, depending on the size of the range (Lines —
. It can be seen that due to the prefix-preserving property of PPE and the
order preserving property of OPE, this mapping produces the correct range on
the encrypted domain. The ranges in Rpg are answered from the RS partition,
and those from Rpg are answered from the BS partition.

The above walkthrough shows the range mapping for a single column. If there
are ranges on multiple columns, each range is split into prefixes and the set of all
combinations of prefixes together represents the full range of the original query.
Each combination is answered from the table corresponding to the range types.
For example, a BS range on the LoanAmt column combined with BS range on
the Collateral column is answered from the LOAN_BS_BS table.

4.2 Range Query Execution

The next step is to execute the ciphertext queries at SP. We illustrate this
process through the example plaintext query specified in Figure |3} The following
steps are performed to evaluate this query in SPLIT :

1. QC sends the plaintext query to the SA.

2. SA calls RQM Algorithm [If and identifies sub-ranges over ciphertext tables.

3. Using output of Step 2, SA creates ciphertext sub-queries and sends them
to SP.

4. SP executes the sub-queries and sends (encrypted) result tuples to the SA.

5. SA computes the union of the tuples returned from each sub-query, and then
decrypts the result tuples. (The union is efficiently computable because it is
apriori known that the sub-queries access disjoint sets of tuples.)

5 Security Analysis of SPLIT

In this section, we evaluate the Range Predicate Security offered by the SPLIT
scheme against a Honest-but-Curious with Collusion adversary mounting a Cho-
sen Range Attack. Specifically, in a binary search attack as the range is refined,
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Algorithm 1 Range Query Mapping (RQM)
Input: Range r on plaintext attribute. OPE keys K} and K3, PPE keys Kb and K3,
SBC keys K% and K2 for RS and BS partition respectively. The number of bits in
RS partition ‘u’
Output: Set of ranges on RS partition Rrg, set of ranges on BS partition Rps
1: Convert r into a set of ranges R of form b, _1b,_2 - - - bj* {using technique in [I8]}
2: Letl=n—u
3: for all (r; = bp—1bp—2---b;%) in R do

4: V4= bp_1bp—2---b;0---0 {set lower bits to 0}
5: VU 4= VUp—1Un—2 -V ; VL ¢ Vj—1Vj—2 * * - Vo

6: if (j <) then {BS range}

7 v* <—€K§(UU)HUL

8: ey Exz (v™)

9: else {RS range}

10: ey Eky, (v)

11: end if

12: Let cncn—1---co be the bit representation of e,
13: L 4 Cn—1Cn—2---¢;0---0; ry < cpcp—1---¢cj1---1
14: if (j <) then

15: 7"2 — gK(ZD (’I‘L) ; 1";} — 5K(2) (T'U)

16: Add (ri,ry) to Res

17: else

18: 7”2 < (C,'K(l) (TL) ; 7”;} < cc,‘K(l) (T’U)

19: Add (r7,r{) to Rrs

20: end if

21: end for

22: return Rpgs, Rps

the table from which the query is answered is switched from RS to BS according
to the RQM Algorithm [I} So, a target RS cell cannot be guessed to a range of
size less than 2. And there is no way to reach the corresponding target cell in BS
table in log(1)) steps unless the rows in the tables can be linked. Without linkage,
binary searches over all the ¢ sub-trees in the BS partition will be needed. We
prove that the table rows cannot be correlated in the following discussion.

For ease of understanding, a diagrammatic view of the layered SPLIT en-
cryption scheme is shown in Figure m E| The various ways in which RPS for the
LoanAmt column can be breached are highlighted through the numbered dotted
lines, which are explained below — a similar reasoning holds for the Collateral
column. The SPLIT scheme protects against all these breaches, as explained in
the remainder of this section.

To begin with, the HCC adversary is unable to independently break the
BS and RS ciphertexts (dotted lines 1 and 2, respectively) because these were
generated by SBC-encrypting the upper and lower half bits of the plaintext

3 For visual clarity, CustName is not shown in the figure, but its encrypted form,
CustName_Enc, is present in all four tables.

11
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Fig. 7. Ensuring Security of LoanAmt values

value, respectively. Secondly, the BS and RS ciphertexts (dotted lines 3 and 4)
corresponding to a given LoanAmt plaintext value, cannot be associated, because
there is no value linkage between these ciphertexts — again due to the blinding of
the lower half bits in the RS table and the upper half bits in the BS table using
a SBC. Further, the linkages of row locations between these tables have been
removed due to the randomization (denoted by R in the figure) of the physical
row orderings of the tables. Preventing this association ensures a break in the
chain of attack queries.

Apart from these direct attacks on LoanAmt, there could also be indirect at-
tacks launched on it via the sibling Collateral attribute. Specifically, the linkage
between a pair of BS ciphertexts corresponding to a Collateral plaintext value
(dotted line 5), or a pair of RS ciphertexts corresponding to a Collateral plain-
text value (dotted line 6), could be used to launch a BSA on LoanAmt. This is
prevented because physical randomization ensures the absence of row linkages
between the encrypted Collateral columns, while value linkages are eliminated
by the three-layered SBC-PPE-OPE encryption, using different keys for each
table, as described in Section [3]

In a nutshell, the security of the SPLIT encryption scheme is established
based on the following points (the complete set of formal claims and proofs are
available in [20]):

1. The BS and RS encryptions are independently secure (dotted lines 1 and 2
in Figure|[7]) .

2. For any plaintext table, there is no linkage between the corresponding BS
and RS ciphertext tables (dotted lines 3 and 4 in Figure [7)).

3. For any plaintext table, there is no linkage between a pair of corresponding
BS (or two RS) ciphertext tables (dotted lines 5 and 6 in Figure 7).

6 Experimental Evaluation

The importance of range predicates in OLAP environments can be gauged from
the fact that more than half the queries in the TPC-H and TPC-DS decision
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support benchmarks feature such predicates. In this section, we move on to em-
pirically evaluating SPLIT’s efficiency with regard to handling range predicates
in the encrypted domain.

Our experimental setup consisted of two identical server machines, with one
representing the SP hosting the DO’s encrypted data, and the other representing
the SA interfacing with the QCs. PostgreSQL 9.4 was used as the database
engine on the SP server, and all queries were issued through a Java program,
which converted the plaintext queries to their SPLIT ciphertext equivalents.

The experiments were carried out on 10 GB versions of the TPC-H and
TPC-DS benchmark databases. For TPC-H, the queries having range predicates
on 4 attributes were constructed, with a range of selectivities on LINEITEM,
the largest table in the TPC-H schema with 60 million rows. For TPC-DS, the
standard benchmark tables sizes [21] were used and three benchmark queries
(Query 82, Query 87 and Query 96) were executed to evaluate the performance.

6.1 Query Execution Time

The execution times taken for range query processing by the SPLIT and plaintext
algorithms on the TPC-H and TPC-DS databases, as per the above experimental
framework, are captured in Figures[8a] and respectively, The results in these
figures consistently show that the performance of SPLIT is within a factor of two
of the plaintext query execution. For instance, in Figure[8alat 50% selectivity, the
plaintext query takes around 30 seconds while SPLIT completes in 52 seconds.
Similarly, in Figure Query 82 takes 32 seconds in the plaintext environment,
and is computed in 45 seconds with SPLIT encryption.

Execution Time (In Seconds)
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g 3

Execution Time (In Seconds)
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20 E:
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50% 75% 100% Query 82 Query 87 Query 96
Selectivity of Lineitem Benchmark Queries

OPlaintext ®Split OPlaintext WSplit

(a) 10GB TPC-H database (b) 10GB TPC-DS database

Fig. 8. Query Execution Time on Benchmark Databases

At first look it may seem that SPLIT will incur a performance slowdown
equal to the storage blowup. However such worst case scenario will require a
query containing multi dimensional range predicate where each predicate has
high selectivity requiring a full table scan. In general cases, if indexes are present
and are chosen by the optimizer, then the number of tuples fetched from the disk
will be equal to the size of the final result set. In these cases the performance
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overhead will be within two times since the ciphertext size is twice the size of the
plaintext. Further note that since the query rewriting leads to multiple queries,
each with predicates having lesser selectivity, the probability that the optimizer
decides to use indexes is higher.

Note that the good performance of SPLIT is inspite of the large number of
sub-queries in the transformed query. This is because each sub-query accesses a
disjoint set of tuples, meaning that the total work done is almost equivalent to
that of the single query in the plaintext domain, particularly if indexes are used
in the query plan. This points to the practicality of the SPLIT scheme.

An important observation here is that the SPLIT implementation in these
experiments lacked any parallelization. However, the many sub-queries (one per
encrypted table) in the transformed query over the encrypted database can, in
principle, all be executed in parallel. If this optimization were to be implemented,
the time overheads will be further reduced.

6.2 Storage Cost

The size of the plaintext TPC-H database with indexes is 21 GB, whereas the
corresponding SPLIT encrypted database is 335 GB. This is because we are han-
dling 4D range predicates, resulting in the encrypted database being roughly 16
times the size of the plaintext database. Though this blowup is certainly large,
the overall impact on the system dollar cost is substantively lower, since storage
is relatively cheap. For instance, Table |[1| shows the monthly costs for attaining
same throughput with both the plaintext and SPLIT schemes, estimated using
the rates charged by Amazon’s AWS service [19] for machines similar to our
experimental configuration. Since the execution time of SPLIT is within twice
of the plaintext execution time, and the resource cost is dominated by the VM
rental duration, the overall monetary investment in the SPLIT scheme is also
within a factor of two with respect to the plaintext scheme. Further, various
workload-dependent optimizations to reduce the storage overheads are also de-
scribed in [20].

Scheme |Size (GB)|[$/VM|$/GB|$(VM)|8(Storage)|$(Total)
Plaintext 21 288 |0.045 288 0.945 288.945
SPLIT 335 288 |0.045 576 15.075 591.075

Table 1: Monthly Dollar Cost of Cloud Platforms

7 Related Work

Several schemes have been proposed over the last decade for securely process-
ing range predicates over outsourced encrypted databases. The most prominent
among them have been OPE [1I5J6IT4I1T] and PPE [I8/12], which inevitably
leak order-based and structure-based characteristics respectively, of plaintext
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data. In PBtree [13] the authors have proposed an encrypted tree-based in-
dex structure, but this scheme requires significant changes to the underlying
database engine which may hinder its adoption by industry.

Subsequently, alternative tree-based encryption schemes have been proposed
in [7I8] and Bucketing Schemes are proposed in [9JI0]. These schemes provide
stronger security guarantees than OPE schemes in Honest-but-Curious model.
However the fundamental problem is that, these schemes return false positives
in the query results.

Another line of research [IBJT6BI2ITT] has focused on building complete
systems which support secure execution of entire SQL queries over encrypted
databases. In CryptDB [I5], multiple encryption schemes are used to encrypt
the data in an “onion”-style layering. At query processing time, the outer lay-
ers of the appropriate onions are removed as dictated by the query predicates.
MONOMI [I6] also uses multiple encryption schemes, albeit without the onion-
based layering. It assumes instead that the clients also have a local database
engine, and each query is split into two parts — the first part is executed on the
encrypted data at the Cloud server, and its result is transferred to the client,
decrypted and loaded into the local database. The second part of the query is
then run on this local plaintext database.

Systems such as TrustedDB [3] and Cipherbase [2] assume the availability
of trusted hardware at the server, which can be used to decrypt and process the
data in a secure manner. In TrustedDB, the whole database engine runs inside
the trusted hardware, whereas in Cipherbase, the database engine is aware of
the encryption requirements and integrates tightly with trusted hardware.

The common limitation of all the above systems is that they are susceptible
to a CRA attack in the HCC model, as described in detail in [20].

8 Conclusions

In this paper we considered a Honest-but-Curious with Collusion adversary on
Cloud-resident databases. This model represents a significantly more powerful
attack than the traditional HBC adversary, and is capable of easily launching
Chosen Range Attack to breach the encrypted data. We proposed the SPLIT
encryption scheme to securely process range predicates in the presence of such
adversaries, with the key features being splitting of data values and layered en-
cryption. With this scheme the adversary requires exponentially more queries
to breach the data, making the attack unviable in practice. SPLIT was imple-
mented and evaluated on benchmark environments, and the experimental results
demonstrate that its strong security guarantees can be supported without incur-
ring more than a doubling of the plaintext response time, even under sequential
execution. When parallel execution is implemented, these performance overheads
will be much smaller.

In the full version of this paper [20], we have shown how SPLIT can be
extended to handle updates and other database operators, as well as serve as
a potent and efficient replacement for OPE in complete systems such as Ci-
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pherbase. Therefore, in an overall sense, SPLIT promises to be a viable and
desirable component for securely handling OLAP queries.

In our future work, we plan to compare the efficiency of our work with other
solutions in the HBC model (ex. PBtree [13]), and to design encryption schemes
to securely handle additional SQL operators (ex. 6 join) against HCC adversaries.
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