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Abstract

Online persistent suffix tree construction has been con-
sidered impractical due to its excessive I/O costs. However,
these prior studies have not taken into account the effects of
the buffer management policy and the internal node struc-
ture of the suffix tree on I/O behavior of construction and
subsequent retrievals over the tree. In this paper, we study
these two issues in detail in the context of large genomic
DNA and Protein sequences. In particular, we make the fol-
lowing contributions: (i) a novel, low-overhead buffering
policy called TOP-Q which improves the on-disk behavior
of suffix tree construction and subsequent retrievals, and (ii)
empirical evidence that the space efficient linked-list rep-
resentation of suffix tree nodes provides significantly infe-
rior performance when compared to the array represen-
tation. These results demonstrate that a careful choice of
implementation strategies can make online persistent suf-
fix tree construction considerably more scalable – in terms
of length of sequences indexed with a fixed memory bud-
get, than currently perceived.

1. Introduction

The suffix tree is a versatile datastructure, that is used
in numerous bioinformatics applications (see [10, 11] for
a comprehensive list of these applications). For example,
they are extensively used in many tasks requiring similar-
ity searching over genetic sequences such as DNA and Pro-
teins.

Although the utility of suffix trees is well known, their
usage is limited to small length datasets due to their space
requirements – the best in-memory implementations so far
take upto 12.5 times the database size [19]. This is in
marked contrast to traditional index structures (e.g., B+-
trees), where the size of the index is usually much smaller
than the indexed database.

Thus, it becomes untenable to consider a suffix tree re-
siding fully in memory, indexing an ever growing sequence
corpus such as the GenBank maintained by NCBI1. An ob-
vious solution to handle this space problem is to maintain
the suffix tree index on disk. Unfortunately, due to seem-
ingly random traversals induced by the linear-time con-
struction algorithms, resulting in unacceptably high I/O
costs, the folk wisdom is that disk based implementations
of suffix trees are unviable [8].

In order to overcome this infamous “memory bottle-
neck” [13] of persistent suffix tree construction, there are
two possible approaches: (a) The suffix tree construction
algorithm and its structure could be modified to make it
more suitable for on-disk implementation, or (b) Tune the
parameters of the environment in which suffix tree is imple-
mented, without modifying either the structure or the con-
struction algorithm.

In a recent work, Hunt et al. [4], took the former ap-
proach wherein they completely abandoned the use of suffix
links – additional edges over the internal nodes of the suffix
tree that are crucial in obtaining linear-time construction of
suffix tree. Using the resulting batch-wise construction with
quadratic worst case time complexity, they showed that suf-
fix trees can be built efficiently on-disk. However, due to
the resulting structure without suffix links, some of the fast
approximate string processing algorithms that make use of
suffix links, such as computing matching statistics [22], are
rendered unusable.

In this paper, we take the second approach, and identify
the parameters that affect online persistent suffix tree con-
struction and quantify their impact. Specifically, the contri-
butions of this paper are threefold:

1. We propose a novel paging strategy, TOP-Q, that takes
into account the probabilistic behavior of traversals
during suffix tree construction. This strategy uses only
the path length invariant (defined later) of suffix tree

1 As on January 2003, NCBI-GenBank houses about 28.5Gbp of DNA
sequence data [15]
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Figure 1. Suffix tree for the DNA fragment
“GTTAATTACT$”

nodes and results in a static policy, with extremely low
computational overhead.

2. We study a variety of paging policies in terms of their
utilization of buffer space during the persistent suffix
tree construction and compare their performance with
that of TOP-Q.

3. We show that the much preferred suffix tree implemen-
tation using linked-list representation of nodes [19, 3],
is extremely expensive in terms of disk I/O in spite of
its space economy, in comparison to a simple and of-
ten neglected array representation of edges.

In our experiments, we use the classical online suffix
tree construction algorithm of Ukkonen [7]. Our evalua-
tion testbed consists of a variety of real DNA sequences,
a synthetic symmetric Bernoulli sequence over a 4 charac-
ter alphabet, as well as a subset of the SWISS-PROT pro-
tein database [20].

2. Persistent Suffix Tree Construction

In this section, we provide an overview of the online suf-
fix construction algorithm of Ukkonen, detailed in [10], and
consider the pattern of node accesses made during the algo-
rithm’s execution.

To aid the presentation, we first present some terminol-
ogy related to suffix trees. Let S[0..N ] be the string indexed
by the tree TS . The leaf node corresponding to the i-th suf-
fix, S[i..N ], is represented as li. An internal node, v, has
an associated length L(v), which is the sum of edge lengths
on the path from root to v. We represent by σ(v), the string
at v to represent the substring S[i..i + L(v)] where li is
any leaf under v. A suffix link sl(v) = w exists for ev-
ery node v in the suffix tree such that if σ(v) = aα, then
σ(w) = α, where a is a single character of the alphabet
and α is a substring (possibly null) of the string. Note that
sl(v) is defined for every node in the suffix tree. And, more
importantly, sl(.) – the entire set of suffix links, forms a

tree rooted at the root of TS , with the depth of any node v

in this sl(.) tree being L(v). The suffix tree for an exam-
ple 10-letter DNA subsequence, S = “GTTAATTACT$” is
shown in Figure 1. The numbers at the bottom of leaf nodes
represent the start of the suffix S[i..N ] that they represent.
The dashed edges between internal nodes represent the suf-
fix links.

The suffix tree is constructed incrementally by scanning
the string from left to right, one character at a time. A high
level description of the construction process is given in Al-
gorithm 1. The algorithm can be viewed to consist of two
phases, Locate phase and Insert phase, for each character
in the sequence. If implemented naively, the locate-phase
would have quadratic time complexity, resulting in a over-
all O(n3) time complexity. Therefore, the tree is augmented
with additional edges, called suffix links, that provide short-
cuts to move across the tree quickly. These suffix links play
a crucial role in reducing the running time of the algorithm
to linear in the length of the indexed string.

Algorithm 1 Online Algorithm of Ukkonen

1: procedure Ukkonen {Outputs an implicit suffix tree}
2: input S[0..m] : string to be indexed
3: I0 ← Implicit suffix tree for S[0 . . . 0]
4: for i = 0 to m do
5: for j = 0 to i + 1 do
6: {LOCATE PHASE}
7: Locate β = S[j . . . i] in Ii

8: {INSERT PHASE}
9: if β ends at a leaf then

10: Ii+1 ← add S[i + 1] to Ii

11: else {β ends at an internal node, or the middle of
the edge}

12: if from the end of β there is no path labeled
S[i + 1] then

13: Ii+1 ← split edge in Ii and add a new leaf
14: else
15: Ii+1 ← Ii {β already exists in Ii}
16: end if
17: end if
18: end for
19: end for

However, when we move the suffix tree construction
from memory to disk, these linear bounds no longer re-
flect reality, since they were obtained with a RAM machine
model, where every memory access has the same cost, ir-
respective of its address. On the other hand, access-cost in
secondary memory is dependent on the address to which
the previous access was made. For example, a long chain of
accesses to spatially contiguous addresses (block accesses)
could cost much less than fewer but random accesses.



Figure 2. Node Access Frequency

2.1. Node Access Patterns

During the construction of a suffix tree, accesses to nodes
are spatially non-contiguous. Specifically, in the locate-
phase, already constructed parts of the tree are re-accessed
many times via suffix links. These traversals are not neces-
sarily spatially local, leading to seemingly random traver-
sals over the tree. The following words of Giegerich and
Kurtz [17], typifies the behavior of these algorithms: “The
active suffix creeps through the text like a caterpillar. At the
same time, the corresponding active node swings through
the tree like a butterfly”.

Thus, it is strongly believed that the accesses are random
in nature – with no obvious useful patterns discernible from
the access traces.

3. Locating Preferred Nodes

In this section, we closely analyse the traces of accesses
to nodes during online suffix tree construction, show that
some of the nodes are indeed accessed far more frequently

than others, and provide a simple observation that helps to
identify such nodes during construction of the tree.

Before we proceed to analyse the traces, we note that the
nature of accesses that are expected during the construc-
tion of the suffix tree is intricately linked to the stochas-
tic properties of the specific sequence at hand. There have
been many efforts to classify the sequences based on their
stochastic properties [23]. One of the simplest sequence
models that is proposed as an approximation to genome se-
quences is that of Bernoulli generators. In this model, sym-
bols of the alphabet are drawn independently of one an-
other; thus a string can be described as the outcome of a
sequence of Bernoulli trials. In addition, if all symbols are
drawn with equal probability, then the sequence is called
symmetric, otherwise, it is asymmetric.

Now, consider the internal node access statistics during
suffix tree construction for a symmetric Bernoulli sequence
(dataset S) derived from the access traces, shown in Fig-
ure 2. These provide the correlation between the average
number of accesses made to a node and the eventual depth
of the node in the tree, illustrating that, during the suffix tree
construction, nodes higher up in the tree are accessed more
number of times than nodes lower in the tree. This corre-
lation is also evident for suffix tree construction over real
chromosomal sequences (dataset C) as shown in Figure 2.

Thus, it seems reasonable to cache the nodes that end up
higher in the tree, in order to serve these accesses faster.
However, due to the nature of the edge splits during con-
struction, the depth of a node cannot be maintained with-
out propagating the update throughout the subtree under the
node.

3.1. Estimating the Depth of Internal Nodes

Although the depth of internal nodes cannot be main-
tained accurately, a simple observation on the structure of
the resulting suffix tree provides us with a means to estimate
this value efficiently. Considering sequences drawn from a
symmetric Bernoulli stochastic models, it is straightforward
to see that:
• Substrings of equal length are equally likely.
• If s is a substring of the sequence S, with |s| = l,

then the number of substrings occurring elsewhere in
S which have a common prefix with s is directly pro-
portional to l.

Applying these to the behavior of the suffix tree during
its construction, we get:

Observation 1 The longer the edge in suffix tree of a sym-
metric Bernoulli sequence, more the likelihood of its being
split in the limiting sense.

And obviously, no edge can be split once it has reached
the limiting minimum length of 1.



From the above observation, we can infer that a node,
in the limiting sense, can move further down in the suffix
tree until its incoming edge has only one symbol as its la-
bel. Thus L(.) of any internal node forms an upper bound on
its eventual depth. In addition, this measure of path length
is an invariant for the node, which results in easy mainte-
nance of this information during the construction of the suf-
fix tree. Hence, for suffix tree nodes over large sequences,
we can approximate their eventual depth in the tree by their
path length.

3.2. Impact of Asymmetric Distribution

In deriving the above approximation to the eventual
depth of a node, we made the assumption that the sequence
is drawn from a symmetric Bernoulli model. However, it
is unlikely that any real-world DNA sequence would con-
form to this restrictive model. The asymmetry of real-life
distribution results in substrings containing a larger propor-
tion of frequent symbols, having higher probability of oc-
currence than other substrings of the same length. This im-
plies that if a node v has its label σ(v) containing smaller
number of frequent symbols, it has lower probability of be-
ing split – resulting in a possible over-estimation of its even-
tual depth by its path length L(v).

The graphs in Figure 3 show, for four DNA datasets used
in our experiments, the error in estimation of eventual depth
of a node vis-a-vis the actual depth of the node, as well as
the corresponding number of nodes at each depth of the tree.
These graphs were obtained after processing 5Mbp of each
of the datasets. The figure shows the statistics for nodes only
upto a depth of 20, since the number of the internal nodes
at depths greater than 20 is too small to make any impact
although the error in estimation of eventual depth is quite
large for such nodes.

The average error at each depth was computed as the
arithmetic mean of (L(.) −Depth(.)) for all nodes at that
depth. Note that since L(.) forms an upperbound on the
depth of the node, this value is always positive. The fol-
lowing points have to be noted with respect to these graphs:
• For all the datasets, path length corresponds exactly

to the depth of the node up to a certain value of ac-
tual depth, which is dependent on the length of the se-
quence processed. As shown in the graphs, this value
is 10, after processing 5Mbp of each of the datasets.

• The number of nodes peaks at a depth of 11, at which
point the error in the estimation of depth is small for
all the datasets.

• For the dataset S, estimates are accurate throughout
providing empirical evidence for the soundness of Ob-
servation 1.

• The worst estimation error are with dataset C, which
has a highly skewed distribution of basepairs. How-
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Figure 3. Depth Estimation Error

ever, a majority of nodes in the tree occur within depth
14, where errors are not too large.

• The depth of a node approaches its path length with
the increase in length of the sequence indexed. There-
fore, the estimation errors continue to decrease as we
process sequences of greater length.

In summary, these graphs show that for even for datasets
that deviate from the symmetric Bernoulli model, the im-
pact of errors incurred by the proposed approximation to
eventual depth is not very significant, and the quality of ap-
proximation improves with the increase in the length of the
sequence.

4. Design of TOP-Q

Before describing the TOP-Q buffering strategy, we
present the design of TOP, a simpler version of TOP-Q,
which exploits the observation that higher number of ac-
cesses are to the nodes that are eventually higher in the
tree, as well as the approximation to the eventual depth pre-
sented above.



We consider the situation where each disk-page contains
a collection of nodes of the suffix tree – either internal or
leaf, but not a mix of both. In order to minimize the stor-
age cost of maintaining the path length, each disk page con-
tains an associated path length, which is the average of the
path lengths of all nodes packed in it. Each disk-page is
completely packed with nodes as they created, and since
the path length for each node is an invariant, the path length
of the page can also be computed at the time it is commit-
ted to the disk.

Using this depth estimation for each page, the rank-
ing policy employed for paging is to rank the pages with
smaller path lengths for retention in memory. We call this
buffering policy as TOP, to indicate that it tries to retain
those pages of the suffix tree that are estimated to be top
pages i.e., pages containing the top nodes of the tree.

4.1. Accomodating Correlated Accesses

Although the TOP buffering policy exploits the prefer-
ential access to the nodes with lower path lengths, it ignores
the presence of correlated access patterns exhibited by the
suffix tree construction. We provide below an example situ-
ation in the construction process, where this makes a impact
on the performance of TOP.

The construction proceeds by splitting an edge, intro-
ducing a new branching node and a leaf node at that loca-
tion, and filling in suffix-link pointers if needed. Every node
stores the details of its incoming edge, i.e., (start, end) in-
dexes into the sequence and the length and label of the edge.
When an edge p(v) → v, is about to be split, the following
actions are performed:

1. create a new branching node, v′, and a leaf node l,
2. set the incoming edge details for both v′ and l,
3. update the incoming edge details for v (the edge length

is shortened, and the start value and corresponding
edge label are changed), and finally,

4. v′ is set as the child of p(v) in place of v, and v is now
located under v′.

In addition, by the nature of the algorithm, only v has an ac-
tive reference to it, and p(v) is to be accessed through the
parent pointer available with v. Therefore, p(v) is not guar-
anteed to be pinned in memory during this process.

As the construction progresses, the internal nodes have
ever-increasing path lengths associated with them. There-
fore, the TOP policy evicts the pages as soon as they are
filled and are not pinned through any active reference, since
the internal pages also have larger path length values as the
construction proceeds. Therefore, there is a possibility that
p(v), more precisely, the page containing p(v), is not re-
tained in the buffer for long.

We evaluated the impact of such correlated accesses to
nodes, by measuring the the number of characters processed

Figure 4. Correlated Accesses in TOP

by the algorithm between the instant a page is evicted and
the instant it is next requested, generating a fault on the
buffer pool. The initial interesting portion of the results is
shown in Figure 4, which plots the number of faulted pages
on a logscale and the number of characters processed since
they were last evicted from the buffer pool. As shown in
these graphs, the number of evictions that have pages with
immediate reference – i.e., before the complete addition of
the next character into the suffix tree – is orders of magni-
tude larger than the evictions of pages that are accessed af-
ter many more characters are added.

The TOP-Q strategy compensates for this un-
responsiveness of TOP to such accesses, by splitting
the buffer pool into a collection of pages maintained in the
order of their path lengths – implemented as a Heap struc-
ture, and a short fixed-length queue of pages to hold the
pages evicted from the heap. The buffered pages in the
heap are chosen for eviction just like in the TOP pol-
icy. However, unlike TOP, these pages are moved to the
short, fixed-length queue part of the buffer pool man-
aged in a FIFO fashion. The presence of the queue of pages
effectively introduces a delay in the eviction of pages, sat-
isfying almost all the immediate references to the page. We
have used a queue of 10 pages with buffer-pool sizes rang-
ing from thousands to hundreds of thousands of pages
in our experiments and found it to perform well in prac-
tice.

5. Suffix Tree Representation

We now turn our focus to the physical representation
of the nodes of the suffix tree. Much attention has been
paid to reducing the size of these nodes [19], the goal be-
ing to maintain the tree entirely in memory, so that non-
local accesses over the tree induced by linear-time construc-
tion algorithms are not affected by the virtual memory pag-
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ing [10]. However, it is not known which of these node rep-
resentations is more appropriate when the suffix tree has to
be constructed and maintained completely on disk.

The simplest but most space consuming strategy is to use
an array of size |Σ| (where Σ is the size of the alphabet)
at each internal node of the tree. Each array entry corre-
sponds to an edge, whose edge-label begins with the char-
acter associated with the array entry. These edges are imple-
mented as pointers to corresponding child nodes in the suf-
fix tree. We term this representation as array implementa-
tion of suffix tree nodes. This representation, although sim-
ple to program, is not preferred in most practical implemen-
tations since this results in a lot of wasted space, with many
pointers containing null values. This overhead is especially
severe in nodes lower in the tree since the tree edges be-
come sparser at lower portions of the tree.

As suggested by McCreight [6], a space efficient alterna-
tive to the array is to use a linked list of siblings and at ev-
ery internal node maintain a single pointer to the head of the
linked list containing its child nodes. Traversals from the in-
ternal node are implemented by sequentially searching this
list for the appropriate child node. We refer to the resulting
representation as the linked-list representation of the suffix
tree node. This structure is a popular choice, due to its sim-
plicity in implementation as well as superior space econ-
omy.

The structure of internal nodes and leaf nodes, for the ar-
ray and linked-list implementation is given in Figure 5. It
is clear that the linked-list representation achieves its supe-
rior space economy by significantly reducing the size of ev-
ery internal node – in our implementation, from 33 bytes
per internal node in array representation to 21 bytes per in-
ternal node.

Although it is possible to maintain the linked-list of sib-
lings in a sorted fashion to reduce the searching time, this
provides no significant advantage with small alphabet size
sequences (such as DNA) and only complicates the imple-
mentation. Moreover, maintaining the sorted order of the
list on disk involves update of many nodes for every inser-
tion leading to a large number of accesses. Hence, we do

Name Description
%-age Distribution

Length of nucleotides
(in Mbp) A T C G

S Sym. Bernoulli 25 25 25 25 25
D Drosoph. genome 25 29 29 21 21
H Human Chr. II 25 30 30 20 20
C C.elegans Chr. I 15 32 32 18 18

Table 1. Characteristics of the Datasets

not maintain the sibling linked-list in sorted fashion.

6. Evaluation Framework

In this section, we describe the framework used for eval-
uation of various buffering strategies, and node implemen-
tation choices, during the online construction of persistent
suffix trees.

In our evaluation, we use a total of four DNA datasets,
three of which are drawn from C.elegans Chromosome I
(dataset C), Human Chromosome II (dataset H) and com-
plete genome of Drosophila Melanogaster (dataset D). The
remaining dataset is a synthetic symmetric Bernoulli se-
quence over DNA alphabet (dataset S). The details of these
datasets are summarized in Table 1. From these statistics we
see that these datasets comprise of sequences ranging from
symmetric distribution of alphabets (dataset S) to highly
skewed distribution (dataset C). Additionally, we also use
an amino-acid sequence, SPROT, derived from SWISS-
PROT collection of proteins [20]. Since most of the individ-
ual protein sequences are short, a 25Mb dataset was gener-
ated by concatenating the sequences together.

6.1. Implementation Details

As already mentioned in Section 4, suffix tree nodes are
packed into fixed size pages before they are committed to
the disk. The pages on disk are either internal pages or leaf
pages, depending on whether they store internal nodes or
leaf nodes of the tree. The variation in the internal and leaf
node sizes leads to the packing density (i.e., the number of



nodes in a disk page) of leaf pages being greater than that
of internal pages.

The storage of both internal nodes and leaf nodes is in
their order of creation. Each page is committed immediately
to the disk, as soon as all the space in the page is utilized.
Note that, at the time of committing to the disk, all the en-
tries in nodes of the page may not be filled – some of them
may be defined and updated at later times in the construc-
tion process. Also, a page is pinned in memory if there are
any active references pointing to nodes in the page.

The internal and leaf pages are distinguished also in
terms of their buffer pools. This is due to the distinctly dif-
ferent access patterns made during the construction of the
tree. Internal nodes of the tree are used repeatedly (with or
without suffix links) for reaching the location of next suffix.
On the other hand, leaf nodes are re-visited only when the
suffix being located ends in a leaf node. In fact, our buffer
management system is designed such that separate policies
can be applied to internal and leaf page buffer pools.

6.2. Buffer Management Policies

The design of buffer management policies has been an
active area of research for many years, and a host of policies
that show improved hitrates over various database work-
loads have been proposed [21, 2, 9, 5].

We compare the static policy of TOP-Q against the fol-
lowing popular policies that are based on page access statis-
tics, commonly used in database management systems:
LRU (Least Recently Used) In case of a page fault, it re-

places the least recently used page from the buffer pool
to accommodate the new page. It incurs a constant time
computational overhead for every access, in order to
manipulate the list of pageframes maintained in the or-
der of recency of access.

2Q The 2Q algorithm [12] is a constant time overhead ap-
proximation of LRU-2 [5] that is found to perform as
well as LRU-2 for a variety of reference patterns. The
2Q algorithm covers the most important drawback of
LRU-2, by reducing the computational overhead from
log(N) work for every access in LRU-2 to a constant
time overhead.

The metric of comparison between these popular buffer-
ing policies and our TOP-Q strategy is the overall buffer
hit-rates observed during the construction of the suffix tree,
with increasing length of sequence indexed, and for a fixed
amount of buffer space.

6.3. Buffer Pool Allocation

In our evaluation of buffering policies, we maintain sepa-
rate buffer pools for leaf and internal pages, with the buffer-
ing policy applied within each of the buffer pools. With a

fixed amount of memory space at our disposal as the buffer
space, it is interesting to see if there is an effective way to
partition this space between the two classes of pages of the
suffix tree.

The simplest partitioning is to distribute the available
buffer pages equally between both leaf and internal nodes.
It results in more number of leaf nodes being buffered than
the internal nodes due to the better packing density of the
leaf pages. Therefore, the effectiveness of buffer pool can
be improved by partitioning it to hold equal number of in-
ternal nodes and leaf nodes. Although the number of in-
ternal nodes is 0.6 - 0.8 times the number of leaf nodes
(for typical DNA sequences), the level of activity over inter-
nal nodes, in terms of their accesses and updates, is much
higher than over leaf nodes. Hence, partitioning schemes
that are skewed to hold more number of internal pages than
leaf pages can be expected to perform better in practice.

Additionally, it should be noted that, as the construction
of the suffix tree progresses, the overall size of the tree in-
creases, leading to traversals over the tree covering a larger
number of pages. In fact, a point may arrive when the avail-
able fixed size buffer may not be sufficient to efficiently
handle the requests over an extremely large suffix tree. In or-
der to compensate for this growing size of the data-structure
and provide a normalized performance measure for all the
policies, we consider the steady hitrates obtained, when a
fraction of the suffix tree size is provided for buffering. In
other words, as the suffix tree construction progresses, more
pages are introduced into the buffer pool such that the ratio
of buffer pool size to the total size of the suffix tree (mea-
sured in number of pages) is held constant. The distribu-
tion of steady hitrates obtained through these experiments
for various settings of fraction buffered, provide an upper
bound on the performance of each of the buffering policies,
independent of the size of the tree.

7. Experimental Results

In this section, we present the results of our empirical
evaluation of the buffering policies and the node implemen-
tation choices outlined in previous sections. The parame-
ters applicable for all our experiments are summarized in
Table 2. Due to space limitations, we provide results for
only two DNA datasets, dataset S and dataset H, and for the
SPROT dataset. The results for other two DNA sequences,
dataset C and D, show behavior similar to that of dataset H
and S, respectively.

7.1. Construction with Fixed-size Buffer

The fixed buffer size experiments were conducted with
total memory space allocated for the buffer pool restricted
to just 32MB, a total of 8000 pages. This enabled us to work
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Figure 6. Combined Hit-rates for Construction with Array-based nodes

Parameter Value

Node size
Leaf 13 Bytes
Internal (Array) 33 Bytes
Internal (List) 21 Bytes

Page size 4096 Bytes

Table 2. Constant Experimental Parameters

with smaller length sequences, and perform experiments for
collecting buffer pool statistics using a simulated memory
hierarchy. However, in practice, much larger datasets will
be indexed and therefore proportionately larger buffer pool
sizes should be used.

As described earlier in Section 6.3, the available buffer
space can be partitioned between internal and leaf buffer
pools, ranging from equal partitioning to skewed parti-
tioning in favor of the internal buffer pool. We experi-
mented with many buffer partitioning schemes, and found
that the overall hitrate is dominated completely by the inter-
nal node accesses alone. Thus, the performance improves
with increased skew in partitioning favoring the internal
pages. This observation holds for both the array as well as
linked-list representation of the suffix tree. In this paper, we

present results for equi-partitioning of the buffer pool with
4000 pages each for managing internal and leaf pages and
a highly skewed partitioning with 7950 pages to internal
buffer pool and remaining 50 pages as leaf buffers.

Array-based Suffix Tree Construction The buffer hitrate
obtained for page accesses, of both internal and leaf pages,
using array representation of nodes is shown in Figure 6.
The graphs also show the hitrate for simple TOP, in order to
provide a measure of gains obtained by the TOP-Q exten-
sion.

Figure 6 shows that TOP-Q provides consistently higher
hitrate than LRU and 2Q. In addition, the following obser-
vations can be made about these results:
• The hitrates with skewed partitioning of buffer pool are

higher than with equi-partitioning. This clearly shows
that the overall performance is dominated by the effec-
tiveness of the buffering over internal pages.

• TOP-Q, as expected, performs better than the plain
TOP strategy and provides hitrates that degrade slower
with increasing suffix tree size, as compared to the
other policies.

• LRU exhibits the lowest hitrate, and upon further in-
vestigation was found to have performance almost
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Figure 7. Combined Hit-rates for Construction with Linked-list Representation

equal to the policy of evicting a randomly selected
page (Random Replacement strategy).

• The performance of TOP is better than LRU in the ini-
tial stages of the construction, and with increased skew
in the buffer allocation, TOP improves to match the
performance of 2Q.

• The ideal sequence for TOP is the dataset S, which
is a symmetric Bernoulli sequence. With this dataset,
it provides improved hitrates over even the highly so-
phisticated 2Q algorithm.

In summary, TOP-Q emerges as the best buffer manage-
ment policy with any buffer partitioning strategy over all
the datasets. Moreover, it should be noted that TOP-Q has
an extremely low computational overhead as compared to
LRU and 2Q, since its control data-structures are not up-
dated at every access to a page.

Linked-list based Suffix Tree Construction The behav-
ior of all the buffering policies for linked-list representation
of nodes is shown in Figure 7. First of all, it is worth not-
ing that all the algorithms provide better hitrates than in the
case of array representation, with the sole exception of TOP.
This is due to greater presence of correlated accesses, sim-
ilar to those discussed in Section 4.1, arising out of traver-

sals over the linked list of siblings. But the TOP-Q algo-
rithm still maintains an edge over the LRU and 2Q algo-
rithms, although the improvements are not as significant as
in the case of the array representation. Another interesting
point is that both LRU and 2Q show almost the same hi-
trates, with both equal and skewed partitioning of the buffer
pool.

Choice of Implementation The comparison of graphs in
Figure 6 and Figure 7 indicates that the linked-list repre-
sentation provides better hitrates than array representation.
This is partly due to the fact that for the same amount of
buffer space at our disposal, the linked-list representation
buffers more number of internal nodes due to its improved
space economy. This seems to suggest that the linked-list
representation is better suited for persistent construction
with buffering.

However, this conclusion is misleading since the se-
quence of page references in both cases are very different
and the hitrates are normalized within each reference se-
quence. The absolute number of disk accesses made dur-
ing the construction provides a metric that is independent
of the reference sequence. Figure 8 shows the absolute num-
ber of read and write disk accesses, using the TOP-Q buffer-
ing policy, for the dataset H. As these numbers indicate, the
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linked list representation has a significantly higher I/O over-
head than the array representation. This overhead is primar-
ily due to traversals over siblings in the linked-list to locate
the appropriate child to follow. Each of these siblings could
have been created at different points during the construc-
tion, resulting in their non-contiguous storage on disk.
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Suffix Tree over Protein Data The results of our experi-
ments with the SPROT dataset are summarized in the Fig-
ure 9. The graph does not include hitrates for 2Q, since they
were very similar to LRU. As the numbers in this graph
demonstrate, TOP-Q performs better than LRU with in-
creasing skew in the buffer pool allocation. Further, with
increasing length of the indexed sequence, the hitrate of
TOP-Q degrades much slower than LRU, in both the par-
titioning schemes. Thus, the benefits of TOP-Q are applica-
ble not only with small-alphabet sequences such as DNA,
but also with sequences with larger alphabet sizes.
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Figure 10. Behavior with Proportional Buffers

7.2. Construction with Proportional Buffering

We now move on to proportional buffering, discussed in
Section 6.3. The resulting steady hitrate values are plotted
in Figure 10.

As shown in these graphs, the performance of LRU im-
proves almost linearly with the buffered fraction of the
datastructure and 2Q is only marginally better than LRU.
On the otherhand, TOP-Q provides super-linear improve-
ments with diminishing returns, with increasing fraction of
buffering. The performance of TOP-Q peaks for about 25%
of the tree in the buffer providing close to 72.5% hitrate
for construction over real-life DNA sequences. When more
than 60% of the suffix tree is buffered, then all the three
buffering strategies perform equally well with upto 85%
steady hitrate.

7.3. On-disk Construction

In order to consider the practical impact of the improved
performance statistics for TOP-Q buffering and array rep-
resentation of nodes, we built persistent suffix trees for
large DNA sequences on two different classes of machines.
One was a PC class machine running Linux Redhat 8.0



Figure 11. Persistent Construction Times

and having an 18GB 10,000-RPM SCSI hard disk (IBM
DDYS-T18350M model). The other machine represents the
server class hardware used in current day large bioinfor-
matics projects – a HP-Compaq ES45 server running Tru64
Unix 5.1 and 432GB (6*72GB) storage with single chan-
nel RAID controller at RAID-0 configuration. We refer to
these two platforms as PC and ES ,respectively, in the rest
of this discussion.

We compared the total execution time for constructing a
persistent suffix tree using 1GB of buffer space, split in a
moderately skewed fashion with 68% of pages to internal
buffer pool and the remaining 32% of pages as leaf buffer
pool. The strategies we used are: Linked-list representation
with LRU buffering, and array representation with TOP-Q
buffering scheme.

Figure 11 provides the performance of these two strate-
gies on both the platforms. These results show that TOP-Q
with array representation provides 50% to 65% improved
construction time over both platforms considered.

Impact of OS Buffering Due to the O SYNC option for
file operations used during the persistent suffix construc-
tion, file writes are immediately synchronized with the disk
image. On the otherhand, the file reads might be served
from the I/O buffers maintained by the OS. Hence, the num-
ber of disk page writes during construction makes a signifi-
cant impact on the overall construction time. Note that when
a page chosen as the victim by the buffering policy is dirty,
all the policies immediately flush it out to the disk. Upon
investigation we found that TOP-Q results in fewer disk-
writes than the other buffering strategies, which adds to the
reduction in seek-times achieved through improved hitrates,
translating to significant improvements in on-disk construc-
tion times.

8. Related Work

Since the time Weiner [16] introduced the suffix tree data
structure and a linear time algorithm for its construction,
there has been growing interest in more space- and time-
efficient algorithms for construction of suffix trees. A con-
ceptually different and space efficient algorithm to build
suffix trees in linear time have been given by McCreight [6],
and later, by Ukkonen [7]. Further, McCreight also sug-
gested the use of linked-list implementation of nodes for re-
ducing the space overhead of the suffix trees. All these algo-
rithms make use of suffix links to achieve linear-time con-
struction and are implemented for various constant-sized al-
phabet datasets.

However, all of these algorithms show very bad per-
formance when applied to suffix tree construction in sec-
ondary memory. The main bottleneck in the direct appli-
cation of these algorithms over suffix-trees on disk is con-
sidered to be the random seeks induced during construc-
tion [13]. It has also been noted in [4] that suffix links uti-
lized by all these algorithms traverse the suffix tree “hori-
zontally”, while edges span the tree “vertically”. Thus, at-
least one of them is expected to result in random access of
memory. However, this is true only if the tree is stored on
disk using depth-wise traversal of either edges of the tree or
links of the tree. But this storage pattern is not feasible dur-
ing the on-line construction of suffix tree on disk. There-
fore, in practice, both edges and suffix links show non-local
access patterns when the suffix tree is constructed on disk.
Thus, we need to carefully consider tuning of paging poli-
cies to reduce the impact of such traversals.

Suffix trees provide an accurate indexing solution for
searching over large corpus of DNA or Protein sequences.
Initial use of suffix trees in genomic indexing was restricted
over small length DNA sequences [1], where suffix tree
could fit completely into main memory. However, until re-
cently, they were not considered for construction and main-
tenance in secondary-memory. In fact, even in a recent
work [8], it was reported that whenever the dataset is large
enough suffix trees are not a viable option of indexing, since
the memory is too small to hold the index completely.

Initial theoretical breakthrough for suffix tree construc-
tion on secondary memory was given by Farach et al. [13,
14]. They introduced a novel way to construct the suffix
tree over a large sequence by following a divide-conquer
approach (as opposed to the traditional suffix-at-a-time ap-
proach), and used that to show that persistent suffix trees
could be built with the same I/O complexity as that of ex-
ternal sorting. They also pointed out that “traditional” algo-
rithms (such as those of Weiner, Ukkonen, and McCreight
etc.), which follow incremental extension of suffix trees,
will be forced to make random I/Os resulting in bad on-
disk performance. Their observations on traditional algo-



rithms were made without considering the effects of pag-
ing/caching policies that could be employed during the con-
struction process. In fact, they state at the end of their pa-
per [13], that it would be worthwhile considering the be-
havior of the construction algorithms in presence of paging,
which is the topic we address in this paper.

Recently, Hunt et al. [4] proposed a phased construc-
tion approach to building suffix trees, where they use an
asymptotically quadratic algorithm for construction of suf-
fix trees without suffix links. They report empirical evalua-
tion of both linear-time suffix link based algorithm and their
phased approach for persistent suffix trees to show the su-
periority of their approach. Their results do not consider the
effects of paging policies and the storage management is-
sues. In fact, in [18], it has been reported that the bottleneck
is in the choice of checkpointing scheme of PJama – the un-
derlying persistent mechanism used in [4].

9. Conclusions

In this paper, we have evaluated the impact of buffer-
ing and internal node implementation choices on the con-
struction of a suffix tree in secondary memory. We also
proposed a novel low overhead buffer management policy
called TOP-Q, which exploits the pattern of accesses over
the suffix tree during its construction. Through an extensive
empirical study involving both DNA and Protein sequences,
we showed that TOP-Q performs better than other popu-
lar buffer algorithms such as LRU and LRU-2. The TOP-Q
algorithm saves more than 75% of disk I/O by buffering
merely 25% of the tree.

In addition, it was shown that that the commonly used,
space-economical linked-list representation of the suffix
tree is extremely expensive for construction on secondary
memory. Instead, a simple implementation using arrays at
each internal node is shown to be far better suited for per-
sistent suffix tree representation.

A performance evaluation of TOP-Q with array repre-
sentation of nodes against a popularly reported linked-list
representation with LRU buffering policy showed that sig-
nificant speedups to the tune of 50% to 70% were obtained,
over different platforms.
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