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ABSTRACT
To address the classical selectivity estimation problem in database
systems, a radically different query processing technique called
PlanBouquet was proposed in 2014. In this approach, the es-
timation process is completely abandoned and replaced with a cal-
ibrated selectivity discovery mechanism. The beneficial outcome
is that provable guarantees are obtained on worst-case execution
performance, thereby facilitating robust query processing. An im-
proved version of PlanBouquet, called SpillBound (SB),
which significantly accelerates the selectivity discovery process,
and provides platform-independent performance guarantees, was
presented two years ago.

Notwithstanding its benefits, a limitation of SpillBound is
that its guarantees are predicated on expending enormous pre-
processing efforts during query compilation, making it suitable
only for canned queries that are invoked repeatedly. In this paper,
we address this limitation by leveraging the fact that plan cost func-
tions typically exhibit concave down behavior with regard to pred-
icate selectivities. Specifically, we design FrugalSpillBound,
which provably achieves extremely attractive tradeoffs between
the performance guarantees and the compilation overheads. For
instance, relaxing the performance guarantee by a factor of
two typically results in at least two orders of magnitude reduc-
tion in the overheads. Further, when empirically evaluated on
benchmark OLAP queries, the decrease in overheads is even
greater, often more than three orders of magnitude. Therefore,
FrugalSpillBound substantively extends robust query pro-
cessing towards supporting ad-hoc queries.
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1. INTRODUCTION
The traditional approaches for optimizing declarative OLAP

queries (e.g. [20, 7]) are contingent on estimating a host of predi-
cate selectivities in order to find the optimal execution plan. For in-
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stance, even the relatively simple TPC-H query shown in Figure 1,
which lists the order dates for cheap parts, requires as many as four
selectivities to be estimated (corresponding to the filter, projection
and pair of join predicates).

select distinct o orderdate from lineitem, orders, part
where p partkey = l partkey and o orderkey = l orderkey
and p retailprice < 1000

Figure 1: Example TPC-H Query

Unfortunately, in practice, these selectivity estimates are often
significantly in error with respect to the actual selectivities encoun-
tered during query execution – to the extent that orders of magni-
tude errors have been routinely reported in the literature [1, 14, 16].
These estimation errors cumulatively result in highly sub-optimal
choices of execution plans, and corresponding blowups in query re-
sponse times. For instance, when Query 19 of the TPC-DS bench-
mark is executed on contemporary database engines, the worst-case
slowdown, relative to a hypothetical oracle that magically knows
the correct selectivities, can exceed a million! [5]

SpillBound. To address the above problem, a radically different
technique, called PlanBouquet, was proposed in [4, 5]. In this
approach, the highly brittle selectivity estimation process is com-
pletely abandoned, and replaced instead with a calibrated discovery
mechanism. A key benefit of the new construction is that prov-
able guarantees are obtained on the worst-case performance. In
a follow-up work, an improved version of PlanBouquet, called
SpillBound (SB), which significantly accelerates the selectivity
discovery process, and provides platform-independent performance
guarantees, was recently presented in [12].
SpillBound begins with constructing a multi-dimensional

Error-prone Selectivity Space (ESS) at query compile-time, with
each dimension corresponding to the selectivity of a specific error-
prone predicate appearing in the query, and ranging over (0, 1]. A
sample 2D ESS is shown in Figure 2 for the example query of Fig-
ure 1, with the two join predicates being treated as error-prone.

On this ESS space, a series of isocost contours, IC1 through
ICm, are drawn – each isocost contour ICi has an associated opti-
mizer estimated cost CCi, and represents the connected selectivity
curve along which the cost of the optimal plan is CCi. Further, the
contours are selected such that the cost of the first contour IC1 cor-
responds to the minimum query cost C at the origin of the space,
and the cost of each of the following contours is double that of the
previous contour. Therefore, in Figure 2, there are five hyperbolic



Figure 2: SpillBound Execution on 2D ESS

contours, IC1 through IC5, with their costs ranging from CC1 = C
to CC5 = 16C.

The union of the plans appearing on all the contours constitutes
the “plan bouquet” for the query – accordingly, plans P1 through
P14 form the bouquet in Figure 2. Given this set, the SB run-time
algorithm operates as follows: Starting with the cheapest contour
IC1, a carefully chosen subset of plans on each successive contour
is sequentially executed, with the individual executions having time
limits equal to the associated contour’s cost. The choice of plans
is such that each execution focuses on incrementally learning the
selectivity of a specific error-prone predicate. Further, the plans
are executed in “spill-mode”, which ensures that the assigned time
budget is maximally utilized towards selectivity discovery along
the chosen dimension. This process of contour-wise plan execu-
tions ends when all the selectivities in the ESS have been fully
discovered. Armed with this complete knowledge, the genuine op-
timal plan is now correctly identified, and used to finally execute
the query to completion.

To make the SB methodology concrete, consider the case where
the query happens to be actually located at q∗, in the intermediate
region between contours IC3 and IC4, as shown in Figure 2. As-
sume that the optimal plan for this location, Pq∗ , would cost 7C
to process the query. In contrast, SB, which is unaware of the true
location, would invoke the following budgeted execution sequence:

P1|C,P3|2C,P4|2C,P7|4C,P9|4C,P12|8C,Pq∗ |7C
In this sequence, the executions up to P12 are in spill-mode and

determine the location of q∗, whereas the final plan Pq∗ executes
the query to completion. (For ease of visualization, the chosen sub-
set of plans in each contour are annotated with the ˜ symbol in
Figure 2). In this scenario, the cumulative execution cost incurred
by SB is (C + 2C + 2C + 4C + 4C + 8C + 7C) = 28C. Since
the cost of the optimal plan Pq∗ is 7C, the resultant sub-optimality
ratio of SB for the q∗ location is 28C/7C = 4.

The surprising outcome of the above “trial-and-error” selectiv-
ity discovery strategy is that the additional execution costs can be
bounded relative to the optimal, irrespective of the query location
in the space. Specifically, let us use Maximum Sub-Optimality
(MSO), as defined in [5], to capture the worst-case sub-optimality
ratio of a query processing algorithm over the entire selectivity
space. Then, the MSO of SpillBound is bounded by

MSOSB ≤ D2 + 3D (1)

whereD is the dimensionality of the ESS, i.e. the number of error-
prone predicates in the input query.

Limitation of SpillBound. Notwithstanding SpillBound’s
unique benefits with regard to robust query processing, a major lim-
itation is that its MSO guarantee is predicated on expending enor-
mous pre-processing overheads during query compilation. Specif-
ically, identifying the isocost contours in the ESS entails, in prin-
ciple, Θ(rD) calls to the query optimizer, where r is the resolution
(i.e. discretization granularity) along each dimension of the ESS.
So, for instance, if r = 100, corresponding to selectivity charac-
terization at 1% intervals, and D is 4, a hundred million optimizer
invocations have to be carried out to identify the contours before
SB can begin executing the query. As a consequence, SB is cur-
rently suitable only for canned queries that are repeatedly invoked
by the parent applications.

An obvious first step towards addressing the above issue is to
utilize multi-core computing platforms to leverage the intrinsic par-
allelism available in contour identification. However, this may not
be sufficient to fully address the strong exponential dependence on
dimensionality. In our view, adapting the SB methodology for ad-
hoc queries requires, in addition to hardware support, algorithmic
approaches to substantively reduce the compilation overheads – the
design of such approaches forms the focus of this paper.

Problem Formulation. Specifically, we investigate the trade-
off between the two key attributes of the SB approach, namely, the
compilation overheads and the MSO guarantee. The overhead of
SB is measured as the number of optimization calls made to the
query optimizer in order to construct all the isocost contours. Given
an algorithmic approach aimed at reducing these compilation over-
heads, we use γ (≥ 1) to denote its overheads reduction factor
relative to that of SB. Bringing down the overheads may, however,
result in a weaker MSO guarantee. We use η (≥ 1) to denote this
MSO relaxation factor relative to SB. With this characterization,
the formal problem addressed in this paper is the following:

Given a user queryQ for which SpillBound provides an MSO
guarantee M , and a user-permitted relaxation factor η on this
guarantee, design a query processing algorithm that maximizes γ
while ensuring that the MSO guarantee remains within ηM .

Algorithmic Reduction of the Overheads. The MSO guar-
antee of SB (Equation 1) is predicated on the standard assump-
tion that plan cost functions are monotonically increasing with re-
gard to the predicate selectivities. In this paper, we leverage the
stronger fact that plan cost functions typically exhibit a concave
down behavior in the ESS – i.e. they have monotonically non-
increasing slopes.1 Specifically, we design a modified algorithm,
FrugalSpillBound (FSB), that incorporates the concave be-
havior to substantially reduce the compilation overheads at the cost
of a mild relaxation on the MSO guarantee. Quantitatively, the at-
tractive tradeoff between η and γ is the following:

γ = r/ logη r D = 1

γ = Ω(rD/(D logη r)
D−1) D ≥ 2 (2)

That is, the initial regime of FSB provides an exponential improve-
ment in γ for a linear increase in η.

More concretely, a sample instance of the η−γ tradeoff is shown
in the red line of Figure 3, obtained for a 4D ESS derived from
Query 26 of the TPC-DS benchmark. In this figure, which graphs
a semi-log plot, the initial exponential overhead reduction regime
is long enough that a two orders of magnitude improvement in
γ is achieved with an η of 2. Further, when empirically evaluated,
1As explained in Section 2, a weaker form of concavity, called
Axis-Parallel Concavity, is sufficient for our techniques to hold.



Figure 3: FSB η − γ Tradeoff for 4D Q26

the decrease in overheads is much greater – this is shown in the
blue line of Figure 3, where nearly four orders of magnitude im-
provement in γ is achieved for η = 2.

The concavity assumption directly leads to an elegant FSB con-
struction for the base case of a one-dimensional ESS. To handle the
multi-dimensional scenario, however, we need additional machin-
ery, called bounded contour-covering sets (BCS) – these sets serve
as low-overhead replacements for the original isocost contours.
More precisely, a BCS is a set of locations that collectively spa-
tially dominate all locations on the associated contour, and whose
costs are within a bounded factor of the contour cost. Efficient
identification of the BCS is made possible thanks to the concavity
assumption, and the aggregate cardinality of the BCS over the con-
tours is exponentially smaller than the number of locations in the
ESS, resulting in the substantially decreased overheads.

Performance Results. To demonstrate that the example η − γ
tradeoff for FSB shown in Figure 3 is not an isolated instance,
we have carried out similar evaluations on a representative set of
OLAP queries sourced from the TPC-DS benchmark, operating on
the PostgreSQL engine. The query suite covers a variety of ESS
dimensionalities, going up to as many as 5 dimensions, and captur-
ing environments that are challenging from a robustness perspec-
tive. Our performance results indicate that a two orders of mag-
nitude theoretical reduction in overheads is routine with η = 2,
while the empirical reduction in overheads is typically an order of
magnitude more than this guaranteed value, delivering a cumula-
tive benefit of more than three orders of magnitude. Therefore, the
new FSB approach represents a substantive step towards practically
achieving robust query processing for ad-hoc queries with moder-
ate ESS dimensionalities – especially in conjunction with contem-
porary multi-core architectures that exploit the inherent parallelism
in the ESS construction. So, for instance, a 5D query which takes
a few days even on a well-provisioned multi-core machine to com-
plete the 10 billion optimizer calls required for constructing the
entire ESS (at a resolution of 100), can now be made ready for
execution within a few minutes by FrugalSpillBound!

Organization. The remainder of this paper is organized as fol-
lows: In Section 2, the background concepts and behavioral as-
sumptions related to robust query processing are enumerated. The
1D version of FSB and its analysis are presented in Section 3. Sub-
sequently, the design of FSB for 2D ESS, incorporating the BCS

machinery, is described in Section 4. This is followed by the exten-
sion to arbitrary dimensions, outlined in Section 5. The experimen-
tal framework and performance results are highlighted in Section 6.
Pragmatic deployment aspects are discussed in Section 7, and the
related literature is reviewed in Section 8. Finally, our conclusions
are summarized in Section 9.

2. BACKGROUND
We begin by reviewing the key concepts and assumptions under-

lying our approach to robust query processing [5, 12].

2.1 Error-prone Selectivity Space (ESS)
Given an SQL query, any predicate whose selectivity is difficult

to estimate accurately is referred to as an error-prone predicate, or
epp. For a query with D epps, the set of all epps is denoted by
EPP = {e1, . . . , eD}, where ej denotes the jth epp. The selec-
tivities of the D epps are mapped to a D-dimensional space, with
the selectivity of ej corresponding to the jth dimension. Since the
selectivity of each predicate ranges over (0, 1], a D-dimensional
hypercube (0, 1]D results, henceforth referred to as the error-prone
selectivity space, or ESS. Note that each location q ∈ (0, 1]D in
the ESS represents a specific query instance where the epps hap-
pen to have the selectivities corresponding to q. Accordingly, the
selectivity value of q on the jth dimension is denoted by q.j.

For tractability, the ESS is discretized at a fine-grained resolution
r in each dimension. We refer to the location corresponding to the
minimum selectivity in each dimension as the origin of the ESS,
and the location at which the selectivity value in each dimension
is maximum as the terminus. In our framework, the origin and the
terminus correspond to query locations with q.j = 1/r ∀j and
q.j = 1 ∀j, respectively.

2.2 POSP Plans
The optimal plan for a generic selectivity location q ∈ ESS is

denoted by Pq , and the set of such optimal plans over the complete
ESS constitutes the Parametric Optimal Set of Plans (POSP) [9].2

We denote the cost of executing any plan P at a selectivity location
q ∈ ESS by Cost(P, q). Thus, Cost(Pq, q) represents the optimal
execution cost for the selectivity instance located at q. Further, we
assume that the query optimizer can identify the optimal query exe-
cution plan if the selectivities of all the epps are correctly known.3

For ease of presentation, we will hereafter use cost of a location to
refer to the cost of the optimal plan at that location.

2.3 Optimal Cost Surface (OCS)
The trajectory of the minimum cost plan through the entire D-

dimensional ESS represents the Optimal Cost Surface (OCS) – an
example for a 2D ESS is shown in Figure 4, where the X and Y
axes represent the two join predicate selectivities, and the Z axis
represents the cost of each location in this selectivity space. The
intersection of the isocost hyperplanes (IC1 through IC5) with the
OCS, which results in the isocost contours, is also captured in Fig-
ure 4. In fact, the projected isocost contours shown in Figure 2
were constructed from a similar OCS.

2.4 Maximum Sub-Optimality (MSO)
We now move on to describing the MSO performance metric

proposed in [5] to quantify the robustness of query processing. For

2Letter subscripts for plans denote locations, whereas numeric sub-
scripts denote identifiers.
3For example, through the classical Dynamic Programming-based
search of the plan enumeration space [20].



Figure 4: Optimal Cost Surface (OCS)

this purpose, let qa denote the ESS location corresponding to the
actual selectivities of the user query epps – note that this location
is unknown at compile-time, and needs to be explicitly discovered.
As discussed in the Introduction, SpillBound carries out a se-
quence of budgeted plan executions in order to discover the loca-
tion of qa. We denote this sequence by Seqqa , with each element
si in the sequence being a pair, (Pi, ωi) indicating that plan Pi is
executed with a maximum time budget of ωi.

The sub-optimality of this plan sequence is defined relative to an
oracle that magically knows the correct query location apriori and
therefore directly uses the ideal plan Pqa . That is,

SubOpt(Seqqa) =

∑
si∈Seqqa

ωi

Cost(Pqa , qa)

from which we derive

MSO = max
qa∈ESS

SubOpt(Seqqa)

In essence, MSO represents the worst-case suboptimality that can
occur with regard to plan performance over the entire ESS space.

2.5 Plan Cost Monotonicity (PCM)
The notion of a location q1 spatially dominating a location q2 in

the ESS plays a central role in our robust query processing frame-
work. Formally, given two distinct locations q1, q2 ∈ ESS, q1 spa-
tially dominates q2, denoted by q1 � q2, if q1.j ≥ q2.j for all
j ∈ {1, . . . , D}. Given spatial domination, an essential assump-
tion that allows SpillBound to systematically explore the ESS
is that the cost functions of the plans appearing in the ESS all obey
Plan Cost Monotonicity (PCM). This constraint on plan cost func-
tion (PCF) behavior may be stated as follows: For any pair of dis-
tinct locations qb, qc ∈ ESS, and for any plan P ,

qb � qc ⇒ Cost(P, qb) > Cost(P, qc)

That is, it encodes the intuitive notion that when more data is pro-
cessed by a query, signified by the larger selectivities for the predi-
cates, the cost of the query processing also increases. In a nutshell,
spatial domination implies cost domination.

2.6 Axis-Parallel Concavity (APC)
We augment the above PCM assumption with a stricter condition

in this paper, wherein the PCFs are not only monotonic, but also
exhibit a weak form of concavity in their cost trajectories.

In the 1D world, a plan cost function Fp is said to be concave if,
for any pair of locations q1, q2 in the 1D ESS, and any α ∈ [0, 1],

Fp((1− α)q1 + αq2) ≥ (1− α)Fp(q1) + αFp(q2) (3)

Generalizing to D dimensions, a PCF Fp is said to be axis-
parallel concave (APC) if the function is concave along every axis-
parallel 1D segment of the ESS. That is, Equation 3 is satisfied
by any generic pair of locations q1, q2 in the ESS that belong to a
common 1D segment of the ESS (i.e., ∃j s.t. q1.k = q2.k, ∀k 6=
j). So, for example, if e1 and e2 are the epps of a 2D ESS, then
the APC requirement is that each PCF should be concave along
every vertical and horizontal line in the ESS.

Note that APC is a strictly weaker condition than complete con-
cavity across all dimensions – that is, all fully-concave functions
satisfy APC, but the reverse may not be true. Further, an important
and easily provable implication of the PCFs exhibiting APC is that
the corresponding OCS, which is the infimum of the PCFs, also
satisfies APC. Finally, for ease of presentation, we will generically
use concavity to mean APC in the remainder of this paper.

Empirical Validation of APC
An immediate question that arises in the above context is whether
the concavity assumptions on the PCFs (and, by implication, the
OCS) generally hold true in practice. For this purpose, we have car-
ried out extensive experimental evaluation with the TPC decision-
support benchmarks operating on contemporary database engines.
The summary finding of this empirical evaluation, whose details are
presented later in Section 6, is that APC is consistently observed
over almost the entire ESS.

As a sample instance, the axis-parallel projections of the 2D OCS
presented in Figure 4, are computed in Figures 5a and 5b for the
Part ./ Lineitem and Orders ./ Lineitem join predicates, re-
spectively. These figures are graphed on a log-log scale and for
ease of representation, capture only the optimality region of each
PCF. We observe here that the PCFs clearly exhibit concavity in
their optimality regions with respect to selectivity. As a direct con-
sequence, the OCS exhibits concavity over the entire selectivity
range, justifying the assumption on which our results are based.

(a) (b)

Figure 5: Validation of Axis-Parallel Concavity

A detailed rationale as to why PCF and OCS concavity is typ-
ically expected for contemporary disk-resident enterprise ware-
houses is given in [11]. However, we hasten to note that there
are a few operator cost functions (e.g. Sort, Caching [15], Branch-
ing [13]) that may violate this assumption, especially in the context



of main-memory database systems. Notwithstanding these local-
ized operator violations, it is still possible for the global OCS to
remain essentially concave since the contributions of these opera-
tors to the overall plan costs may be relatively minor – for instance,
the contribution of Sort to plan costs is found to be miniscule in [6].

2.7 Compilation Overheads
As mentioned in the Introduction, we measure the query compi-

lation overheads in terms of the number of optimization calls made
to the underlying database engine. With regard to this metric, the
overheads incurred by SB in constructing the ESS can be computed
as follows: SB first computes the optimal plans for all locations in
the discretized ESS grid. This is carried out through repeated invo-
cations of the optimizer with different selectivity values and combi-
nations. Then, the isocost contours are drawn as connected curves
on this discretized diagram. So, if we assume a grid resolution of
r in each dimension of the ESS, the total number of optimization
calls required by this approach is rD .

Note, however, that we do not require the complete character-
ization of the ESS, but only the portions related to the isocost
contours, as shown in Figure 2. An optimized variant, called
Nexus, was proposed in [5] to implement this observation, and
shown to provide material reductions in the contour identification
overheads. However, from a deployment perspective, there are
several challenges in practically using Nexus, as detailed in [11].
We have therefore chosen to instead simply assume that the en-
tire ESS is enumerated, and consequently rD is used to repre-
sent the baseline SB overheads in the sequel. Further, note that
FrugalSpillBound is not impacted by such deployment issues
since its compilation efforts are carried out afresh at each ad-hoc
query’s submission time.

2.8 Notations
For easy reference, the notations used in the remainder of the

paper are summarized in Table 1.

Table 1: NOTATIONS

Notation Meaning
epp (EPP) Error-prone predicate (its collection)
ESS Error-prone selectivity space
D Number of dimensions in the ESS
r Grid resolution in each ESS dimension
e1, . . . , eD The D epps in the query
q ∈ [0, 1]D A query location in the ESS
q.j Selectivity of q in jth ESS dimension
Pq Optimal Plan at q
qa Actual query location in ESS
Cost(P, q) Cost of plan P at location q
ICi Isocost Contour i
CCi Cost of an isocost contour ICi
BCSi Bounded contour-covering set of contour ICi
η User-specified MSO relaxation factor
γ Reduction factor wrt compilation overheads

3. FRUGAL SPILLBOUND FOR 1D ESS

1D SB. We begin by reviewing how the SpillBound algo-
rithm operates on a 1D ESS. The sample concave OCS function
F , shown in Figure 6, is used to aid the description. In this fig-
ure, the selectivity axis represents the selectivity range for the lone

epp, and the cost axis represents the OCS function. The cost axis
is discretized into doubling-based isocost contours, IC1 through
ICm, with CCi = 2i−1C. Note that, in the case of 1D OCS, each
of the contours correspond to a single selectivity location on the
selectivity axis. We denote the location corresponding to ICi by
Qi. Further, Q1 = 1/r and Qm = 1 correspond to the origin and
terminus locations, respectively.

Figure 6: Concave OCS

Conceptually, the 1D-SB algorithm has two phases, a compila-
tion phase and an execution phase. During the compilation phase,
for each of the r uniformly spaced locations on the selectivity axis,
the optimal plan at the location and its cost are determined. Us-
ing the cost information from the r locations, the precise location
of Qi is identified for i = 1, . . . ,m. The set of optimal plans at
the Qi locations is called the “bouquet of plans”. Then, during
the execution phase, this bouquet of plans is sequentially executed,
starting from the cheapest isocost contour, with a budget equal to
the associated contour cost. The process ends when a plan reaches
completion within its allocated budget. As proved in [5], this bud-
geted sequence of plan executions achieves an MSO guarantee of 4
with a compilation overhead of r optimizer calls.

We now move on to presenting our 1D-FSB algorithm, which
also has compilation and execution phases, as described below.

3.1 Compilation Phase
The main idea in the compilation phase of FSB is to dispense

with SB’s approach of precisely identifying the location of theQis.
Instead, for each Qi, we identify a proxy location, q̂i, such that
the cost of the optimal plan at q̂i is in the range [F(Qi), ηF(Qi)].
The compilation phase consists of identifying these proxy locations
q̂is via a sequence of calibrated jumps in the selectivity space, as
described next.

Discovering the proxy for Q2

Since Q1 is known, we set q̂1 = Q1. The search for q̂2 starts
from q̂1. We now perform a sequence of jumps in the selectivity
space until we land exactly at Q2 or overshoot it for the first time.
Further, the lengths of the jumps are calibrated such that when q̂2 is
reached, its cost is guaranteed to be in the range [F(Q2), ηF(Q2)],
as described below.



First Jump. Identify the optimal plan Pq̂1 at q̂1, and compute its
slope, s(q̂1) at q̂1.4 The slope is calculated through plan recosting5

of Pq̂1 at a selectivity location in the close neighborhood of q̂1.
Our first estimate for q̂2, denoted by q12 (refer to Figure 6), is the

location that is expected to have η times the cost of F(q̂1) when
extrapolated by a tangent line with a slope of s(q̂1), i.e,

F(q̂1) + s(q̂1) · (q12 − q̂1)

F(q̂1)
= η

By rearranging, we get

q12 = q̂1 +
(η − 1) · F(q̂1)

s(q̂1)

∴ q12 = q̂1 + J1

where J1 represents the first jump towards q̂2, relative to the start-
ing location, q̂1. The following lemma immediately follows from
the concavity of the PCF:

LEMMA 3.1. The cost conditionF(q12) ≤ η ·F(q̂1) is satisfied.

We next show that the jump J1 is such that the selectivity of q12
is at least η times the selectivity at q̂1.

LEMMA 3.2. The selectivity of q12 is at least η times the selec-
tivity at q̂1, i.e, q12 ≥ ηq̂1 .

PROOF. Let the tangent of F at q̂1 be expressed as

F(q) = s(q̂1) · q + c′ 0 ≤ q ≤ 1, c′ ≥ 0

(Here, c′ ≥ 0 to ensure non-negative cost at q = 0.) Based on this
equation, we obtain the following pair of equations by separately
considering the PCF cost at q̂1 and the estimated cost at q12 .

F(q̂1) = s(q̂1) · q̂1 + c′

η · F(q̂1) = s(q̂1) · q12 + c′

Simplifying the equation pair, we get

ηs(q̂1) · q̂1 + ηc′ = s(q̂1) · q12 + c′

∴ q12 = ηq̂1 +
(η − 1)c′

s(q̂1)
≥ ηq̂1

Depending on the cost at the first jump’s landing location, i.e. at
q12 , two cases are possible:

1. Cost Overshoot, i.e, F(q12) ≥ F(Q2): In this case, we
have identified a proxy location for Q2 whose cost is at most
ηF(Q2) (by Lemma 3.1).

2. Cost Undershoot, i.e., F(q12) < F(Q2): In this case, the
jump scheme is repeated with q12 as the starting location.
That is, we jump to q22 , with the jump length being J2 =
(η − 1)F(q12)

s(q12)
. This process is repeated until we reach q̂2,

signalled by F(q̂2) ≥ F(Q2). Since the cost of q̂2’s previ-
ous location is less than F(Q2), Lemma 3.1 guarantees that
F(q̂2) ≤ ηF(Q2).

4Due to PCM, the slope at any location in F is > 0.
5Recosting is an engine feature that costs an abstract plan for a
query, and is around 100 times faster than optimizer calls [6].

3.1.1 Implementation of Proxy Discovery
The above compilation phase of FSB for the 1D scenario is de-

tailed in Algorithm 1. Here, the entire search from q̂1 to q̂2 is cap-
tured as a generic Explore subroutine, with three arguments: seed,
the starting location, t cost, the cost at the terminal location, and
r factor, the relaxation factor wrt t cost.

The proxy location q̂i for Qi is obtained starting with the proxy
location q̂i−1. This is done by calling the Explore subroutine, with
seed as q̂i−1, target cost of CCi, and relaxation factor of η. The
derivation that bounded the relative cost of q̂2 w.r.t. the cost of Q2

can be repeated to show that the cost of q̂i is at most ηF(Qi) for
i = 2, . . . ,m − 1. Finally, the output of the algorithm is a set of
proxy locations, ProxyContourLocs = {Q1 ∪ {

⋃m−1
i=2 q̂i} ∪Qm}.

3.1.2 Bounded Compilation Overheads

THEOREM 3.3. The compilation overheads reduction, γ, of
1D-FSB is at least

r

logη r
.

PROOF. From Lemma 3.2, the maximum number of jumps is
required when the selectivity estimation at each jump is exactly η
times the selectivity of the previous location. Therefore, the total
number of query optimizer calls is bounded as follows:

Total Optimization Calls ≤ logη
Qm
Q1
≤ logη r

Thus, the compilation overheads reduce from r to logη r.

3.2 Execution Phase
The execution phase of FSB, as shown in Algorithm 1, is the

same as that of SB except that the plan bouquet now consists of
the optimal plans at the proxy locations in ProxyContourLocs. We
therefore easily derive the following theorem for maintaining the η
constraint.

THEOREM 3.4. The MSO relaxation of 1D-FSB is at most η.

PROOF. From the compilation phase, we know that the cost of
a proxy location q̂i is at most η times the cost of Qi. The bounded
cost of each proxy location ensures that the sequence of execu-
tion costs for the 1D-FSB plan bouquet is C, 2ηC, 4ηC, . . . (as
opposed to C, 2C, 4C, . . . for 1D-SB). Since the MSO of 1D-SB
is 4, it follows that the MSO of 1D-FSB is bounded by 4η.

4. FRUGAL SPILLBOUND FOR 2D ESS
In this section, we present the extension of 1D-FSB to the 2D

case. For ease of exposition, we refer to the two epps as x and y,
respectively.

In the 1D ESS, each contour was a single point. However, in 2D,
it is a continuous curve as shown in Figure 7. Therefore, the step
of identifying the proxy locations for Qis has to be generalized so
as to cover an isocost contour ICi with an appropriate set of proxy
locations. We achieve this by finding a bounded contour-covering
set (BCS) of locations for each contour ICi. The definition of these
sets and their identification procedure are presented next.

4.1 Bounded Contour-covering Set (BCS)
The BCS for a contour is defined as the set of locations such that:

(a) Every location in the contour is spatially dominated by at least
one location in this set; and

(b) The cost of each location in BCS is bounded to within an η
factor of the contour cost.



Algorithm 1 1D-FSB (η)

1: Compilation Phase:
2: set Q1 = 1/r and Qm = 1;
3: set k = 2;
4: set ProxyContourLocs = {Q1, Qm};
5: set q̂1 = Q1;
6: while k < m− 1 do
7: q̂k = Explore(q̂k−1, CCk, η);
8: Add q̂k to ProxyContourLocs;
9: k++;

10: end while

11: function Explore(seed, t cost, r factor);
12: compute cost = F(seed) (using optimizer call);
13: while cost < t cost do
14: compute slope at seed (using plan recosting);

15: next jump = (r factor − 1) ·
cost

slope
;

16: seed + = next jump ;
17: cost = F(seed);
18: end while
19: return seed;
20: end function

21: Execution Phase:
22: for q in ProxyContourLocs do
23: Execute optimal plan Pq with budget F(q);
24: if Pq completes execution then
25: Return query result;
26: else
27: Terminate Pq and discard partial results;
28: end if
29: end for

We denote the BCS of contour ICi by BCSi. Formally, BCSi is
a set that needs to satisfy the following condition:

∀q ∈ ICi, ∃ q′ ∈ BCSi such that

q � q′and Cost(Pq′ , q
′) ≤ ηCCi

To make this notion concrete, a candidateBCSi for the example
contour ICi shown in Figure 7, is {c1, c2, c3} which covers the
entire contiguous length of the contour. As a specific case in point,
the covering location c2 fully covers the optimality segments of P5

and P6, as well as parts of P4 and P7, in ICi.

Figure 7: Bounded Contour-covering Set (BCS)

4.2 Compilation Phase
We now present a computationally efficient method to find a BCS

for an isocost contour in the 2D ESS. To generalize the 1D method,
we carry out jumps in the selectivity space along both the x and
y dimensions. These jumps are designed to be axis-parallel and
we leverage APC in their analysis. A special feature, however, is
that the jumps are in opposite directions in the two dimensions –
forward in one, and reverse (i.e. jumps are performed in the de-
creasing selectivity direction) in the other. Further, in the reverse
jumps, the selectivity of the next location is decreased by a con-
stant factor, as explained below – this is in marked contrast to the
forward jumps, where the Explore (seed,t cost,r factor) subroutine
is invoked to decide the next location.

In principle, the choice of dimensions for forward and reverse
jumps can be made arbitrarily. However, for ease of presentation,
we assume hereafter that all forward jumps are in the y dimension,
and all reverse jumps are in the x dimension.

4.2.1 Algorithm Description
We explain the compilation phase by describing the process of

constructing BCSi for the isocost contour ICi shown in Figure 7.
For ease of presentation, we refer to Figure 8, which overlays the
construction of BCSi on top of contour ICi.

The main idea is to carry out a sequence of interleaved search
steps that alternatively explore the x and y dimensions. Specifi-
cally, we start from the location c0 = (1, 1/r) as the seed, and
search for a location, u1, on y = 1/r line whose cost is in the
range [CCi,

√
ηCCi]. A sequence of reverse jumps from c0, with

constant
√
η factor decrease in selectivity each time, is carried out

until we reach u1. The Explore subroutine is now invoked along
the increasing y dimension with u1 as the seed location, terminat-
ing cost

√
ηCCi, and relaxation factor

√
η. Let the location returned

be c1, and by the construction of Explore, we know that its cost is
in the range [

√
ηCCi, ηCCi]. Now, starting from c1, a sequence of

reverse jumps, again with
√
η selectivity decrease in each jump, is

carried out till we reach a location u2 whose cost is in the range
[CCi,

√
ηCCi]. This is followed by a call to Explore with u2 as

the seed and the same settings as before for the other arguments.
The returned location is now c2. This interleaved process of re-
verse jumps along the x dimension and forward jumps along the
y dimension, is repeated until the process hits the boundary of the
ESS. Let us say that the process ends at location ck (k = 4 for the
example contour in Figure 8). Then, the set BCSi = {c1, . . . , ck}
is returned as the BCS of contour ICi. This description of the com-
pilation phase of 2D-FSB is codified in Algorithm 2.

Figure 8: Identification of BCS



Algorithm 2 2D-FSB Algorithm (η)

1: Compilation Phase:
2: set β =

√
η;

3: while contours are remaining do
4: set qcur = (1/r, 1/r);
5: /*Let ICi denote the current contour and CCi be its cost*/
6: while qcur.x ≥ 1

r
and qcur.y ≤ 1 do

7: Find ui with cost in [CCi, β · CCi] through x-axis reverse jumps;
8: qcur.x = ui.x;
9: Call Explore(ui, β · CCi, β) along y-axis to find ci;

10: qcur.y = ci.y;
11: end while
12: Union of all cis forms the bounded contour-covering set, BCSi;
13: /* Move to next contour */
14: end while

15: Execution Phase:
16: Run the 2D SpillBound algorithm on the plans corresponding to

BCSi for each contour ICi;

4.2.2 Proof of Correctness
In order to demonstrate that every location in the contour is spa-

tially dominated by at least one location in the associated BCS, we
need to first prove that reverse jumps allow us to find uis, whose
costs are in the range [CCi,

√
ηCCi]. Equivalently, it is sufficient to

show that each reverse jump results in a relative cost decrease of at
most

√
η. To do so, let us fix a covering location ck, and let Fap

denote the restriction of OCS to the horizontal line passing through
ck. Then, we have the following lemma:

LEMMA 4.1. The reverse jump from a location q along the x
direction by a factor

√
η results in a relative cost decrease of at

most
√
η, i.e., Fap( q.x√η , q.y) ≥ Fap(q.x, q.y)/

√
η .

PROOF. Let q′ denote the location (q.x/
√
η, q.y). Consider the

line passing through q′, parallel to the x-axis, and tangent to OCS.
Let s be its slope and c′ its intercept on the cost axis (c′ ≥ 0 to en-
sure non-negative cost at the origin). We know that this line over-
estimates the cost at q because Fap is both increasing and concave
(by virtue of its PCM and APC characteristics). Thus, we have

Fap(q) ≤ s · (q.x) + c′

≤ √
η

(
s · ( q.x√

η
) +

c′
√
η

)
≤ √

η

(
s · ( q.x√

η
) + c′

)
=
√
ηFap(q′)

where the second and third inequalities are implied by η ≥ 1 and
c′ ≥ 0. The last equality follows from the fact that the line passes
through q′.

LEMMA 4.2. Every location in ICi is dominated by at least one
location in BCSi .

PROOF. Consider any point q in ICi. By construction we know
that there exists ck ∈ BCSi s.t. ck.y ≤ q.y ≤ ck+1.y. We will
show that ck+1 ∈ BCSi is a dominating location for q by proving
q.x ≤ ck+1.x. Consider the location uk+1 whose x coordinate is
the same as that of ck+1. This means that (a) uk+1.x = ck+1.x,
and (b) uk+1.y = ck.y. Since the cost of location uk+1 is ≥
the cost of location q, and uk+1.y ≤ q.y by PCM, it implies that
uk+1.x ≥ q.x. Therefore, q is dominated by ck+1.

4.2.3 Bounded Computational Overheads
Now that we have shown the coverage properties of the BCS, we

move on to proving that their identification can be accomplished
with bounded overheads.

LEMMA 4.3. The overheads reduction, γ, of 2D-FSB is at

least
r2

4 ·m · logη r
.

PROOF. Let us first consider the number of optimization calls
required per contour for 2D-FSB. We know that the exploration
of cks and uks move unidirectionally along the y-axis (1/r to 1)
and x-axis (1 to 1/r), respectively. Furthermore, we have earlier
shown that each jump results in a relative increase (or decrease) in
selectivity of at least

√
η. Thus, by geometric progression, we can

infer the following:

Opt. calls per Contour = Opt. calls for cks + Opt. calls for uks
≤ log√η r + log√η r

= 2 log√η r = 4 · logη r

Since there are m contours in the ESS, we conclude that there are
4 ·m · logη r optimization calls across all contours for 2D-FSB, as

compared to r2 for 2D-SB. Thus, γ is at least
r2

4 ·m · logη r
.

4.3 Execution Phase
In the execution-phase, we run the original 2D-SB algorithm,

treating the BCS identified for every contour as the effective con-
tour. Specifically, starting from the least cost BCS1, the plans
corresponding to the locations in each successive BCSi are exe-
cuted as per the 2D-SB algorithm. This BCS-based execution of
plans (in spill-mode) is continued until the actual selectivities of
both the epps are learned. Finally, the optimal plan at the discov-
ered selectivity location is executed to completion to compute the
query results for the user. We show below that with this execution
strategy, the MSO guarantee is relaxed by at most η.

4.3.1 Maintaining the η constraint

THEOREM 4.4. The MSO relaxation of 2D-FSB is at most η.

PROOF. We know that the cost of any location in BCSi is at
most ηCCi. Furthermore, the execution-phase runs the 2D SB al-
gorithm on the BCS of every contour. Thus, every execution in
2D-FSB is performed with a budget of η times its corresponding
contour cost. Hence, the overall cost of 2D-FSB is at most η times
that of 2D SB, which increases the MSO by at most η.

The above proof is predicated on assuming that the constituent
features of the 2D-SB algorithm are not impacted by the new con-
structions. In particular, the analysis of 2D-SB in [12] relied on
two crucial properties: Half-Space Pruning (HSP) and Contour
Density Independent Execution (CDIE). With HSP, a single spill-
mode execution of a plan is sufficient to divide the ESS into two
disjoint half-spaces, and obtain evidence that qa lies in one of them
(i.e. the other half-space gets pruned). On the other hand, the CDIE
property implies that at most two plan executions are required per
contour, irrespective of the actual number of plans on the contour.
We formally prove in [11] that both these HSP and CDI Execu-
tion properties continue to hold for 2D-FSB, thereby ensuring the
validity of Theorem 4.4.



5. MULTI-DIMENSIONAL FSB
In this section, we show how to extend 2D-FSB to higher di-

mensions. At first glance, the potential epps in a canonical OLAP
query can be large in number – for instance, we have observed as
many as 12 for some TPC-DS queries. If all these epps were to
be made part of the ESS, it would result in an impractically large
search space that cannot be explored efficiently. Therefore, before
describing the MultiD-FSB algorithm, we first explain how it is
usually feasible, through a pre-processing step, to construct a low-
dimensional ESS from the initial large candidate set – the impor-
tant point to note is that our dimensionality reduction is achieved
without impacting the MSO guarantees of the query. Due to space
constraints, we only summarize the approach here – the complete
details are available in [19].

5.1 Constructing Low-Dimensional ESS
The key idea in our preprocessing step, called DimRed, is to

associate an impact factor with each candidate epp. The impact
factor of an epp e is defined as the worst-case relative inflation in
the cost of POSP plans when the selectivity of e is varied over the
entire range from 1/r to 1, while keeping the selectivities of other
predicates fixed. Now consider a predicate e with impact factor f
– if we drop e from the EPP, the reduced ESS can be sub-optimal
by at most a factor (1 + f) w.r.t. the original ESS that contained e;
at the same time, the MSO also decreases due to the reduced ESS
dimensionality. Therefore, we consider the epps in the increas-
ing order of their impact factors, and incrementally keep dropping
them while the net benefit of the reduced dimensionality on the
MSO guarantee is more than the net sub-optimality incurred by the
dropped predicates. The final set of retained predicates constitutes
the relevant ESS for the MultiD-FSB.

A detailed description of how the entire DimRed reduction al-
gorithm, including the identification of epp impact factors, can be
implemented efficiently is provided in [19]. For instance, the di-
mensionality of TPC-DS Q91 was reduced by DimRed from 12 to
5 in less than 20 seconds.

5.2 Multi-D Algorithm
The MultiD-FSB algorithm is executed on the set of dimen-

sions retained after the DimRed pre-processing step. The retained
epps are first ordered in decreasing value of their impact factors,
i.e, e1 has the highest impact factor and eD , the lowest. Then, for
every contour, we construct a specially designed sparse grid G for
the first (D − 2) dimensions. G is constructed such that there are
totally (logβ(1/r))D−2 points, where β = D

√
η. Further, in each

dimension, there are logβ(1/r) points that are spread out in a ge-
ometric distribution with factor β. The key feature of this grid is
that, even if we restrict the search space in the first D − 2 dimen-
sions to just the points in G, we incur an MSO relaxation factor
no more than βD−2 while still ensuring complete coverage of the
underlying contour – the proof of this claim is available in [11].

The algorithm to cover an isocost contour ICi runs in two im-
portant steps:

S1: Corresponding to each point p in the grid G, run a 2D-FSB
with the first (D − 2) dimensions fixed as per p, and the
last two dimensions at the full resolution of r. The output is
treated as a subset of BCSi.

S2: Compute the union of the 2D-FSB outputs obtained in step
S1 over all the points in G – this union forms the finalBCSi.

Each invocation of 2D-FSB incurs an MSO relaxation factor of
β2 corresponding to the last two dimensions. Further, G contributes

an MSO relaxation factor of βD−2 due to the first (D − 2) dimen-
sions. Thus, the overall MSO relaxation is contained at βD , i.e,
η. The pseudocode for MultiD-FSB is presented in Algorithm 3,
and its analysis leads to the following theorems on overheads re-
duction and on maintenance of the η relaxation constraint – their
proofs are available in [11].

THEOREM 5.1. The compile-time overheads reduction, γ, of
MultiD-FSB is at least rD/(2 ·m · (D · logη r)

D−1).

THEOREM 5.2. The MSO relaxation of MultiD-FSB is at
most η.

Algorithm 3 MultiD-FSB (η)

1: Compilation Phase:
2: Set: β = D

√
η;

3: Set: k = 1; /*initialization to first contour*/
4: while contours are remaining do
5: Set: qcur = ( 1

r
, · · · , 1

r
); /*starting to explore the kth contour*/

6: BCSk = ∅
7: for qcur.1 = 1

r
; qcur.1 ≤ 1; qcur.1 = βqcur.1 do

8: /* D − 3 more nested for loops like the above corresponding to
the dimensions 2 through (D − 2)*/

9: /* At the end of (D − 2) nested for loops, qcur is such that its
first (D − 2) dimensions correspond to one of the points in the
special grid G */

10: qmin = qmax = qcur ;
11: qmax.(D − 1) = qmax.D = 1;
12: qmin.(D − 1) = qmin.D = 1

r
;

13: /*qmin and qmax are origin and terminus of 2D space of
dimensions (D − 1) and D*/

14: if Cost(qmin) ≤ CCk and Cost(qmax) ≥ CCk then
15: Augment BCSk with the output of 2D-FSB covering a 2D

contour of cost (β)D−2CCk with cost relaxation factor of β2;
16: end if
17: end for /* End of (D − 2) nested for loops */
18: Output BCSk and set k = k + 1; /* Move to next contour */
19: end while

20: Execution Phase:
21: Run the multi-D SpillBound algorithm on the plans corresponding

to BCSi for each contour ICi;

6. EXPERIMENTAL EVALUATION
In this section, we profile the γ − η performance of

FrugalSpillBound (FSB) on a representative set of complex
OLAP queries, using SB’s performance as the reference baseline.
The experimental framework is described first and followed by an
analysis of the results.

Our test workload is comprised of 21 complex and representative
SPJ queries from the TPC-DS benchmark, operating at the base size
of 100 GB.The number of relations in the query suite vary from 4
to 10, and a spectrum of join-graph geometries are modeled, in-
cluding chain, star, branch, etc. Further, we wish to maximize the
range of cost values, and hence the number of effective dimensions
and contours in the ESS, in order to create the most challenging en-
vironments for robustness. This is achieved through an index-rich
physical schema that creates indexes on all the attribute columns
appearing in the queries.

With the above setup, the initial number of ESS dimensions,
comprising of all filter and join predicates, ranged from 5 to
12 dimensions across the queries. Subsequently, after executing
the DimRed dimensionality reduction algorithm discussed in Sec-
tion 5.1, the effective dimensionality came down to a span of 3 to 5



dimensions. As might be expected, the surviving effective dimen-
sions only feature join predicates, since the filter predicates were
either accurately estimated by the attribute histograms, or had low
MSO impact factors and were therefore eliminated by DimRed.

To succinctly characterize the queries, the nomenclature aD Qb
is employed, where a specifies the number of epps, and b the query
number in the TPC-DS benchmark. For example, 3D Q15 indi-
cates TPC-DS Query 15 with three of its predicates considered to
be error-prone.

The database engine used in our experiments is a modified ver-
sion of the PostgreSQL 9.4 engine [18], with the primary additions
being: (a) Selectivity Injection, required to generate the ESS for
SB and the BCS for FSB; (b) Abstract Plan Execution, required to
force the execution engine to execute a particular plan; (c) Plan Re-
costing, required to cost an abstract plan for a query; and (d) Time-
limited Execution, required to implement the calibrated sequence
of executions with associated time budgets.

6.1 Empirical Validation of APC
We begin with an experimental validation of the APC assump-

tion that is central to the FSB approach. For this purpose, we ob-
tained the cost functions of the POSP plans over the ESS using
the selectivity injection feature for all the queries in our evalua-
tion suite. Then, we verified, for each cost function, whether its
slope was monotonically non-increasing with selectivity for every
1D projection of the function. Representative results of this evalu-
ation, reflecting 120-plus plans sourced from our query workload,
are tabulated in Table 2, for both the constituent PCFs and the ag-
gregate OCS.

In the table, a cell corresponding to OCS (or PCF), under Aver-
age, captures the % of locations in ESS satisfying the assumption
averaged over OCSs (or PCFs) in a query along different projec-
tions. Supporting metrics such as Median, Minimum and Maximum
are also enumerated to provide a sense of the overall distribution.
Note that our FSB approach requires concavity only on the OCS,
and the vast majority (> 95%) of locations in the ESS satisfy this
slope constraint. Moreover, the median value being 100% for most
queries indicates that the majority of OCSs and PCFs do not violate
the assumption at all. Further, even the rare violations that surfaced
were found to be artifacts of rounding errors, cost-modeling errors,
and occasional PCM violations due to the PostgreSQL query opti-
mizer not being entirely cost-based in character.

Table 2: % LOCATIONS IN ESS SATISFYING APC

Query Average Median Min. Max.

3D Q15 OCS 100 100 100 100
PCF 100 100 100 100

3D Q96 OCS 100 100 100 100
PCF 100 100 100 100

4D Q7 OCS 100 100 100 100
PCF 98.4 100 74.4 100

4D Q26 OCS 99.7 100 98.8 100
PCF 99.7 100 93.9 100

4D Q27 OCS 100 100 100 100
PCF 99.2 100 75.2 100

5D Q19 OCS 100 100 100 100
PCF 100 100 100 100

5D Q84 OCS 96.9 96.5 96.5 97.6
PCF 94.5 96.8 71.2 100

5D Q91 OCS 100 100 100 100
PCF 100 100 98.4 100

Figure 9: Theoretical Overheads Reduction (η = 2)

6.2 Theoretical Characterization of γ − η
Using the formula derived in Theorem 5.1, we evaluated the γ

value for our suite of benchmark queries with η set to 2, and these
results are shown in Figure 9 on a log scale. We observe a con-
sistent overheads decrease by more than two orders of magnitude
for FSB, i.e. γ >= 100, over all the queries. Further, the de-
crease shows a trend of being magnified with dimensionality – for
instance, the overheads decrease by a factor of almost 400 for the
five-dimensional 5D Q84.

6.3 Empirical Characterization of γ − η
We now turn our attention to assessing the empirical reduction

in compilation overheads achieved by FSB for the above database
environment – these results are also captured in Figure 9. We see
here that for most of the queries, the savings are over three orders
of magnitude. Furthermore, quite a few of the 4D and 5D queries
even reach four orders of magnitude reduction – in fact, the over-
heads saving for 5D Q91 is by a factor of almost 40000! When the
effective dimensionality and the number of contours is moderate, as
in the case of few 3D queries in Figure 9, the savings become sat-
urated at around 2.5 orders of magnitude since the overheads reach
a low value in absolute terms itself, of the order of a few thousand
optimization calls.

The reasons for the considerable gap between the theoretical and
empirical values include the following:

• Our conservative formulation in Lemma 3.2 for the distances
covered by the forward jumps in FSB. These jumps are based
on the slope of the optimal plan function at the correspond-
ing location, but the lengths of the jumps in practice are con-
siderably more due to the concave trajectory. For instance,
we found that with 5D Q84, around 60 percent of the jump
lengths exceeded 1.5 times the guaranteed value, while about
20 percent were more than twice the guaranteed value.

• Our conservative assumption that all covering contours start
from 1/r and work their way upto the maximum selectivity
of 1. In practice, however, the contour traversals could be
much shorter. As a case in point, we found that with 5D Q84,
around 80 percent of the underlying 2D contour explorations
were skipped based on the cost condition check in Line 14 of
Algorithm 3.



6.4 Validation of MSO Relaxation Constraint

Figure 10: Empirical MSO Ratio (η = 2)

A legitimate concern about FSB could be that while it guaran-
tees maintenance of the η constraint in the theoretical framework,
the MSO relaxation may exceed η in the empirical evaluation. To
assess this possibility, we explicitly evaluated the empirical MSO
ratio, ηe, incurred by FSB relative to SB. This was accomplished
by exhaustively considering each and every location in the ESS to
be qa, and then evaluating the sub-optimalities incurred for these
locations by SB and FSB. Finally, the maximum of these values
was taken to represent the empirical MSO of each algorithm.

Contrary to our fears, the ηe values of FSB are always within
η = 2, as shown in Figure 10. In fact, the ηe factors are within 1.5
for all queries. The main reason for the low ηe values in practice
is due to the aggressive half-space pruning at each contour, and
especially so at the final contour.

6.5 Dependency of γ on η

Thus far, we have analyzed the FSB results for the specific η
setting of 2. We now move on to evaluating the γ behavior for
different settings of η. This tradeoff is captured in Figure 11 for
η values ranging over [1, 3] for three different queries – Q15, Q27
and Q19 – with ESS dimensionalities of 3, 4 and 5, respectively.

We see an initial exponential increase in overheads reduction
while going from η = 1 to η = 2, but this increase subsequently
tapers off for larger values of η. For 3D Q15, the number of op-
timization calls decreases steeply from 106 to 7010 when η is in-
creased from 1 to 2, and then goes down marginally to 2950 calls
when η is further increased to 3. The plateauing of the improve-
ment with increasing η is because a certain minimum number of
optimization calls is required for the basic functioning of the FSB
algorithm.

6.6 Wall-Clock Time Experiments
All the experiments thus far assessed the γ − η profile in the

abstract world of optimizer cost values. We now present an actual
execution experiment, where the end-to-end real-time performance
(i.e. wall-clock times) was explicitly measured for the FSB and SB
algorithms. Our representative example is based on TPC-DS Q19
featuring 5 error-prone predicates.

As mentioned previously, the task of identifying the contours
is inherently amenable to parallelism. Even after exploiting this

Figure 11: FSB Tradeoff (Theoretical)

feature on a 64-core workstation platform, SB took a few days to
identify all the contours for 5D Q19. In marked contrast, a paral-
lel version of the BCS identification in FSB, which utilizes the fact
that there are (D∗logη( 1

ε
))D−2 independently-explorable 2D seg-

ments per contour, completed the identification within 10 minutes
(for η = 2).

After building the ESS, it took SB around 20 mins to com-
plete its query execution, incurring a sub-optimality of 4.8. On
the other hand, FSB completed in around 26 mins, resulting in a
sub-optimality of 6.2. (The drilled-down information of the spe-
cific plan executions for each contour is available in [11].)

So, overall, SB took days to create the ESS and execute
this instance of Q19, whereas FSB required only (10 minutes +
26 minutes ) = 36 minutes to complete the entire query process-
ing. This means that even if the ad-hoc query eventually turns out
to be a canned query, it would take more than 500 successive invo-
cations before SB begins to outperform FSB.

We conducted additional experiments to establish the practical-
ity of the FSB approach. Specifically, on a representative set of
queries, we profiled FSB for its memory usage, CPU usage, and
end-to-end latency. The memory usage is also a function of the
server’s database configuration, which was set with the PostgreSQL
tuning tool [17]. The results, presented in Table 3, demonstrate that
FSB’s resource requirements are reasonable and easily justified by
the substantive performance benefits that it delivers. Moreover, the
CPU usage is relatively small compared to the end-to-end latency
since our database environment is disk-bound.

Table 3: RESOURCE USAGE

Query Memory Usage
(MB)

CPU Times
(mins)

Latency
(mins)

3D Q15 360 1.4 28.1
3D Q96 220 1.3 17.8
4D Q7 489 1.2 23

4D Q26 490 1.5 12.6
4D Q27 464 1.8 30.5
5D Q19 1000 11 36
5D Q84 348 2.8 10.1
5D Q91 828 1.3 4.3



7. DEPLOYMENT ASPECTS
Over the preceding sections, we have conducted a the-

oretical characterization and empirical evaluation of the
FrugalSpillBound algorithm. We now discuss some
pragmatic aspects of its usage in real-world contexts. Most of
these issues have already been previously discussed in [12], in the
context of the SpillBound algorithm, and we therefore only
summarize the salient points here for easy reference.

Firstly, we have implicitly assumed a perfect cost model in our
study, but this is rarely the case in practice. However, if we were
to be assured that the cost modeling errors, while non-zero, are
bounded within a δ error factor, then the MSO guarantees in this
paper will carry through modulo an inflation by a factor of (1+δ)2.
For instance, δ = 0.3 is reported in [1].

Second, it is important to note that both SpillBound and
FrugalSpillBound are not substitutes for conventional query
optimizers, but are intended to complementarily co-exist with the
traditional setup. We currently leave it to the user’s discretion about
the specific approach to employ for a given query instance – how-
ever, we have also begun exploring the use of machine learning
techniques to make this determination.

Finally, both SpillBound and FrugalSpillBound are in-
trusive and require changes to the core engine such as plan spilling
and monitoring of operator selectivities. Our experience with Post-
greSQL is that these facilities can be incorporated relatively easily.
As an aside, the BCS approach can also be used in conjunction with
the original PlanBouquet algorithm, which operates purely with
API functionality.

8. RELATED WORK
In the prior robust query processing literature, there have been

two strands of work – the first delivering savings on optimization
overheads, and the other addressing the query execution perfor-
mance – which are discussed in detail below. Given this context,
FrugalSpillBound appears a unique proposition since it of-
fers an attractive tradeoff between these two competing and com-
plementary aspects.

Compilation Overheads. The primary work in this area has
been in the context of Parametric Query Optimization (PQO),
where the objective is to have precomputed the appropriate plans
for freshly submitted queries. In [10], the selectivity space was de-
composed into polytopes that approximate plan-optimality regions,
based on the geometric heuristic that “If all vertices of a polytope
share a common optimal plan, then this plan is also optimal within
the entire polytope”. However, this assumption, as well as the pres-
ence of regular boundaries for the optimality regions, were later
shown in [8] to be largely violated in industrial-strength settings.

Instead of trying to characterize the entire selectivity space in
advance, an alternative “pay as you go” approach was taken in [3].
Here, the PQO overheads were restricted only on the actual query
workload submitted to the system, facilitating a progressive and ef-
ficient exploration of the parameter space. In our setting, however,
since we are apriori unaware of the query location, the BCS has to
be constructed in an agnostic manner to this location.

More recently, a geometric property called Bounded Cost
Growth (BCG) was identified in [6], which typically holds on plan
cost functions. In BCG, the relative increase of plan costs is mod-
eled as a low-order polynomial function of the relative increase in
plan selectivities. This model was leveraged to ensure bounded
sub-optimalities of the PQO choices, relative to the ideal plan at
the query location. In fact, using the identity function as the poly-

nomial was itself found to be satisfactory. Our use of concavity is
similar to BCG in that, when the polynomial is the identity func-
tion, any PCF that satisfies APC also satisfies BCG [11].

Query Execution. The PlanBouquet approach [5], based on
selectivity discovery instead of estimation, provided guarantees on
the worst-case execution performance for the first time. However,
its bounds were a function of not only the query, but also the op-
timizer’s behavioral profile over the underlying database platform.
SpillBound materially extended PlanBouquet by providing
platform-independent guarantees. Moreover, its empirical perfor-
mance was markedly superior to PlanBouquet. These benefits
are due to half-space pruning of the ESS in the discovery process,
and bounding the number of plan executions per contour.

Both PlanBouquet and SpillBound fall under the um-
brella of plan-switching approaches. They may therefore appear
superficially similar to run-time heuristic re-optimization tech-
niques such as POP [16] and Rio [2]. However, a key difference
is their provision of performance guarantees. Further, the heuristic
techniques use the optimizer’s plan choice as the starting point, and
reoptimize at run-time if the estimates are found to be significantly
in error. In contrast, PlanBouquet and SpillBound always
start executing plans from the origin of the selectivity space, en-
suring repeatability of the query execution strategy as well as con-
trolled switching overheads.

9. CONCLUSIONS
The recently proposed SpillBound and PlanBouquet

discovery-based techniques provide MSO performance guarantees,
an essential feature for robust query processing. However, they are
only suitable for canned queries due to the enormous compilation
overheads incurred prior to initiating query execution.

In this paper, we address the above limitation by designing
FrugalSpillBound whose compilation overheads are expo-
nentially lower than those of SpillBound. Our construction of
FrugalSpillBound is based on two basic principles: (a) lever-
aging the axis-parallel concave behavior exhibited by the PCFs and
OCS with respect to predicate selectivities in the ESS; (b) substitut-
ing the original contours with much smaller contour-covering sets.

Our theoretical analysis establishes a η − γ tradeoff that is ex-
tremely attractive, delivering exponential improvements in γ for
linear relaxations in η. Further, the empirical improvements, evalu-
ated on TPC-DS queries, are even higher, by more than an order of
magnitude. So, in an overall sense, FrugalSpillBound takes
an important step towards extending the benefits of MSO guaran-
tees to ad-hoc queries.
FrugalSpillBound can intrinsically handle any distribu-

tional changes in the data since the entire selectivity range is
covered in the ESS. However, handling changes to the database
size remains an open problem since these updates would result in
movement of the iso-cost contours, requiring the bounded contour-
covering sets to be discovered from scratch. Therefore, the devel-
opment of incremental robust algorithms is an interesting future
research topic. We also intend to investigate the existence of al-
ternative geometric constraints on cost function behavior – for ex-
ample, a bounded rate of change – that can be leveraged to further
improve the MSO guarantees and/or compilation overheads.
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