
CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 1

A Case for Database Engine Research
Jayant R. Haritsa

(Invited Paper)

✦

1 INTRODUCTION

Research related to database systems has a
rich history, going back to almost the origins
of computing itself, and the fruits of this re-
search have been an organic part of the com-
puter science curriculum for over four decades
now. In the 1960s and 70s, the focus was on
developing expressive data models, with the
relational model emerging triumphant as the
workhorse of enterprise data processing. The
following decade of the 80s saw the transac-
tion concept gaining centrestage, the emphasis
being on developing efficient mechanisms to
provide the powerful ACID1 semantics that
were the hallmark of this concept. Included in
its ambit were data recovery mechanisms, con-
currency control techniques, indexing strate-
gies, and memory management. Concurrently,
the automated identification of efficient execu-
tion strategies for declarative query processing
gained tremendous ground through the devel-
opment of dynamic-programming based tech-
niques for navigating the exponentially large
strategy search space.

The common thread among these various
efforts was that they dealt with aspects of
the database engine, that is, the components
that constitute the database kernel. However,
over the last two decades, and especially so in
recent years, the research focus of the interna-
tional community has largely shifted ground
to the middleware, encompassing areas such as
data mining, data warehousing, information re-

• Jayant Haritsa is with the Database Systems Lab, Indian Institute
of Science, Bangalore 560012.
E-mail: haritsa@dsl.serc.iisc.ernet.in

1. Atomicity, Consistency, Isolation, Durability

trieval, document processing, knowledge man-
agement and bio-informatics. In these domains,
the database engine is essentially viewed as a
black box that merely functions as a efficient
data supplier to the middleware. Certainly the
importance and impact of the newfangled top-
ics cannot be discounted or disputed. However,
what is worrisome is that the movement away
from engine issues has begun to assume alarm-
ing proportions, placing in jeopardy the long-
term future of database systems.

As a case in point, even a casual survey of
the topics on which articles are submitted to
this journal, shows that India has been equally
susceptible to this unfortunate international
trend! Papers on middleware subjects such as
soft computing, data mining, web services and
so on, are submitted in an unending flood,
but manuscripts related to engine concerns are
conspicuous by their almost total absence. In
fact, the situation is probably worse in India be-
cause of a computer science curriculum, and a
software industry, that thrive almost entirely on
middleware, applications and services. Barring
a few elite academic institutions, engine aspects
are given no more than cursory attention in
the vast multitude of engineering institutes that
dot our countryside.

Perhaps a primary reason for middleware
scoring over “engine-ware”, so to speak, is
that there are significantly fewer barriers to
entry – usually, a good background in mathe-
matics, data structures and algorithms suffices
for being able to comprehend, assimilate and
contribute to these areas. Whereas, in contrast,
engine-ware requires considerable grounding
in not only database systems, but also the
underlying platforms with regard to computer



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 2

architecture and operating systems, apart from
an in-depth understanding of complex histor-
ical concepts and physical implementations.
Further, a considerable body of prior research
literature needs to be assimilated before ven-
turing into working on these topics.

While the above-mentioned aspects of
engine-related research may certainly deter
apprehensive young minds, we would
claim that the potential impact of novel
engine ideas is substantively more since
the functionalities and performance benefits
of the new technologies are automatically
bestowed on all applications. Therefore,
aspiring database researchers may find it well
worth their while to stay the arduous course
and contribute their influential mite to the
rich engine tradition that has been established
during the last half-century.

Another, more pernicious, reason for the
downslide in engine research could be the
widespread, and utterly wrong, perception that
engine design is essentially a “finished art”
wherein all the major problems have already
been solved, leaving little scope to make mean-
ingful fresh contributions. However, nothing
could be farther off the mark – while en-
gine problems are certainly classical, they are
equally amenable for fresh investigations ei-
ther because: (a) the underlying platforms
are changing, invalidating long-standing de-
sign assumptions in the process, or (b) novel
design and analysis techniques have appeared
on the scene, delivering new perspectives and
solution methodologies.

Finally, yet another popular myth is that
engine-ware is all about nuts-and-bolts pro-
gramming and grungy implementation details
– again, the truth is very different. Database
engine design draws richly on all branches of
computer science, including complexity theory,
data structures, algorithms, statistics and ex-
perimental methodologies. This is borne out
by several computer science legends, includ-
ing names like Jeffrey Ullman, Christos Pa-
padimitriou and Abraham Silberschatz, having
deeply influenced the field – in fact, it has even
produced its own Turing award winners: Edgar
Codd in 1981 for the relational model, and
James Gray in 1999 for the transaction concept.

In the remainder of this article, we will
attempt to present concrete examples of how
database engine design provides a rich source
for challenging research problems and im-
pactful contributions. We begin with a short
overview of an imminent architectural change
– phase change memory – that could well turn
out to be an inflection point in the continu-
ing saga of database engine design. This is
followed by a detailed description of work
executed in our lab over the last few years
wherein a potent visual metaphor – plan dia-
grams – is brought to bear on characterizing
the behavior of declarative query optimizers.
In the process, serious design lacunae that are
manifest even in the best of today’s commercial
database systems are highlighted, and the ap-
plication of computer science fundamentals to
resolve them is demonstrated. We conclude by
showing how the plan diagram metaphor can
be theoretically and practically leveraged for
robustly addressing a fundamental estimation
problem that has plagued database developers
for several decades.

2 PHASE CHANGE MEMORY

A new memory technology, based on chalco-
genide glass, wherein the physical condition of
the material – amorphous or crystalline – is used
to indicate a 0 or 1 binary state, has begun
to see the light of day in recent times. This
phase change memory, or PCM, as it is more
commonly known [16], occupies the middle
ground between traditional DRAM and tra-
ditional hard disks – specifically, PCM offers
large-scale persistent storage like hard disks,
but with random access and transfer speeds
that are closer to DRAM. A summary view,
sourced from [3], which succinctly captures
PCM’s characteristics as compared to prior
memory technologies, including indicative pa-
rameter values, is shown in Table 1.

Given this new layer in the memory hierar-
chy, the entire design of the database engine
needs to be revisited to ensure that the benefits
are realized by the applications running on the
system. As a case in point, an idiosyncratic
feature of PCM is that each write to a memory
cell causes “wear and tear”, resulting in the



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 3

DRAM PCM NAND Flash HDD

Read energy 0.8 J/GB 1 J/GB 1.5 J/GB 65 J/GB
Write energy 1.2 J/GB 6 J/GB 17.5 J/GB 65 J/GB
Idle power 100 mW/GB 1 mW/GB 1-10 mW/GB 10 W/TB
Endurance ∞ 10

6 – 10
8

10
4 – 10

5
∞

Page size 64 B 64 B 4KB 512 B
Page read latency 20–50ns 50ns 25 µs 5 ms
Page write latency 20–50ns 1 µs 500 µs 5 ms
Write bandwidth GB/s 50-100 MB/s 5-40 MB/s 200 MB/s

Erase latency N/A N/A 2 ms N/A
Density 1 X 2 – 4 X 4 X N/A

TABLE 1
PCM Comparative Characteristics [3]

lifetime of an individual cell being limited to
a few million writes (see the Endurance row
in Table 1). Therefore, an interesting research
problem from a design perspective is how to
reengineer the basic database operators – for
example, sorting – such that they consciously
become read-intensive as opposed to the heav-
ily write-based algorithms (e.g. quicksort) that
are the norm in current implementations. A
careful tradeoff has to be established in the
new regime between access performance and
cell longevity. But just reducing the number of
writes may not be enough, it may also become
necessary to explicitly implement “wear lev-
eling” to evenly spread the writes across the
entire memory – this may require copying of
data from one location to another simply to
ensure that no individual location becomes too
worn out.

A related distinctive feature of PCM is that
the energy consumption for writes is substan-
tially higher than that for reads (see the Read
energy and Write energy rows in Table 1) – this
serves as yet another motivation for reducing
the number of writes to the minimum possi-
ble, given the growing clamour for developing
“green” computing devices.

A first attempt at a PCM-conscious redesign
of the database system internals is described in
[3], and innovative ideas have been proposed.
But there is still a long way to go, and hard
research challenges to be addressed, before the
new technology can seamlessly become an in-
tegral part of database product offerings.

3 DATABASE QUERY OPTIMIZERS

Queries to database systems are usually ex-
pressed in the Structured Query Language
(SQL) [18]. A particularly appealing feature of
this language is that it is “declarative”, mean-
ing that the user only states what is wanted,
without having to specify the procedure for
obtaining the information.

To make the declarative notion concrete, con-
sider the sample university database schema
shown in Figure 1. Here, information is main-
tained in three relations: STUDENT, COURSE and
REGISTER, which tabulate data about students,
courses, and the course registrations of stu-
dents, respectively. The user’s goal is to extract
the names of the students and the courses for
which they are registered, and an SQL query
that achieves this goal is shown in Figure 2,
where the desired information is obtained by
combining the data across the three tables,
using the roll numbers and the course numbers
as the connectors. Note that in this formulation,
the sequence in which the tables are combined
((STUDENT ⊲⊳ COURSE) ⊲⊳ REGISTER, or (REGIS-
TER ⊲⊳ COURSE) ⊲⊳ STUDENT, etc.), as well as
the mechanism to be used for each combination
(NESTED-LOOPS JOIN, SORT-MERGE JOIN, HASH

JOIN, etc.) is left unspecified, resulting in the
declarative tag.

3.1 Query Optimization
Given a generic SQL query that requires com-
bining information across n relations, there are
in principle n! different permutations of the



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 4

STUDENT RollNo StudentName Address Program

COURSE CourseNo CourseName Credits Content

REGISTER RollNo CourseNo

Fig. 1. University Database Schema

select StudentName, CourseName
from STUDENT, COURSE, REGISTER
where STUDENT.RollNo = REGISTER.RollNo and

REGISTER.CourseNo = COURSE.CourseNo

Fig. 2. User SQL Query

combination sequence, implying that the strat-
egy search space is at least exponential in the
query size. The automated identification of an
efficient procedure or strategy from this search
space is the responsibility of an internal DBMS
component called the “query optimizer”. The
efficiency of these strategies, called “plans”, is
usually costed in terms of the estimated query
response time. Optimization is a mandatory
exercise since the difference between the cost
of the best plan and a random choice could be
in orders of magnitude, but is computationally
extremely expensive due to the combinatorially
large search space of plan alternatives, as ex-
plained above. The role of query optimizers has
become especially critical in recent times due
to the high degree of query complexity charac-
terizing current decision-support applications,
as exemplified by the industry-standard TPC-
H and TPC-DS performance benchmarks [19],
[20].

Plans are typically comprised of a tree of data
processing operators that are logically evalu-
ated in a bottom-up paradigm. A sample plan
is shown in Figure 3 for the example query of
Figure 2, where the STUDENT and REGISTER

relations are first combined with a NESTED-
LOOPS JOIN operator, and this intermediate re-
sult is then combined with the COURSE relation
using a HASH JOIN operator. The bracketed
numbers within each operator node indicate
the estimated aggregate processing costs in-
curred until this stage in the bottom-up query
evaluation.

The design of effective query optimizers that

Fig. 3. Sample Plan

quickly identify low cost plans has been dili-
gently addressed by the database research com-
munity over the last few decades [2]. However,
due to its inherent complexities and challenges,
this area has largely remained a “black art”,
and the quality of the query optimizer contin-
ues to be a key differentiator between compet-
ing database products, with large R & D teams
involved in their design and implementation.
Over the past few years, a fresh perspective has
been brought to bear on the behavior of mod-
ern query optimizers through the introduction
and development of the “plan diagram” con-
cept. A plan diagram is a visual representation
of the plan choices made by the optimizer
over a parameter space, and is generated by



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

leveraging the optimizer’s API functions. In
the remainder of this section, we provide an
overview of plan diagrams, their processing,
and their applications – this material is largely
sourced from [7].

3.2 Plan Diagrams

A query optimizer’s execution plan choices,
for a given database and system configuration,
are primarily a function of the selectivities of
the base relations featuring in the query. The
selectivity of a relation is the estimated fraction
of rows of the relation that are relevant to
producing the final result. In [13], plan dia-
grams were introduced to denote color-coded
pictorial enumerations of the plan choices of
the optimizer for parametrized SQL query tem-
plates over the relational selectivity space. For
example, consider QT8, the parametrized two-
dimensional query template shown in Figure 4,
based on Query 8 of the TPC-H benchmark (the
query determines the market share of Brazil
within the American continent for cheap an-
odized steel parts). The template has selectiv-
ity variations on the SUPPLIER and LINEITEM

relations through the s acctbal :varies and l
extendedprice :varies predicates, which apply
one-sided range constraints on the supplier’s
account balance and the extended price of the
lineitem, respectively (e.g. s acctbal < 1000
and l extendedprice < 2000).

The associated plan diagram for QT8 is
shown in Figure 5(a) – this picture was pro-
duced on a commercial database engine using
the Picasso visualization software tool [17]. In
this picture, a set of 89 different optimal plans,
P1 through P89, cover the selectivity space. The
value associated with each plan in the legend
indicates the percentage area covered by that
plan in the diagram – P1, for example, covers
about 22% of the space, whereas P89 is chosen
in only 0.001% of the space. In a nutshell, plan
diagrams visually capture the geometries of the
optimality regions of the parametric optimal set
of plans (POSP) [10].

It is vividly evident from Figure 5(a) that
plan diagrams can be extremely complex and
dense, with a large number of plans covering
the space – several such instances spanning

a representative set of query templates over
a suite of industrial-strength optimizers, are
available at [17]. In fact, they often appear
similar to cubist paintings [15], with a vari-
ety of intricate tessellated patterns, including
speckles, stripes, blinds, mosaics and bands, in
the diagrams! Further, the boundaries of the
plan optimality regions can be highly irregular,
which seem to indicate the presence of strongly
non-linear and discretized cost models. Finally,
the diagrams also demonstrate that the ba-
sic mathematical assumptions – plan convexity,
uniqueness and homogeneity – underlying the
rich body of research literature on parametric
query optimization (e.g. [10], [11]), rarely hold
in practice.

While individual queries have been analyzed
in great detail in the past, plan diagrams initi-
ated the characterization and investigation of
the behavior of a set of queries over a pa-
rameter space in an industrial-strength environ-
ment. Therefore, in spite of query optimiza-
tion having been studied for several decades,
the discovery of the above-mentioned complex
patterns has proved to be rather surprising and
thought-provoking for the database research
community.

Plan diagrams are currently in vogue at
various industrial and academic sites for a
diverse set of applications including analysis
of existing optimizer designs; visually carry-
ing out optimizer regression testing; debugging
new query processing features; comparing the
behavior between different optimizer versions;
investigating the structural differences between
neighboring plans in the space; evaluating the
variations in the plan choices made by com-
peting optimizers; etc. As a case in point, vi-
sual examples of non-monotonic cost behavior in
commercial optimizers, potentially indicative
of modeling errors, were highlighted in [13].

3.3 Anorexic Reduction of Plan Diagrams

The next phase of our investigation showed
that dense plan diagrams could typically be
“reduced” to much simpler pictures featuring
significantly fewer plans, without materially de-
grading the processing quality of any individual
query. For example in Figure 5(a), if users are



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 6

select o_year, sum(case when nation = ’BRAZIL’ then volume else 0 end)
/ sum(volume)

from

(select YEAR(o_orderdate) as o_year, l_extendedprice * (1 -
l_discount) as volume, n2.n_name as nation

from part, supplier, lineitem, orders, customer, nation n1,
nation n2, region

where p_partkey = l_partkey and s_suppkey = l_suppkey and
l_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey and n1.n_regionkey =
r_regionkey and s_nationkey = n2.n_nationkey and r_name
= ’AMERICA’ and p_type = ’ECONOMY ANODIZED STEEL’ and
s_acctbal :varies and l_extendedprice :varies

) as all_nations

group by o_year
order by o_year

Fig. 4. Example Query Template (QT8)

(a) Plan Diagram (b) Reduced Diagram (λ = 10%)

Fig. 5. Sample Plan Diagram and Reduced Plan Diagram (QT8)

willing to tolerate a minor cost increase, de-
noted by λ, of at most 10% for any query in the
diagram, relative to its original cost, the picture
could be reduced to Figure 5(b), where only
7 plans remain – that is, most of the original
plans have been “completely swallowed” by
their siblings, leading to a highly reduced plan
cardinality.

A detailed study of the plan diagram reduc-
tion problem from both theoretical and em-
pirical perspectives was presented in [8]. The
analysis first showed that finding the optimal

(wrt minimizing the number of plans) reduced
plan diagram is NP-Hard through a reduction
from the classical Set Cover problem [5]. This
result motivated the design of CostGreedy, a
greedy heuristic algorithm whose complexity
is O(nm), where n is the number of plans and
m is the number of query points in the diagram
(n ≪ m). Hence, for a given picture resolution,
CostGreedy’s performance scales linearly with
the number of plans in the diagram. Further,
from the reduction quality perspective, Cost-
Greedy provides a tight performance guarantee



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 7

of O(lnm), which cannot be improved upon by
any other deterministic algorithm.

Through experimental analysis on the plan
diagrams produced by industrial-strength op-
timizers with multi-dimensional benchmark-
based query templates, it was shown that plan
reduction can be carried out efficiently. This
is because attention is limited to only the set
of plans appearing in the original plan dia-
gram, making it unnecessary to revisit the op-
timizer’s combinatorially large search space of
plan alternatives. Further, it was found that the
CostGreedy algorithm typically gives a near-
optimal reduction or the optimal reduction it-
self.

Most importantly, these results demonstrated
that a cost-increase threshold of only 20 per-
cent is usually amply sufficient to bring down
the absolute number of plans in the final re-
duced picture to within or around ten. In short,
that complex plan diagrams can be made
“anorexic” (small in absolute sense) while re-
taining acceptable query processing perfor-
mance, even for high dimensional query tem-
plates.

Carrying out anorexic plan reduction on
dense plan diagrams has a variety of useful
implications for improving both the efficiency
of the optimizer and the choice of execution
plan. Its most important utility, as described
in the following subsection, is that it supports
the identification of plans that are robust to
errors in selectivity estimates. Selectivity es-
timation errors are a chronic problem faced
by database query optimizers over the past
several decades, and arise due to a variety of
reasons, including outdated statistics, attribute-
value independence assumptions, and coarse
summaries [14]. The goal in the anorexic ap-
proach is to identify robust plans that are rel-
atively less sensitive to such selectivity errors.
In a nutshell, to “aim for resistance, rather than
cure”, by identifying plans that provide com-
paratively good performance over large regions
of the selectivity space. Such plan choices are
especially important for industrial workloads
where global stability is as much a concern as
local optimality [12].

3.4 Selecting Robust Plans

The selectivity error issue was investigated
from both theoretical and empirical perspec-
tives in [9]. Through extensive experimenta-
tion on a leading commercial optimizer with a
rich suite of multi-dimensional query templates
operating on a variety of logical and physical
database schemas, it was demonstrated that
plan diagram reduction typically produces plan
choices that substantially curtail the adverse ef-
fects of selectivity estimation errors. Therefore,
it clearly has the potential to improve per-
formance in general, especially for errors that
lie within the swallower’s optimality region,
i.e. its “endo-optimal” region.

Consider a query instance whose optimizer-
estimated location in the selectivity space is q

e
,

and denote the optimizer’s optimal plan choice
at q

e
by P

oe
. Due to errors in the selectivity es-

timates, the actual location of q
e

could be differ-
ent at execution-time – denote this location by
q
a
, and the optimizer’s optimal plan choice at

q
a

by P
oa

. Assume that P
oe

has been swallowed
by a sibling plan during the reduction process
and denote the replacement plan assigned to q

e

by P
re

.

Replacement Benefits

Our first scenario, typical of that seen in most
of the experiments, demonstrates how the re-
placement plan P

re
can provide extremely sub-

stantial improvements throughout the selectivity
space. The specific example chosen is a plan
diagram obtained with a 2D query template
based on TPC-H Q5, with selectivity variations
on the CUSTOMER and SUPPLIER relations – the
reduction was subsequently carried out with
λ = 10%. On this plan diagram, consider the es-
timated location q

e
= (0.36, 0.05) and a sample

set of actual locations q
a

– for instance, along
the principal diagonal of S. For this scenario,
the costs of P

oe
(P45), P

re
(P17) and P

oa
(the

optimal plan at each q
a

location) are shown in
Figure 6(a) – note that the costs are measured
on a log scale.

It is clear from Figure 6(a) that the replace-
ment plan P

re
provides orders-of-magnitude ben-

efit with respect to P
oe

. In fact, the error-
resistance is to the extent that it virtually pro-



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 8

0,0 20,20 40,40 60,60 80,80 100,100
10

1

10
2

10
3

10
4

10
5

10
6

E
s
ti
m

a
te

d
 P

la
n
 C

o
s
t

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
45

)

P
re

 (P
17

)

P
oa

(a) Beneficial Impact

0,0 20,20 40,40 60,60 80,80 100,100
10

1

10
2

10
3

10
4

10
5

E
s
ti
m

a
te

d
 P

la
n
 C

o
s
t

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
26

)

P
re

 (P
34

)

P
oa

(b) Adverse Impact

Fig. 6. Impact of Plan Replacement

vides “immunity” to the error since the per-
formance of P

re
is close to that of the locally

optimal plan P
oa

throughout the space – note
that is in spite of the endo-optimal region of
P

re
constituting only a very small fraction of

this space.

Replacement Problems
While performance improvements are usually
the order of the day, occasional situations are
also encountered wherein a replacement plan
performs much worse in its exo-optimal re-
gion than the original optimizer choice, that is,
where P

re
performs worse than P

oe
at q

a
. A par-

ticularly egregious example, arising from the
same plan diagram described above, is shown
in Figure 6(b) for q

e
= (0.03, 0.14) – notice

here that it is now the replacement plan P
re

(P34), which is orders-of-magnitude worse than
P

oe
(P26) in the presence of selectivity errors.

The above example highlights the need to
establish an efficient criterion of when a specific
swallowing is globally safe, that is, within the λ-
threshold throughout the space. To achieve this
objective, a generalized mathematical model
of the behavior of plan cost functions over
the selectivity space was designed in [9]. The
model, although simple, is sufficient to accu-
rately capture the cost behavior of all plans
that have arisen from the experimental query
templates, and is the first such characterization
for industrial-strength optimizers.

Using this model, the following powerful
result was proved: Safety checks on only the
perimeter of the selectivity space are sufficient
to decide the safety of reduction over the en-
tire space. These checks involve the costing
of “foreign plans”, that is, of costing plans in
their exo-optimal regions, a feature that has
become available in the current versions of
several industrial-strength optimizers. Apart
from providing reduction safety, foreign-plan
costing can be additionally leveraged to both
(a) enhance the degree of reduction of the
plan diagram, and (b) improve the complex-
ity characteristics of the reduction process, as
compared to the earlier CostGreedy algorithm.

Overall, the new approach called SEER
(Selectivity-Estimate-Error-Resistance),
provides an effective and safe mechanism for
identifying robust plans that are resistant, as
compared to the optimizer’s original choices,
to errors in the base relation selectivity
estimates. Further, LiteSEER, an optimally-
efficient light-weight heuristic version of SEER
that very cheaply provides a high degree of
safety by restricting its attention to only the
corners of the selectivity space, has also been
developed.

A particularly noteworthy aspect of these
techniques is that their performance guarantees
apply at the level of individual queries. This is in
marked contrast to the aggregate basis of prior
proposals in the literature, which made them
difficult to use in practice. Further, since the
optimizer is treated as a black-box, the SEER
approach is inherently (a) completely non-



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 9

intrusive, and (b) capable of handling what-
ever SQL is supported by the system. Equally
importantly, no additional information beyond
that provided by the engine’s API interface is
expected.

Viewed in toto, the results presented in [9]
indicate that a large percentage of optimizer
choices over the parameter space can be im-
proved through robust replacements.

3.5 Run-time Applications
Apart from aiding optimizer design, plan dia-
grams can also be used in operational settings.
Specifically, since they identify the optimal set
of compile-time plans, they can be used at
run-time to immediately identify the best plan
for the current query without going through
the time-consuming optimization exercise. Fur-
ther, they can prove useful to adaptive plan
selection techniques [4], which, based on run-
time observations, may dynamically choose to
re-optimize the query and switch plans mid-
way through the processing. In this context,
plan diagrams can help to eliminate the re-
optimization overheads incurred in determin-
ing the substitute plan choices. The reduced
plan diagrams, on the other hand, help to both
minimize the number of invocations of the
re-optimization process, as well as the likeli-
hood of requiring a plan switch after the re-
optimization.

3.6 Online Robust Plans
The SEER algorithm is an off-line approach in
that it uses prior knowledge of the POSP set
of plans in order to make the replacements.
In practice, however, we would ideally like
to have the robustness feature to be organ-
ically integrated within the optimizer, rather
than generated as a post-facto exercise, and by
virtue of this integration, making it directly ap-
plicable to ad-hoc individual queries. This goal
was achieved in [1] through an algorithm called
EXPAND, which judiciously expands the can-
didate set of sub-plans that are retained at each
node of the plan enumeration lattice during the
core dynamic-programming exercise. That is,
instead of merely forwarding the cheapest sub-
plan from each node in the lattice, a train of

sub-plans is sent, with the cheapest being the
“engine”, and stabler alternative choices being
the “wagons”. To ensure that the overheads of
maintaining trains instead of engines are not
impractically large, a four-stage pruning pro-
cess that incorporates both cost and robustness
aspects is used to ensure that only wagons that
are plausible replacements for the engine are
retained. The final plan selection is made at the
root of the dynamic-programming lattice from
amongst the set of complete plans available
at this terminal node, subject to user-specified
cost and stability criteria.

The Expand scheme has been incorporated
in the kernel of the public-domain PostgreSQL
database engine, and a variety of plan selection
algorithms that cover a spectrum of design
tradeoffs have been been implemented and
evaluated on benchmark environments. The
results have shown that a significant degree
of robustness can be obtained with relatively
minor conceptual changes to current optimiz-
ers, especially those supporting a foreign-plan-
costing feature. Expand often delivers plan
choices that eliminate more than two-thirds of
the performance gap (between P

oe
and P

oa
) for a

non-trivial number of error instances. Equally
importantly, the replacement is almost never
materially worse than the optimizer’s original
choice. In a nutshell, the replacement plans
“often help substantially, but never seriously hurt”
the query performance. Therefore, the Expand
approach results in an intrinsically improved
optimizer that directly and efficiently produces
high-quality plan diagrams in a completely
online fashion.

Summary

Overall, the primary message of this work is
that, although it may appear unlikely at first
glance, it is indeed feasible to efficiently pro-
duce plan diagrams that simultaneously possess the
highly desirable properties of being online, anorexic,
safe and robust. We expect that this result will
have a significant impact on the design of next-
generation database query optimizers.



CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

4 CLOSING REMARKS

Our objective here was to make the case to
readers that a rich source of both conceptually
challenging and practically relevant technical
problems exists in the world of database en-
gines. Notwithstanding this encouraging envi-
ronment, the attention of the research commu-
nity at large is focussed primarily on middle-
ware and application issues. It is our fond hope
that the current article may serve to catalyze at-
tention towards database systems topics in the
Indian research community, especially among
the graduate students, and help engine study
reclaim its former position of eminence in the
research mainstream.

REFERENCES

[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal and J. Har-

itsa, “On the Stability of Plan Costs and the Costs of Plan

Stability”, PVLDB Journal, 3(1), 2010.

[2] S. Chaudhuri, “An Overview of Query Optimization in

Relational Systems”, Proc. of ACM Symp. on Principles of

Database Systems (PODS), 1998.

[3] S. Chen, P. Gibbons, and S. Nath, “Rethinking Database Al-

gorithms for Phase Change Memory”, Proc. of 5th Biennial

Conf. on Innovative Data Systems Research (CIDR), 2011.

[4] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query

Processing”, Foundations and Trends in Databases, Now Pub-

lishers, 1 (1), 2007.

[5] M. Garey and D. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W H Freeman &

Co, 1979.

[6] J. Haritsa, “The Picasso Database Query Optimizer Visual-

izer”, PVLDB Journal, 3(2), 2010.

[7] J. Haritsa, “Plan Diagrams: Visualizing Database Query

Optimizers”, Annals of Indian National Academy of Engineer-

ing (INAE), Volume VIII, 2011.

[8] D. Harish, P. Darera and J. Haritsa, “On the Production of

Anorexic Plan Diagrams”, Proc. of 31st Intl. Conf. on Very

Large Data Bases (VLDB), 2007.

[9] D. Harish, P. Darera and J. Haritsa, “Identifying Robust

Plans through Plan Diagram Reduction”, PVLDB Journal,

1(1), 2008.

[10] A. Hulgeri and S. Sudarshan, “Parametric Query Opti-

mization for Linear and Piecewise Linear Cost Functions”,

Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB),

2002.

[11] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-

intrusive Parametric Query Optimization for Nonlinear

Cost Functions”, Proc. of 29th Intl. Conf. on Very Large Data

Bases (VLDB), 2003.

[12] L. Mackert and G. Lohman, R
∗ Optimizer Validation and

Performance Evaluation for Local Queries, Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, 1986.

[13] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of

Database Query Optimizers”, Proc. of 31st Intl. Conf. on Very

Large Data Bases (VLDB), 2005.

[14] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO –

DB2’s LEarning Optimizer”, Proc. of 27th Intl. Conf. on Very

Large Data Bases (VLDB), 2001.

[15] www.artlex.com.h/ArtLex/c/cubism.html

[16] en.wikipedia.org/wiki/Phase-change memory

[17] dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

[18] en.wikipedia.org/wiki/SQL:2008

[19] www.tpc.org/tpch

[20] www.tpc.org/tpcds

Jayant R. Haritsa is a professor of
database systems in the Supercomputer
Education & Research Centre and the
Department of Computer Science & Au-
tomation at the Indian Institute of Science,
Bangalore. He received the BTech degree
in Electronics and Communications Engi-
neering from the Indian Institute of Tech-
nology (Madras), and the MS and PhD

degrees in Computer Science from the University of Wisconsin
(Madison). He is a Fellow of IEEE, INAE, NASI and IASc, and
is also a Distinguished Scientist of ACM. He is a recipient of
the Swarnajayanti Fellowship, the Vikram Sarabhai Research
Award, the Shanti Swarup Bhatnagar Prize, and the Distin-
guished Alumnus Award of IIT Madras.


