1034 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

Scheduling for Overload
in Real-Time Systems

Sanjoy K. Baruah, Member, IEEE,
and Jayant R. Haritsa, Member, IEEE

Abstract —No on-line scheduling algorithm operating in an
uniprocessor environment can guarantee to obtain a useful processor
utilization greater than 0.25 under conditions of overload. This result
holds in the general case, where the deadlines of the input tasks can
be arbitrarily “tight.” We address here the issue of improving overload
performance in environments where there is a limit on the tightness of
task deadlines. In particular, we present a new scheduling algorithm,
ROBUST, that efficiently takes advantage of these limits to provide
improved overload performance and is asymptotically optimal. We also
introduce the concept of overload tolerance, wherein a system'’s
overload performance never falls below its design capacity, and
describe how ROBUST may be used to construct overload tolerant
systems.

Index Terms —Real-time systems, uniprocessor scheduling, overload
tolerance, performance evaluation, processor utilization.

O

1 INTRODUCTION

BROADLY defined, a real-time system is a processing system that is
designed to handle workloads whose tasks have completion
deadlines. The objective of the real-time system is to meet these
deadlines; that is, to process tasks before their deadlines expire.
Therefore, in contrast to conventional computer systems where the
goal usually is to minimize task response times, the emphasis here
is on satisfying the timing constraints of tasks.

In order to achieve the goal of meeting all task deadlines, the
designers of safety-critical real-time systems typically attempt to
anticipate every eventuality and incorporate it into the design of
the system. Such a system would, under ideal circumstances,
never miss deadlines and its behavior would be as expected by the
system designers. In reality, however, unanticipated emergency
conditions may occur wherein the processing required to handle
the emergency exceeds the system capacity, thereby resulting in
missed deadlines. The system is then said to be in overload. If this
happens, it is important that the performance of the system de-
grade gracefully (if at all). A system that panics and suffers a dras-
tic fall in performance in an emergency is more likely to contribute
to the emergency, rather than help solve it.

A practical example of the above situation is the classic Earliest
Deadline First scheduling algorithm [14], which is used extensively
in uniprocessor real-time systems. This algorithm, which processes
tasks in deadline order, is optimal under normal (nonoverload) con-
ditions in the sense that it meets all deadlines whenever it is feasible
to do so [7]; however, under overload, it has been observed to per-
form more poorly than even random scheduling [12], [11]. In fact,
continuing to use the Earliest Deadline First algorithm in an emer-
gency is probably the worst thing that a system can do! In this paper,
we address the issue of designing real-time scheduling algorithms
that are resistant to the effects of system overload.

« S.K. Baruah is with the Department of Computer Science, Votey Building,
University of Vermont, Burlington, VT 05405. E-mail: sanjoy@cs.uvm.edu.

« J.R. Haritsa is with the Supercomputer Education and Research Centre, Indian
Institute of Science.

Manuscript received 22 Sept. 1993; revised 2 Oct. 1995.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105219.

0018-9340/97/$10.00 © 1997 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

1.1 Overload Performance Metrics

A general real-time model adopted in many studies is the “firm-
deadline” model [10]. In this model, only tasks that fully complete
execution before their deadlines are considered to be successful,
whereas tasks that miss their deadlines are considered worthless
and are immediately discarded without being executed to com-
pletion. For the firm-deadline model, two contending measures of
the “goodness” of a scheduling algorithm under conditions of
overload are effective processor utilization (EPU) and comple-
tion count (CC). Informally, EPU measures the fraction of time
during overload that the processor spends on executing tasks that
complete by their deadlines, while CC measures the nhumber of
tasks executed to completion during the overload interval. Which
measure is appropriate in a given situation depends, of course,
upon the application. For example, EPU may be a reasonable
measure in situations where tasks (“‘customers”) pay at a uniform
rate for the use of the processor, but are billed only if they manage
to complete, and the aim is to maximize the value obtained. By
contrast, CC makes more sense when a missed deadline corre-
sponds to a disgruntled customer, and the aim is to keep as many
customers satisfied as possible.

The research described in this paper is focused on studying the
impact of overload in uniprocessor real-time systems when EPU is
the measure of scheduler performance.l The EPU metric has been
widely used in the analysis of real-time scheduling algorithms
under conditions of overload (e.g., [15], [4], [3], [13], [17]). A de-
tailed discussion of the applicability of this metric to real-time
systems is provided in [15]. In particular, our goal is to compare
the EPU performance of on-line scheduling algorithms against that
of an optimal off-line (or clairvoyant) algorithm. On-line schedul-
ers make scheduling decisions at run-time and typically do not
possess prior knowledge about the occurrence of future events—
such schedulers are used in many real-time systems. In our per-
formance evaluation, we wish to compare the worst-case EPU per-
formance of on-line schedulers with respect to the optimal off-line
scheduler; that is, we are interested in performance guarantees.

ExAMPLE 1. To illustrate the notion of EPU, consider a uniproces-
sor system where a task T, makes a request at time 0 for
three units of processor time by a deadline of four, and task
T, makes a request at time 1 for eight units of processor time
by a deadline of 10 (as shown in Fig. 1). Clearly, no sched-
uler can schedule both T, and T, to completion. In this
situation, a scheduler that schedules T; first to completion
and then executes T, has an EPU of 0.3 over [0, 10) since T,
has to be discarded at time 10. On the other hand, a sched-
uler that executes task T, during [0, 2), and then switches to
executing T, to completion during [2, 10) has an EPU of 0.8
over [0, 10).

This example shows that, when forced to make a choice as to

which tasks to complete and which tasks to discard, it is better to

selectively complete “larger” tasks, that is, tasks with larger exe-
cution times, since they contribute more to the EPU.

1.2 The ROBUST Scheduler

The optimality results in [7] ensure that Earliest Deadline First
schedulers, which execute tasks in deadline order, guarantee an
EPU of 1.0 under normal (nonoverload) conditions. Furthermore,
it has been shown [4], [3] that no uniprocessor on-line scheduling
algorithm can guarantee an EPU greater than 0.25 under overload
(this bound is tight). Taken in conjunction, these results imply that

1. Recently, we have also begun investigating the impact of overload
with respect to CC, and an initial set of results for this metric are pre-
sented in [2].

:i__\i]} 4 time
e

Fig. 1. Effective processor utilization (EPU).

the onset of an emergency may, in general, force a deterioration in
system performance by as much as a factor of four.

The above results are applicable for the general case where the
deadlines of individual tasks can be arbitrarily “tight” or stringent.
As Stankovic et al. have pointed out in a recent survey article [17,
p. 21], these are “very restrictive assumptions [and have] only
theoretical validity. More work is needed to derive other bounds
based on more knowledge of the task set.” Our research is directed
at taking advantage of prior knowledge on the tightness of dead-
lines in the task set.

A quantitative measure of the tightness of a task is given by its
slack factor, which is defined to be the ratio between the task’s dead-
line and its execution requirement. In the research described in this
paper, we investigate the extent to which degradation in overload
performance can be reduced in environments where all tasks are
guaranteed to have a minimum slack factor. In particular, we study
the effect of slack factor on the EPU performance guarantee of
scheduling algorithms under overload. We present ROBUST
(Resistance to Overload By Using Slack Time), a new on-line uni-
processor scheduling algorithm that performs efficiently during
overload for a large range of slack factors, and is in fact asymp-
totically optimal with increasing slack factor.

1.3 Overload Tolerance

Ideally, one would like a safety-critical system to enhance its per-
formance upon the onset of an emergency in order to better deal
with the emergency. If this is not possible, we would, at the very
least, like the system to continue to provide the same level of per-
formance as was provided before the emergency occurred. Based
on this observation, we introduce here the notion of overload tol-
erance: We define a safety-critical system to be overload tolerant if
the performance of the system during overload never degrades to
below its maximal normal performance.

The 0.25 bound on EPU [4], [3] implies that overload tolerance
cannot, in general, be guaranteed by any on-line scheduling algo-
rithm. We explore, in this paper, the possibility of using faster
hardware to compensate for this fall in performance during over-
load. At first glance, one may expect that hardware four times as
fast as the original is necessary in order to compensate for the
four-fold performance degradation; however, we show here that
there exist situations wherein using the ROBUST scheduling algo-
rithm in conjunction with hardware merely twice as fast, suffices to
guarantee overload tolerance.

1.4 Related Work

While there exists a large body of literature devoted to real-time
scheduling (see [6] for a survey), much of this work has dealt with
situations where the task arrival process is a priori sufficiently
characterized. On-line scheduling algorithms, however, often have
to contend with situations where prior knowledge of the future is
not available. For this type of environment, schedulers such as

1036

Best Effort [12] and AED (Adaptive Earliest Deadline) [11] have
been proposed. Results of simulation-based experiments suggest
that these algorithms perform well under a variety of overload
situations. However, since these algorithms are based on heuris-
tics, pathological conditions exist where their performance can be
arbitrarily poor; they cannot, therefore, provide any worst-case
guarantee on EPU performance.

Of late, there has been considerable activity in theoretical
studies of overload scheduling algorithms [3], [4], [13], [8]. A
common feature of these studies is that they all consider work-
loads where tasks can have arbitrary slack factors. In contrast, our
study investigates the performance improvement that can be real-
ized for workloads where all tasks are guaranteed to have a pre-
specified minimum slack factor.

1.5 Organization

The remainder of this paper is organized as follows: In Section 2, we
precisely define our model and the notions of EPU and overload. We
present the new algorithm, ROBUST, in Section 3 and characterize
its EPU performance. In Section 4, ROBUST is proved to be asymp-
totically optimal. We then discuss methods of achieving overload
tolerance, using ROBUST, in Section 5. Finally, in Section 6, we con-
clude with a summary of the results presented here.

2 MODEL AND DEFINITIONS

In this section, we describe the workload and system models em-
ployed in our study. In addition, various definitions used in the
subsequent proofs are detailed here.

2.1 Task Model

In our task model, each input task T is independent of all other
tasks and is completely characterized by three attributes: T.a (the
request time), T.e (the execution requirement), and T.d (the rela-
tive deadline, often simply called the deadline). The interpreta-
tion of these parameters is that task T, for successful completion,
needs to be allocated the processor for T.e units of time during the
interval [T.a, T.a + T.d). We assume that the system learns of a
task’s parameters only at the instant when it makes the service
request (T.a) and that there is no a priori bound on the number of
tasks that may be generated by the real-time application executing
on the system. Finally, only tasks that fully complete execution by
their deadlines are of value to the user application; that is, all
deadlines are firm [10].

The slack factor of task T is defined to be the ratio T.d/T.e and
is denoted by T.s; it is a quantitative indicator of the tightness or
slackness of the task deadline. It is trivial to see that it is necessary
that T.s be > 1 for it to be at all possible to complete a task before
its deadline. In this study, we consider task sets where it is known
a priori that all tasks in the task set will have a slack factor of at
least f, where f > 1 is a prespecified constant.

A task T is said to be active at time-instant t if

1) it has requested service by time t (i.e,, T.a<t),

2) its service is not complete (i.e.,, T.e, > 0, where T.e, is the
task’s remaining service requirement), and

3) its deadline has not expired (i.e.,, t <T.a+ T.d).

An active task T is feasible at time tif T.e, < (T.a + T.d — t); that is,
it is still possible to meet the task’s deadline. On the other hand, an
active task is degenerate if the remaining service requirement ex-
ceeds the time remaining until its deadline. Active tasks remain in
the system until they either complete or their deadline expires,
whichever occurs earlier.

2.2 System Model

We focus our attention in this paper on the study of uniprocessor
real-time systems. Our scheduling model is preemptive; that is, a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

task executing on the processor may be interrupted at any instant
in time and its execution resumed later. There is no cost associated
with such preemption.

The system is said to be idle at time-instant t, if there are no
active tasks at time tg, or if all active tasks in the system at time t,
have their request-times equal to t,. (That is, we do not consider
tasks that arrive at time t, in determining whether the system is
idle at ty; this is a technical detail that facilitates the definitions of
the start and finish of overload, described below.)

The system is said to be in overload if no scheduling algorithm,
either off-line or on-line, can meet the deadlines of all the tasks
that are submitted to the system. As mentioned in the Introduc-
tion, the Earliest Deadline First algorithm is optimal in the sense
that it will successfully schedule any set of task requests if it is at
all possible to do so. Given this optimality of the Earliest Deadline
First algorithm, it follows that a system is in overload if the Earli-
est Deadline First algorithm fails to meet the deadline of one or
more tasks in the system. The time period for which the system is
in overload is called the overload interval. The start time of this
overload interval is the latest time instant t, t; < t, at which the
system would be idle if the Earliest Deadline First algorithm were
executed on the system. The finish time of this overload interval is
the earliest time instant t;, t; > t, at which the system is idle.

While the start time of an overload interval is independent of
the scheduling algorithm actually used in the system, the finish
time is necessarily dependent upon the scheduling decisions made
during the overload period. Consider, as an example, the situation
in Example 1. If a scheduler executes task T, to completion, then
the overload interval terminates at time-instant 10; if, on the other
hand, it executes T, to completion over the interval [1, 9), then the
overload interval terminates at time 9, since task T, is not active at
this time (in fact, T, ceases to be active at time 4).

In the Introduction, we presented an intuitive description of EPU.
Based on the above terminology, we now provide a more precise
definition: Given an overloaded time interval that starts at time t; and
finishes at time t;, the EPU over this time interval is computed by

z Xi [ts' tf)
_ ieC
EPU = e
where C denotes the set of tasks that successfully complete (i.e.,
meet their deadlines) during [t t), and Xxi[t,, t;) represents the
service received by task i during [t, t;).

The EPU of a system is the lowest EPU performance measured
over any overloaded interval and over any task sequence; that is, it
is the worst-case performance guarantee. In the remainder of this
paper, we will use this metric as the performance measure.

3 THE ROBUST ALGORITHM

In this section, we present a new on-line scheduling algorithm
called ROBUST (Resistance to Overload By Using Slack Time) and
analyze its EPU performance. For ease of understanding, we first
discuss the specific case where the slack factor of all tasks is at
least 2.0, and then present the general case where the minimum
slack factor may be an arbitrary value.

3.1 Minimum Slack Factor = 2

For this case, we will show that ROBUST guarantees an EPU of 0.5
during overload. We first provide a high-level overview of the
operation of ROBUST; a more detailed description then follows.

3.1.1 Overview of ROBUST
1) The ROBUST algorithm partitions an overloaded interval

into an even number of contiguous phases—Phase-1, Phase-
2, ..., Phase-2n.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

2) The length of each even (numbered) phase is equal to that of
the preceding odd (numbered) phase. That is, the length of
Phase-2i is equal to the length of Phase-(2i — 1) forall i, 1 <i<n.

3) The algorithm does “useful” work—i.e., executes tasks to
completion—during each odd phase. It accomplishes this by
nonpreemptively executing one task to completion during
each odd phase, thus ensuring that the time spent on this
task contributes to the EPU.

4) After each odd phase, the following even phase is used to

set up the execution of the “most valuable” task for the next
odd phase. By most valuable task, we mean the task that can
immediately contribute the most to the EPU; as discussed in
Example 1, this task is the largest task, that is, the task with
the maximum execution time among all the currently feasi-
ble tasks.
Note that it is not important that any task execute to com-
pletion in the even phases—any such completion is a bonus,
and contributes to increasing the EPU to above the guaran-
teed value of one-half.

3.1.2 Detailed Description of ROBUST
Suppose that the overloaded interval begins at time t. Then, let
tasks T, T/”, ..., T\ be the set of tasks that are feasible at this

time. Let task T be the currently most valuable task in this set

from an EPU perspective; that is, T .e > T®.e foralli,1<i<n,.

max”*

Also, let e represent the remaining amount of processor time that
is required by task T at time t. Then, Phase-1 is defined to be

max
the interval [t, t + e{”), and Phase-2 the interval [t + ¢!, t + 2¢!”).
At the start of Phase-1, the scheduler commits itself to non-
preemptively executing task Tr(nla)X to completion; that is, for the en-

tire duration of the phase. Suppose now that a new task request,
Thews arrives at some time during this phase. Since the processor
must execute T,f;x during the entire phase, it cannot begin exe-

cuting task T, until after Phase-1 has terminated. We consider
two cases:

T .- 2T (e:In this case, the new task is more valuable than the

max*

currently executing task. However, since the slack factor of task
Thew IS at least two, it follows that

T d22-T 62T, e+TH

max”*

@

r

ex2T.,, - e+e

This means that although task T, is given no service in Phase-1,
it is guaranteed to still be feasible at the end of this phase.

T, e<T

ma;

«- €1 In this case, the new task is less valuable than the
currently executing task, and it is possible that task T, may be-
come degenerate by the end of the phase.

The important point to note in the above cases is that committing
to the nonpreemptive execution of task Trf};x in Phase-1 does not
incur the danger of discarding a task that could potentially con-
tribute more to the EPU than task T .

Upon the termination of Phase-1, Algorithm ROBUST has exe-
cuted task Tn(f;x to completion. It now switches to a preemptive
mode of execution for Phase-2. At the start of Phase-2, the cur-
rently most valuable task is scheduled. For the duration of this
phase, whenever a new task makes a request, ROBUST compares
the execution requirement of the new task and the execution re-
quirement of the currently executing task: If the execution re-

quirement of the new task is greater, ROBUST preempts the cur-
rent task and begins executing the new one, otherwise, the current

1037

task continues execution. If the currently executing task completes
execution, the most valuable remaining feasible task is scheduled.

We have described above how ROBUST behaves in the first
pair of phases. The remaining odd and even phases are executed
in an identical manner to that just described for the first odd phase
and the first even phase, respectively. That is, during each odd
phase Phase-(2j — 1), ROBUST nonpreemptively executes the task
T . which has the largest execution requirement of all the feasi-
ble tasks that are active at the start of the phase, and, during each
even phase Phase-2j, ROBUST switches to a preemptive mode,
such that, throughout the phase, the processor is at each instant
executing the currently active task with the largest execution re-
quirement. The process ends if, at the termination of a phase, the
system is found to have become idle, signaling the termination of
overload—it is easy to prove that this can only happen at the end
of an even phase, thereby guaranteeing that the total number of
phases in the overload interval is even.

We now prove that the ROBUST algorithm described above
guarantees an EPU of 0.5.

THEOREM 1. The ROBUST algorithm achieves an EPU of at least 0.5
during the overload interval when all tasks have a slack factor of at
least two.

PROOF. Suppose that the ROBUST algorithm divides the overload
interval into 2n phases numbered 1 through 2n. Observe
that the processor is guaranteed to be “useful,” (i.e., exe-
cuting tasks that do complete by their deadlines) during all
the odd phases. Furthermore, the length of each odd phase
is exactly equal to the length of the succeeding even phase.
The EPU over the entire overloaded interval is, therefore,

. zin:l[length of Phase-(2i - 1) |
zjz:l[length of Phase-j |

1
5.

3.2 Arbitrary Minimum Slack Factors

Theorem 1 shows that when we move from general task sets
which have no slack constraints (i.e., minimum slack factor of one)
to task sets with minimum slack factor of two, the EPU guarantee
goes up from 0.25 to 0.5. In this subsection, we extend our analysis
to profile the improvement in EPU performance when the mini-
mum slack factor is an arbitrary value, f. We present a generalized
version of the ROBUST algorithm and show that it provides an
EPU of (f — 1)/f during the overload interval.

3.2.1 The Generalized ROBUST Algorithm

Consider an environment where all tasks are guaranteed to have a
slack factor of at least f, f > 1. The Generalized ROBUST algorithm
behaves exactly like the ROBUST algorithm described in Section 2,
except that the length of every even phase Phase-2i is set to 1/(f — 1)
times the length of the preceding odd phase Phase-(2i — 1). Using
proof techniques similar to those of Theorem 1, it is straightfor-
ward to prove that the processor is “useful” during all the odd
phases, yielding the following theorem:

THEOREM 2. The Generalized ROBUST algorithm achieves an EPU of at
least (f — 1)/f during the overload interval.

When we refer to the ROBUST algorithm for the remainder of this
paper, we will mean the generalized algorithm described here.

1038

4 OPTIMALITY OF ROBUST

In the previous section, we characterized the EPU performance of
ROBUST. We now investigate as to whether this is the best per-
formance that can be attained; that is, is ROBUST optimal?

The following theorem establishes an upper bound on the EPU
that is attainable for task sets with arbitrary minimum slack factor.

THEOREM 3. No on-line scheduling algorithm can guarantee an EPU
greater than [f1/(f] + 1) during overload in an environment
where all incoming tasks have a slack-factor of at least f.

PROOF. Construct a set of 2[f] tasks which all have an execution
requirement of 1.0 and a relative deadline of f. Then, assign
a request time of 0.0 to [] tasks and a request time of 1 — € (0
< € < 1), to the remaining [] tasks. It is simple to see that
while it is straightforward to schedule [f] tasks to comple-
tion, no on-line scheduler can successfully schedule [f] + 1
tasks. For € — 0, therefore, an EPU greater than [f1/(f] + 1)

cannot be obtained on the overloaded interval [0, [f]+ 1 - €).00

An important point to note here is that the bound established
by the above theorem is not tight. For example, for f = 2, it gives an
EPU bound of 0.67, whereas we have been able to separately prove
a bound of 0.625 for this case [1]. However, the theorem does es-
tablish that the Generalized ROBUST algorithm provides a per-
formance that is at most

- (f-1)/t c1 (f-y/f 2
[/(7+1) (f+1)/(f+2) f(f+1)

fractionally off from the optimal. Thus, with increasing slack factor,
the ROBUST algorithm is asymptotically optimal. As a practical
matter, the ROBUST algorithm is guaranteed to be within 10 percent
of the optimal for slack factors of 4.0 or greater (i.e., 2/(f(f + 1)) < 0.1
for all f > 4). Furthermore, depending on the looseness of the
bound of Theorem 3, the ROBUST algorithm may turn out to be
within 10 percent of the optimal at even lower slack factors. In fact,
it is even possible that the algorithm may itself be optimal—we are
currently studying this issue. In summary, the ROBUST scheduler
appears to provide, by using task slack times, a reasonably effi-
cient solution to the problem of performance degradation during
overload. In the next section, we move on to discussing how RO-
BUST can be used to achieve overload tolerance.

5 OVERLOAD TOLERANCE

As mentioned in the Introduction, we define a safety-critical sys-
tem to be overload tolerant if the performance of the system under
conditions of overload never degrades to below its maximal nor-
mal performance. The 1/4 bound on EPU in overload conditions
[4] implies that no on-line scheduling algorithm can in itself guar-
antee overload tolerance.

One method of achieving overload tolerance in uniprocessor
systems, despite this inherent limitation, is to ensure that the proc-
essor is not permitted to become overloaded in the first place. This
could be achieved, for example, by assigning values to all tasks in
the system, and choosing for execution a maximal-valued subset of
tasks (from among the set of all tasks making requests) which do
not overload the processor. (The problem of determining such a
maximum-valued subset is, in fact, related to the Knapsack Prob-
lem, which is known to be NP hard [9].) In any event, such an ap-
proach is necessarily application-specific, in that the assignment of
values to individual tasks must be made based upon the unique
characteristics of the particular application system that is being
designed: e.g., the importance of the task to the system.

In this section, we propose a mechanism for achieving this goal
which is based on using faster hardware.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

Consider a workload with no slack restrictions except that all

tasks be feasible upon arrival, that is, T.s > 1 for all tasks. If these
tasks are executed on hardware that is f times as fast as the hardware
for which they had been specified, the execution requirement of the

tasks is reduced to Lt —their slack factor is therefore > f. The be-

havior of a system whose hardware is upgraded in this fashion
changes in two ways from that exhibited by the original system:

e First, the system is less likely to go into overload, since its
“capacity” is greater. Any load that is no more than f times
the capacity of the original system will not push the system
into overload.

e For larger loads, overload will occur. But, if the ROBUST al-
gorithm is used to schedule tasks during the overloaded
time periods, the EPU will always be at least (f — 1) times the
original system’s capacity. This is because, by Theorem 2,
the performance of the system will not degrade by more
than a factor of (f — 1)/f from its current performance level
of f times the capacity of the original system, i.e., to (f — 1)
times the original system’s maximum capacity.

This is illustrated in Fig. 2, where performance is plotted against
system load, with both axes labeled to percentages of the capacity
of the original system. The beaded line profiles the behavior of the
original system. The solid line represents the behavior of the sys-
tem when installed on hardware twice as fast as the initial hard-
ware, and with the ROBUST algorithm used for scheduling during
overload. Notice that the performance of this new system never de-
grades to below the maximum performance of the original system, even
under extreme overloads. This implies that, in order to make a safety-
critical system overload-tolerant, it is sufficient to double the
speed of the processor and use the ROBUST scheduler.

‘V 200
0
R (ROBUST)
K
D oo oo i,
o 100 ;
N : :
E : (Original System)

25 : :

TO00 I00

LOAD (%-age of original system capacity)

Fig. 2. The effect of load on system behavior .

5.1 Implementation Issues

We now discuss a few implementation issues associated with the
above method of achieving overload tolerance.

In the above analysis, it was assumed that the use of hardware f
times as fast as the original would result in a decrease in execution
requirements of all tasks by a factor of f. This may not always be
the case in actual systems: For example, if task execution times are
dependent upon factors external to the system, then speedup in
system hardware will not have a proportional effect on execution
time reduction.

Another problem associated with designing a system to achieve
the performance profile attributed to ROBUST in Fig. 2 is that the
approach outlined above requires online identification of the onset
of overload, and switching from an optimal scheduler (e.g., Earliest
Deadline First) to ROBUST during overload. Identifying the exact
beginning of an overloaded interval online is, in general, impossi-
ble. Consider, however, a set of task requests that does not over-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

load the original system (i.e., a set of requests such that the load is
< 100% the capacity of the original system), and suppose that in-
stalling this set on hardware twice as fast as the original halves the
execution requirements of all tasks in the set. In this case, it is eas-
ily verified that using ROBUST to make scheduling decisions on
this set of tasks upon the new hardware results in all the tasks
completing by their deadlines. When the intent is to construct
overload tolerant systems, therefore, it suffices to use ROBUST
under all circumstances, both overloaded and normal. The worst-
case behavior of the system will now be as shown in Fig. 3.

W 200

0

R

K

D (ROBUST)
100 oo .

0 :

N

E : (Original System)
25 s‘... secees

00 700
LOAD (%-age of original system capacity)

Fig. 3. Performance profile when ROBUST is used over the entire
range of loads.

5.2 Optimality

We have seen that a hardware speedup by a factor of two can be
sufficient for guaranteeing overload tolerance. We now show that
it is absolutely necessary to have hardware at least twice as fast as
the original in order to guarantee overload tolerance.

THEOREM 4. For arbitrary task systems, a hardware speedup by a factor
of two is necessary for overload tolerance.

PROOF. Let € be a constant, 0 < e < 1. Let A be a constant, 0 < 4 <
€/2. Consider a task system Ty, T,, with T;.a=T,a=0, T;e=
T,e=(1-A), T;.d = To.d = 1. If this task system is now in-
stalled on hardware (2 — €) times as fast as the original, the
execution requirements may be reduced to (1 — 1)/(2 - €).
Since 2(1 -)/(2 — €) > 1, only one of the two tasks will com-

plete on the new hardware, yielding an EPU of (1 — 1)/(2 — €)
over the interval [0, 1). The performance of the new system
is, therefore, EPU x speedup = 3£ x (2 -€) = (1- 1). Since

A>0, (1 - 2) <1, the performance during overload is conse-
quently strictly less than the maximal performance under
normal conditions. O

6 CONCLUSIONS

It has been shown [3], [4] that no on-line uniprocessor scheduling
algorithm can guarantee an EPU greater than 0.25 under condi-
tions of overload for arbitrary task sets. We have presented here
Algorithm ROBUST (Resistance to Overload By Using Slack Time),
an on-line scheduling algorithm that is not limited by the 0.25
bound for task sets that guarantee a minimum slack factor for
every task. We have discussed how system designers could use
the ROBUST scheduler to enhance the performance of their sys-
tems. In particular, we demonstrated that, with ROBUST, dou-
bling the processor speed is sufficient to ensure that the system’s
EPU never falls below the original system’s capacity.

We explored the optimality of the ROBUST algorithm and proved
that it is asymptotically optimal with respect to task slack factor. Spe-

1039

cifically, we showed that its performance is guaranteed to be within 10
percent of the optimal for slack factors greater than four.

The scheduling algorithms presented in this paper require the
slack factor of all tasks to be greater than a certain minimum value
in order for their performance guarantees to hold. In practice, the
semantics of particular applications may permit a trade-off be-
tween slack factors of different tasks. We suggest that maximizing
the minimum slack factor in a system of tasks be a design goal for
the developers of safety-critical real-time systems.

ACKNOWLEDGMENTS

A preliminary version of this paper, entitled “ROBUST: A Hard-
ware Solution to Real-Time Overhead,” was presented at the ACM
Sigmetrics Conference on Measurement and Modeling of Com-
puter Systems, May 1993, Santa Clara, California. Sanjoy K.
Baruah was supported in part by U.S. National Science Founda-
tion grants OSR-9350540 and CCR-9410752, and by University of
Vermont grant PSC194-3. J.R. Haritsa was supported in part by a
grant from the Department of Science and Technology, Govern-
ment of India.

REFERENCES

[1] S.Baruah and J. Haritsa, “ROBUST: A Hardware Solution to Real-
Time Overload,” Proc. 13th ACM SIGMETRICS Conf., pp. 207-216,
Santa Clara, Calif., May 1993.

[2] S. Baruah, J. Haritsa, and N. Sharma, “On-Line Scheduling to
Maximize Task Completions,” Proc. 15th Real-Time Systems Symp.,
San Juan, Puerto Rico, Dec. 1994.

[3] S.Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Ros-
ier, D. Shasha, and F. Wang, “On the Competitiveness of On-Line
Real-Time Task Scheduling,” Proc. 12th Real-Time Systems Symp.,
San Antonio, Tex., Dec. 1991.

[4] S.Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D.
Shasha, “On-Line Scheduling in the Presence of Overload,” Proc.
32nd Ann. IEEE Symp. Foundations of Computer Science, San Juan,
Puerto Rico, Oct. 1991.

[5] S. Biyabani, J. Stankovic, and K. Ramamritham, “The Integration
of Deadline and Criticalness in Hard Real-Time Scheduling,”
Proc. Ninth Real-Time Systems Symp., Dec. 1988.

[6] S.Cheng, J. Stankovic, and K. Ramamritham, “Scheduling Survey,”
Hard Real-Time Systems Tutorial, Dec. 1988.

[71 M. Dertouzos, “Control Robotics: The Procedural Control of Physi-
cal Processors,” Proc. IFIP Congress, pp. 807-813, 1974.

[8] J. Dey, J. Kurose, D. Towsley, C. Krishna, and M. Girkar, “Efficient
On-Line Processor Scheduling for a Class of IRIS Real-Time
Tasks,” Proc. 13th ACM SIGMETRICS Conf., pp. 217-228, Santa
Clara, Calif., May 1993.

[9] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[10] J. Haritsa, M. Carey, and M. Livny, “On Being Optimistic about
Real-Time Constraints,” Proc. 1990 ACM Principles of Database Sys-
tems Symp., Apr. 1990.

[11] J. Haritsa, M. Carey, and M. Livny, “Earliest-Deadline Scheduling

for Real-Time Database Systems,” Proc. 12th IEEE Real-Time Sys-

tems Symp., San Antonio, Tex., Dec. 1991.

E. Jensen, M. Carey, and M. Livny, “A Time-Driven Scheduling

Model for Real-Time Operating Systems,” Proc. IEEE Real-Time

Systems Symp., Dec. 1985.

[13] G. Koren and D. Shasha, “D®*": An Optimal On-Line Scheduling
Algorithm for Overloaded Real-Time Systems,” Proc. 13th Real-
Time Systems Symp., Phoenix, Ariz., Dec. 1992.

[14] C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” J. ACM, Jan. 1973.

[15] C. D. Locke, “Best-Effort Decision Making for Real-Time Sched-
uling,” PhD thesis, Computer Science Dept., Carnegie Mellon
Univ., 1986.

[16] A. Mok, “Fundamental Design Problems of Distributed Systems
for the Hard Real-Time Environment,” PhD thesis, Laboratory for
Computer Science, Massachusetts Inst. of Technology, May 1983.

[17] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo, “Implications
of Classical Scheduling Results for Real-Time Systems,” Computer,
June 1995.

[12]

