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Abstract -- Incremental mining algorithms that can efficiently derive the current, mining output by 
ut,ilizing previous mining results are attractive to business organizations since data mining is typically 
a resource-intensive recurring activity. In this paper, we present the DELTA algorithm for the ro- 
bust and efficient incremental mining of association rules on large market basket databases. DELTA 
guarantees efficiency by ensuring that, for any dataset, at most three passes over t,he increment and 
one pass over the previous database are required to generate the desired rules. Further, it. handles 
“multi-support” environments where the support requirements for t,he current mining differ from those 
used in the previous mining, a feature in tune with the exploratory nature of the mining process. 1% 
present a performance evaluation of DELT.4 on large databases over a range of increment sizes and 
data distributions, as well as change in support requirements. The experimental results show t,hat. 
DELTA can provide significant improvements in execution times over previously proposed incremental 
algorithms in all these environments. In fact, for many workloads, its performance is close t,o that, 
achieved by an optimal, but practically infeasible, algorithm. 0 2000 Elsevier Science Ltd. All rights reserved 
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1. Ii’JTRODlJCTION 

In many business organizations, t,he historical database is dynamic in that, it is pc%odic:ally 

updated with fresh data. For such environments, data mining is not a one-time operat,ion but 

a recurring activity, especially if the database has been significantly updated since t,htJ previous 

mining exercise. Repeated mining may also be required in order to evaluate the effects of business 

st,rategies that have been implemented based on the rcsult,s of the previous mining. In an overall 

sclnse, mining is essentially an exploratory activity and therefore, by its very nat,ure, operat,cs ilS a 

feedback process wherein each new mining is guided by the results of the previous mining. 

In the above context, it, is attractive to consider the possibility of using the results of the previous 

mining operations to minimize the amount of work done during each new mining operation. That, is. 

given a previously mined database DB and a subsequent increment clb to this database, to efficient,l> 

mine dh and DB U db. Mining db is necessary to evaluate the effect,s of business strategies; whereas 

mining DB U dh is necessary to maintain the updated set of mining rules. Such “incremental” 

mining is the focus of t,his paper. Practical applicat,ions where incremental mining t,echniques 

are especially useful include data warehouses and Web mining since these systems are ronstantl> 

updated with fresh data - on the web, for instance, about, one million pages are added daily [la]. 

We consider here the design of incremental mining algorithms for databases that can be rep 

resented as a two-dimensional matrix, with one dimension being a (fixed) set, of possibiliticls, mcl 

the other dimension being a dynamic history of instances, with each instance recording a ,joint 

occurrence of a subset8 of these possibilities. A canonical example of such a matrix is t,hc “market 

basket” database [l], wherein the possibilities are the items that are on sale by the st,orct, and t,ho 

instances record the specific set of items bought by each customer. For ease of exposition. ~(3 will 

assume a market basket database in the remainder of this paper. 

Within the above framework, we focus in particular on the identification of ussocintion rules [I]? 

that is, rules which establish interesting correlations about thejoint, occurrence of items in custornol 

t Recommended by Felipe Carino 
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purchases - for example, “Eighty percent of the customers who bought milk also bought cereal”. 
Association rules have been productively used in a variety of applications ranging from bookstores 
(e.g. when you purchase a book at Amazon.com, the site informs you of the other books that have 

been typically bought by earlier purchasers of your book) to health care (e.g. in detecting shifts 
in infection and antimicrobial resistance patterns in intensive care units [7]). 

Since the association rule problem is well-established in the database research literature (see 
[l, 191 for complete details), we assume hereon that the reader is familiar with the concepts and 
algorithmic techniques underlying these rules. In particular, we assume complete knowledge of the 
classical Apriori algorithm [3]. 

1.1. The State-of-the- Art 

The design of incremental mining algorithms for association rules has been considered earlier 
in [5, 8, 9, 10, 11, 181. While these studies were a welcome first step in addressing the problem 
of incremental mining, they also suffer from a variety of limitations that make their design and 
evaluation unsatisfactory from an “industrial-strength” perspective: 

Effect of Skew The effect of temporal changes (i.e. skew) in the distribution of database values 
between DB and db has not been considered. However, in practical databases, we should 

typically expect to see skew for the following reasons: (a) inherent seasonal fluctuations in 
the business process, and/or (b) effects of business strategies that have been put into place 
since the last mining. So, we expect that skew would be the norm, rather than the exception. 

As we will show later in this paper, the performance of the algorithms presented in [ll, 181 is 
sensitive to the skew factor. In fact, their sensitivity is to the extent that, with significant skew 
and substantial increments, they may do worse than even the naive approach of completely 
ignoring the previous mining results and applying Apriori from scratch on the entire current 
database. 

Size of Database The evaluations of the algorithms has been largely conducted on databases 

and increments that are small relative to the available main memory. For example, the 
st,andard experiment considered a database with 0.1 M tuples, with each tuple occupying 
approximately 50 bytes, resulting in a total database size of only 5 MB. For current machine 

configurations, this database would completely fit into memory with plenty still left to spare. 

Therefore, the ability of the algorithms to scale to the enormous disk-resident databases that 
are maintained by most business organizations, has not been clearly established. 

Characterizing Efficiency Apart from comparing their performance with that of Apriori, no 
quantitative assessment has been made of the efficiency of these algorithms in terms of 
their distance from the optimal, which would be indicative of the scope, if any, for further 
improvement in the design of incremental algorithms. 

Incomplete Results Almost all the algorithms fail to provide the mining results for solely the 
increment, db. As mentioned before, these results are necessary to help evaluate the effects 

of business strategies that have been put into place since the previous mining. 

Changing User Requirements It is implicitly assumed that the minimum support specified by 
the user for the current database (DB U db) is the same as that used for the previously 
mined database (DB). However, in practice, given mining’s exploratory nature, we could 
expect user requirements to change wit,h time, perhaps resulting in different minimum support 
levels across mining operations. Extending the algorithms to efficiently handle such “multi- 
support” environments is not straightforward. 

Hierarchical Databases Virtually all the previous work is applicable only to “flat” databases 
where the items in the database have independent characteristics. In reality, however, 
databases are often “hierarchical”, that is, there exists a is-a hierarchy over the set of items 
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in t,he database+. For example, sweaters and ski ,jackets are bot,h instances of wint,er wear. /is 

pointed out in [16], such taxonomies are valuable since rules at lower levels ma!; not, sat,isfy 

t,he minimum support threshold and hence not, many rules are likely t,o 1,~ out,pllt_ if t,hoy 
are not considered. They are also useful to prune away many of the uninterrsting rules that 
would bc coutput at low minimum support thresholds: since, a significant fraction of the ruks 
a.t lower lwc~ls may 1w subsumed by those at higher levels. 

In this paper. we present. and evaluate an incrcmcnt~al mining algorithm called DELTA (Diff’clr- 
clntial Evaluation of Large iTemset Algorithm). The core of DELT.4 is similar to t,hc prrll%)lls algo- 
iit,lmis but, it also incorporates important design alt,eratious for addressing their at)o~c,-iiioiitioli(‘(l 

limitations. LVith these ext,ensions, DELT.4 represents a practical algorit,hm t,hat, cm lw c+fclc~tivc>l) 
utilized for real-.world databases. The main features of the design md evaluation of DELT:1 ilr(’ 

the following: 

DELTA guarant,ees that,, for the entire mining proc:css. at most ~~~WYY passr.s ovclr thr increment, 
and 07)~ prm over the previous database may be necc’ssary. WV cxprct, that such bo~mtls will 
IJC useful t,o businesses for the propcxr sclieclulinfi of their mining operations. 

For the special case where the new results arr a .s~r’)set of t,he old results, and thrreforc in 
principle requiring no processing over the previous database. DELTA is opt,imal in that it, 
requires only a sin& pnss over the increment to complet~t the mining process. 

For computing t,he negative border [19] closure: a major pt:rformance-det(~r~~liIiirlg fact,or in 
t,llcJ incrrmcnt~al mining process, a mw hybrid sc,hcme that combines the> fcxatlu.cls of c~arlic~r 
a.pproaches is implemented. 

DELTA provides complete mining results for both t,hc! clntirc current rlatal)asc~ ah ~~11 as 

solely thr incrrrricnt. 

DELT.4 can handle multi-support environments. requiring only one additional pass OV(Y thv 
current dat.abase to achieve this functionality. 

By carefully integrating optimizations previously proposed for first-t,ime hierarchical mining, 
algorithms, the DELTA design has been extended to &iciently handle incremental mining of 

hierarchical association rules. 

The performance of DELTA is evaluatc,d on a variety of dynamic databases and comparetl 
with that of .4priori and the previously proposed incremental mining algorithms for flat, as-- 
sociation rules. For hierarchical association rules. we compare DELTA against, t,hc Cumulat~c~ 
first-time mining algorithm presented in [16]. All experiments are made on dat,abases that 
are significantly larger than the entire main memory of the machine on which thrl experiment:; 
were conducted. The effects of database skew are also modeled. 

The results of our experiments show that DELTh can provide significant improvements in 
execution times over the previous algorithms in all t,hese environments. Furt,her. DEL7=4’:: 
p(~rformanct~ is comparatively robust, with respect, to database skew. 

We also include in our evaluation suite the performance of an (171 oracle that has cornpletr 

cqriori knowledge of the identities of all the large itemsets (and their associated negative 

tmrder) both in the current database as well as in the increment and only requires t,o find 
t,hcir rclspective counts. It is easy t,o see that this algorithm, although practically infeasiblr. 
represents the optimal since all other algorithms will have to do at least the same amount of 
work. Therefore, modeling the oracle’s performance permits us to charact,erizc the efficient!. 
of pract,ical algorithms in terms of their distance from the optimal. 

tFiat and hierarchical databases are also referred to as “boolran” and “generalized” databases, respectively, in 

t,hrz mining literat,ure. 
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DB, db, DB u db 

SUP:% SUp~~nu”b 

SUPmin 
LDB Ldb LDBudb 

~Dl3’ Ndb NDBUdb 
> 7 

L 

N 
Small I 

Previous, increment, and current database 
Previous and New Minimum Support Thresholds 

Minimum Support Threshold when super = sup~fnudb 
Set of large itemsets in DB, db and DB U db 

Negative borders of LDB, Ldb and LDBUdb 
LDBudb n LDB u NDB 

( 1 

Negative border of L 

Set of small itemsets with known counts (during program execution) 

Table 1: Notation 

Our experiments show that DELTA’s efficiency is close to that obtained by the oracle for 

many of t,he workloads considered in our study. This shows that DELTA is able to extract 
most of the potential for using the previous results in the incremental mining process. 

1.3. Organization 

The remainder of this paper is organized as follows: The DELTA algorithm for both flat and 

hierarchical association rules is presented in Section 2 for the equi-support environment. The 
algorithm is extended to handle the multi-support case in Section 3. The previously proposed 
incremental mining algorithms are summarized in Section 4. The performance model is described 

in Section 5 and the results of the experiments are highlighted in Section 6. Finally, in Section 7, 
we present the conclusions of our study and outline future research avenues. 

2. THE DELTA ALGORITHM 

In this section, we present the design of the DELTA algorithm. For ease of exposition, we first 
consider the “equi-support” case, and then in Section 3, we describe the extensions required to 
handle the “multi-support” environment. In the following discussion and in the remainder of this 
paper, we use the notation given in Table 1. Also, we use the terms “large”, “small”, “count” and 
“support” with respect to the entire database DB U db, unless otherwise mentioned. 

The input to the incremental mining process consists of the set of previous large itemsets LDB, 

its negative border NDB, and their associated supports. The output is the updated versions of the 
inputs, namely, LDBUdb and NDBUdb along with their supports. In addition, the mining results 
for solely the increment, namely, Ldb U Ndb, are also output. 

2.1. The Mechanics of DELTA 

The pseudo-code of the core DELTA algorithm for generating flat association rules is shown in 
Figure 1 - the extension to hierarchical association rules is presented in Section 2.2. At most three 

passes over the increment and one pass over the previous database are made, and we explain below 

the steps taken in each of these passes. After this explanation of the mechanics of the algorithm, 

we discuss in Section 2.3 the rationale behind the design choices. 

2.1.1. First Pass over the Increment 

In the first pass, the counts of itemsets in LDB and NDB are updated over the increment db, 

using the function UpdateCounts (line 1 in Figure 1). By this, some itemsets in NDB may become 
large and some itemsets in LDB may become small. Let the resultant set of large itemsets be L. 

These large itemsets are extracted using the function GetLarge (line 2). The remaining itemsets 
are put in Small (line 3), and are later used for pruning candidates. The algorithm terminates if 
no itemsets have moved from NDB to L (lines 4-5). This is valid due to the following Theorem 
presented in [18]: 
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DELTA (DB, dh, LDB, NDB, sup,& 

Input: Previous Database DB, Increment db, Previous Large Itemsets LDB, 

Previous Negative Border N DB, Minimum Support Threshold s~Lp~,,i~~ 
Output: Updated Set of Large Itemsets L DBudb, Updated Negative Border NDuudb 
begin 

1. UpdateCounts(db, LDB U NUB); // first pass over db 
2. L = GetLarge(LDB U NDB, SU~,,~~ t (DB u &II); 

3. Small = (LUB u NDB) - L // used later for pruning 
4. if (L1jH == L) 

5 return(L , DB NDB 
17 

6. N = NegBorder(L); 
7. if (N 5: Swbnll) 

8. get supports of itemsets in N from Small 

9. return(L, N); 

10. N’” = N - Small; 

11. UpdateCounts(db, N”); // second pass over db 

12. C = GetLarge(N”, mp,,i, * /db(); 
13. Small”” = iv” - C A // used latcxr for pruning 

14. if (/Cl :> 0) 

15. C=CUL 

16. ResetCounts( 
17. do // compute negative border closure 
18. C = C U NegBorder(C); 
19. C = C - (Small U Snudl”b) // prime 

20. until C does not grow 
21. C = C - (L u N”) 

22. if (ICI > 0) 
23. UpdateCounts(db, C): // third and final pass over db 

24. ScanDB = GetLarge(C U N”, supmin * Jdbl); 

25. N’ = NegBorder(L U ScanDB) - Small; 

26. get supports of itemsets in N’ from (C U N“) 

27. UpdateCounts(DB, N’ U ScanDB); // first (and only) pass over DB 

28. LD”u”b = L U GetLarge(ScanDB, SqLp,,in * lDB U dbj); 

29. NDnU’lh = NegBorder(LDBUdb); 
30. get, supports of NDBUdb from (Small U N’) 

31. return(L”““““, NDBUdb); 

end - 

Fig. 1: The DELTA Incremental Mining Algorithm 

Theorem 1 If X is an itemset that is not in LDR but is in LDBUdh, then there must he some 
sul~set :x of X which was in NDB and is n.ow in LDHUd”. 

Hence, for t,he special case where the new results are a subset of the old results, and therefore in 

principle requiring no processing over the previous database, DELTA is optimal in that it, requires 

only a single pass over the increment to complet,e the mining process. 

2.1.2. Second Pnss ol/er the Increment 

011 the other hand, if some itemsets do move from ND” to L, then the negative border N of 

I, is computed (line G), using the AprioriGen [3] f unction. Itemsets in N with unknown counts are 

stored in a set, N” (line 10). The remaining itemsets in N i.e. with known counts, are all small. 
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Therefore, the only itemsets that may be large (and are not yet known to be so) are those in N” 
and their extensions. If there are no itemsets in N”, the algorithm terminates (lines 7-9). 

Now, any itemset in N” that is not locally large in db cannot be large in DB U db. Further, 
none of its extensions can be large as well. This is based on the following observation of [8]+: 

Theorem 2 An itemset can be present in LDBUdb only if it is present in either LDB or Ldb (or 
both). 

Therefore, a second pass over the increment is made to find the counts within db of N” (line 11). 
Those itemsets that turn out to be small in db are stored in a set called Smalldb (line 13), which 

is later used for pruning candidates. 

2.1.3. Third (and Final) Pass over the Increment 

We then form all possible extensions of L which could be in LDBUdb U NDBUdb and store them 
in set C. This is done by computing the remaining layers of the negative border closure of L 
(lines 15-20). (We expect that the remaining layers can be generated together since the number of 
2-itemsets in L is typically much smaller than the overall number of all possible 2-itemset pairs.) 

At the start of this computation, the counts of itemsets in C are reset to zero using the function 
ResetCounts (line 16). Then, at every stage during the computation of the closure, those itemsets 

that are in Small and Smalldb are removed so that none of their extensions are generated (line 19). 
After all the layers are generated, itemsets from L and N” are removed from C since their counts 
within DB U db and db respectively, are already available (line 21). The third and final pass over 
db is then made to find the counts within db of the remaining itemsets in C (line 23). 

2.1.4. First (and Only) P ass over the Previous Database 

Those itemsets of the closure which turn out to be locally large in db need to be counted over DB 
as well to establish whether they are large overall. We refer to these itemsets as ScanDB (line 24). 
Since the counts of NDBUdb need to be computed as well, we evaluate NegBorder(L U ScanDB). 
From this the itemsets in Small are removed since their counts are already known. The counts of 
the remaining itemsets (i.e. N’ in line 25) are then found by making a pass over DB (line 27). 

After the pass over DB, the large itemsets from ScanDB are gathered to form LDBUdb (line 28) 
and then its negative border NDBUdb is computed (line 29). The counts of NDBUdb are obtained 
from Small and N’ (line 30). Thus we obtain the final set of large itemsets LDBUdb and its negative 
border NDBUdb. 

2.1.5. Results for the Increment 

Performing the above steps results in the generation of LDBudb and NDBUdb along with their 
supports. But, as mentioned earlier, we also need to generate the mining results for solely the 

db increment, namely, Ldb u N . To achieve this, the following additional processing is carried out 
during the above-mentioned passes: 

After the first pass over the increment, we have the updated counts of all the itemsets in 
LDB u NDB. Therefore, the counts of these itemsets with respect to the increment alone is 
very easily determined by merely computing the differences between the updated counts and the 
original counts. After this computation, the itemsets that turn out to be large within db are 
gathered together and their negative border is computed. 

If the counts within db of some itemsets in the negative border are unknown, these counts are 
determined during the second pass over the increment. Subsequently, the negative border closure 
of the resultant large itemsets (over db) is computed and the counts within db of the itemsets in 
the closure are determined during the third pass over the increment. Finally, the identities and 
counts within db of itemsets in Ldb U Ndb are extracted from the closure. 

tThis observation applies only t,o the equi-support case. 
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In the above, note that a particular itemset could be a candidate for computing L”” u NC”‘, 
as wrj] as L”lkhfb U N”BUd”, To L ensure that t’here is no unnecessary duplicate counting, all such 
common itemsets arc identified and two counters are maintained for each of them: the first, c.ountc!r 
initially stores the it,cmset.‘s support in DB, while the second stores the support, in dh. 4ikr t,hu: 
support in db is computed, t.he first counter is incremented by t,his value it then rrfkts tliil 
support in DB u (11). 

2.2. Gmerating Hirrcmd~iccd Association Rules 

The processing st,eps described in t,he previous sub-section are completely sufficient to deliver the 
desired mining outputs for flat databases. We now move on to describing how it is easily possible 
to extend t,he DELTA design to also handle the generation of association rules for h,ierarchical 

(latabascs. 
The hierarchical rule mining problem is to find associat,ion rules between items at any Itwt~l oi! 

a given t,axonomy graph (is-a hierarchy). An obvious but, inefficient solution t,o this problem is to 

rrlducc> it, to a flat mining context using the following strategy: While reading each transaction from 
the clatjab;tse. dynamically create an “augment,ed” tJransaction that also includes all thr ancestors 
of all t.hc items fcat,ured in the original transaction. Now. any of the flat, mining algorithms can I,(’ 

applied on this augmented database. 
A s(lt, of optimizations t,o improve upon the above scheme were &roduced in [IS] as part, of 

the Cumulate (first,-time) hierarchical mining algorithm. InterestSingly, we havrl found that, t,heso 
ol)tirnizations can be utilized for incremental mining as well, and in particular, can be cleanly 
integrated in the core DELTA4 algorit,hm. In the remainder of this sub-seckion, WV &scribe thtl 

optirnizations and their incorporation in DELTA. 

2.2.1. cunrulate optinri~atio?ls 

(‘umulnt,e’s optimizations for efficiently mining hierarchical databases are the following: 

l Pre-computing ancestors Rather t,han finding the ancestors for each item by traversing 

the tilxonorny graph, the ancestors for each item arc precomputed and stored in an array. 

l Filtering the ancestors added to transactions While reading a transaction from the 
database, it is not necessary to augment it with nil ancestors of items in that transaction. 
Only ancest,ors of items in the transaction that are also present in some candidate itemset, 

arr added. 

l Pruning itemsets containing an item and its ancestor A candidate itemset, that, COII- 
tains both an item and its ancestor may be pruned. This is because it will have exactly the 
saIne support as the itemset which doesn’t contain t,hat ancestor and is t,herefore rcdunda.nt. 

22.2. Incorpomtion in DELTA 

Thrl above optimizations are incorporated in DELTA4 in the following manner: 

1. The first optimization is performed only in routines that access the database and therefore 
do not affect the structure of the DELTA algorit,hm. 

2. The second optimization is performed before each pass over the increment or previous 
database. Ancestors of items that are not, part of any candidate are removed from the 

arrays of ancestors t,hat were precomputcd during the first opt,imization. 

3. Thc~ third optimization is performed only once and t,hat is at, the end of the first pass over the 
increment. At this stage the identities of all potentially large 2-itemsets (over DB U rib) arc 
known, and hence no further candidate 2-it,emsets will be generated. Among the potent,ially 
large 2-itemsets, t,hose that contain an item and its ancestor are pruned. It, follows t,hat, 
c,andidates generat,ed from the remaining 2-itemsets will also have the same property, i.r. 
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they will not contain an item and its ancestor. Hence this optimization does not need to be 
applied again. 

2.3. Rationale for the DELTA Design 

Having described the mechanics of the DELTA design, we now provide the rationale for its 
construction: 

Let L be the set of large itemsets in LDB U NDB that survive the support requirement after 
their counts have been updated over db, and N be its negative border. Now, if the counts of all the 
itemsets in N are available, then the final output is simply L U N. Otherwise, the only itemsets 
that may be large (and are not yet known to be so) are those in N with unknown counts and their 
extensions - by virtue of Theorem 1. At this juncture, we can choose to do one of the following: 

Complete Closure Generate the complete closure of the negative border, that is, all extensions 
of the itemsets in N with unknown counts. While generating the extensions, itemsets that 
are known to be small may be removed so that none of their extensions are generated. After 
the generation process is over, find the counts of all the generated itemsets by performing 
one scan over DB U db. We now have all the information necessary to first identify LDBUdb, 
and then the associated NDBUdb. 

Layered Closure Instead of generating the entire closure at one shot, generate the negative 
border ‘ra layer at a time”. After each layer is computed, update the counts of the itemsets 
in the layer by performing a scan over DB U db. Use these counts to prune the set of itemsets 
that will be used in the generation of the next layer. 

Hybrid Closure A combination of the above two schemes, wherein the closure is initially gen- 

erated a layer at a time, and after a certain number of layers are completed, the remaining 
complete closure is computed. The number of layers upto which the closure is generated in 

a layered manner is a design parameter. 

The first scheme, Complete Closure, appears infeasible because it could generate a very large 
number of candidates if the so-called “promoted borders” [ll], that is, itemsets that were in NDB 

but have now moved to LDBUdb, contain more than a few 1-itemsets. This is because if pl is 
the number of 1-itemsets in the promoted borders, a lower bound on the number of candidates is 
2P1 (IL1 - ~1). This arises out of the fact that every combination of the pl 1-itemsets is a possible 
extension, and all of them can combine with any other large itemset in L to form candidates. 
Therefore, even for moderate values of pl , the number of candidates generated could be extremely 

large. 

The second strategy, Layered Closure, avoids the above candidate explosion problem since it 
brings a pruning step into play after the computation of each layer. However, it has its own 
performance problem in that it may require several passes over the database, one per layer, and 
this could turn out to be very costly for large databases. Further, it becomes impossible to provide 
bounds on the number of passes that would be required for the mining process. 

Therefore, in DELTA, we adopt the third hybrid strategy, wherein an initial Layered Closure 
approach is followed by a Complete Closure strategy. In particular, the Layered Closure is used 
only for the first layer, and then the Complete Closure is brought into play. This choice is based on 
the well-known observation that pruning typically has the maximum impact for itemsets of length 
two - that is, the number of 2-itemsets that turn out to be large is usually a small fraction of the 
possible 2-itemset, candidates [14]. In contrast, the impact of pruning at higher itemset lengths is 
comparatively small. 

To put it in a nutshell, the DELTA design endeavors to achieve a reasonable compromise be- 
tween the number of candidates counted and the number of database passes, since these two factors 
represent the primary bottle-necks in association rule generation. That our choice of compromise 
results in good performance is validated in the experimental study described in Section 6. 
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3. MULTI-SUPPORT INCREMENTAL MINING IN DELTA 

In the previous section, we considered incremental mining in the context, of “equi-support” 

environments. As mentioned in the Introduction, however, we would expect that user requirements 
would typically change with time, resulting in different minimum support levels across mining 

operations. In DELTA, we address this issue which has 7Lot been previously considered in the 
literature. We expect t,hat, this is an import,ant value addition given t,he inherent, exploratory 
nat,ur‘e of mining. 

For convenience, we break up the multi-support problem into two cases: Stro7ye7,; where the 

current, threshold is higher (i.e., ~up~~~““~ > sepia), and Weuker, where the current, threshold is 
lower (i.e., ,s~p,D,f~~“,““~ < supDB nlin). We now address each of these cases separat,cly: 

3.1. Stronger. Support Threshold 

‘The st,ronger support case is handled almost exactly the same way as t,he equi-support case, that 

is, as though the threshold has not chonyed. The only difference is that the following optimization 
is incorporated: 

Initially, all itemsets which are not large w.r.t. s~p{~~~‘” are removed from LDH and the cor- 

responding negative border is then calculated. The it,cmsets that are removed are not discarded 
completely, but, are ret,ained separately since they may become large after countSing over the incrc-- 

merit dh. They may also be part of the computed negative border closure (lines 15-20 in Figure 1). 
If so) then during the pass over DB their counts arc not measured since they arc already known. 
If the counts of all the itemsets in t,he closure are known. the ~CL,S,Y ouer DB hecom~s ‘//,7L71pcI’s,sn7’?/. 

The weaker support case is much more difficult to handle since the LDB set, now needs t,o 1~ 

equ7&d but t,he identities of these additional set,s cannot be deduced from the increment, dh. 
In particular, note that, Theorem 2, which DELTA relied on for pruning candidates in the qui- 
support case, no longer holds when the support threshold is lowered since WC cannot, tlfduce that. 

a candidate is small over DB ,just because it is not prclsent in LD” U NDB. 

However, it is easy to observe that the output required in t,he weaker threshold case is a .supc~sct 

of what, would br out,put had the support threshold not changed. This observation suggestz a 
strategy by which the DELTA algorithm is executed as though t,he support, threshold hc~l ,rwt 
cl~~n,qcd. while at the same time making suitable alt,erations t,o handle t,hc support, t,hresholtl 

change. 

III DELTA, the above strategy is incorporated by generating extra candidates (as described 

below) based on the lowered support threshold. It, is only for these candidat,es t,hat Theorem 2 
does not, hold. Hence, it, is necessary to find their counts over the entire database DB U d0. This 
is done simulta7~eously while executing equi-support DELT,4. 

The pseudo-code for the complete algorithm is given as function DeltaLow in Figure 2: and is 
described in the remainder of this section. The important point, to note here is that the enhanced 
DELTA requires only 07~ additional pass over the entire database t,o product> the desired results. 

,3.2.1 First PCLSS over the I78cre7nent 

As in t,he equi-support case, the counts of itemset,s in LuB and N”” are updaM ov(‘r the 
increment dD (line 1 in Figure 2). By this, some itemsets in N”’ may become large and some 

items& in LDB may become small. Let the resultant set, of large itemsets (w.r.t,. SUI_‘~~,““~) be L. 

ThescJ large itemsets are extracted using t,he function GetLarge (line 2). Itemsets in the negative 
border of L with unknown counts are computed as NegBorder(L) - (LDB U NDB). We refer to t,his 
set, as NBetwee71 since these itemsets are likely to have supports between supine and ~up~~,~“” 
(line 3). For these itemsets, Theorem 2 does not hold due to the lowered support threshold. 
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DeltaLow (DB, db, LDB, NDB, SU~$$~, supgfnu”“) 

Input: Previous Database DB, Increment db, Previous Large Itemsets LDB, 

Previous Negative Border N DB, Previous Minimum Support Threshold supKFn3,, 

Present Minimum Support Threshold supine”“” 

Output: Updated Set of Large Itemsets LDBUdb, Updated Negative Border NDBudb 

begin 
1. UpdateCounts(db, LDB U NDB); // pass over db 

2. L = GetLarge(LDB U NDB, supgpdb * IDB U dbl); 

3. NBetween = NegBorder(L) - (LDB U NDB); 

4. // perform lines 2-31 of DELTA for equi-support case using supzfff with 
// the following modification: find the counts of itemsets in NBetween also 

// over (DB U db). Let (L’, N’) be the output obtained by this process. 

5. L’ = L’ U GetLarge(NBetween, ~up~~~“~” x (DB U db(); 

6. Small = N’ U (NBetween - L’); 

7. if (NegBorder(L’) C Small) 

5. get supports of itemsets in NegBorder(L’) from Small 

9. return(L’, NegBorder(L’)); 

10. c = L’; 

11. ResetCounts( 
12. do // compute negative border closure 

13. C = C u NegBorder(C); 

14. C = C _ Small // prune 

15. until C does not grow 

16. C = C - (L’ U Small) 

17. UpdateCounts(DB U db, C); // additional pass over DB U db 

18. LDBUdb = L’ U GetLarge(C, supzfydb * IDB u dbl); 

19. NDEudb = NegBorder(LDBUdb); 

20. get supports of itemsets in NDBUdb from (C U Small) 

11. return(L , DBUdb NDBUdb 
); 

2nd 

Fig. 2: DELTA for Weaker Support Threshold (DeltaLow) 

3.2.2. Remaining Passes of Equi-Support DELTA 

The remaining passes of equi-support DELTA are executed for the previous support sup$ff. A 

difference, however, is that, the counts of itemsets in NBetween over DB U db are simultaneously 
found (line 4). 

Among the candidates generated during the remaining passes of equi-support DELTA, some 
may already be present in NBetween. To ensure that there is no unnecessary duplicate counting, 
all such common itemsets are identified and only one copy of each is retained during counting. 

9.2.3. Additional Pass over the Entire Database 

At the end of the above passes, the counts of all 1-itemsets and 2-itemsets of LDBUdb u NDBudb 

are available. The counts of I-itemsets are available because LDB U NDB contains all possible 
1-itemsets [18], while the counts of all required 2-itemsets are available because L contains all large 
1-itemsets in DB U db and NBetween contains the immediate extensions of L that are not already 
in (LDB u NDB ). Therefore, it becomes possible to generate the negative border closure of all 
known large itemsets without encountering the “candidate explosion” problem described for the 
Complete Closure approach in Section 2.3. 

Let L’ be the set of all large itemsets whose counts are known (line 5), and let Small be the 
set of itemsets with known counts which are not in L’ (line 6). If the counts of the negative border 



of L’ are already known: then the algorithm terminates (lines 7 9). Otherwise, all t,he remaining 

extensions of L’ that, could become large are det,ermincd by computing the negative border rlosure 

(lines 1@16). (.4 s in the equi-support ca.se, we expect, t,hat, the remaining layers of the closure 
can be generated together since the number of 2-items& in L’ is typically much smaller t,han thr 
overall number of all possible 2-itemset pairs.) The itemsets of the closure are counted over tht> 
clntire database (lint 17), and the final set of large iternsets and its negat,ive bordt>r arc’ determinc~l 
(linc5 18 -20) 

4. PREVIOUS INCR.EMENT.4L ALGORITHMS 

In this section, we provide an overview of the algorithms that, have been developed over t 111~ 
last t,wo years for incrrmcntjal mining of flat association rules on market, basket, dat,abases. 

The FUP (Fast Update) algorithm [8, 9, 101 represents the first, work in the area of incremtmtal 
mining. It operates on an iterative basis and in each iteration makes a completr sca71 of the c1mwt.t 

detu,bnse. In each scan, the increment is pr,ocr:ssed first and the results obtained arc’ used to guide 
t,hr mining of t,he original dat,abase DB. An important, point to note about, the FUP algorithm i:; 
that it requires k:- passes over the entire database, wh(Jrc k: is t,hc cardinality of t,he longest Iargo 
itc~mset,. Further, it does not, generate the mining results for solely the increment. 

III t,hc first 1)a.s~ over the increment, all the 1-itemsets are considered as candidates. At, tht> entl 
of this pass, the complete supports of t,he candidates t,hat, happen t,o be also large in DB are known 
Those which llav(’ the minimum support are retained in L”RU”h. 4mong the other candidxtcs. 

011ly those which were’ large in db can become large ovt‘rall due t,o Theorem 2 (Sect,ion 2). Hcnc~ 
tlley are ident,ifieli and t,he previous database DB is sc:;m~~r~d to obt,ain their overall supports, t,hus 

obtaining the sclt of all large 1-it,ernsets. The candidates for the next pass are calculatotl using tllc‘ 
AprioriGen funrtion. and t,ht! process repeats in t,his manntr until all the largcl it,cmscts have, lr<~n 

identified. 
After FUP, algorithms t,hat utilized t,he 7regutive border information were proposecl intlc~~erl- 

clrntlv in [ll] and [18] with the goal of achieving more cfficicncy in the incremental mining process. 
In tile sr+@. w;(~ will use Borders t,o refer t,o t,hc algorithm in [ll], and TBAR. to rc>feI, to the, 

algor~it,hm in [18]. Since these algorithms are based on t,he negat,ive border ronccpt, thcly will 1~1 
dr~scribcd in terms of t,he DELTA4 design. 

4. .?. Thr Borders ill!gorithm 

The original Borders algorithm differs from DELTA in that it computes the entire ncgai,ivc> 
bord(Lr c,losure at, one shot, that is, it uses the Compk%e Closure opt,ion. which could pot,c>ntially 

result in the candidate explosion problem mentioned in Section 2.3, 
A new version of the Borders algorithm was recently proposed in [S]. This version goes t,o the 

ot,hel oxtremc of the closure computation, adopting a Layered Closure approach. As mentioned 
in Section 2.3. this strategy could result, in significantly increasing the number of dat,abase passe’s, 
and may therefore be problematic for large databases. 

A variant, of t,he new algorithm was proposed t,o handle rnult,i-support mining. The applicability 
of this algorithm, however, is limited to the very special case of zero-size increments. that is. whcrr 

thcl database has not changed at all between the previous and the current mining. 
Finally, like FIJP, Borders also does not generate tjhc mining results for solely the incrcmt~nt. 

The TBAR algorithm differs from DELTA in two major respects: First, it initially completely 

mines t,he increment db, that is, Ldb U Ndb is computed by applying t,he Apriori algorithm on the 
imrement. We expect that this strategy would prove to be inefficient for large increments since 
thra previous mining results are not used at all in this mining process. 
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Second, it adopts the Complete Closure approach. The complete closure is however computed 
only after having mined the increment. Therefore, unlike Borders, the candidate explosion problem 
is unlikely to occur because more candidates can be pruned. After computing each level of the 
closure, itemsets in N”” are excluded from further candidate generation. However, even with this 
pruning, there are likely to be too many unnecessary candidates in TBAR, especially for skewed 
increments since it relies solely on the increment for its pruning. 

4.4. Other Algorithms 

Recently a new algorithm for first-time mining called CARMA was proposed in [13] where its 
applicability to incremental mining was also briefly mentioned. Although the algorithm is a novel 
and efficient approach to first-time mining, we note that it suffers from the following drawbacks 
when applied to incremental mining: (1) It does not maintain negative border information and 

hence will need to access the original database DB if there are any locally large itemsets in the 
increment, even though these itemsets may not be globally large. (2) The shrinking support 
intervals which CAR.MA maintains for candidate itemsets are not likely to be tight for itemsets 
that become potentially large while processing the increment. This is because the number of 
occurrences of such itemsets in DB will be unknown and could be as much as sup,i, * IDBI. 

An incremental mining algorithm, called MLUp, for updating “multi-level” association rules 
over a taxonomy hierarchy was presented in [lo]. While MLUp’s goal is superficially similar to 
the incremental hierarchical mining discussed in this paper, it has the following major differences: 
Firstly, a different minimum support threshold is used for each level of the hierarchy. Secondly, 
MLUp restricts its attention to deriving intru-level rules, that is, rules within each level. In contrast, 

our focus in this paper is on the formulation given in [16] where there is only one minimum support 
threshold and inter-level rules form part of the output. 

5. PERFORMANCE STUDY 

In the previous sections, we presented the FUP, Borders and TBAR incremental mining 
algorithms, apart from our new DELTA algorithm. To evaluate the relative performance of these 

algorithms and to confirm the claims that we have informally made about their expected behavior, 
we conducted a series of experiments that covered a range of database and mining workloads. The 
performance metric in these experiments is the total execution time taken by the mining operation. 
(Note that, as mentioned in Section 4, both FUP and Borders do not compute the mining results 
for solely the increment, and hence their execution times do not include the additional processing 

required to generate these results.) 

5.1. Baseline Algorithms 

We include the Apriori algorithm also in our evaluation suite to serve as a baseline indicator 
of the performance that would be obtained by directly using a “first-time” algorithm instead of an 
incremental mining algorithm. This helps to clearly identify the utility of “knowing the past”. 

Further, as mentioned in the Introduction, it is extremely useful to put into perspective how 

well the incremental algorithms make use of their “knowledge of the past”, that is, to character- 
ize the eficiency of the incremental algorithms. To achieve this objective, we also evaluate the 
performance achieved by the ORACLE algorithm, which “magically” knows the identities of all 
the large itemsets (and the associated negative border) in the current database and increment and 
only needs to gather their corresponding supports. Note that this idealized incremental algorithm 
represents the absolute minimal amount of processing that is necessary and therefore represents a 
lower boundt on the (execution time) performance. 

The ORACLE algorithm operates as follows: For those itemsets in LDBudb U NDBUdb whose 
counts over DB are currently unknown, the algorithm first makes a pass over DB and determines 
t,hese counts. It then scans db to update the counts of all itemsets in LDBUdb U NDBUdb. During the 

t Within the framework of the data and storage structures used in our study. 
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0.33 (for Skewed) 
0.50 (for Skewed) J 

Parameters ) Meaning j Values 

R 1 Number of roots 1 250 

pass over dh, it also determines the count,s within db of itemsets in Ldb U Ndb. Duplicate candidates 
are avoided by retaining only one copy of each of them. So, in the worst case, it needs to make 
one pass over the previous database and one pass over t,he increment. 

For evaluating the performance of DELTA on hierarchical databases, we compared it with 
Cumulate and OR.ACLE as no previous incremental algorithms are available for comparison. We 
chose Cumulate among the algorithms proposed in [16] since it performed the best on most of our 
workloads. The hierarchical databases were generated using the same technique as in [16]. 

5.2. Database Gencmtl.on 

The databases used in our experiments were synthetically generated using the t.echnique de- 
scribed in [3] and a.ttempt to mimic the customer purchase behavior seen in retailing environments. 
The parameters used in the synthetic generator are described in Table 2. These are similar to those 
used in [3] except that t,he size and skew of the increment are two additional parameters. Since 
t,he gclnerator of [3] does not include the concept of an increment, we have t,aken the following 
approach: similar to [8]: The increment is produced by first generating the entire DB U db and 
then dividing it into DB and db. 

Additional parameters required for the taxonomy in our experiments on hierarchical databases 
are shown in Table 3. The values of these paramet,ers are ident,ical to those used in [16]. 

5.2.1. Datu Stku~ Generation 

‘The above method will produce data that is identically distributed in both DB and db. How- 
ever, as mentioned earlier, databases often exhibit temporal trends resulting in the increment, 
perhaps having a different distribution than the previous database. That is, there may be signif- 
icant c+anges in both the number and the identities of the large itemsets between DB and db. 
To model this %kew” effect, we modified the generator in the following manner: After D trans- 
actions are produced by the generator, a certain percentage of the potentially large itemsets are 
changed. A potentially large itemset is changed as follows: First, with a probability determined 
by the parameter pis it is decided whether the itemset has to be changed or not. If change is 
decided, each item in t,he itemset is changed with a probability determined by the parameter p,t. 
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The item that is used to replace the existing item is chosen uniformly from the set of those items 
that are not already in the itemset. After the large itemsets are changed in this manner, d number 
of transactions are produced with the new modified set of potentially large itemsets. 

5.3. Itemset Data Structures 

In our implementation of the algorithms, we generally use the hashtree data-structure [3] as 
a container for itemsets. However, as suggested in [2], the 2-itemsets are not stored in hashtrees 
but instead in a 2-dimensional triangular array which is indexed by the large 1-itemsets. It has 

been reported (and also confirmed in our study) that adding this optimization results in a consid- 
erable improvement in performance. All the algorithms in our study are implemented with this 

optimization. 

5.4. Overview of Experiments 

We conducted a variety of experiments to evaluate the relative performance of DELTA and the 
other mining algorithms. Due to space limitations, we report only on a representative set here. In 
particular, the results are presented for the workload parameter settings shown in Table 2 for our 
experiments on non-hierarchical (flat) databases. 

The parameters settings used in our experiments on hierarchical databases are identical except 
for the number of items (N) and the number of potentially large itemsets (L) which were both 

set to 10000. The specific values of additional parameters required for the taxonomy are shown in 

Table 3. 

The experiments were conducted on an UltraSparc 170E workstation running Solaris 2.6 with 
128 MB main memory and a 2 GB local SCSI disk. A range of rule support threshold values 
between 0.33% and 2% were considered in our equi-support experiments. 

The previous database size was always kept fixed at 4 million transactions. Along with varying 

the support thresholds, we also varied the size of the increment db from 40,000 transactions to 
4 million transactions, representing an increment-to-previous database ratio that ranges from 1% 
to 100%. For our experiments on hierarchical databases, the performance was measured only for 

supports between 0.75% and 2% since for lower supports, the running time of all the algorithms 
was in the range of several hours. 

Two types of increment distributions are considered: Identical where both DB and db have 
the same itemset distribution, and Skewed where the distributions are noticeably different. For 

the Skewed distribution for which results are reported in this paper, the pis and pit parameters 
were set to 0.33 and 0.5 as mentioned in Table 2. With these settings, at the 0.5 percent support 
threshold and a 10% increment, for example, there are over 700 large itemsets in db which are not 
large in DB, and close to 500 large itemsets in DB that are not large in db. 

We also conducted experiments wherein the new minimum support threshold is different from 
that used in the previous mining. The previous threshold was set to 0.5% and the new threshold 
was varied from 0.2% to 1.5%. Therefore, both the Stronger Threshold and Weaker Threshold 
cases outlined in Section 2 are considered in these experiments. 

6. EXPERIMENTAL RESULTS 

In this section, we report on the results of our experiments comparing the performance of the 
various incremental mining algorithms for the dynamic basket database model described in the 
previous section. 

6.1. Experiment 1: Flat / Equi-Support / Identical Distribution 

Our first experiment considers the equi-support situation with identical distribution between 
DB and db on flat databases. For this environment, the execution time performance of all the 
mining algorithms is shown in Figures 3a-d for increment sizes ranging from 1% to 100%. 
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Fig. 3: I’lat / Equi-Support / Identical Distribution 

Focusing first on FUP, we see in Figure 3 that for all the increment sizes and for all the support 

factors, FUP performs better than or almost the same as Apriori. Moving on to TBAR, we observe 
t,hat it, outperforms both Apriori and FUP at small increment sizes and low supports. At high 

supports, however. it is slightly worse than Apriori due t,o the overhead of maintaining th(a negative 
border information. As the increment size increases, TBAR’s performance becomes progressively 
degraded. This is explained as follows: Firstly, TBAR updates the counts of itemset,s in LUBUNDR 

over dh these itemsets are precisely the same as the set of all candidates generated in running 

Apriori over DB. Secondly, it, performs a complete Apriori-based mining over db. When 1 db 1 = 
1 DB 1, the tot,al cost of these two factors is the same as the tot,al cost incurred by t,he Apriori 

algorithm. However. TBAR finally loses out because it needs to make a further pass over DB. 
Turning our attention to Borders, we find in Figure 3a, which corresponds to the 1 percent 

increment; t,hat while for much of the support range its performance is similar to that of FUP and 
TBAR, there is a sharp degradation in performance at a support of 0.75 percent. The reason for 
t,his is the “candidate explosion” problem described earlier in Section 4. This was confirmed by 
measuring the number of candidates for supports of 1 percent and 0.75 percent in the former 
case, it was a lit,tlc over 1000 whereas in the latter, it had jumped to over 30000! 

The above candidate explosion problem is further intensified when t,he increment size is irl- 

creased, t,o the extent that, its performance is an order of magnitude worse than the other algorithms 
t,herefore we have> not shown Borders performance in Figures 3b~-d. 

Finally, considering DELTA, we find that it, significantly outperforms all the other algorithms 
at, lower support, thresholds for all the increment sizes. In fact,, in this region, the performnnce of 
DELTA cllmost coincides with that of ORACLE. The rea.son for the especially good performance 
here is the following - low support values result in tighter values of k, the maximal large itemset, 
size, leading to correspondingly more iterations for FUP over the previous database DB, anti ~OI 
TBAR over t,hc increment, db. In contrast, DELTA requires only t,hree passes over the incremrant 
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Fig. 4: Flat / Equi-Support / Skewed Distribution 

and one pass over the previous database. Further, because of its pruning optimizations, the number 
of candidates to be counted over the previous database DB is significantly less as compared to 
TBAR - for example, for a support threshold of 0.5 percent and a 50% increment (Figure 3c), it 
is smaller by a factor of two. 

We note that the marginal non-monotonic behavior in the curves of TBAR, Borders, DELTA 
and ORACLE at low increment sizes is due to the fact that only sometimes do they need to access 
the original database DB and this is not a function of the minimum support threshold. 

6.2. Experiment 2: Flat / Equi-Support / Skewed Distribution 

Our next, experiment considers the Skewed workload environment, all other parameters being 
the same as that of the previous experiment. The execution time performance of the various 
algorithms for this case is shown in Figures 4a-d. We see here that the effect of the skew is 
pronounced in the case of both TBAR and Borders, whereas the other algorithms (including 
DELTA) are relatively unaffected. 

The effect of skew is noticeable in the case of TBAR since it relies solely on the increment to 
prune candidates from its computation of the closure and therefore many unnecessary candidates 
are generated which later prove to be small over the entire database. Borders, on the other hand, is 
affected because the number of 1-itemsets that are in the promoted border tends to increase when 
there is skew. For instance, for a minimum support of 0.33% and an increment of lo%, there were 
nine 1-itemsets among the promoted borders and the number of large itemsets was 4481, resulting 
in over 2 million candidates. 

In contrast to the above, Apriori and FUP are not, affected by skew since the candidates that 
they generate in each pass are determined only by the overall large itemsets, and not by the large 
itemsets of the increment. 
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DELTA is not, as affected by skew as TBAR since it utilizes the complete negative border 
information to prune away candidates. That is, all itemsets which are known to be small (bither over 

DB u dh or over dh are pruned away during closure generation, and not merely those candidates 
which are small over dh. Hence, DELTA is relat,ively stable with respect to data skew. As in 
the Identical distribution case, it can be seen in Figures 4a-b that for small increment sizes. it,s 

performance almost, coincides with that of ORACLE. It, however degrades to some extent, for largcs 
skewed increments because of two reasons: (1) the number of itemsets in LDB - LDBUflb increases, 

resulting in more unnecessary candidates being updated over dh, and (2) the number of itemsets 
iI L”RUdb _ LL’B Increases, resulting in more promoted borders followed by more candidat,es ov(:r 
DB. Even in these lat,ter cases it is seen to perform considerably better than other algorithms. 
For example, for a minimum support, of 0.33%) and an increment of 100%. its performance is morel 
than twice as good as that of TBAR. 

6.,7. E.xperiment 3: Flat / Multi-Support / Icientical Distribution 

The previous experiment,s modeled equi-support environments. We now move on to considering 

mu&-support environments. In these experiments, we compare the performance of DELTA wit,11 
t,hat of Apriori and ORACLE only since, as mentioned earlier, FUP, TBAR. and Borders do not 

handle t,he multi-support case. 
In this experiment, we fixed the initial support to be 0.5% and the new support was varied 

bet,ween 0.2% and 1.5%, thereby covering both the Weaker Threshold and %ronger Threshold 
possibilities. For this environment, Figures 5a-d show the performance of DELT-4 relative to that 
of Apriori for the databases where the dist,ribution of t,he increments is Identical to that, of r,llct 
previous database. 

We note here that at either end of the support spect,rum, DELTA performs very similarly to 
Apriori wherea,s in the “middle band” it does noticeably better, especially for moderate increment 
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Fig. 6: Flat / Multi-Support / Skewed Distribution [Previous Support = 0.5%] 

sizes (Figures 5a-b). In fact, the performance gain of DELTA is maximum when the new mini- 

mum support threshold is the same as the previous threshold and tapers off when the support is 
changed in either direction. At very low support thresholds, the number of large itemsets increases 
exponentially, and therefore the number of candidates generated in the negative border closure 
in DELTA will be a few more than the number of candidates generated in Apriori. Most of the 
candidates will have support less than the previous minimum threshold, and hence all of them 
have to be counted over the previous database. Therefore, the performance of DELTA approaches 
that of Apriori in the low support region. In the high support region, on the other hand, most of 
the candidates do not turn out to be large and hence both algorithms perform almost the same 

amount of processing. 

6.4. Experiment 4: Flat / Multi-Support / Skewed Distribution 

Our next experiment evaluates the same environment as that of the previous experiment, except 

that the distribution of the increments is Skewed with respect to the original database. The 
execution time performance for this case is shown in Figures 6a-d. We see here that the relative 
performance of the algorithms is very similar to that seen for the Identical workload environment. 
Further, as in the equi-support skewed case (Experiment 2), DELTA is stable with respect to 
skew since it uses information from both DB and db to prune away candidates. Only when the 
increment size is 100% do we notice some degradation in the performance of DELTA. However, it 
performs slightly better than Apriori even for this large increment. 

6.5. Experiment 5: Hierarchical / Equi-Support / Identical Distribution 

The previous experiments were conducted on flat databases. We now move on to experiments 
conducted on hierarchical databases. In these experiments, we compare the performance of DELTA 
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with that of Cumulate and ORACLE only since, as mentioned earlier, no incremental algorit,hms 
are available for comparison. The execution time performance of t,he various algorithms for t,his 
cast is shown in Figures i’a-d. Note that the time taken to complete mining is measured in hours 

here as compared to the minutes taken in the previous experiments. The reason for this large 

increase is t,hat the number of large itemsets is much more (about, lo--l5 times) this is bec,ause 

itemsets can be formed both within and across levels of the item t,axonomy graph. 

For all support, thresholds and database sizes, we find that DELTA significant,ly outperforms 
Cumulate, and is in fact very close to ORACLE. We see that DELT,4 exhibits a huge performance 
gain over Cumulate, upto (1s much us 9 times at the 1% increment and 0.75% support, threshold, 
and as much as 3 times on average. In fact, the perforrnancc of DELTA is seen to overlap with that 
of ORACLE for small increments (Figures 7:t-b). The reason for this is the number of candidates 
in DELTA over both rib and DB were only marginally more than t,hat in ORACLE. This is again 
because the set, of large itemsets with its negative border is relatively stable, and DELTA prunes 
away most of the mlnecessary candidates in its second pass over the increment. 

Due t,o space constraints, the experimental results for hierarchical databases where the incrr-- 
ment’s distribution is Skewed, as also the multi-support environments, are not, presented herr. 
They a.re available in [15] and are similar in nature to t,hosrl presented earlier in this paper for flal. 

Mabases. 

7. CONCLUSIONS 

We considered the problem of incrementally mining association rules on market basket dat,abases 
that, have been subjected t,o a significant number of updates since their previous mining exercise. 
Instead of mining t,he whole database again from scratch, we attempt to use the previous mining 
results, that is, knowledge of t,he it,emsets which are large in the previous dat,abase, t,heir nega.tivo 
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border, and their associated supports, to efficiently identify the same information for the updated 

database. 
We proposed a new algorithm called DELTA which is the result of a synthesis of existing algo- 

rithms, designed to address each of their specific limitations. It guarantees completion of mining 
in three passes over the increment and one pass over the previous database. This compares favor- 
ably with previously proposed incremental algorithms like FUP and TBAR wherein the number 
of passes is a function of the length of the longest large itemset. Also, DELTA does not suffer 
from the candidate explosion problem associated with the Borders algorithm owing to its better 

pruning strategy. 
DELTA’s design was extended to handle multi-support environments, an important issue not 

previously addressed in t,he literature, at a cost of only one additional pass over the current 

database. 
Using a synthetic database generator, the performance of DELTA was compared against that 

of FUP, TBAR and Borders, and also the two baseline algorithms, Apriori and ORACLE. Our 
experimefits showed that for a variety of increment sizes, increment distributions and support 

thresholds, DELTA performs significantly better than the previously proposed incremental algo- 

rithms. In fact, for many workloads its performance approached that of ORACLE, which represents 
a lower bound on achievable performance, indicating that DELTA is quite efficient in its candidate 
pruning process. Also, while the TBAR and Borders algorithms were sensitive to skew in the data 
distribution, DELTA was comparatively robust. 

In the special scenario where no pass over the previous database is required since the new 
results are a subset of the previous results, DELTA’s performance is optimal in that it requires 
only one pass over the increment whereas all the other algorithms either are unable to recognize 

the situation or require multiple passes over the increment. 
Finally, DELTA was shown to be easily extendible to hierarchical association rules, while main- 

taining its performance close to ORACLE. NO prior work exists on extending incremental mining 
algorithms to handle hierarchical rules. 

In summary, DELTA is a practical, robust and efficient incremental mining algorithm. In our 
future work, we plan to extend the DELTA algorithm to handle quantitative rules [17] and also to 
develop incremental algorithms for sequence [4] and classification rules [6]. 
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