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Abstract — Incremental mining algorithms that can efficiently derive the current mining output by
utilizing previous mining results are attractive to business organizations since data mining is typically
a resource-intensive recurring activity. In this paper, we present the DELTA algorithm for the ro-
bust and efficient incremental mining of association rules on large market basket databases. DELTA
guarantees efficiency by ensuring that, for any dataset, at most three passes over the increment and
one pass over the previous database are required to generate the desired rules. Further, it handles
“multi-support” environments where the support requirements for the current mining differ from those
used in the previous mining, a feature in tune with the exploratory nature of the mining process. We
present a performance evaluation of DELTA on large databases over a range of increment sizes and
data distributions, as well as change in support requirements. The experimental results show that
DELTA can provide significant improvements in execution times over previously proposed incremental
algorithms in all these environments. In fact, for many workloads, its performance is close to that
achieved by an optimal, but practically infeasible, algorithm. © 2000 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

In many business organizations, the historical database is dynamic in that it is periodically
updated with fresh data. For such environments, data mining is not a one-time operation but
a recurring activity, especially if the database has been significantly updated since the previous
mining exercise. Repeated mining may also be required in order to evaluate the effects of business
strategies that have been implemented based on the results of the previous mining. In an overall
sense, mining is essentially an exploratory activity and therefore, by its very nature, operates as a
feedback process wherein each new mining is guided by the results of the previous mining.

In the above context, it is attractive to consider the possibility of using the results of the previous
mining operations to minimize the amount of work done during each new mining operation. That is,
given a previously mined database DB and a subsequent increment db to this database, to efficiently
mine db and DB Udb. Mining db is necessary to evaluate the effects of business strategies; whereas
mining DB U db is necessary to maintain the updated set of mining rules. Such “incremental”
mining is the focus of this paper. Practical applications where incremental mining techniques
are especially useful include data warehouses and Web mining since these systems are constantly
updated with fresh data — on the web, for instance, about one million pages are added daily [12].

We consider here the design of incremental mining algorithms for databases that can be rep-
resented as a two-dimensional matrix, with one dimension being a (fixed) set of possibilities, and
the other dimension being a dynamic history of instances, with each instance recording a joint
occurrence of a subset of these possibilities. A canonical example of such a matrix is the “market
basket” database [1], wherein the possibilities are the items that are on sale by the store, and the
instances record the specific set of items bought by each customer. For ease of exposition. we will
assumne a market basket database in the remainder of this paper.

Within the above framework, we focus in particular on the identification of association rules [1],
that is, rules which establish interesting correlations about the joint occurrence of items in customer
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purchases — for example, “Eighty percent of the customers who bought milk also bought cereal”.
Association rules have been productively used in a variety of applications ranging from bookstores
(e.g. when you purchase a book at Amazon.com, the site informs you of the other books that have
been typically bought by earlier purchasers of your book) to health care (e.g. in detecting shifts
in infection and antimicrobial resistance patterns in intensive care units [7]).

Since the association rule problem is well-established in the database research literature (see
[1, 19] for complete details), we assume hereon that the reader is familiar with the concepts and
algorithmic techniques underlying these rules. In particular, we assume complete knowledge of the
classical Apriori algorithm [3].

1.1. The State-of-the-Art

The design of incremental mining algorithms for association rules has been considered earlier
in [5, 8, 9, 10, 11, 18]. While these studies were a welcome first step in addressing the problem
of incremental mining, they also suffer from a variety of limitations that make their design and
evaluation unsatisfactory from an “industrial-strength” perspective:

Effect of Skew The effect of temporal changes (i.e. skew) in the distribution of database values
between DB and db has not been considered. However, in practical databases, we should
typically expect to see skew for the following reasons: (a) inherent seasonal fluctuations in
the business process, and/or (b) effects of business strategies that have been put into place
since the last mining. So, we expect that skew would be the norm, rather than the exception.

As we will show later in this paper, the performance of the algorithms presented in [11, 18] is
sensitive to the skew factor. In fact, their sensitivity is to the extent that, with significant skew
and substantial increments, they may do worse than even the naive approach of completely
ignoring the previous mining results and applying Apriori from scratch on the entire current
database.

Size of Database The evaluations of the algorithms has been largely conducted on databases
and increments that are small relative to the available main memory. For example, the
standard experiment considered a database with 0.1 M tuples, with each tuple occupying
approximately 50 bytes, resulting in a total database size of only 5§ MB. For current machine
configurations, this database would completely fit into memory with plenty still left to spare.
Therefore, the ability of the algorithms to scale to the enormous disk-resident databases that
are maintained by most business organizations, has not been clearly established.

Characterizing Efficiency Apart from comparing their performance with that of Apriori, no
quantitative assessment has been made of the efficiency of these algorithms in terms of
their distance from the optimal, which would be indicative of the scope, if any, for further
improvement in the design of incremental algorithms.

Incomplete Results Almost all the algorithms fail to provide the mining results for solely the
increment, db. As mentioned before, these results are necessary to help evaluate the effects
of business strategies that have been put into place since the previous mining.

Changing User Requirements It is implicitly assumed that the minimum support specified by
the user for the current database (DB U db) is the same as that used for the previously
mined database (DB). However, in practice, given mining’s exploratory nature, we could
expect user requirements to change with time, perhaps resulting in different minimum support
levels across mining operations. Extending the algorithms to efficiently handle such “multi-
support” environments is not straightforward.

Hierarchical Databases Virtually all the previous work is applicable only to “flat” databases
where the items in the database have independent characteristics. In reality, however,
databases are often “hierarchical”, that is, there exists a is-a hierarchy over the set of items
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in the database!. For example, sweaters and ski jackets are both instances of winter wear. As
pointed out in [16], such taxonomies are valuable since rules at lower levels may not satisfy
the minimum support threshold and hence not mauny rules are likely to be output if they
are not considered. They are also useful to prune away many of the uninteresting rules that
would be output at low minimum support thresholds, since a significant fraction of the rules
at lower levels may be subsumed by those at higher levels.

Contributions

In this paper, we present and evaluate an incremental mining algorithm called DELTA (Differ-

ential Evaluation of Large iTemset Algorithm). The core of DELTA is similar to the previous algo-
rithms but it also incorporates important design alterations for addressing their above-mentioned
limitations. With these extensions, DELTA represents a practical algorithm that can be effectively
utilized for real-world databases. The main features of the design and evaluation of DELTA are
the following:

DELTA guarantees that, for the entire mining process, at most three passes over the increment
and one pass over the previous database may be necessary. We expect that such bounds will
be useful to businesses for the proper scheduling of their mining operations.

For the special case where the new results are a subset of the old results, and therefore in
principle requiring no processing over the previous database, DELTA is optimal in that it
requires only a single pass over the increment to complete the mining process.

For computing the negative border [19] closure, a major performance-determining factor in
the incremental mining process, a new hybrid scheme that combines the features of carlier
approaches is implemented.

DELTA provides complete mining results for both the entire current database as well as
solely the increment.

DELTA can handle multi-support environments, requiring only one additional pass over the
current database to achieve this functionality.

By carefully integrating optimizations previously proposed for first-time hierarchical mining
algorithms, the DELTA design has been extended to efficiently handle incremental mining of
hierarchical association rules.

The performance of DELTA is evaluated on a variety of dynamic databases and compared
with that of Apriori and the previously proposed incremental mining algorithms for flat as-
sociation rules. For hierarchical association rules, we compare DELTA against the Cumulate
first-time mining algorithm presented in [16]. All experiments are made on databases that
are significantly larger than the entire main memory of the machine on which the experiments
were conducted. The effects of database skew are also modeled.

The results of our experiments show that DELTA can provide significant improvements in
execution times over the previous algorithms in all these environments. Further, DELTA’s
performance is comparatively robust with respect to database skew.

We also include in our evaluation suite the performance of an an oracle that has complete
apriori knowledge of the identities of all the large itemsets (and their associated negative
border) both in the current database as well as in the increment and only requires to find
their respective counts. It is easy to see that this algorithm, although practically infeasible,
represents the optimal since all other algorithms will have to do at least the same amount ot
work. Therefore, modeling the oracle’s performance permits us to characterize the efficiency
of practical algorithms in terms of their distance from the optimal.

fFiat and hierarchical databases are also referred to as “boolean” and “generalized” databases, respectively, in
the mining literature.
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DB, db, DBUdb Previous, increment, and current database

supPB | supDBLdb Previous and New Minimum Support Thresholds

SUPmin Minimum Support Threshold when supPB = supDBude

LPB [db [DBUdb | Get of large itemsets in DB, db and DB U db

NDB pndb nDBUdb | Negative borders of LB, Ldb and LPBUdb

L LDBUdb ) (LDB U NDB)

N Negative border of L

Small Set of small itemsets with known counts (during program execution)

Table 1: Notation

Our experiments show that DELTA’s efficiency is close to that obtained by the oracle for
many of the workloads considered in our study. This shows that DELTA is able to extract
most of the potential for using the previous results in the incremental mining process.

1.3. Organization

The remainder of this paper is organized as follows: The DELTA algorithm for both flat and
hierarchical association rules is presented in Section 2 for the equi-support environment. The
algorithm is extended to handle the multi-support case in Section 3. The previously proposed
incremental mining algorithms are summarized in Section 4. The performance model is described
in Section 5 and the results of the experiments are highlighted in Section 6. Finally, in Section 7,
we present the conclusions of our study and outline future research avenues.

2. THE DELTA ALGORITHM

In this section, we present the design of the DELTA algorithm. For ease of exposition, we first
consider the “equi-support” case, and then in Section 3, we describe the extensions required to
handle the “multi-support” environment. In the following discussion and in the remainder of this
paper, we use the notation given in Table 1. Also, we use the terms “large”, “small”, “count” and
“support” with respect to the entire database DB U db, unless otherwise mentioned.

The input to the incremental mining process consists of the set of previous large itemsets
its negative border NPZ and their associated supports. The output is the updated versions of the
inputs, namely, LPBY%® and NPBVd zlong with their supports. In addition, the mining results
for solely the increment, namely, L% U N are also output.

DB
L77,

2.1. The Mechanics of DELTA

The pseudo-code of the core DELTA algorithm for generating flat association rules is shown in
Figure 1 - the extension to hierarchical association rules is presented in Section 2.2. At most three
passes over the increment and one pass over the previous database are made, and we explain below
the steps taken in each of these passes. After this explanation of the mechanics of the algorithm,
we discuss in Section 2.3 the rationale behind the design choices.

2.1.1. First Pass over the Increment

In the first pass, the counts of itemsets in LPB and NP2 are updated over the increment db,
using the function UpdateCounts (line 1 in Figure 1). By this, some itemsets in N”2 may become
large and some itemsets in L?P may become small. Let the resultant set of large itemsets be L.
These large itemsets are extracted using the function GetlLarge (line 2). The remaining itemsets
are put in Small (line 3), and are later used for pruning candidates. The algorithm terminates if
no itemsets have moved from NP8 to L (lines 4-5). This is valid due to the following Theorem
presented in [18]:
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'DELTA (DB, db, L”B, NP5 supmin)

Input: Previous Database DB, Increment db, Previous Large Itemsets LPB,
Previous Negative Border NP8 Minimum Support Threshold supm,
Output: Updated Set of Large Itemsets LBV Updated Negative Border N PBUdb

begin
l. UpdateCounts(db, LPB U NPB).  // first pass over db
2. L = Getlarge(LPB U NPB sup,,;, x |[DBU db|);
3. Small = (LPBUNPB) - [, // used later for pruning
A. if (LPB == I
5. return(LP8 NDB),
6. N = NegBorder(L);
T if (N C Small)
8. get supports of itemsets in N from Small
9. return(L, N);
10. N = N — Small;
11. UpdateCounts(db, N*); // second pass over db
12. C' = GetLarge(N™, supmin * |db]);
13. Small® = N* - C // used later for pruning
14. if (|C] > 0) \
15. C=CUL
16. ResetCounts(C);
17. do // compute negative horder closure
18. C = C U NegBorder(C);
19. C = C — (Small U Small?) // prune \
20. until ' does not grow !
21. C=C-(LUNY)
22. if (|C] > 0)
23. UpdateCounts(db, C); // third and final pass over db
24. ScanDB = Getlarge(C U N¥, suppn * |db]);
25. N' = NegBorder(L U ScanDB) — Small;
26. get supports of itemsets in N’ from (C U N%)
7. UpdateCounts(DB, N' U ScanDB); // first (and only) pass over DB
28. LPBUd — [ GetLarge(ScanDB, suppin * |DB U db));
29. NDBudb — NegBorder(LPBUY®);
30. get supports of NPBY from (Small U N')
31. I‘eturn(LDBUdb,NDBUdb);
end

Fig. 1: The DELTA Incremental Mining Algorithm

Theorem 1 If X is an itemset that is not in LPB but is in LPBY®  then there must be some
subset x of X which was in NP8 and is now in LPBY,

Hence, for the special case where the new results are a subset of the old results, and therefore in
principle requiring no processing over the previous database, DELTA is optimal in that it requires
only a single pass over the increment to complete the mining process.

2.1.2. Second Pass over the Increment

On the other hand, if some itemsets do move from NP to L, then the negative border N of
L is computed (line 6), using the AprioriGen [3] function. Itemsets in N with unknown counts are
stored in a set N* (line 10). The remaining itemsets in N i.e. with known counts, are all small.
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Therefore, the only itemsets that may be large (and are not yet known to be so) are those in N*
and their extensions. If there are no itemsets in N*%, the algorithm terminates (lines 7-9).

Now, any itemset in N* that is not locally large in db cannot be large in DB U db. Further,
none of its extensions can be large as well. This is based on the following observation of [8]':

Theorem 2 An itemset can be present in LPBYY only if it is present in either LPB or L% (or
both).

Therefore, a second pass over the increment is made to find the counts within db of N* (line 11).
Those itemsets that turn out to be small in db are stored in a set called Small? (line 13), which
is later used for pruning candidates.

2.1.8. Third (and Final) Pass over the Increment

We then form all possible extensions of L which could be in LPBVdb y NPBUdb 454 store them
in set C. This is done by computing the remaining layers of the negative border closure of L
(lines 15-20). (We expect that the remaining layers can be generated together since the number of
2-itemsets in L is typically much smaller than the overall number of all possible 2-itemset pairs.)
At the start of this computation, the counts of itemsets in C' are reset to zero using the function
ResetCounts (line 16). Then, at every stage during the computation of the closure, those itemsets
that are in Small and Small® are removed so that none of their extensions are generated (line 19).
After all the layers are generated, itemsets from L and N* are removed from C since their counts
within DB U db and db respectively, are already available (line 21). The third and final pass over
db is then made to find the counts within db of the remaining itemsets in C (line 23).

2.1.4. First (and Only) Pass over the Previous Database

Those itemsets of the closure which turn out to be locally large in db need to be counted over DB
as well to establish whether they are large overall. We refer to these itemsets as ScanDB (line 24).
Since the counts of NPBVY4 peed to be computed as well, we evaluate NegBorder(L U ScanDB).
From this the itemsets in Small are removed since their counts are already known. The counts of
the remaining itemsets (i.e. N’ in line 25) are then found by making a pass over DB (line 27).

After the pass over DB, the large itemsets from ScanDB are gathered to form L?BY4 (line 28)
and then its negative border NPBUY is computed (line 29). The counts of NPBUY are obtained
from Small and N' (line 30). Thus we obtain the final set of large itemsets LP2Y and its negative
border NDBUdb,

2.1.5. Results for the Increment

Performing the above steps results in the generation of LPBY and NPBY jlong with their

supports. But, as mentioned earlier, we also need to generate the mining results for solely the
increment, namely, L% U N%. To achieve this, the following additional processing is carried out
during the above-mentioned passes:

After the first pass over the increment, we have the updated counts of all the itemsets in
LPB y NDB_ Therefore, the counts of these itemsets with respect to the increment alone is
very easily determined by merely computing the differences between the updated counts and the
original counts. After this computation, the itemsets that turn out to be large within db are
gathered together and their negative border is computed.

If the counts within db of some itemsets in the negative border are unknown, these counts are
determined during the second pass over the increment. Subsequently, the negative border closure
of the resultant large itemsets (over db) is computed and the counts within db of the itemsets in
the closure are determined during the third pass over the increment. Finally, the identities and
counts within db of itemsets in L% U N9 are extracted from the closure.

TThis observation applies only to the equi-support case.
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In the above, note that a particular itemset could be a candidate for computing L% U N9,
as well as LPBY4b y NPBU T ensure that there is no unnecessary duplicate counting, all such
common itemsets are identified and two counters are maintained for each of them: the first counter
initially stores the itemset’s support in DB, while the second stores the support in db. After the
support in db is computed, the first counter is incremented by this value - it then reflects the
support in DB U db.

2.2. Generating Hierarchical Association Rules

The processing steps described in the previous sub-section are completely sufficient to deliver the
desired mining outputs for flat databases. We now move on to describing how it is easily possible
to extend the DELTA design to also handle the generation of association rules for hierarchical
databases.

The hierarchical rule mining problem is to find association rules between items at any level of
a given taxonomy graph (is-o hierarchy). An obvious but inefficient solution to this problem is to
reduce it to a flat mining context using the following strategy: While reading each transaction from
the database. dynamically create an “augmented” transaction that also includes all the ancestors
of all the items featured in the original transaction. Now, any of the flat mining algorithms can be
applied on this augmented database.

A set of optimizations to improve upon the above scheme were introduced in [16] as part of
the Cumulate (first-time) hierarchical mining algorithm. Interestingly, we have found that these
optimizations can be utilized for incremental mining as well, and in particular, can be cleanly
integrated in the core DELTA algorithm. In the remainder of this sub-section, we describe the
optimizations and their incorporation in DELTA.

2.2.1. Cumulate Optimizations

Cumulate’s optimizations for efficiently mining hierarchical databases are the following:

¢ Pre-computing ancestors Rather than finding the ancestors for each item by traversing
the taxonomy graph, the ancestors for each item are precomputed and stored in an array.

e Filtering the ancestors added to transactions While reading a transaction from the
database, it is not necessary to augment it with all ancestors of items in that transaction.
Only ancestors of items in the transaction that are also present in some candidate itemset
are added.

e Pruning itemsets containing an item and its ancestor A candidate itemset that con-
tains both an item and its ancestor may be pruned. This is because it will have exactly the
same support as the itemset which doesn’t contain that ancestor and is therefore redundant.

2.2.2  Incorporation in DELTA
The above optimizations are incorporated in DELTA in the following manner:

1. The first optimization is performed only in routines that access the database and therefore
do not affect the structure of the DELTA algorithm.

2. The second optimization is performed before each pass over the increment or previous
database. Ancestors of items that are not part of any candidate are removed from the
arrays of ancestors that were precomputed during the first optimization.

3. The third optimization is performed only once and that is at the end of the first pass over the
increment. At this stage the identities of all potentially large 2-itemsets (over DB U db) are
known, and hence no further candidate 2-itemsets will be generated. Among the potentially
large 2-itemsets, those that contain an item and its ancestor are pruned. It follows that
candidates generated from the remaining 2-itemsets will also have the same property, i.c.
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they will not contain an item and its ancestor. Hence this optimization does not need to be
applied again.

2.8. Rationale for the DELTA Design

Having described the mechanics of the DELTA design, we now provide the rationale for its
construction:

Let L be the set of large itemsets in LPZ U NP8 that survive the support requirement after
their counts have been updated over db, and N be its negative border. Now, if the counts of all the
itemsets in /N are available, then the final output is simply L U N. Otherwise, the only itemsets
that may be large (and are not yet known to be so) are those in N with unknown counts and their
extensions — by virtue of Theorem 1. At this juncture, we can choose to do one of the following:

Complete Closure Generate the complete closure of the negative border, that is, all extensions
of the itemsets in N with unknown counts. While generating the extensions, itemsets that
are known to be small may be removed so that none of their extensions are generated. After
the generation process is over, find the counts of all the generated itemsets by performing
one scan over DB U db. We now have all the information necessary to first identify LPBYdb,
and then the associated NPBUdb,

Layered Closure Instead of generating the entire closure at one shot, generate the negative
border “a layer at a time”. After each layer is computed, update the counts of the itemsets
in the layer by performing a scan over DB Udb. Use these counts to prune the set of itemsets
that will be used in the generation of the next layer.

Hybrid Closure A combination of the above two schemes, wherein the closure is initially gen-
erated a layer at a time, and after a certain number of layers are completed, the remaining
complete closure is computed. The number of layers upto which the closure is generated in
a layered manner is a design parameter.

The first scheme, Complete Closure, appears infeasible because it could generate a very large
number of candidates if the so-called “promoted borders” [11], that is, itemsets that were in NP5
but have now moved to LPPY%® contain more than a few l-itemsets. This is because if p; is
the number of 1-itemsets in the promoted borders, a lower bound on the number of candidates is
2P (|L| — p1). This arises out of the fact that every combination of the p; 1-itemsets is a possible
extension, and all of them can combine with any other large itemset in L to form candidates.
Therefore, even for moderate values of p;, the number of candidates generated could be extremely
large.

The second strategy, Layered Closure, avoids the above candidate explosion problem since it
brings a pruning step into play after the computation of each layer. However, it has its own
performance problem in that it may require several passes over the database, one per layer, and
this could turn out to be very costly for large databases. Further, it becomes impossible to provide
bounds on the number of passes that would be required for the mining process.

Therefore, in DELTA, we adopt the third hybrid strategy, wherein an initial Layered Closure
approach is followed by a Complete Closure strategy. In particular, the Layered Closure is used
only for the first layer, and then the Complete Closure is brought into play. This choice is based on
the well-known observation that pruning typically has the maximum impact for itemsets of length
two — that is, the number of 2-itemsets that turn out to be large is usually a small fraction of the
possible 2-itemset candidates [14]. In contrast, the impact of pruning at higher itemset lengths is
comparatively small.

To put it in a nutshell, the DELTA design endeavors to achieve a reasonable compromise be-
tween the number of candidates counted and the number of database passes, since these two factors
represent the primary bottle-necks in association rule generation. That our choice of compromise
results in good performance is validated in the experimental study described in Section 6.
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3. MULTI-SUPPORT INCREMENTAL MINING IN DELTA

In the previous section, we considered incremental mining in the context of “equi-support”
environments. As mentioned in the Introduction, however, we would expect that user requirements
would typically change with time, resulting in different minimum support levels across mining
operations. In DELTA, we address this issue which has not been previously considered in the
literature. We expect that this is an important value addition given the inherent exploratory
nature of mining.

For convenience, we break up the multi-support problem into two cases: Stronger, where the

current threshold is higher (i.e., supD B > supDP), and Weaker, where the current threshold is

lower (i.e., supDBU® < sypDB ) We now address each of these cases separately:

3.1. Stronger Support Threshold

The stronger support case is handled almost exactly the same way as the equi-support case, that
is, as though the threshold has not changed. The only difference is that the following optimization
is incorporated:

Initially, all itemsets which are not large w.r.t. sup?BY% are removed from LPP and the cor-
responding negative border is then calculated. The itemsets that are removed are not discarded
completely, but are retained separately since they may become large after counting over the incre-
ment db. They may also be part of the computed negative border closure (lines 15-20 in Figure 1).
If so, then during the pass over DB their counts are not measured since they are already known.
If the counts of all the itemsets in the closure are known, the pass over DB becomes unnecessary.

3.2. Weaker Support Threshold

The weaker support case is much more difficult to handle since the LP® set now nceds to be
expanded but the identities of these additional sets cannot be deduced from the increment db.
In particular, note that Theorem 2, which DELTA relied on for pruning candidates in the equi-
support case, no longer holds when the support threshold is lowered since we cannot deduce that
a candidate is small over DB just because it is not present in LPP u NPE,

However, it 15 easy to observe that the output required in the weaker threshold case is a superset
of what would be output had the support threshold not changed. This observation suggests a
strategy by which the DELTA algorithm is executed as though the support threshold had not
changed, while at the same time making suitable alterations to handle the support threshold
change.

In DELTA, the above strategy is incorporated by generating extra candidates (as described
below) based on the lowered support threshold. It is only for these candidates that Theorem 2
does not hold. Hence, it is necessary to find their counts over the entire database DB U db. This
is done simultaneously while executing equi-support DELTA.

The pseudo-code for the complete algorithm is given as function DeltaLow in Figure 2, and is
described in the remainder of this section. The important point to note here is that the enhanced
DELTA requires only one additional pass over the entire database to produce the desired results.

2.2.1 First Pass over the Increment

As in the equi-support case, the counts of itemsets in LPE and NP8 are updated over the
increment db (line 1 in Figure 2). By this, some itemsets in NP’® may become large and some
itemsets in LPP may become small. Let the resultant set of large itemsets (w.r.t. sup2BY%) he L.
These large itemsets are extracted using the function GetlLarge (line 2). Itemsets in the negative
border of L with unknown counts are computed as NegBorder(L) — (LPB U NPB). We refer to this
set as N Between since these itemsets are likely to have supports between sup?B and supPBUdb

min min
(line 3). For these itemsets, Theorem 2 does not hold due to the lowered support threshold.
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DeltaLow (DB, db, LPB, NPB supPB  sypDBLdb)

Input: Previous Database DB, Increment db, Previous Large Itemsets
Previous Negative Border NP# | Previous Minimum Support Threshold sup2?
Present Minimum Support Threshold supZBUdb

Output: Updated Set of Large Itemsets LPBY4 Updated Negative Border NPBUdb

DB
L77,

begin

1. UpdateCounts(db, LPB U NPB), // pass over db

2. L = GetLarge(LPB U NPB supPBYdb « | DB U db));

3. N Between = NegBorder(L) — (LB U NPB),

4 // perform lines 2-31 of DELTA for equi-support case using supPB with

// the following modification: find the counts of itemsets in N Between also
// over (DB Udb). Let (L', N') be the output obtained by this process.

5 L' = L' U GetLarge(N Between, supPBY% « | DB U db|);

6. Small = N' U (N Between — L');

7. if (NegBorder(L') C Small)

8. get supports of itemsets in NegBorder(L') from Small
9. return(L’, NegBorder(L'));

10. C =1L,

11. ResetCounts(C);

12. do // compute negative border closure

13. C = C U NegBorder(C);

14. C = C — Small /] prune

15. until C does not grow

16. C =C - (L'USmall)

17. UpdateCounts(DB U db, C); // additional pass over DB Udb
18. LPBUdb — [/ GetLarge(C, supPBY4 x | DB U dbl);

19. NDPBUdb — NegBorder(LPBUdby,

20. get supports of itemsets in NPBY from (C'U Small)

21. return(LPBY®  NyDBUdb),

Fig. 2. DELTA for Weaker Support Threshold (DeltaLow)

3.2.2. Remaining Passes of Equi-Support DELTA

The remaining passes of equi-support DELTA are executed for the previous support supﬁﬁl. A
difference, however, is that the counts of itemsets in N Between over DB U db are simultaneously
found (line 4).

Among the candidates generated during the remaining passes of equi-support DELTA, some
may already be present in N Between. To ensure that there is no unnecessary duplicate counting,
all such common itemsets are identified and only one copy of each is retained during counting.

3.2.8. Additional Pass over the Entire Database

At the end of the above passes, the counts of all 1-itemsets and 2-itemsets of LPBYdb |y yDBudb
are available. The counts of l-itemsets are available because LPB U NPB contains all possible
1-itemsets [18], while the counts of all required 2-itemsets are available because L contains all large
l-itemsets in DB Udb and N Between contains the immediate extensions of L that are not already
in (LPB U NPB), Therefore, it becomes possible to generate the negative border closure of all
known large itemsets without encountering the “candidate explosion” problem described for the
Complete Closure approach in Section 2.3.

Let L' be the set of all large itemsets whose counts are known (line 5), and let Small be the
set of itemsets with known counts which are not in L' (line 6). If the counts of the negative border
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of L' are already known, then the algorithm terminates (lines 7-9). Otherwise, all the remaining
extensions of L' that could become large are determined by computing the negative border closure
(lines 10-16). (As in the equi-support case, we expect that the remaining layers of the closure
can be generated together since the number of 2-itemsets in L’ is typically much smaller than the
overall number of all possible 2-itemset pairs.) The itemsets of the closure are counted over the
entire database (line 17), and the final set of large itemsets and its negative border are determined
(lines 18-20).

4. PREVIOUS INCREMENTAL ALGORITHMS

In this section, we provide an overview of the algorithms that have been developed over the
last two years for incremental mining of flat association rules on market basket databases.

4.1. The FUP Algorithm

The FUP (Fast UPdate) algorithm [8, 9, 10] represents the first work in the area of incremental
mining. It operates on an iterative basis and in each iteration makes a complete scan of the current
database. In each scan, the increment is processed first and the results obtained are used to guide
the mining of the original database DB. An important point to note about the FUI algorithm is
that it requires k- passes over the entire database, where k is the cardinality of the longest large
itemset. Further, it does not generate the mining results for solely the increment.

In the first pass over the increment, all the 1-itemsets are considered as candidates. At the end
of this pass, the complete supports of the candidates that happen to be also large in DB are known.
Those which have the minimum support are retained in LPPY%  Among the other candidates.
only those which were large in db can become large overall due to Theorem 2 (Section 2). Hence
thiey are identified and the previous database DB is scanned to obtain their overall supports, thus
obtaining the set of all large 1-itemsets. The candidates for the next pass are calculated using the
AprioriGen function, and the process repeats in this manner until all the large itemsets have heen
identified.

After FUP, algorithms that utilized the negative border information were proposed indepen-
dently in [11] and [18] with the goal of achieving more efficiency in the incremental mining process.
In the sequel, we will use Borders to refer to the algorithm in [11], and TBAR to refer to the
algorithm in [18]. Since these algorithms are based on the negative border concept, they will be
described in terms of the DELTA design.

4.2, The Borders Algorithin

The original Borders algorithm differs from DELTA in that it computes the entire negative
border closure at one shot, that is, it uses the Complete Closure option, which could potentially
result in the candidate explosion problem mentioned in Section 2.3,

A new version of the Borders algorithin was recently proposed in [5]. This version goes to the
other extreme of the closure computation, adopting a Layered Closure approach. As mentioned
in Section 2.3, this strategy could result in significantly increasing the number of database passes,
and may therefore be problematic for large databases.

A variant of the new algorithm was proposed to handle multi-support mining. The applicability
of this algorithm, however, is limited to the very special case of zero-size increments, that is, where
the database has not changed at all between the previous and the current mining.

Finally, like FUP, Borders also does not. generate the mining results for solely the increment.

4.3. The TBAR Algorithm

The TBAR algorithm differs from DELTA in two major respects: First, it initially completely
mines the increment db, that is, L U N% is computed by applying the Apriori algorithm on the
incremnent. We expect that this strategy would prove to be inefficient for large increments since
the previous mining results are not used at all in this mining process.
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Second, it adopts the Complete Closure approach. The complete closure is however computed
only after having mined the increment. Therefore, unlike Borders, the candidate explosion problem
is unlikely to occur because more candidates can be pruned. After computing each level of the
closure, itemsets in N are excluded from further candidate generation. However, even with this
pruning, there are likely to be too many unnecessary candidates in TBAR, especially for skewed
increments since it relies solely on the increment for its pruning.

4.4. Other Algorithms

Recently a new algorithm for first-time mining called CARMA was proposed in {13] where its
applicability to incremental mining was also briefly mentioned. Although the algorithm is a novel
and efficient approach to first-time mining, we note that it suffers from the following drawbacks
when applied to incremental mining: (1) It does not maintain negative border information and
hence will need to access the original database DB if there are any locally large itemsets in the
increment, even though these itemsets may not be globally large. (2) The shrinking support
intervals which CARMA maintains for candidate itemsets are not likely to be tight for itemsets
that become potentially large while processing the increment. This is because the number of
occurrences of such itemsets in DB will be unknown and could be as much as supmin * |DB].

An incremental mining algorithm, called MLUp, for updating “multi-level” association rules
over a taxonomy hierarchy was presented in [10]. While MLUp’s goal is superficially similar to
the incremental hierarchical mining discussed in this paper, it has the following major differences:
Firstly, a different minimum support threshold is used for each level of the hierarchy. Secondly,
MLUp restricts its attention to deriving intra-level rules, that is, rules within each level. In contrast,
our focus in this paper is on the formulation given in [16] where there is only one minimum support
threshold and inter-level rules form part of the output.

5. PERFORMANCE STUDY

In the previous sections, we presented the FUP, Borders and TBAR incremental mining
algorithms, apart from our new DELTA algorithm. To evaluate the relative performance of these
algorithms and to confirm the claims that we have informally made about their expected behavior,
we conducted a series of experiments that covered a range of database and mining workloads. The
performance metric in these experiments is the total execution time taken by the mining operation.
(Note that, as mentioned in Section 4, both FUP and Borders do not compute the mining results
for solely the increment, and hence their execution times do not include the additional processing
required to generate these results.)

5.1. Baseline Algorithms

We include the Apriori algorithm also in our evaluation suite to serve as a baseline indicator
of the performance that would be obtained by directly using a “first-time” algorithm instead of an
incremental mining algorithm. This helps to clearly identify the utility of “knowing the past”.

Further, as mentioned in the Introduction, it is extremely useful to put into perspective how
well the incremental algorithms make use of their “knowledge of the past”, that is, to character-
ize the efficiency of the incremental algorithms. To achieve this objective, we also evaluate the
performance achieved by the ORACLE algorithm, which “magically” knows the identities of all
the large itemsets (and the associated negative border) in the current database and increment and
only needs to gather their corresponding supports. Note that this idealized incremental algorithm
represents the absolute minimal amount of processing that is necessary and therefore represents a
lower bound! on the (execution time) performance.

The ORACLE algorithm operates as follows: For those itemsets in LPBY4b j NDBUdb whose
counts over DB are currently unknown, the algorithm first makes a pass over DB and determines
these counts. It then scans db to update the counts of all itemsets in LPBY4b U NPBYE  Dyring the

tWithin the framework of the data and storage structures used in our study.
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Parameter | Meaning Values

N Number of items 1000

T Mean transaction length 10

L Number of potentially large itemsets 2000

I Mean length of potentially large itemsets | 4

D Number of transactions in database DB | 4 M (200 MB disk occupancy)
d Number of transactions in increment db 1%, 10%, 50%, 100% of D

S Skew of increment db (w.r.t. DB) Identical, Skewed
Dis Prob. of changing large itemset identity | 0.33 (for Skewed)

Dit Prob. of changing item identity 0.50 (for Skewed)

Table 2: Parameter Table

Parameters | Meaning Values
R Number of roots | 250
L Number of levels | 4
F Fanout )
D Depth-ratio 1

Table 3: Taxonomy Parameter Table

pass over db, it also determines the counts within db of itemsets in L% U N®. Duplicate candidates
arc avoided by retaining only one copy of each of them. So, in the worst case, it needs to make
one pass over the previous database and one pass over the increment.

For evaluating the performance of DELTA on hierarchical databases, we compared it with
Cumulate and ORACLE as no previous incremental algorithms are available for comparison. We
chose Cumulate among the algorithms proposed in [16] since it performed the best on most of our
workloads. The hierarchical databases were generated using the same technique as in [16].

5.2. Database Generation

The databases used in our experiments were synthetically generated using the technique de-
scribed in [3] and attempt to mimic the customer purchase behavior seen in retailing environments.
The parameters used in the synthetic generator are described in Table 2. These are similar to those
used in [3] except that the size and skew of the increment are two additional parameters. Since
the generator of [3] does not include the concept of an increment, we have taken the following
approach, similar to [8]: The increment is produced by first generating the entire DB U db and
then dividing it into DB and db.

Additional parameters required for the taxonomy in our experiments on hierarchical databases
are shown in Table 3. The values of these parameters are identical to those used in [16].

5.2.1. Data Skew Generation

The above method will produce data that is identically distributed in both DB and db. How-
ever, as mentioned earlier, databases often exhibit temporal trends resulting in the increment
perhaps having a different distribution than the previous database. That is, there may be signif-
icant changes in both the number and the identities of the large itemsets between DB and db.
To model this “skew” effect, we modified the generator in the following manner: After D trans-
actions are produced by the generator, a certain percentage of the potentially large itemsets are
changed. A potentially large itemset is changed as follows: First, with a probability determined
by the parameter p;s it is decided whether the itemset has to be changed or not. If change is
decided, each item in the itemset is changed with a probability determined by the parameter p;;.
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The item that is used to replace the existing item is chosen uniformly from the set of those items
that are not already in the itemset. After the large itemsets are changed in this manner, d number
of transactions are produced with the new modified set of potentially large itemsets.

5.3. Itemset Data Structures

In our implementation of the algorithms, we generally use the hashtree data-structure [3] as
a container for itemsets. However, as suggested in [2], the 2-itemsets are not stored in hashtrees
but instead in a 2-dimensional triangular array which is indexed by the large l-itemsets. It has
been reported (and also confirmed in our study) that adding this optimization results in a consid-
erable improvement in performance. All the algorithms in our study are implemented with this
optimization.

5.4. Overview of Experiments

We conducted a variety of experiments to evaluate the relative performance of DELTA and the
other mining algorithms. Due to space limitations, we report only on a representative set here. In
particular, the results are presented for the workload parameter settings shown in Table 2 for our
experiments on non-hierarchical (flat) databases.

The parameters settings used in our experiments on hierarchical databases are identical except
for the number of items (N) and the number of potentially large itemsets (L) which were both
set to 10000. The specific values of additional parameters required for the taxonomy are shown in
Table 3.

The experiments were conducted on an UltraSparc 170E workstation running Solaris 2.6 with
128 MB main memory and a 2 GB local SCSI disk. A range of rule support threshold values
between 0.33% and 2% were considered in our equi-support experiments.

The previous database size was always kept fixed at 4 million transactions. Along with varying
the support thresholds, we also varied the size of the increment db from 40,000 transactions to
4 million transactions, representing an increment-to-previous database ratio that ranges from 1%
to 100%. For our experiments on hierarchical databases, the performance was measured only for
supports between 0.75% and 2% since for lower supports, the running time of all the algorithms
was in the range of several hours.

Two types of increment distributions are considered: Identical where both DB and db have
the same itemset distribution, and Skewed where the distributions are noticeably different. For
the Skewed distribution for which results are reported in this paper, the p;s and p;; parameters
were set to 0.33 and 0.5 as mentioned in Table 2. With these settings, at the 0.5 percent support
threshold and a 10% increment, for example, there are over 700 large itemsets in db which are not
large in DB, and close to 500 large itemsets in DB that are not large in db.

We also conducted experiments wherein the new minimum support threshold is different from
that used in the previous mining. The previous threshold was set to 0.5% and the new threshold
was varied from 0.2% to 1.5%. Therefore, both the Stronger Threshold and Weaker Threshold
cases outlined in Section 2 are considered in these experiments.

6. EXPERIMENTAL RESULTS

In this section, we report on the results of our experiments comparing the performance of the
various incremental mining algorithms for the dynamic basket database model described in the
previous section.

6.1. Ezperiment 1: Flat / Equi-Support / Identical Distribution

Our first experiment considers the equi-support situation with identical distribution between
DB and db on flat databases. For this environment, the execution time performance of all the
mining algorithms is shown in Figures 3a—d for increment sizes ranging from 1% to 100%.
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Fig. 3: Flat / Equi-Support / Identical Distribution

Focusing first on FUP, we see in Figure 3 that for all the increment sizes and for all the support
factors, FUP performs better than or almost the same as Apriori. Moving on to TBAR, we observe
that it outperforms both Apriori and FUP at small increment sizes and low supports. At high
supports, however, it is slightly worse than Apriori due to the overhead of maintaining the negative
border information. As the increment size increases, TBAR’s performance becomes progressively
degraded. This is explained as follows: Firstly, TBAR updates the counts of itemsets in LPBUNDPE
over db - these itemsets are precisely the same as the set of all candidates generated in running
Apriori over DB. Secondly, it performs a complete Apriori-based mining over db. When | db | =
| DB |, the total cost of these two factors is the same as the total cost incurred by the Apriori
algorithm. However, TBAR finally loses out because it needs to make a further pass over DB.

Turning our attention to Borders, we find in Figure 3a, which corresponds to the 1 percent
increment, that while for much of the support range its performance is similar to that of FUP and
TBAR, there is a sharp degradation in performance at a support of 0.75 percent. The reason for
this 1s the “candidate explosion” problem described earlier in Section 4. This was confirmed by
measuring the number of candidates for supports of 1 percent and 0.75 percent - in the former
case, it was a little over 1000 whereas in the latter, it had jumped to over 30000!

The above candidate explosion problem is further intensified when the increment size is in-
creased, to the extent that its performance is an order of magnitude worse than the other algorithms

- therefore we have not shown Borders performance in Figures 3b--d.

Finally, considering DELTA, we find that it significantly outperforms all the other algorithms
at lower support thresholds for all the increment sizes. In fact, in this region, the performance of
DELTA almost coincides with that of ORACLE. The reason for the especially good performance
here is the following — low support values result in tighter values of k, the maximal large itemset
size, leading to correspondingly more iterations for FUP over the previous database DB, and for
TBAR over the increment db. In contrast, DELTA requires only three passes over the increment
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Fig. 4: Flat / Equi-Support / Skewed Distribution

and one pass over the previous database. Further, because of its pruning optimizations, the number
of candidates to be counted over the previous database DB is significantly less as compared to
TBAR - for example, for a support threshold of 0.5 percent and a 50% increment (Figure 3c), it
is smaller by a factor of two.

We note that the marginal non-monotonic behavior in the curves of TBAR, Borders, DELTA
and ORACLE at low increment sizes is due to the fact that only sometimes do they need to access
the original database DB and this is not a function of the minimum support threshold.

6.2. Egxperiment 2: Flat / Equi-Support / Skewed Distribution

Our next experiment considers the Skewed workload environment, all other parameters being
the same as that of the previous experiment. The execution time performance of the various
algorithms for this case is shown in Figures 4a-d. We see here that the effect of the skew is
pronounced in the case of both TBAR and Borders, whereas the other algorithms (including
DELTA) are relatively unaffected.

The effect of skew is noticeable in the case of TBAR since it relies solely on the increment to
prune candidates from its computation of the closure and therefore many unnecessary candidates
are generated which later prove to be small over the entire database. Borders, on the other hand, is
affected because the number of 1-itemsets that are in the promoted border tends to increase when
there is skew. For instance, for a minimum support of 0.33% and an increment of 10%, there were
nine l-itemsets among the promoted borders and the number of large itemsets was 4481, resulting
in over 2 million candidates.

In contrast to the above, Apriori and FUP are not affected by skew since the candidates that
they generate in each pass are determined only by the overall large itemsets, and not by the large
itemsets of the increment.
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Fig. 5: Flat / Multi-Support / Identical Distribution [Previous Support = 0.5%:

DELTA is not as affected by skew as TBAR since it utilizes the complete negative border
information to prune away candidates. That is, all itemsets which are known to be small either over
DB U db or over db are pruned away during closure generation, and not merely those candidates
which are small over db. Hence, DELTA is relatively stable with respect to data skew. As in
the Identical distribution case, it can be seen in Figures 4a-b that for small increment sizes, its
performance almost coincides with that of ORACLE. It however degrades to some extent for large
skewed increments because of two reasons: (1) the number of itemsets in LY — LPBY increases,
resulting in more unnecessary candidates being updated over db, and (2) the number of itemsets
in LPBYdb _ [ DB increases, resulting in more promoted borders followed by more candidates over
DB. Even in these latter cases it is seen to perform considerably better than other algorithms.
For example, for a minimum support of 0.33% and an increment of 100%, its performance is more
than twice as good as that of TBAR.

6.3. Experiment 3. Flat / Multi-Support / Identical Distribution

The previous experiments modeled equi-support environments. We now move on to considering
multi-support environments. In these experiments, we compare the performance of DELTA with
that of Apriori and ORACLE only since, as mentioned earlier, FUP, TBAR and Borders do not
handle the multi-support case.

In this experiment, we fixed the initial support to be 0.5% and the new support was varied
between 0.2% and 1.5%, thereby covering both the Weaker Threshold and Stronger Threshold
possibilities. For this environment, Figures 5a-d show the performance of DELTA relative to that
of Apriori for the databases where the distribution of the increments is Identical to that of the
previous database.

We note here that at either end of the support spectrum, DELTA performs very similarly to
Apriori whereas in the “middle band” it does noticeably better, especially for moderate increment
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Fig. 6: Flat / Multi-Support / Skewed Distribution [Previous Support = 0.5%]

sizes (Figures 5a~b). In fact, the performance gain of DELTA is maximum when the new mini-
mum support threshold is the same as the previous threshold and tapers off when the support is
changed in either direction. At very low support thresholds, the number of large itemsets increases
exponentially, and therefore the number of candidates generated in the negative border closure
in DELTA will be a few more than the number of candidates generated in Apriori. Most of the
candidates will have support less than the previous minimum threshold, and hence all of them
have to be counted over the previous database. Therefore, the performance of DELTA approaches
that of Apriori in the low support region. In the high support region, on the other hand, most of
the candidates do not turn out to be large and hence both algorithms perform almost the same
amount of processing.

6.4. Ezperiment 4: Flat / Multi-Support / Skewed Distribution

Our next experiment evaluates the same environment as that of the previous experiment, except
that the distribution of the increments is Skewed with respect to the original database. The
execution time performance for this case is shown in Figures 6a—d. We see here that the relative
performance of the algorithms is very similar to that seen for the Identical workload environment.
Further, as in the equi-support skewed case (Experiment 2), DELTA is stable with respect to
skew since it uses information from both DB and db to prune away candidates. Only when the
increment size is 100% do we notice some degradation in the performance of DELTA. However, it
performs slightly better than Apriori even for this large increment.

6.5. Experiment 5: Hierarchical / Equi-Support / Identical Distribution

The previous experiments were conducted on flat databases. We now move on to experiments
conducted on hierarchical databases. In these experiments, we compare the performance of DELTA
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Fig. 7: Hierarchical / Equi-Support / Identical Distribution

with that of Cumulate and ORACLE only since, as mentioned earlier, no incremental algorithms
are available for comparison. The execution time performance of the various algorithms for this
case is shown in Figures 7a—d. Note that the time taken to complete mining is measured in hours
here as compared to the minutes taken in the previous experiments. The reason for this large
increase is that the number of large itemsets is much more (about 10-15 times) - this is because
itemsets can be formed both within and across levels of the item taxonomy graph.

For all support thresholds and database sizes, we find that DELTA significantly outperforms
Cumulate, and is in fact very close to ORACLE. We see that DELTA exhibits a huge performance
gain over Cumulate, upto as much as 9 times at the 1% increment and 0.75% support threshold,
and as much as 3 times on average. In fact, the performance of DELTA is seen to overlap with that
of ORACLE for small increments (Figures 7a-b). The reason for this is the number of candidates
in DELTA over both db and DB were only marginally more than that in ORACLE. This is again
because the set of large itemsets with its negative border is relatively stable, and DELTA prunes
away most of the unnecessary candidates in its second pass over the increment.

Due to space constraints, the experimental results for hierarchical databases where the incre-
ment’s distribution is Skewed, as also the multi-support environments, are not, presented here.
They are available in [15] and are similar in nature to those presented earlier in this paper for flat
databases.

7. CONCLUSIONS

We considered the problem of incrementally mining association rules on market basket databases
that have been subjected to a significant number of updates since their previous mining exercise.
Instead of mining the whole database again from scratch, we attempt to use the previous mining
results, that is, knowledge of the itemsets which are large in the previous database, their negative
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border, and their associated supports, to efficiently identify the same information for the updated
database.

We proposed a new algorithm called DELTA which is the result of a synthesis of existing algo-
rithms, designed to address each of their specific limitations. It guarantees completion of mining
in three passes over the increment and one pass over the previous database. This compares favor-
ably with previously proposed incremental algorithms like FUP and TBAR wherein the number
of passes is a function of the length of the longest large itemset. Also, DELTA does not suffer
from the candidate explosion problem associated with the Borders algorithm owing to its better
pruning strategy.

DELTA’s design was extended to handle multi-support environments, an important issue not
previously addressed in the literature, at a cost of only one additional pass over the current
database.

Using a synthetic database generator, the performance of DELTA was compared against that
of FUP, TBAR and Borders, and also the two baseline algorithms, Apriori and ORACLE. Our
experimernts showed that for a variety of increment sizes, increment distributions and support
thresholds, DELTA performs significantly better than the previously proposed incremental algo-
rithms. In fact, for many workloads its performance approached that of ORACLE, which represents
a lower bound on achievable performance, indicating that DELTA is quite efficient in its candidate
pruning process. Also, while the TBAR and Borders algorithms were sensitive to skew in the data
distribution, DELTA was comparatively robust.

In the special scenario where no pass over the previous database is required since the new
results are a subset of the previous results, DELTA’s performance is optimal in that it requires
only one pass over the increment whereas all the other algorithms either are unable to recognize
the situation or require multiple passes over the increment.

Finally, DELTA was shown to be easily extendible to hierarchical association rules, while main-
taining its performance close to ORACLE. No prior work exists on extending incremental mining
algorithms to handle hierarchical rules.

In summary, DELTA is a practical, robust and efficient incremental mining algorithm. In ocur
future work, we plan to extend the DELTA algorithm to handle quantitative rules [17] and also to
develop incremental algorithms for sequence [4] and classification rules [6].
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