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Abstract - Real-time database systems are designed to handle workloads where transactions have 
completion deadlines and the goal is to meet these deadlines. However, many real-time database 
environments are characterized by workloads that are a & of real-time and standard (non-real-time) 
transactions. Unfortunately, the system policies used to meet the performance goals of real-time 
transactions often work poorly for standard transactions. In particular, optimistic concurrency control 
algorithms are recommended for real-time transactions, whereas locking-based protocols are suited for 
standard transactions. In this paper, we present a new database system architecture in which real- 
time transactions use optimistic concurrency control and, simultaneously, standard transactions use 
locking. We prove that our architecture maintains data integrity and show, through a simulation study, 
that it provides significantly improved performance for the standard transactions without diminishing 
the real-time transaction performance. We also show, more generally, that the proposed architecture 
correctly supports the co-existence of any group of concurrency control algorithms that adhere to a 
standard interface 
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1. INTRODUCTION 

A real-time database system (RTDBS) is a transaction processing system that is designed to 

handle workloads where transactions have completion deadlines. The objective of the system is to 
meet these deadlines, that is, to process transactions before their deadlines expire. Research on 

real-time database systems has focussed almost exclusively on identifying the appropriate choice, 
with respect to meeting the real-time goals, for the various database system policies such as priority 
assignment, concurrency control, memory management, etc. (e.g. [4,26,22,36]). In many real-time 

database environments, however, transaction workloads may have a & of real-time and standard 
(non-real-time) transactions. For example, in a stock market environment, real-time transactions 
are submitted by brokers who are buying and selling shares and need their transactions to complete 
before the current share prices are updated. In contrast, standard transactions are executed 
by stock exchange officials running various types of accounting transactions. For such mixed 
workloads, the throughpzlt of the standard transactions is an additional performance metric, and 
ideally, the RTDBS should meet the performance requirements of both (real-time and standard) 
transaction classes. However, to the best of our knowledge, no work has been reported so far with 
respect to designing such “integrated” real-time database systems. We address this issue here and 
present a system architecture that attempts to cleanly integrate standard transactions into the 
real-time environment. 

The main problem in designing an integrated RTDBS is that the system policies used to meet 
the performance goals of real-time transactions often work poorly for standard transactions. This 
is especially true with regard to transaction concurrency control: Real-time variants of optimistic 
concurrency control, such as OPT-WAIT and WAIT-50 [19], provide significantly better real-time 
performance than locking-based algorithms in Virm deadline” RTDBS [21] ( firm deadlines means 
that transactions which miss their deadlines are considered to be worthless and are immediately 
discarded from the system without being executed to completion). In contrast, locking protocols 
such as 2PL [15] and WDL [16] provide considerably more throughput than optimistic algorithms 
for standard transactions in conventional resource-limited DBMS [l, 161. Therefore, in general, 
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standard transactions may expect to receive poor service from real-time database systems that 
have been designed with only real-time transactions in mind. 

We focus here on designing a database system that allows each transaction class to execute 
under the concurrency control mechanism that is best suited for that class. We feel that such a 
facility would be necessary for a database system that aims to maximise the performance metrics 
of all classes simzlltaneously. In particular, while integrating standard transactions into a real-time 
database system, we would like to maximise the throughput of standard transactions to the extent 
possible while not affecting the performance of real-time transactions. At first glance, it may appear 
that there is a simple solution to the problem: Use optimistic algorithms for resolving conflicts 
among real-time transactions and use locking algorithms for resolving the conflicts among standard 
transactions. However, this scheme will not maintain data integrity if there is any overlap between 
the data accessed by real-time transactions and the data accessed by standard transactions. This 
is because data conflicts that occur between real-time transactions and standard transactions will 
not be detected by either concurrency control policy. Therefore, an explicit integration mechanism 
is required to coordinate the activities of the various concurrency control mechanisms. 

In this paper, we present a new database architecture that allows different transaction classes to 

choose from multiple concurrency control schemes and execute simultaneously without loss of data 
integrity. This is achieved by interfacing a new software module called Master Concurrency 
Controller (MCC) between the transaction manager and the multiple concurrency control man- 

agers (CCMs). The MCC routes the data requests of each transaction to the appropriate CCM 
(that is, to the CCM assigned to the class to which the transaction belongs). Data conflicts between 
transactions belonging to the same class, that is, intro-class conflicts, are handled by the CCM 

associated with that class+. On the other hand, data conflicts between transactions belonging to 
different classes, that is, inter-class conflicts, are handled by the MCC. We prove that our design 
of this two-level conflict resolution scheme satisfies the conflict serializability criterion of database 

correctness. 

Apart from maintaining consistency, the integration scheme provides improved performance for 

the standard transactions and does this at no cost to the RTDBS’s primary concern: real-time per- 
formance. This was confirmed by a detailed simulation study of the MCC architecture implemented 
in a RTDBS whose input workload has both real-time transactions and standard transactions. In 

our experiments, which cover a range of workloads and system operating conditions, the real-time 
transactions used OPT-WAIT while the standard transactions used 2PL. The results of all these 
experiments indicate that allowing both concurrency control algorithms to “peacefully” co-exist 
by using MCC yields improved performance for the standard transactions at no expense to the 

real-time transactions. 

A notable feature of our integration mechanism is that it is not tied to a specific set or class 
of concurrency control algorithms but is able to support any CC mechanism that adheres to a 
standard interface, that is, the algorithms are treated as “black boxes”. This is especially important 

since new flavors of both real-time and conventional concurrency control protocols are constantly 
being proposed in the literature (e.g. [2,3,5, 311) and RTDBS users may wish to take advantage of 
these new algorithms. Note also that this “open” feature of our architecture makes the integration 
scheme applicable in not just the real-time database context but in any environment where there 
are multiple transaction classes with different preferred CC algorithms. This aspect is described 
in more detail in [40]. 

Finally, we have also designed algorithms to implement recovery for our RTDBS architecture 
- the details are omitted here due to space limitations but are described in [41]. 

1.1. Related Work 

From the above discussion, it is clear that supporting multiple CC algorithms at run-time is 
a complex problem and to the best of our knowledge, there have not been any prior efforts in 
this direction. On the surface, however, it may seem no different from the situation encountered 

tIf a CCM is chosen by more than one transaction class, then these classes are merged into a single class from 
the CCM’s perspective. 
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in “multidatabase systems”. In reality, though, there are differences: In a multidatabase system, 

though a transaction may be regulated by different CC policies (at different sites) during the course 

of its execution, access to a given data item is controlled by a single fixed CC policy (the policy 
operational at the site where the data item is located). In our scenario, however, we wish to allow 
for the same data item to be simultaneously under the regulation of multiple concurrency control 
policies. So, essentially, our problem is the conzlerse of the multidatabase problem. Moreover, the 
problem we are addressing is valid even for single-site database systems. 

As discussed above, our concerns are quite different from those encountered in multidatabase 

systems. However, we have used some of the ideas presented in the multidatabase literature with 
regard to maintaining serializability [34, 141 and adapted them to our situation. In fact, our 
architecture itself can be extended to multidatabase systems - the details are provided in [41]. 

1.2 Organization 

The rest of this paper is organized as follows: We present, in Section 2, the design and proof 

of correctness of the Master Concurrency Controller. The specific implementation of the MCC 
concept in real-time database systems is detailed in Section 3. The performance model is described 
in Section 4, and the results of the simulation experiments are highlighted in Section 5. We conclude 

in Section 6 and outline future research avenues. 

2. SYSTEM ARCHITECTURE 

In this section, we describe our system architecture for integrating multiple concurrency control 

policies and prove that it maintains conflict serializability. We initially present a general integration 
mechanism and then, in Section 3, discuss the specific implementation to be used in real-time 
database systems. The performance behavior of the scheme is profiled in Section 5. 

Our database system architecture is shown in Figure 1. This architecture differs from that of 

a DBMS employing a single CC policy in that the concurrency control manager is replaced by the 
dashed box in Figure 1. In this scheme, all transaction calls from the Transaction Manager are first 
sent to the Master Concurrency Controller (MCC) (which, as mentioned in the Introduction, is 

itself a complete concurrency control algorithm). The MCC then forwards each call to the “slave” 
concurrency control manager (CCM) associated with the transactiont. Each CCM interfaces with 
the Local Copies Manager (LCM) which in turn interacts with the Buffer Manager (BM) to provide 
the data asked for by transactions. The exact function of the local copies manager is explained 

later. 

As mentioned in the Introduction, two types of data conflicts can occur in the above archi- 

tecture: k&a-class and inter-class. Intra-class conflicts are data conflicts that occur between 

transactions of the same class while inter-class conflicts are conflicts that occur between trans- 
actions of different classes. The MCC is responsible for handling all inter-class conflicts whereas 
intra-class conflicts are handled by the respective CCMs. This division of labor makes it necessary 
for the MCC to also implement a full concurrency control mechanism, thereby ensuring a consistent 
notion of database correctness. 

2.1. Interface Functions 

Since we wish to make the integration scheme independent of the implementation of the various 
concurrency control managers used in the database system, we require that they all adhere to a 
standard interface. In particular, we assume that the MCC and all CCMs support the following 
common interface functions: Begin_trans, Commit_Trans, Abort-Trans and Accedtem. The first 
three functions correspond to starting, committing and aborting a transaction, respectively. The 
Access-Item function refers to access of data items by a transaction. The arguments to this function 
specify the item being accessed and the mode of access (such as read or write). In addition to this set 

tAny number of CCMs can be incorporated. For simplicity, however, we have shown only two CCMs in Figure 1. 
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Fig. 1: System Architecture 

of interface functions, the slave CCMs are required to support a function called Prepare_to_Commit. 
This function is elaborated upon later. 

We also make the reasonable assumption that all the concurrency control algorithms used 
in the database system produce only conflict serializable schedules and that all schedules are 
strict [S]. Note that, apart from this requirement and the interface requirement, the concurrency 
control managers are effectively treated as “black boxes” by the MCC, thereby providing an open 
architecture. 

2.2. Master Concwrency Controller 

The MCC operates in the following manner: On receiving a Begin_Trans call, it performs any 
action the corresponding concurrency control algorithm demands and forwards the call to the 
appropriate slave CCM. For a Commit_Trans call, it forwards the request to the relevant CCM and 
either commits or aborts the transaction as per the recommendation of the CCM. An Abort_Trans 

call is simply handled by aborting the transaction at the MCC and forwarding the abort request 
to the concerned CCM. 

The Access-Item call is processed by first recording the call in the data structure appropriate 
to that used by the specific CC algorithm implemented at the MCC. (For example, if MCC were 
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using 2PL, the call would be recorded in a lock table.) Then, if the requested action does not result 
in any inter-class conflicts, the requested action is forwarded to the appropriate CCM. Otherwise, 
the MCC takes action (according to the CC algorithm followed by it) to handle the inter-class 
conflict. Once again, assuming the MCC were using 2PL, the call would be forwarded to the CCM 
if there were no inter-class conflicts caused by the call. Otherwise, the call would be blocked (i.e., 
not be forwarded to the CCM) until the conflicting transaction(s) terminate. Note that the MCC 
is able to discover inter-class conflicts because it records all the Access_ltem calls that it receives. 

In short, the behavior of the concurrency control algorithm implemented at the MCC is identical 
to that of the same concurrency control manager in a normal database system - the only difference 
is that it recognizes only inter-class conflicts and ignores intra-class conflicts. 

In the above situation, where inter-class conflicts and intra-class conflicts are detected and 
resolved by the MCC and CCMs, respectively, the following problem may arise: The serialization 
order for the same set of transactions may be different at the MCC and the CCMs! This scenario 
is illustrated in the following example (we later explain how our MCC architecture solves this 
problem) : 

Example 1 Assume that there are two CCMs, A and B, implementing Basic Timestamp Order- 
ing(BT0) [37] and Optimistic Concurrency Control, respectively, and that the MCC implements 
2PL. Consider the following schedule, where Ti and Tj are transactions submitted to CCM-A and 
TB is a transaction submitted to CCM-B: 

1 
TA 
Begin 

R(X) 

R(Z) 

Commit 

2 
TA 

Begin 

R(X) 
W(X) 
R(Y) 
W(Y) 

Commit 

TB 

Begin 

WY) 

R(Z) 
W(Z) 

Commit 

It is clear that the above schedule is not serializable (due to the Ti + Tj + TB + Ti cycle). 
It would be permitted, however, by a combination of 2PL-based MCC, BTO-based CCM-A and 
OPT-based CCM-B. This is explained as follows: CCM-A, which implements BTO, permits the 
schedule that it locally sees since Tj is older than Tj; that is, it enforces a serial order in which 
Tj is before Tj. On the other hand, MCC (which implements 2PL), permits the global schedule 

1 assuming that Tj is serialized before TA. Therefore, the serialization orders at MCC and CCM-A 
are different. 0 

Since different serialization orders could lead to loss of data consistency, we have devised the 
following scheme, called Global Ordering Scheme, to ensure that this does not happen. 

2.3. Global Ordering Scheme 

In this scheme, we ensure that a single serialization order is followed in the entire database 
system. This is done by requiring the CCMs to keep track of the local serialization order of trans- 
actions and to communicate this to the MCC whenever requested. The local CCMs communicate 
the local serialization order using the notion of serialization numbers which is defined shortly. The 
MCC then ensures that a single global order is maintained. 
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Definition 1 A serialization number sequence, with respect to a schedule S, for a set of transac- 
tions is a sequence of numbers such that for any pair of transactions Ti and Tj , if m and n indicate 
the serialization numbers of Ti and Tj respectively, then the following holds: m < n +- 3 a serial 
schedule conflict equivalent to S, in which Ti finishes before Tj. 

The local serialization order of transactions at a CCM is communicated to the MCC by aug- 
menting the interface presented by the CCMs to the MCC in the following fashion: Each CCM 
provides a function called Prepare-to-Commit. This function, when invoked with a transaction 
identifier, responds with an indication of whether or not the transaction can be committed. If it 
can be committed, the serialization number of the transaction with respect to the global schedule 
restricted to transactions of that class alone is also returned by the CCM of that class. The serial- 
ization numbers returned by a CCM are distinct. In other words, serialization numbers are never 
reused by a CCM, irrespective of the outcome of a transaction. 

The MCC invokes the function Prepare_to_Commit when it gets the Commit_Trans call from the 
Transaction Manager. The serialization number returned by the slave CCM is then checked for 
validity (explained shortly) and the transaction is committed or aborted based on the outcome of 
this test. We will need a few definitions before outlining the validity test. 

Definition 2 Let S be a schedule of a set of transactions T produced by a DBMS employing 
precisely one concurrency control policy, say M. A serialization function, ser, for M is a function 
that maps every transaction in T to one of its operations such that the following holds: S is conflict 
equivalent to S , where S is the serial schedule in which Ti occurs before Tj if and only if ser(Ti) 
occurs before ser(Tj) in S. 

Our notion of serialization functions is similar to the notion of serialization function and se- 
rialization events [34, 141. All concurrency control algorithms either inherently have serialization 
functions, or they can be introduced externally [17]. In particular, for locking protocols and 
optimistic algorithms, the function that maps every transaction to its commit operation is a seri- 
alization function, whereas for timestamp algorithms, the function that maps every transaction to 
the begin operation is a serialization function. 

Definition 3 The serialazation time stamp (STS) of Ti is the time at which ser(Ti) is received by 
the MCC. 

The MCC uses the STS to define the serialization order at the MCC while the CCMs com- 
municate their local order through serialization numbers returned by the Prepare_to_Commit call. 
The MCC now ensures that the serialization orders at the MCC and the CCMs agree by main- 
taining the following data structures: The MCC maintains a sem’alizataon time stamp (STS) for 
each transaction. In addition to STS, the MCC also maintains for each transaction a lour water 
mark: (LWM) and a high water mark: (HWM). The LWM and HWM of Ti determine the range in 
which its serialization number, as returned by the CCM, can lie. When a transaction is initiated, 
its LWM and HWM are initialized to 0 and 03 respectively. They are updated as follows whenever 
a transaction Ti commits: 

l For all Tj such that Tj belongs to the same class as Ti and Tj is after Ti in MCC’s serial 
order (i.e., STS(Ti) < STS(Tj)) and Tj conflicts with Ti, set LWM(T~) = max (LWM(Tj), 
serialization number of Ti) . 

l For all Tj such that Tj belongs to the same c1a.w m Ti and Tj is prior to Ti in MCC’s serial 
order, (i.e., STS(Ti) > STS(Tj)) set HWM(Tj) = min (HWM(Tj), serialization number 
of Ti). 

As promised earlier, we now describe the test used for checking the validity of the serialization 
number returned in response by a slave CCM to a Prepare_to_Commit call by the MCC. Based on 
the result of the test, the transaction is either committed or aborted. 
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Commit Test : The MCC allows a transaction to be committed only if its serialization number, 
as returned by the CCM, lies between its LWM and HWM. 

We will now prove that the commit test ensures that a single global order is maintained. 

Lemma 1 If there exists an edge Ti -+ Tj in the precedence graph corresponding to a schedule 
produced by any combination of CC algorithms at MCC and the slave CCMs, then STS(Ti) < 
STS(Tj). 

Proof. We will assume STS(Ti) > STS(Tj) and derive a contradiction. 

Case 1 : Ti and Tj belong to the same class. 

Case 1.1 : Ti commits before Tj 
Since STS(Ti) > STS(Tj), Tj is senior to Ti and hence HWM(Tj) is set to some value which 

is smaller than or equal to the serialization number of Ti when Ti commits. Since Ti t Tj, the 

serialization number of Tj returned by the CCM will be greater than that of Ti. So it exceeds 
HWM(Tj) and hence the MCC will not allow it to commit. 
Case 1.2 : Tj commits before Ti 

We know that LWM(Ti) will be set to some value which is greater than or equal to the 

serialization number of Tj when Tj commits because by our assumption Ti is junior to Tj and Ti 
conflicts with Tj. But Ti + Ti and hence the serialization number of Ti returned by the CCM is 

smaller than that of Tj. It is less than LWM(Ti) and MCC will not allow it to commit. 
Case 2 : Ti and Tj belong to different classes. 

By the definition of STS, if Ti + Tj, then STS(Ti) < STS(Tj) b ecause inter-class conflicts are 

regulated by the CC algorithm at the MCC, which will produce serializable schedules only. 0 

2.4. Local Copies Manager 

Most concurrency control algorithms make “in-place” updates to data items, that is, transaction 
write commands are applied directly to the data items themselves. This is true, for example, of 
both locking protocols and timestamp algorithms. However, a unique feature of algorithms based 
on optimistic concurrency control (OPT) is that they make updates to private local copies of data 
items and these private updates are made public only at transaction commit time. If such “private 

copy” algorithms are used at the MCC, it is possible to have situations wherein transactions 
perform “dirty reads” [18] even without violation of the rules of any of the concurrency control 
mechanisms. This situation is illustrated in the following example: 

Example 2 Assume that there are two CCMs, A and B, implementing 2PL and BTO, respectively, 
and that the MCC implements OPT. Consider the following schedule, where TA and TB refer to 
transactions submitted to CCM-A and CCM-B, respectively: 

Since TA and TB are the only transactions in their respective classes, there are no intra-class 
conflicts here. Assume that TA reaches validation phase at the MCC before TB. In this situation, 
the MCC, which detects the inter-class conflict, aborts TB at this time and allows TA to commit. 
However, the second read by transaction TA is now a “dirty read” since it read the value written 
by TB. Therefore, it was incorrect to commit transaction TA. Cl 

The problem is a direct consequence of the fact that we did not satisfy all the preconditions 
of the algorithm at the MCC which in this case means that OPT expects transactions to write to 
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local copies whereas the system was not doing so. To address this problem, a local copies manager 
(LCM) (see Figure l), which interfaces between the buffer manager and the concurrency control 
managers, is introduced into our architecture. The LCM creates local copies for each item that is 
accessed by a transaction. At commit time, the local values of a transaction are written into the 
buffer manager by the LCM. Note that the LCM is needed only if OPT is employed at the MCC, 
but not for 2PL or BTO. 

2.5. Summary 

To summarize the above description, we list below the main characteristics and assumptions of 
our architecture for integrating multiple concurrency control mechanisms. 

Property 1 The characteristics are: 

All concurrency control algorithms support the basic set of interface functions. 

All concurrency control algorithms produce only conflict serializable strict schedules. 

Inter-class conflicts are resolved at the MCC whereas intra-class conflicts are resolved at the 
corresponding CCMs. 

The serialization order at the MCC and at the slave CCMs are the same. 

Any preconditions required by the algorithm at the MCC have to be satisfied by the system. 

Note that the above characteristics are independent of the specific CC algorithms used at the 
CCMs. 

2.6. Proof of Correctness 

We now prove that database systems which satisfy the above requirements are guaranteed to 
maintain database consistency. In particular, we prove that every schedule S produced by any 
combination of concurrency control algorithms at the MCC and the slave CCMs is serializable if 
the DBMS satisfies Property 1. 

Theorem 1 Every schedule S produced by any combination of concurrency control algorithms at 
the MCC and the slave CCMs is serializable if the DBMS satisfies Property 1. 

Proof. Suppose, by way of contradiction, that SG(S) (the serialization graph corresponding to 
the schedule S) contains a cycle TI + TZ + . . . + T, + 2’1, where n > 1. By Lemma 1 Ti + 
TZ + STS(Tl) < STS(T2). Hence, we have STS(Tl) < STS(T2) < . . . < STS(T,) < STS(TI) 
which is impossible. Thus SG(S) has no cycles and hence by the Serializability Theorem [6], S is 
serializable. Cl 

3. RTDBS IMPLEMENTATION 

In the previous section, a general scheme for integrating multiple concurrency control algorithms 
was described. We move on in this section to considering the RTDBS context specifically wherein 
the workload is a mix of real-time and standard transactions. As discussed in the Introduction, the 
preferred concurrency control mechanisms for the real-time transactions and standard transactions 
are OPT-WAIT and 2PL, respectively t. We briefly describe below the essential features of these 
algorithms. 

In the following description we assume that the RTDBS has a priority assignment mechanism 
for the real-time transactions (for example, Earliest Deadline, where transactions with earlier 
deadlines are assigned higher priority than transactions with later deadlines) and that resources 
are always assigned based on priority. We also assume that all standard transactions are assigned 
a lower priority than any real-time transaction. 

tin [19], WAIT-50 wee found to outperform OPT-WAIT - however, for ease of implementation and explanation, 
we have used OPT-WAIT in our experiments. The thrust of this paper is unaffected by the change. 
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3.1. 2PL 

In the two-phase locking (2PL) protocol [15], transactions set read locks on objects that they 
read, and these locks are later upgraded to write locks for the objects that are updated. Multiple 
transactions can simultaneously share a read lock on a data item, but write locks are exclusive. 
If a lock request is denied, the requesting transaction is blocked until the lock is released. Locks 
obtained by a transaction during the course of its execution are held until the transaction commits, 

at which time it simultaneously releases all of its locks. Deadlocks are possible with the 2PL 
protocol, and these are resolved by restarting one of the transactions in the cycle of waiting 
transactions. 

3.2. OPT- WAIT 

In classical optimistic concurrency control (OPT) [27], t ransactions read and update data items 

freely, storing their updates into a private workspace. These updates are made public at commit 

time. Before a transaction is allowed to commit, however, it has to pass a validation test. This 
test checks that there is no conflict of the validating transaction with transactions that committed 

since it began execution. The validating transaction is restarted if it fails this test. 

A variant of the above algorithm incorporates the Broadcast Commit schemet suggested in 

[33, 381. Here, when a transaction commits, it identifies other currently executing transactions 
that it conflicts with and these conflicting transactions are immediately restarted. Note that there 
is no need to check for conflicts with already committed transactions since any such transaction 
would have, in the event of a conflict, already restarted the validating transaction at its (the 
committed transaction’s) own earlier commit time. This also means that a validating transaction 
is always guaranteed to commit. The broadcast commit variant detects conflicts earlier than the 
classical OPT algorithm, resulting in fewer wasted resources and earlier restarts. In the rest of 
this paper, we will refer to this variant as the basic OPT algorithm. 

The OPT-WAIT algorithm [19] is a real-time variant of the OPT protocol, which aims to meet 

more transaction deadlines by preferentially serving urgent transactions. It incorporates a priority 
wait mechanism: A transaction that reaches validation and finds higher priority transactions in 

its conflict set is “put on the shelf”, that is, it is forced to wait and not allowed to commit 

immediately. This gives the higher priority transactions a chance to make their deadlines first. 
While a transaction is waiting, it is possible that it is restarted due to the commit of one of the 
conflicting higher priority transactions. 

3.2.1. MCC 

In principle, we could choose any CC algorithm for the Master Concurrency Controller. How- 
ever, we have deliberately chosen OPT-WAIT for the MCC also. This choice was dictated by our 
desire to ensure that the real-time performance of the RTDBS should not suffer in an attempt to 
improve the performance of standard transactions. Using OPT-WAIT at the MCC ensures that 

the real-time transactions, by virtue of their higher priority, never “see” the standard transactions 

(since all inter-class conflicts are resolved in favor of the real-time transactions). At the physical 
resources also, since they are assigned on a priority basis, the real-time transactions are virtually 
unaffected by the standard transactions t. Therefore, the performance of the real-time transactions 

is practically unaltered with respect to the original RTDBS. 

We conducted experiments to evaluate the performance of the MCC implementation described 

tThe Broadcast Commit scheme is also sometimes referred to as Forward optimistic concurrency control [23]. 
t In our simulation model, the processors and disks are scheduled on a priority head-of-line basis. Since this 

discipline is non-preemptive, real-time transactions which arrive when a standard transaction has already acquired 
a resource have to wait for that one transaction to complete before seizing the server. So, in that sense, the real-time 
transactions are indeed blocked by standard transactions. However, since the service times of requests are typically 
small and since, more often than not, real-time transactions arrive when other real-time transactions are being 
served, this has a negligible performance impact. Note that while CPUs are typically preemptible, all currently 

available disks are non-preemptive devices. 
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Fig. 2: Database Model 

here, and the following sections describe the experimental framework and the results of the exper- 
iments. 

4. MODEL AND METHODOLOGY 

To evaluate the effectiveness of the MCC concept, we developed a performance model of a 
centralized database system that caters to real-time and standard applications. In this section, we 
describe the database model and discuss the experimental methodology and performance metrics 
used in our study. 

4.1. DBMS Model 

The organization of our database model is based on the database model of [24] and is shown in 
Figure 2. There are six components in this model, four of which represent the database system itself, 
while the remaining two capture the applications utilizing the database services. The components, 
each of which is realized by a separate module in the simulator, are the following: 

Database, which models the data and its layout 

Source, which generates the transaction workload 

Transaction Manager, which models the execution of transactions 

Resource Manager, which models the hardware resources 

Master Concurrency Controller (MCC), which controls global access to shared data 
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Concurrency Control Managers (CCMs), which control access to shared data for spe- 
cific transaction classes 

Sink, which receives exiting transactions 

The interaction between these modules primarily consist of service requests and completion 
replies as shown in Figure 2. The list of parameters that we use in our model is shown in Table 1. 
In the remainder of this section, we describe each of these modules in detail. 

4.1.1. Database 

The database is modeled simply as a collection of pages, and all database operations are mod- 
eled at the page level of granularity. For example, CPU and disk costs for processing the data 
are modeled on a per page basis. The parameter DatabaseSize specifies the number of pages in 
the database that are accessible by the real-time transaction class and by the standard trans- 
action class. The databases for real-time and standard transactions can be completely disjoint, 
partially overlapping or completely identical. The amount of overlap is determined by the Overlap 
parameter. The data itself is modeled as being uniformly distributed across all the system disks. 

4.1.2. Source 

The source component represents the applications utilizing the database services. In our current 

implementation, it consists of two sub modules, one generating standard transactions and the other 
generating real-time transactions. 

The real-time workload generator is modeled as an open system and transactions are generated 
in a Poisson stream at a mean rate specified by the ArrivalRate parameter. The standard workload 
generator is modeled as a closed system with a constant population. The number of transactions 
in the st,andard population is specified by the MPI;(Multiprogramming level) parameter. 

I Parameter Meaning 

DatabaseSize Number of database pages per class 

Overlap Overlap of class databases 

Arrival rate Real-time transaction arrival rate 

MPL Multiprogramming level of standard transactions 

RTMeanTransSize Average real-time transaction size (in pages) 

STDMeanTransSize Average standard transaction size (in pages) 

SizeSprd Spread in transaction size 

RTWriteProb Write probability per accessed page for real-time transactions 

STDWriteProb Write probability per accessed page for standard transactions 

SlackFactor Deadline tightness factor 

NumCPU Number of processors 

NumDisk Number of disks 

PageCPU CPU service time per data page 

, PageDisk Disk service time per data page 

Table 1: System and Workload Parameters 

Each real-time transaction consists of a sequence of pages to be read, a subset of which are 
also updated. The range of transaction sizes for real-time transactions, measured in terms of 
the number of pages that they access, is determined by the RTMeanlYansSize and SizeSprd pa- 
rameters; real-time transaction sizes range between (1 - SizeSprd) * RTMeanTransSize and 
(1 + SizeSprd) * RTMeanTransSize pages. The number of pages accessed by a transaction varies 
uniformly between these limits. Page requests are generated by randomly sampling (without re- 
placement) from the entire database, that is, over the range (1, Database&e). A page that is read 
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is updated with probability RTWriteProb. Therefore, a page write operation is always preceded 
by a read for the same page; this means that the write set of a transaction is a subset of its read 
set and that there are no “blind writes” [6]. A transaction that is restarted follows the page access 
sequence of the original transaction. 

The standard transactions are similar to the real-time transactions in their access pattern except 

that their mean size is determined by STDMeanlVansSize and their page update probability is given 

by STDWriteProb. Further, the page requests for standard transactions are generated uniformly 
between the range ((1 - Overlap) * DatabaseSire, (2 - Overlap) * Database&e). Thus, the 

database size for both real-time and standard transactions is equal to the DatabaseSize parameter 

but the Overlap parameter determines the extent of shared data. 

Each real-time transaction has an associated deadline. The following formula is used to assign 

the deadlines: 

DT = AT+SF*RT 

where DT, AT and RT denote the deadline, arrival time and resource time of transaction T, 
respectively. The resource time of a transaction is the total service time at the resources that it 
requires, that is, it is the response time of the transaction if it were to execute alone in the system. 
It is computed using the following expression 

RT = NumReadsT * (PageCPU + PageDisk) + NumWritesT * PageCPU 

where NumReadsT and NumWritesT are the number of pages that are read and updated by the 
transaction, respectively, and PageCPU and PageDisk are the CPU and disk processing times 
per data page. The disk time for writing updated data pages is not included in the resource time 
computation since these writes occur after the transaction has committed. t 

The slack factor is a constant that provides control over the tightness/slackness of transaction 

deadlines. Its value is set by the SF workload parameter. 

4.1.3. Transaction Manager 

All transactions generated by the Source are delivered to the Transaction Manager. The Trans- 

action Manager controls the execution of transactions. It assigns a priority to each transaction 
upon arrival. For the real-time transactions, the transaction priority assignment scheme is Ear- 
liest Deadline, which assigns higher priority to transactions with earlier deadlines. All standard 
transactions have the same priority and this value is set to be less than that of any of the real time 
transactions (to reflect our goal of not degrading the performance of real-time transactions). 

Transactions that complete are marked as such and forwarded to the Sink module. The trans- 
action manager executes each standard transaction to completion. Real-time transactions, on the 

other hand, are “killed” if they do not manage to complete before their deadlines expire. Killing 
a transaction consists of aborting its execution, marking it as killed and forwarding it to the Sink 

module. 

As described earlier, each transaction execution consists of a sequence of read and write page 
accesses. For a read page access, the Transaction Manager requests access permission from the 
Master Concurrency Controller. When permission is received, the Transaction Manager requests 
the Resource Manager to read the corresponding disk page into memory. After the page has 
been read in, the Transaction Manager requests CPU time to process the page from the Resource 
Manager. When page processing is complete, the Transaction Manager then begins executing the 
next page access. A write page access is executed in similar fashion to a read page access. When all 
the page accesses of a transaction have been completed, the Transaction Manager initiates commit 
processing for the transaction. 

tWe assume sufficient buffer space to allow the retention of updates until commit time. In addition, we assume 
the use of a log-based recovery scheme where only log pages are forced to disk prior to commit. 



Integrating Standard Transactions in Firm Real-Time Database Systems 15 

Transactions may sometimes have to be aborted due to data conflicts. In this case, the CCMs 
(for intra-class conflicts) and the MCC (for inter-class conflicts) decide that the transaction should 

be aborted and inform the Transaction Manager. The Transaction Manager then invokes the abort 
procedure for the transaction. After the abort procedure is completed, the transaction is restarted 
and follows the same data access pattern as the original transaction. Real-time transactions are 
also aborted when they are killed due to missing their deadlines. In this case, the Transaction 
Manager is the initiator of the abort process, and the aborted transaction is not restarted but 

sent, instead, to the Sink. 

4.1.4. Resource Manager 

The Resource Manager represents the operating system and controls access to the physical 

resources of the database system. The physical resources in our model consist of multiple CPUs 
and multiple disks. The CPUs have a common queue while each disk has a separate queue. 
These queues are served according to a Head-Of-Line (HOL) policy, with the request queue being 

ordered by transaction priority. Table 1 summarizes the key parameters of the resource model - 
the NumCPU and NumDisk parameters specify the hardware resource composition, while the 
PageCPU and PageDisk parameters capture CPU and disk processing times per data page. 

Memory buffer resources are an integral feature of database systems. For the sake of simplicity, 

however, we assume that all data is accessed from disk and buffer pool considerations are therefore 
ignored. While modeling buffering would certainly result in different absolute performance num- 
bers, we do not expect that doing so would significantly alter the general conclusions of our study. 
We also have not modeled the local copies manager for the same reasons. 

4.1.5. Concurrency Controllers 

The Master Concurrency Controller maintains database consistency by regulating global trans- 
action access to data pages. It implements a concurrency control protocol, servicing concurrency 
control requests received from the Transaction Manager. The basic set of requests are: 

l Begin_Trans(trans_class,transid ) 

l Commit_Trans(trans_class, transid) 

l Abort_Trans(trans_class, transid) 

l Access-Item(trans_class, transid,pageno,operation,parameters) 

Based on the transaction’s class, the MCC routes these requests to the appropriate CCM. In 
addition, it also invokes the following function for a transaction that has finished its data processing 

and requests permission to commit (as explained in Section 2): 

l Prepare_to_Commit(trans_class,transid,serializationnumber) 

Two slave concurrency control managers, 2PL and OPT-WAIT, are implemented in our system. 

OPT-WAIT is used by the real-time transactions whereas the standard transactions use 2PL. 
The MCC also implements the OPT-WAIT algorithm. For the 2PL CCM, deadlock detection is 
executed by maintaining a waits-for graph and checking for cycles. The transaction whose data 

request caused the deadlocked cycle to form is chosen as the victim to be aborted. 

4.1.6. Sink 

The Sink module receives both completed and killed transactions from the Transaction Man- 
ager. It gathers statistics on these transactions and measures the performance of the system from 
the perspective of the various applications using the system. 
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4.2. Performance Metrics 

The performance metric for the standard transactions is their throughput. In contrast, the per- 
formance metric for the real-time transactions is MissPercent, the steady-state percentage of input 
transactions that miss their deadlines. All simulation experiments were run until steady-state per- 
formance was observed - only statistically significant differences are discussed here. The simulator 
was instrumented to generate a host of other statistical information including resource utilizations, 
number of transaction restarts, etc. These secondary measures help to explain the performance 
behaviour of the database architectures under various workloads and system conditions. 

5. EXPERIMENTAL RESULTS 

The simulation model described in Section 4 was implemented in the C programming language. 
In this section, we report on the results of a wide range of experiments that were conducted on 
this simulator. 

A mixed workload that consisted of real-time and standard transactions was generated ac- 
cording to the workload characteristics described in Table 2. On this workload, we consider the 
performance of DBMS architectures based on the following three algorithms: 

DatabaseSize 1000 pages 
Overlap 25% 

ArrivalRate 7 trans/sec 
MeanRTTransSize 8 pages 

MeanSTDTransSize 8 pages 
SizeSprd 0.5 

RTWriteProb 0.5 
STDWriteProb 0.5 

SlackFactor 3 
NumCPU 1 
NumDisk 2 
PageCPU 1Oms 
PageDisk 20ms 

Table 2: Baseline Parameter Settings 

In all the three algorithms, the priority for real-time transactions is assigned as per the earliest 
deadline policy and the priority of standard transactions is less than the priority of all real-time 
transactions. The priority of all standard transactions is identical. 

1. 

2. 

3. 

Pure OPT-WAIT: Here, OPT-WAIT is used for both real-time and standard transactions. 
The performance of standard transactions in this system is representative of what might 
happen if standard transactions were submitted to a typical real-time database system. 

Pure 2PL: Here, the 2PL concurrency control mechanism is used for both standard and real- 
time transactions. The performance of standard transactions in this system is representative 
of the best performance that standard transactions could expect to achieve in a real-time 
database environment (assuming no other changes were made to the RTDBS). 

MCC: Here, the RTDBS uses the MCC algorithm that was outlined in Section 3. The real- 
time transactions use OPT-WAIT, the standard transactions use 2PL, and the MCC itself 
uses OPT-WAIT. 

We began our performance evaluation by first developing a baseline experiment. Further exper- 
iments were constructed around the baseline experiment by varying a few parameters at a time. In 
the following discussion we refer to the Pure 2PL, the Pure OPT-WAIT and the MCC architectures 
as 2PL, OPT-WAIT and MCC, respectively. 
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5.1. Baseline Experiment 

The settings of the workload and system parameters for the baseline experiment are listed 
in Table 2. These settings were chosen with the objective of having significant data and resource 
contention in the system, thus helping to bring out the performance differences between the various 
architectures. With these values, the transaction size distribution is the same for both real-time 
and standard transactions and the real-time transactions share 25% of their database with standard 

transactions (and vice versa). The transaction write probabilities model medium data contention, 
while the resource values model a limited resource environment. The arrival rate of real-time 

transactions is set to maintain their resource utilization to be approximately half the system 
capacity, thereby ensuring that the performance effects of both transaction classes are highlighted. 

Figure 3 shows the percentage of real-time transactions that miss their deadline its a function 

of the multiprogramming level of standard transactions and in Figure 4, the complementary per- 
formance picture of the throughput of standard transactions as a function of MPL is shown. We 
will discuss the performance of each of the algorithms in turn. 

l OPT-WAIT: The miss percent of OPT-WAIT remains virtually constant with increasing 
MPL. For OPT-WAIT, the real-time transactions have priority at the physical resources 

and the concurrency control manager and therefore, in a sense, do not “see” the standard 
transactions. This fact can be verified by looking at Figure 5 which shows the total and 

useful utilizations of resources+ by the real-time transactions as a function of MPL for the 
three algorithms. The total utilization of real-time transactions for OPT-WAIT remains 

virtually constant with MPL confirming our claim that real-time transactions do not “see” 
the standard transactions. Further, useful utilization of real-time transactions is very very 
close to the total utilization due to the low miss percent. 

l 2PL: In contrast, to OPT-WAIT, the miss percent increases with increasing MPL for 2PL. 
Figure 5 shows that the total utilization of real-time transactions for 2PL declines steadily 
with MPL which corroborates the miss percent figure. Although the real-time transactions 
do not “see” standard transactions at the resources, they may have to wait for standard 
transactions at the concurrency control manager (as there is no priority at the concurrency 
control manager). The wait increases with increasing MPL since the data conflicts increase 
and consequently the total utilization of real-time transactions declines with MPL. 

tThe system parameters are so chosen as to distribute the load evenly on the CPU and the disk. Hence, the 
utilization figures for both the disks and CPU are identical. 
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l MCC: MCC is identical to OPT-WAIT in all respects in this case since both algorithms 
have priority at the resources and the concurrency control manager and effctively use the 
same algorithm (OPT-WAIT) for real-time transactions. (As far as real-time transactions 
are concerned MCC behaves like OPT-WAIT). 

Figure 4 shows that the throughput of all three algorithms initially increases as the system 
has enough capacity to absorb more transactions at low MPL. However, the medium-load and 

heavy-load performance of the algorithms is quite different in that their performance saturates at 
significantly different MPL values. The reasons for this behavior are explained below: 

l OPT-WAIT: The throughput for OPT-WAIT saturates around an MPL of 12 since the total 
utilization (see Figure 6) of standard transactions has reached the maximum possible value 
(which is close to 100 minus the utilization of real-time transactions). Adding transactions 
beyond this point is counter productive since the amount of data conflict increases and leads 
to more restarts of standard transactions. The reason for the throughput dropping after an 
MPL of 12 is that the useful utilization for OPT-WAIT drops as MPL increases while the 
total utilization remains constant after it reaches its peak value. The reason for the useful 
utilization for OPT-WAIT dropping is the increased number of restarts at higher MPL which 
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Fig. 7: Baseline Experiment: STD Restart Ratio Vs. MPL 

can be verified from Figure 7 which shows the restart ratio (number of times a transaction 
is restarted in its lifetime) for standard transactions for OPT-WAIT algorithm. As shown 
in the figure, the restart ratio of standard transaction can be split into restarts caused by 
real-time transactions (“inter-class” conflicts) and restarts caused by standard transactions 
( “intra-class” conflicts). The “intra-class” conflicts are higher than “inter-class” conflicts and 
therefore the restarts are higher for “intra-class” conflicts. 

2PL: The throughput of 2PL consistently increases with MPL and flattens out. The total 
and useful utilization also show a similar trend. Notice that the total utilization for standard 
transactions increases with MPL since the total utilization for real-time transactions decreases 
as we noted. 

MCC: The throughput of MCC saturates earlier than 2PL but later than OPT-WAIT. 
The useful utilization of standard transactions for MCC also shows a similar behaviour. 
The reason useful utilization of standard transactions drops in this case is that at higher 
MPL’s there is more data conflict with real-time transactions and hence more standard 
transactions get aborted at the master concurrency controller. The restarts are only due to 
“inter-class” conflicts and are lower than the restarts for OPT-WAIT algorithm (see Figure 7). 
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Consequently the useful utilization of standard transactions for MCC is higher than that for 
OPT-WAIT and therefore MCC attains higher throughput compared to OPT-WAIT. 

The above baseline experiment demonstrated that there do exist workloads for which MCC 

provides significantly better throughput than Pure OPT-WAIT without perceptibly affecting the 
real-time performance. In fact, MCC almost halves the difference in throughput between 2PL and 
OPT-WAIT. MCC manages to achieve significantly better throughput than OPT-WAIT while 
maintaining the miss percent of real-time transactions at the same level as OPT-WAIT. We also 
performed a detailed investigation of the sensitivity of the baseline results. This was done by 
constructing several experiments around the baseline experiment by varying a few parameters 
at a time. These experiments evaluate the MCC performance over a wide range of transaction 
workloads and system operating conditions. The results of these experiments are presented in the 
remainder of this section. 

5.2. Varying Database Overlap 

In this set of experiments, the database overlap was varied keeping all other parameters fixed 

at the values shown in Table 2. Figures 8 and 9 show the miss-percentage of real-time transactions 

as a function of MPL of standard transactions, when the database overlap was kept at 0% and 
100% respectively. 

When the standard and real-time transactions were spatially disjoint (i.e., zero overlap), we 

observe that the miss percentages of all the three algorithms do not vary much as the MPL is 

varied. This is because the real-time transactions have priority at the resources and therefore do 
not “see” the standard transactions. Moreover, the two classes of transactions do not overlap in 
terms of database access and therefore there are no “inter-class” data conflicts. This is the reason 

for 2PL performing equally well as OPT-WAIT and MCC in terms of miss percent in contrast to 
the baseline experiment. 

l OPT-WAIT: When the database overlap is increased, the miss percent of OPT-WAIT 
remain approximately equal to the corresponding figures in the spatially disjoint case and 
they are virtually constant as the MPL is varied. This is because OPT-WAIT favor the real- 
time transactions, which have higher priority than the standard transactions, when there 
are inter-class data conflicts. As a result, the real-time transactions are unaffected by the 
presence of the standard transactions and perform as well as in the spatially disjoint case. 

l 2PL: In contrast, the miss percentage of real-time transactions for 2PL increases consistently 
with MPL, as the database overlap is increased. This happens due to the increased data 
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conflicts with standard transactions at higher MPL. Increased data contention results in 

significant blocking for the real-time transactions and hence more missed deadlines. 

l MCC: When the database overlap is increased, the behavior of MCC is identical to that of 

OPT-WAIT, since both the algorithms give priority to real-time transactions when there are 
inter-class data conflicts. 

Figures 10 and 11 show the throughput of standard transactions as a function of MPL, when 
the database overlap was kept at 0% and 100% respectively. 

l OPT-WAIT: The throughput of standard transactions decreases as the database overlap 

increases, in the case of OPT-WAIT. The reason is OPT-WAIT victimizes the standard 
transactions when there are inter-class data conflicts, in order to give better performance for 

the real-time transactions. 

l 2PL: When the database overlap is increased, 2PL gives higher throughput for standard 
transactions than in the spatially disjoint case. 2PL algorithm does not enforce priority and 
hence the real-time transactions have to wait for the standard transactions for conflicting 
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data accesses. This results in significant blocking of the real-time transactions at the data 
and consequently standard transactions have more resources and hence higher throughput. 

l MCC: At 0% overlap, the throughput of MCC was identical to that of 2PL, and was much 
higher than that of OPT-WAIT. On the other hand, the throughput of MCC for standard 
transactions decreases as the database overlap increases. MCC victimize the standard trsns- 
actions when there are inter-class data conflicts, in order to give better performance for the 
real-time transactions. However, MCC gives much better throughput than OPT-WAIT. In 
MCC, 2PL is used for standard transactions which conserves resources when there are intra- 
class conflicts. Standard transactions are restarted only when they conflict with the real-time 
transactions. This resource conserving characteristic helps MCC to give better throughput 
than OPT-WAIT. 

5.3. Varying Write Probability 

In this set of experiments, the write probability was varied keeping all other parameters fixed at 
the values shown in Table 2. Figures 12 and 13 show the miss-percentage of real-time transactions 
as a function of MPL of standard transactions, when the write probability was kept at 0.25 and 
0.75 respectively. 

OPT-WAIT: When the write probability is increased, there will be more data conflicts which 
results in more transaction restarts. However, the miss percentage of real-time transactions 
does not change appreciably since there are sufficient resources (further boosted by priority) 
to run again and complete. As the graphs show, the variation of miss-percentage with MPL 
remains identical to the baseline experiment. 

2PL: The blocking characteristic of 2PL makes it more sensitive to variation in write proba- 
bility in terms of miss percent. When the write probability is high, there will be more waiting 
for data access which results in more real-time transactions missing their deadlines as can be 
ascertained from the graphs. 

MCC: The behavior MCC is identical to OPT-WAIT in all respects in this case. 

Figures 14 and 15 show the throughput of standard transactions as a function of MPL, when 
the write probability was kept at 0.25 and 0.75 respectively. 

l OPT-WAIT: As the write probability increases the resource utilization of real-time trans- 
actions for OPT-WAIT increases as a result of more restarts due to higher data conflicts. 
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Therefore, the standard transactions get less resources. Further, the higher data conflict 

amongst standard transactions also result in more restarts of standard transactions. There- 
fore, the throughput of standard transactions drops considerably as the write probability is 

increased. 

l 2PL: In the case of 2PL, as the write probability is increased, standard transactions will 
have more resources to use as more real-time transactions wait for standard transactions. 
However, the standard transactions also have to wait more for data access. As a result, the 
throughput does not vary appreciably as the write probability is varied. 

l MCC: In the case of MCC also, standard transactions get less resources because of higher 
utilization by real-time transactions, as the write probability is increased. However, they 

do not waste resources because of intra-class conflicts since MCC uses 2PL for standard 
transactions. Therefore, the drop in throughput is less than that of OPT-WAIT as the write 
probability is increased. 

5.4. Vmying Resources 

In this set of experiments we varied the number of CPU’s and disks to study the effect of 
increased resources on the algorithms. The write probability and overlap were kept fixed at 0.5 
and 25% respectively. The number of CPU’s was kept at 10 and the number of disks at 20. All 
other parameters were fixed as per Table 2. 

In the first experiment, the arrival rate of real-time transactions was maintained at 7 trans- 
actions per second, as in the baseline experiment. Figure 16 shows the miss percent of real-time 
transactions as a function of MPL of standard transactions. We observe that the qualitative be- 
haviour of the three algorithms remains the same as in the baseline experiment. However, the 
absolute values of miss percent decreased drastically as compared to the baseline experiment as 
the system has more resources. 

Figure 17 shows the throughput of standard transactions as a function of MPL. We observe 
here that OPT-WAIT outperforms 2PL and MCC in terms of throughput. The reason is that the 
load on the system is so little that it behaves like infinite resources. Hence, OPT-WAIT can afford 
to waste resources whereas, in 2PL and MCC, data conflicts will pose a bottleneck. Note that 
this behavior can be predicted from previous studies that show that optimistic algorithms achieve 
higher throughput than 2PL when there is very little resource contention [l]. 

In the next experiment, we scaled the arrival rate to 70 (by the same factor by which the 
resources were increased). Figure 18 shows the miss percent of real-time transactions as a function 
of the MPL of standard transactions. Again the qualitative behaviour remains the same as in 
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the baseline experiment,. However, the absolute values of miss percent increased drastically. The 
reason is, the number of concurrently executing transactions is more which causes higher data 
conflicts. Hence the increase in resources cannot maintain the same performance as in the baseline 
experiment. 

Figure 19 shows the throughput of standard transactions as a function of MPL. The throughput 

of MCC and OPT-WAIT is almost, identical. The reason OPT-WAIT has a throughput identi- 
cal to MCC is that there are enough resources for OPT-WAIT to fritter away and yet achieve 

the throughput of MCC. The MCC, in contrast, blocks a standard transaction whenever there 
are “intra-class” data conflicts (which is pretty high given the arrival rate) or “inter-class” data 

conflicts. In the case of 2PL, real-time transactions have no priority at, the data. As a result the 

throughput is much higher than in the baseline experiment. However, the throughput is not scaled 

as much as the resources because real-time transactions get priority at the resources. 

5.5. Other Experiments 

We also conducted several other experiments to evaluate sensitivity of results to changes in 
database size, real-time transaction deadline formula, different sizes for real-time and standard 
transactions, slack factor, etc.. 
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In all these experiments, the various algorithms showed similar behavioral patterns to those 
described in the above experiments. 

6. CONCLUSIONS 

In this paper, we have addressed the issue of designing integrated real-time database systems 
that can cater to transaction workloads which have a mix of firm-deadline real-time transactions 
and standard transactions. In particular, we have shown that it is possible to provide improved 
performance to standard transactions without sacrificing the interests of the real-time transactions. 
This was achieved by designing a new database system architecture wherein an additional module 
called Master Concurrency Controller (MCC) was incorporated into the system. The MCC, which 
itself is a complete concurrency control algorithm, allows different transaction classes to choose from 
multiple concurrency control schemes and execute simultaneously without loss of data integrity. 
With this facility, it is possible to construct an RTDBS where each transaction class is regulated by 
its preferred CC algorithm: OPT-WAIT for the real-time transactions, and 2PL for the standard 
transactions. 

Using a detailed simulation model, we compared the performance of the new MCC-based RT- 



Integrating Standard Transactions in Firm Real-Time Database Systems 27 

DBS architecture against those of RTDBSs which support only OPT-WAIT or only 2PL. The 
performance metric for the real-time transactions was the percentage of transactions that miss 
their deadlines while the performance metric for standard transactions was the throughput. The 
performance of the algorithms was evaluated over a wide range of workloads and system operating 
conditions. Our experimental results indicate that the single-CC systems do well on (at most) 
one of the performance metrics but not the other: 2PL provided a good throughput for standard 
transactions but missed the deadlines of a high percentage of real-time transactions, while OPT- 
WAIT met the deadlines of most real-time transactions but exhibited poor throughput for standard 
transactions. In contrast, the MCC-based system was able to deliver a reasonable throughput for 
the standard transactions (in most cases it was able to bridge the gap in throughput between 
OPT-WAIT and 2PL by a factor of 40%) and at the same time maintain the miss percentage to 
be virtually identical to that of OPT-WAIT. 

While we have focussed primarily on the real-time database environment in this paper, the 
MCC architecture is applicable to any environment that has multiple transaction classes having 

different preferred concurrency control algorithms. In our future work, we plan to evaluate the 
performance gains obtainable by using MCC in other such environments. 
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