
1360 lEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

MANDATE: MAnaging Networks
Using DAtabase TEchnology

Jayant R. Haritsa, Michael 0. Ball, Nicholas Roussopoulos, Anindya Datta, and John S. Baras

Abstract-In recent years, there has been a growing demand
for the development of took to manage enterprise communication
networks. A management information database is the heart
of a network management system-it provides the interface
between all functions of the network management system and,
therefore, has to provide sophisticated functionality allied with
high performance. In this paper, we introduce the design of
MANDATE (MAnaging Networks using DAtabase TEchnology),
a proposed database system for effectively supporting the man-
agement of large enterprise networks. The MANDATE design
makes a conscious attempt to take advantage of the special
characteristics of network data and transactions, and of recent
advances in database technology, to efficiently derive some of the
required management functionality.

I. INTRODUCTION

N today’s global marketplace, most large-scale enterprises I have widely dispersed manufacturing and commercial op-
erations for both economic and political reasons. For example,
General Motors has manufacturing plants spread over the
United States, Europe, and Japan. In order to effectively coor-
dinate the functioning of a distributed enterprise, the subsidiary
units need to be connected by a communications network. As
the enterprise grows in size, its communications requirements
increase correspondingly. The enterprise networks of the future
are projected to be large agglomerations of subnetworks such
as LAN’s (local area networks), MAN’S (metropolitan area
networks), and WAN’S (wide area networks). These enterprise
networks are expected to be heterogeneous in several dimen-
sions: First, the underlying physical transmission facilities
may be “mixed media.” For example, a local area network
in Baltimore built with copper cables may be connected to a
wide area network covering the Eastern United States based on
fiber-optic technology, which is linked to the European com-
munications system by satellite. Second, different subnetworks
may be purchased from different vendors due to economic,
performance, or historical reasons. For example, a company
that uses SNA networking technology supplied by IBM may
take over a company that has AppleTalk as its internal commu-
nication mechanism. Therefore, individual subnetworks may
have different vendor-specific network management systems.

Manuscript received June 18,1992; revised March 16, 1993. This paper
was presented in part at the 3rd International Symposium on Network
Management, San Francisco, CA, April 1993.

The authors are with the Institute for Systems Research, University of
Maryland, College Park, MD 20742.

IEEE Log Number 9212156.

Third, the information being transmitted over the network may
be “multimedia,” that is, semantic differences exist in the types
of transmitted information. For example, video images may be
transmitted on the same channels as those carrying telephone
calls. Finally, individual users of the network may differ in
their performance objectives. For example, users needing the
network for data transfer may require high throughput while
others, whose concern is voice communications, may require
low call blocking probability.

For these reasons, future enterprise networks are expected
to be highly complex in their transmission, performance,
and communication characteristics. Due to this complexity
and the disparity among management systems for individual
subnetworks, efficient management of an enterprise network is
an extremely challenging problem. Therefore, there is a clear
need for research and development of network management
tools.

Network researchers are in common agreement that a
(conceptually) global network database, which contains all
management-related data, is central to the development of
an efficient network management system (e.g., 141, [341, [23,
[30]). The database is required to store information on network
and system configuration, current and historic performance,
trouble logs, security codes, accounting information, etc.
[18]. In OS1 parlance, this database is called a Management
Information Base (MIB). A practical example of an MIB-
based architecture is DEC’s EMA (Enterprise Management
Architecture), where a Management Information Repository is
defined as a central component of the Director [SI. While there
has been intensive research on network management systems
in recent years, comparatively little has been published with
respect to the actual design and implementation of an MIB. In
this paper, we introduce the design of MANDATE, a proposed
MIB system for effectively supporting the management
of large enterprise networks. We have attempted, in this
design, to identify the basic mechanisms that need to be
incorporated in network MIB’s. Although this design has
not been implemented in a network management setting,
certain components have been implemented and tested in
other contexts. In particular, the incremental client-server
architecture we propose for use in MANDATE has been
implemented and extensively tested [28], [27]. Moreover,
experiments related to interfacing optimization algorithms with
databases are given in [3]. As part of our future research
agenda, we plan to test and tune the MANDATE design by

0733-8716/93$03.00 0 1993 IEEE

HARITSA er al.: MANDATE 1361

implementing these mechanisms on a network testbed.
The guiding principle of the MANDATE design is to have

the network operator(s) interact solely with the database; that
is, from the operator’s perspective, the database logically
embodies the network. Whenever the operator wishes to make
changes in the network functioning, such as changing the
routing scheme, for example, the operator merely updates the
appropriate variables in the database. The actual implementa-
tions of these changes in the physical network are made by
the database system. This design approach allows the operator
to concentrate on what has to be done, rather than on the
mechanics of implementing the decisions. A second important
aspect of the MANDATE design is that it is a bottom-up
design, not a modified version of commercially available
database systems. This results in a system architecture that
is tailor-made specifically for network management. Finally,
we have made an attempt to identify and take advantage of
the special characteristics of network management data and
transactions, and of recent advances in database technology,
to efficiently derive the required MIB functionality.

The remainder of this paper is organized in the following
fashion. In Section 11, the role of database systems in network
management is discussed in detail. In Section 111, the related
work on database support for network management is briefly
reviewed. Then, in Sections IV and V, we describe the data
and transaction modeling aspects of network management. In
Section VI, we describe the design of MANDATE and how
our design proposes to achieve some of the required MIB
functionalities. Finally, in Section VII, we summarize the main
conlcusions of the study and outline future research avenues.

11. ROLE OF DATABASES

The ISO/ANSI standards committee [7] has classified the
sophisticated functionality required of network management
systems into the well-known six categories of configuration
management, fault management, performance management,
security management, accounting management, and directory
management. The functional architecture defined by these six
categories clearly identifies the different facets of network
management and control, and enables a modular approach to
be taken towards designing network management tools. How-
ever, there is considerable overlap and interaction between the
various management subsystems. For example, fault manage-
ment and performance management are closely interrelated,
since poor performance is often the only visible symptom
of a fault deep down in the system. Similarly, detecting a
faulty resource and isolating it from the remainder of the
network requires both fault management and configuration
management. In order for the various management modules
to coordinate their activities, a common “public workspace”
or database is necessary. Therefore, a logically integrated
database is the heart of a network management system [I]-it
provides the interface between all functions of the network
management system, as shown in Fig. 1. This database, or
MIB, is the conceptual repository of all management-related
information. The MIB defines the set of managed objects
visible to a network management module, and the network

Configuration
Management

Performance
Management

DUXlory
Management

uw Operaior

Fault
Managemt

Security
Management

Fig. 1. Network management model.

operators use the MIB to communicate all commands to the
physical components of the network.

A. Requirements on MIB

ment system should provide the following functionalities:
Ideally, the MIB module of an enterprise network manage-

1. Homogeneous Interface: Present a uniform interface
to the operator that is independent of the individual
subnetwork characteristics.

2. Graphical Interface: Allow the operator to view the
network at any level of detail; that is, to graphically
navigate the MIB.

3. Scalable Design: Add new subnetworks or increase the
functionality of existing subnetworks without requiring
complete restructuring of the database.

4. Fault Tolerance: Operate 24 hours on-line since the MIB
is the core of the network management system.

5. Real-Time Response: Store and process, in real time, the
“network health” data which is continuously gathered by
external network monitoring tools.

6. Temporal Views: Provide a “snapshot” of the network as
of some real-world time instant. This is necessary for
post-mortem fault and performance analysis.

7. Active Mechanisms: Support triggers that recognize and
respond to special network situations (as reflected by the
data) without requiring operator initiation.

8. High-Performance: Minimize the overhead of network
management on the performance of the network. In
addition, the network management performance should
gracefully degrade under overload conditions.

9. Decision Support: Answer “what if” questions (for ex-
ample, by executing on-line analysis algorithms), thus

1362 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

helping the operator to evaluate the potential impacts of
different control decisions.

10. Embedded Control: Efficiently execute on-line con-
trol algorithms (for example, expert systems) to adapt
the network routing, configuration, etc. in response to
changes in the network traffic or connectivity.

From this list, we see that an MIB has architectural require-
ments (fault tolerance, scalability, triggers), interface require-
ments (homogeneous, navigational), temporal requirements
(real-time response, temporal views), automation requirements
(active mechanisms, decision support, control), and perfor-
mance goals. Clearly, the design of the MIB is key to providing
all of these complex functionalities in an integrated fashion.

B. Need for New MIB Design
Since current database technology is fairly mature, one

might think that using a popular database management package
(e.g., ORACLE [22], INGRES [21]) should be sufficient
for implementing a network management MIB. There are
several reasons, however, why existing DBMS products are
not satisfactory from the network management perspective:

Standard off-the-shelf DBMS’s lack many of the required
MIB functionalities, such as real-time capabilities and
decision support facilities.
Conventional DBMS’s have been developed for the com-
mercial query processing environment and are primarily
geared towards applications such as banking, where the
focus is on naive human users interactively performing
transactions. In network management, however, software
programs control the network behavior with human inter-
vention restricted to skilled operators.
The objective of conventional DBMS’s is to efficiently
implement a transaction model that provides the so-called
ACID property; that is atomicity, consistency, isolation,
and durability [23]. However, this transaction model is
unsuitable for processing of network management data,
since these properties are not always essential here.
For example, in banking databases, all updates have
to be guaranteed for the database to be correct, and
this guarantee is provided by conventional DBMS’s. In
the network environment, however, updates to “network
health” information such as packet retransmission rates or
node queue lengths are not “sacred”-failing to register
updates has only performance implications, but certainly
no correctness implications. An MIB can use this property
of network data to derive some of its functionality. For
example, under overload conditions, it can continue to
provide real-time response to critical network monitors by
selectively ignoring the updates of less important sensors.

In summary, the network management environment is a
specialized application area with unique characteristics that
can best be taken advantage of by a database system that is
built specifically for this environment.

111. RELATED WORK

While network management has been an important research
topic for the past several years, comparatively little work has

been done, however, with respect to the database management
aspect of network control. In this section, we provide a brief
review of these papers.

Issues similar to those addressed in this paper were consid-
ered in [l]. The focus in that work was on evaluating how
conventional relational DBMS packages would serve in the
role of an MIB, and suggesting network-related modifications
to these conventional packages. In contrast, our focus is on
developing a new DBMS whose design is tailor-made for
network management.

The NETMATE project at Columbia University [111 has
also investigated many of the issues discussed here. The
project has primarily concentrated on the model of the network
and its architectural relationship with management tools. In
particular, a novel approach to network management is de-
scribed in [35]. This paper presents a data-oriented approach
to network management, in which network management func-
tions are specified as data manipulation statements. The goal
is to use the expressive power of database query languages
to construct network management functions such as tests and
alerts in an interactive, declarative, and set-oriented fashion.
This approach appears promising and integrates nicely with
the “data-centric’’ design described in this paper.

An overview of the issues involved in implementing the
MIB interface definition laid down by the OS1 Standards
Committee is presented in [4]. The issues considered included
the choice of data model, the architecture for distributing
network management data, and the mechanisms for ensuring
integrity of replicated data. While the paper describes several
of the functionalities to be provided by an MIB, it does
not, however, provide a detailed design for achieving these
functionalities.

Data modeling and data location issues are also discussed
in [24]. A combination of Entity-Relationship model and
object-oriented techniques is used in their approach, and a
functional architecture for providing network management
services is outlined. In [19] and [lo], techniques are proposed
for modeling the relationship between logical OS1 objects and
their concrete realization in a real implementation.

A Layered Attributed Graph was proposed as a formal
mechanism to model a network in [34]. Different graphs,
each representing a single layer of a seven-layer OS1 network,
are set into a formal layering relationship resulting in a
layered attributed graph. It was suggested that this mechanism
could be used as the basis for the design of a network
management DBMS. The practicality of this approach remains
to be seen.

Very recently, several books that are devoted exclusively
to network management have appeared (e.g., [30], [17], [2]).
These books highlight the importance of database tools in
developing network management systems, but focus more on
the functionality requirements and evaluation of such tools and
less so on the design aspect and mechanisms for realizing the
functionality requirements.

Finally, there are numerous papers on expert systems for
network management (see [13] for a detailed survey), all of
which rely on an underlying knowledge base on which to base
their inferences. These papers usually assume the existence of

HARITSA er al.: MANDATE

SENSOR DATA

1363

r

OPERATOR

PafaTMnce- .

Acmvamg --+/=/ Y

CONTROL DATA
I PWI ~ TmubkTrbs i

a database (typically in the form of rules) and develop expert
systems on top of this knowledge base.

IV. NETWORK DATA
The first step in designing a database system is to understand

the properties (semantics) of the data items that are resident in
the database and to understand the properties of the tasks (or
transactions) that store, process, and retrieve this data. Network
management data can be broadly classified into three types:
sensor data, structural data, and control data, as shown in Fig.
2, which describes a high-level abstraction of the MIB data
model. As explained later, the structural data describes the
physical and logical construction of the network, the control
data captures the operational settings of the network, and the
sensor data represents the observed state of the network.

A . Sensor Data

The sensor (or measurement) data is the raw information
that is received from the network monitoring processes, and
includes variables such as node queue lengths, retransmis-
sion rates, link status, and call statistics. The sensor data
provides the primary input for three of the six OS1 network
management categories: accounting management, performance
management, and fault management. It represents the current
“health” of the network in terms of the network’s usage and
operational quality. Typically, each sensor’s data arrives at a
regular frequency under normal network operation. However,
under fault or overload conditions, sensors may generate data
at a higher rate than normal. Another possibility is where a
sensor supplies data only when an extraordinary event occurs
(such as a link going down), or only upon explicit request from
the MIB control processes. For example, in the Internet, trap-
directed polling is employed for dealing with extraordinary
network events [25]. Here, whenever an extraordinary event
occurs, the managed network element sends a single trap to
the MIB, and the MIB is then responsible for initiating further
interactions with the network element. Since the traps are sent
unreliably, the MIB also employs low-frequency polling of
managed elements to determine their operational status.

Sensor data can be divided into two groups: persistent and
perishable. The persistent data consists of sensor data, whose
utility is long term, and therefore needs to be maintained per-
manently in the database. Critical data such as customer billing
information, network alarms, and security violations belong to
this category. Due to the requirement of permanence, persistent
sensor data requires the complete set of recovery mechanisms
(i.e., logging, mirroring, checkpointing [2 3]) similar to those
provided by commercial

Perishable sensor data, on the other hand, is data that is
of “limited time utility” in the sense that its current value
is valid only until the network characteristic that is being
monitored retains that value. Data such as node queue lengths,
retransmission rates, and most other dynamic performance
statistics fall into this category. There is no need for logging
of these updates since the information will be out-of-date by
the time the MIB recovers from a failure. Also, unlike the
persistent sensor data, updates to perishable sensor data are not

I T

“sacred” since every individual sample may not be essential;
therefore, ignoring updates occasionally does not have serious
implications. While the perishable sensor data has only limited
time utility with respect to the immediate operation of the net-
work, it may be necessary to retain a history of the data values
for long-term postmortem performance and fault analysis. In
order to fully implement this feature, a new version has to
be created for each update of a perishable data item. From a
practical storage perspective, however, it may be necessary to
implement a coarser granularity of versioning, such that a new
version is created only periodically (say, every tenth update)
or only when the value of the observed variable has changed
appreciably from its immediately previous archived value (say,
by more than 10%). Further, it may be sufficient to version
only those variables that are of critical importance in tracking
the state of the database, such as the link utilizations and
the number of retransmissions, and not verion less important
variables such as the number of null-header packets or the
byte count in individual packets.

In current large networks, the quantity of sensor data that is
gathered may be as large as 20-30 gigabytes per day 161.

B. Structural Data
In contrast to sensor data, structural data is composed of

“static” (slowly changing) network information such as the
network topology, the configurations of the network switches
and trunks, the data encryption keys, and the customer de-
scription records. This data provides the primary input for the
remaining three OS1 network management categories: con-
figuration management, security management, and directory
management. A point to note here is that, unlike sensor data,
structural data is valid even when the network is not in
operation.

Most of the structural data is stored at system initiation
time. This data is changed at a moderate rate consistent
with more classical database applications. For example, events

1364 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

which would require structural data updates include adding
a new switch to the system, adding a new customer, or
having a breach of security. The structural data needs to be
recoverable for monetary reasons (customer records are of
vital importance), for efficiency reasons (restart quickly from
a database crash), and for security reasons (accessing copies
of data encryption keys remotely over the network could lead
to security compromises).

In a typical large network, the quantity of configuration data
depends on the level of detail at which the network equipment
is represented, and may be of the order of several gigabytes.

C. Control Data

The final data category is control data, which captures
the current setting of network tuning parameters such as the
maximum flows on individual trunks, the traffic split ratios on
the output links of switches, and the routing table. The process
for changing an existing set of control settings is usually
initiated by the network operators. Alternatively, the changes
may be automatically triggered as a function of the information
contained in the sensor data. For example, if there is a serious
security violation (such as introduction of a virus) at a node,
the links going through the node may be automatically shut
down pending investigation of the problem by the network
operators. In addition to the current parameter settings, the
control database also stores a library of predefined control
settings (often called “profiles”) that reflect the appropriate
settings for a variety of common traffic patterns and network
configurations. For example, different suites of settings may
be appropriate for day and night traffic.

In order to support the functionality requirement that oper-
ators should be able to obtain historical views of the network
state, it is necessary to maintain a record of changes that are
made to the structural and control data. However, since these
changes occur at a moderate rate, we expect that the overhead
of maintaining the update history will not be significant.

V. NETWORK TRANSACTIONS

Having discussed the characteristics of network manage-
ment data, we now move on to considering the various types
of transactions that operate on the data in the MIB. We note
that we assume, in this paper, that transactions use a lock-
based paradigm for accessing data objects, where shared locks
are used for reading objects and exclusive locks are used for
updating objects.

A . Sensor Data

Two distinct groups of transactions, “updates” and “read-
ers,’’ access the performance data (perishable sensor data). The
updaters are network monitoring tools, while the readers are
internal MIB processes. The updaters work in private data
partitions since they update different sets of network variables
and, therefore, do not interfere with each other. These updates
are different from typical database updates in that the updated
value is independent of the current value of the data object.
Such updates are referred to as “blind writes” [5] . Since
the performance data is versioned, readers can always read

the data that they want without delay. Therefore, due to the
absence of Read-Write and Write-Write conflicts, no explicit
concurrency control is necessary for the performance data.
If it is required to ensure atomicity of the set of updates
made by each updater, updaters will have to follow a “degree
1” lock protocol [14] (update locks are held until the end
of the transaction) while accessing data objects. However,
since it should not be necessary for perishable sensor data to
be recoverable, for performance reasons, we intend to allow
updaters to follow the less restrictive “degree 0” lock protocol
(update locks are short-term).

For accounting and fault information (the persistent sensor
data), the network monitors append records to existing tables.
The MIB internal processes may both read and update these
persistent records. For example, a network monitor may reg-
ister a trouble ticket in the fault database. Once the fault is
fixed, the trouble ticket is updated by the operator to reflect
this fact. Due to the concurrent reading and updating and the
sensitive nature of the data contained in the accounting and
fault tables, the MIB internal processes have to follow the
classical “degree 3” locking protocol used in conventional
database systems (both read and update locks are held until
the end of the transaction) in accessing this data. However,
the network monitors may only have to use a degree 1 lock
protocol if their update accesses are restricted to appending
new records and do not involve altering the contents of existing
records.

B. Structural Data

Strucural data can be both read and written by the network
operator(s) or by MIB control processes. For example, the
addition of new equipment or facilities are usually entered
into the MIB by the operator, while the configuration details
of network switches and trunks may be automatically handled
by MIB processes. Standard network management operations,
such as inventory verification and customer authentication, are
typically executed on the structural data. Since it is possible
that multiple processes may access the same structural data
simultaneously, structural data transactions have to follow the
complete (degree 3) locking protocol in making their data

C. Control Data

Control data can be both read and written by the network
operator(s) or by MIB control processes. The process for
changing an existing set of control settings is usually initiated
by the network operators. Alternatively, the changes may
be automatically triggered as a function of the information
contained in the sensor data. For example, if the operator
observes from the sensor data that some links are becoming
excessively utilized, he/she may decide to replace the routing
scheme that is currently employed by a different scheme.
Another source of change for the control data is that produced
by reexecuting the optimization algorithms to reflect changes
in the network configuration or activity profile, thus generating
a new set of control settings.

Control parameters may be either under operator control
or under automatic control. In the former case, the operator

HARITSA er al.: MANDATE 1365

manually determines the setting of the control parameter while,
in the latter case, the MIB 's internal processes automatically
update the control settings. A facility will be provided in
MANDATE, whereby a control setting may be moved from
automatic control to manual control and vice versa. This
allows the operator to assume full control under emergency
or unanticipated situations. In a properly designed network,
no more than one process should be able to update a given
set of control variables at a time (it is meaningless to have
concurrent updaters since the control of the network then
becomes a function of the order in which the transactions
are processed.) Therefore, concurrency control is not required
for regulating access to control data. However, the transaction
construct is necessary for installing the updates in order to
ensure the atomicity of the updates (half-implemented control
settings may cause havoc in the network). Changes to the
control data trigger network executors (see Fig. 2) , which
are processes that actually implement in the physical network
the control structure that is logically described by the updated
control data.

D. Subnetwork Managers

In the most general setting, some of the objects managed
by the MIB will include higher-level entities that have their
own local network manager [2 5] . These subsidiary network
managers may request information from the MIB in order to
perform their local network management, or may inform the
MIB of significant updates to their configuration or status.

VI. THE MANDATE DESIGN

In the previous sections, we identified the special charac-
teristics of network management data and transactions. We
follow up in this section by describing how the MANDATE
design proposes to use these special characteristics, and recent
advances in database technology, to achieve some of the
required MIB functionalities.

A . Data Processing Model

As mentioned in the Introduction, the guiding principle of
the MANDATE design is to have the network operator(s)
interact solely with the MIB; that is, from the operator's per-
spective, the MIB embodies the network. Therefore, whenever
changes have to be made to the network topology, routing
scheme, switch software, etc., the operator merely initiates
that update the corresponding data objects in the MIB. The
actual implementation of these changes in the physical network
will be made by execution processes that are activated or
triggered by the database system. The design approach results
in modularity and efficiency since the operator does not need
to know the internal mechanisms of the physical network, but
can focus, instead, exclusively on the logical operations of the
network.

I) Overhead Minimization: In conventional database sys-
tems, an elaborate set of concurrency control and recover
mechanisms are utilized to provide the ACID property such
as two-phase locking, write-ahead-logging, and checkpointing.
However, in the network management domain, as discussed in

Sections IV and V, weaker forms of the ACID property may
be acceptable for certain data categories. In the MANDATE
system, we propose to incorporate mechanisms that permit
different degrees of concurrency control and recovery to be
selectively implemented on a data partition basis. By doing so,
we expect to realize considerable performance improvements.

Since some categories of structural data (see Section IV-B,
V-B) are updated only very rarely and others at a moderate
rate, concurrency control is not a major performance issue
with respect to transactions having to block while accessing
this category of data objects. Yet, it is wasteful to have all
transactions pay the computational overhead of invoking the
lock manager for each access to a data object given that
regulated access is only rarely necessary. Therefore, we plan to
use the following solution in MANDATE: For each structural
data category, the system maintains a special StructuralCC
integer variable which is initially set to 0. Whenever the
StructuralCC variable has a value of 0, no concurrency control
is employed by transactions accessing that class of structural
data. For any other value of StructuralCC, newly arriving
transactions have to follow the standard locking protocol.
Any transaction that is potentially an updater of the structural
data increments the StructuralCC variable at arrival, and
decrements the variable when it has finished accessing the
structural data. This means that read-only transactions, which
amve when no update transactions are executing, can access
their data objects without incurring the overhead of locking. If
an update transaction arrives when the StructuralCC variable
is 0, the StructuralCC variable is incremented and all the read-
only transactions that are currently accessing that category of
structural data are aborted and restarted, thus ensuring that
they too follow the locking protocol.

In order to enter the updates transmitted by subnetwork
managers (see Section V-D) to initiate transactions over the
network that directly updates the central MIB. This would
require each local manager to know about the implementation
of the central MIB and to possess transaction processing mech-
anisms. Another approach is for the local network managers
to merely send the information to the central MIB, which
then packages this information into a local transaction that
implements the updates in the database. We anticipate that the
second approach would be much easier to implement in large
networks and, therefore, plan to incorporate it in MANDATE.

2) Data Storage: In Section IV, we described the semantics
of the different categories of network management data. A re-
lated issue is the choice of storage model, such as the relational
model or the object-oriented model, for physically storing the
data. Relational models are used in most current database
systems since they are compatible with powerful data access
languages that are, at the same time, simple and declarative
(e.g., SQL) [3 2] . However, the OS1 standards definitions for
the MIB interface are based on an object-oriented paradigm
[2 5] , which might suggest that an object-oriented model is
the appropriate storage model. Note, however, that the OS1
standards refer only to the abstract model of management
information that is visible at the interface. Therefore, the actual
implementation of the persistent storage model could be quite
different and is a design choice.

1366 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

In the MANDATE design, we propose to provide an OSI-
compatible object-oriented query interface but leave open, for
now, whether a relational model or object-oriented model is
used for physical storage. In particular, we note that the use
of a relational model for physical storage has merit due to the
existence of highly efficient relational data retrieval operators.
Algorithms for mapping from an object-oriented interface
to the equivalent relational storage model are available in
database literature [33]. This approach to MIB design is sim-
ilar to the common practice among designers of commercial
database systems of using the entity-relationship model during
the design stage and then converting the final design into a
relational model at the physical level [32]. In the NETMATE
research project [1 11, VBase, a commercial object-oriented
database system, is used to implement the network model.
It is stated in the same paper that one of the future goals of
the project is to develop object-oriented network models on
top of relational database storage systems.

3) Network Views: The MIB should be able, at all times,
to provide the operator(s) with a view of the current state
(as best known) of the entire network. This is achieved
by combining the current sensor information, the structural
information, and the control settings in effect, as shown in
Fig. 2. In MANDATE, this idea is generalized to allow the
operators to create different views of the network by incorpo-
rating a view processor that provides the appropriate view to
each operator based on the information in the database. For
example, the structural database holds information about the
customer subnetworks, which includes details of the physical
customer access links and the logical mapping of a customer
to the public shared network. An operator trying to find the
cause of a customer complaint would use a view, wherein the
customer subnetwork is superimposed on the public network
to determine whether the fault lies in the public network or is
local to the customer subnet. The network views also serve as
inputs to the embedded analysis and optimization algorithms.

There is not clear-cut distinction between performance data
and fault data, since poor performance can be viewed as a
fault. Our definition, however, is that fault data is performance
data that is sufficiently critical to appear spontaneously on the
operator’s console without explicit request; that is, fault data
generates an alarm. Therefore, a message about the fault pops
up on the operator’s console whenever a new fault is either
indicated by the sensor data or explicitly sent as an alarm
message by a network managed entity.

4) Physical Realization of Logical Objects: Each resource
in the managed network, which in OS1 parlance is referred
to as a managed object (MO), will have a correspond-
ing representation in MANDATE. The representations of
managed objects will follow established OS1 guidelines
outlined in SMI/GDMO (Structure of Management Infor-
matiodGuidelines for the Definition of Managed Objects).
However, as outlined in Section IV, MO’s are managed
through a set of control processes that rely on a three-way
partition of MIB data into sensor, structural, and control
data. This data partitioning may not always be consistent
with OS1 MO definitions. For example, it may be desirable
to attach to a “structural” object an attribute that is based

on sensor information [e.g., the attributes of an object or
link might include its end nodes, bandwidth, or propagation
delay (structural data) together with the current link utilization
(sensor data)]. Where such “cross-overs’’ occur, we propose
that data be physically stored according to the MANDATE
classification. This will allow for the most efficient provision
of the data-specific database controls described in Section IV.
However, the logical views of the data will be consistent with
those specified in the OS1 MO definitions.

Note that this problem might occur even if the physical
partitioning matched that of object definitions, because the
network data locations are distributed. For example, as dis-
cussed in detail in [191, implementation considerations may
dictate that less than a whole managed object be stored in a
single system. Therefore, they introduce the notion of object
fragments and propose techniques for naming and managing
of object fragments. Similar issues of “composite managed
objects” are discussed in [IO].

5) Network-MIB Communications: Information flow (con-
trol actions, status information, etc.) between the MANDATE
MIB and the network should follow OS1 requirements. Thus,
MANDATE will offer services according to CMIS and trans-
mit and receive requests through CMIP. However, since most
current systems interact through the SNMP protocol, we
propose to make our design generic enough such that an SNMP
interface could also be integrated into the system.

Of course, the MIB would have to support a naming conven-
tion consistent with the communications protocol. Specifically,
from an OS1 perspective, the heterogeneous network consists
of a set of interconnected CME’s (conformant management
entity). Each CME may be anything from a WAN to a terminal
attached to a node, as long as all elements belonging to a
particular CME share identical services and protocols. Each
CME should have a unique name and address in the MIB, and
each network element, i.e., managed object (MO), should be
identified by the CME it resides in together with its identifier
within that CME.

B . Architectural Model
Although an MIB is logically a centralized repository of

all network management data, its physical implementation in
large networks will have to be distributed for performance
reasons. We assume that there is a central main database which
stores all structural data, the most critical sensor data, and
the major control settings, while the remaining network state
data is stored in the local memories and disks of network
components. As shown in Fig. 3, the recently developed
concept of a client-server architecture integrates well with
this design. In this picture, the DB server is the primary data
store site where all updates are synchronized for maintenance
of consistency. The network switches periodically propagate
status data to the DB server; the switches can also be queried
on demand. The client modules are typically workstations for
running the application and the user interface software. All
database accessing and processing is done at the server. A
second server, shown in Fig. 3, is used to mirror the database
of the main server and thereby provide fault tolerance. All

HARITSA er al.: MANDATE 1367

Switch Switch 71 qL
1 Backup DB Server I

DB Server

Fig. 3. An enhanced client-server database architecture for the MIB.

to blocking, Second, because sites collectively carry a large
variety of data subsets, each subset is pertinent to a client's
function, place of deployment, and response requirements. The
database servers waste most of their capacity in keeping track
of who-needs-what-when in order to propagate changes that
affect individual clients. On the other hand, if all changes are
broadcast to all clients, the clients would be incapacitated by
having to check all relevant and irrelevant updates (most of
them are irrelevant to each individual client). Therefore, the in-
telligence-namely who-needs-what-when-must be distributed
to the client workstations, which would selectively request
only relevant updates from the logs maintained at the servers.
In the following subsections, we show how the problems can
be resolved by using incremental update algorithms.

I) Incremental Computation Models: We present the re-
cently developed concept of incremental computation models
[26], [27]. Conventional computation models are based on
reexecution; that is, the entire computation is repeated each
and every time results are needed. Nothing is retained from
previous executions and, often, even the optimization of the
computation is repeated. In contrast, incremental computation
models utilize cached results or access paths to generate these

updates are made on both servers. During normal operation,
query retrieval is load balanced between the two servers. If
the primary server happens to fail, the secondary server is
promoted to be the primary server for registering updates.

to be an
attractive design choice, a straightforward implementation
of a client-server architecture creates serious performance
problems as it requires enormous processing and I/O on the
servers and very large data transmission on the network. For
example, if a query is issued at the client, transmitted to and
executed at the servers, and if the query's result has to be
transmitted in its entirety every time a client needs to access
the MIB, a good fraction of the server's and network's capacity
would have to be allocated to the support of the database itself
rather than the MIB.

To alleviate this problem, we have enhanced the client-server
architecture by adding full DBMS functionality on the clients
for caching and processing views (subsets) of the MIB data
[28]. At any point in time, a particular view is maintained
in each client. In many cases, the client workstation will be
supporting an operator who is responsible for real-time control
decisions. Therefore, updates to the MIB must be propagated
to the client views in real time. The client and server DBMS's
cooperate and split the task of query processing. By placing
client workstations at strategic nodes on the network, database
access is performed in parallel from multiple client databases,
thereby alleviating the bottleneck at the primary server. Some
of these client workstations may be located at customer sites,
as shown in Fig. 3.

Having data downloaded on a large number of clients can in-
crease performance, provided that the overhead of maintaining
consistency amongst them is manageable. First, the activities
of synchronizing and refreshing downloaded data are repeated
very often in a network; therefore, as the number of sites in-
creases, the processing throughput can rapidly deteriorate due

While this client-server architecture appears

-
results [26]. With these models, the results of subsequent
accesses to the same portion of the database are realized by
applying the computation to the input differentials, rather than
reexecuting the computation on the whole input.

The following example illustrates this concept. Consider the
following two tables:

C=Cust-call(cust-id, call-id, route-id)
R=Route(route-id, link-id)

where C stores information about customer calls and R
stores the routes that these calls go through. Assume that
a customer representative needs to know which customers
use what links so that, if a link goes down, the affected
customers can be identified. This requires computation of
the join C*R. In the incremental model, the C*R join is
computed only once, and thereafter maintained incrementally
by using only the differential files 6C and SR, S(C * R) =
(SC * R) U (C * SR) U (SC * SR) (here, C and R refer to
the updated versions of the relations). The records of quey
results are not stored explicitly but, instead, use a storage
structure called Viewcache [26]. It consists of a collection of
pointers to the underlying base table records and can quickly
be dereferenced to generate the actual records. ViewCache is
both compact and efficient for the incremental update of the
pointers.

Incremental Computation can be performed on demand,
periodically, or immediately. Each invocation is performed on
small input increments, which permits a significant reduction
of the response time. The cost of computing is amortized over
the lifecycle of the computed information, a concept that is
absolutely orthogonal to the reexecution model of transient
and nonpersistent software. Since computation is done in
increments, performance is improved by several orders or
magnitude.

2) Incremental Client-Server Architecture: The previously
mentioned problems associated with distributed network data-

1368 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 I , NO. 9, DECEMBER 1993

base processing in client-server architectures can be resolved
by integrating the enhanced client-server architecture with
the incremental computation model. The database activities,
which include I/O and processing, are now distributed between
the server and the requesting client. A portion of I/O and
processing is related to the incremental updates of the cached
data done at the server, leaving all the rest to be done
on the client. Both 1/0 and processing on multiple clients
can be done in parallel, and is the major factor in the
significant increase of overall throughput. A recent study has
shown that the client-server architecture, in association with
the incremental computation model, achieves two orders of
magnitude performance increase over a standard client-server
database architecture [9]. More importantly, the incremental
model seems especially appropriate for real-time maintenance
of network views, which are continuously being used by the
network operators and customers. This is because, with this
model, keeping the views up-to-date requires only incremental
computations and relieves the system from the burden of hav-
ing to recompute the entire view in each refresh cycle. Since,
under normal network operations, the views change only very
slowly over time, the incremental model can realize great
improvements in performance and minimize the overhead of
maintaining the views on the other system functions.

In MANDATE, we intend to use the incremental
client-server database architecture to provide the following:
1) Real-time refreshing of network views; 2) Immediate
update propagation from the primary site to its secondary
backups-this guarantees that, in case of failure, the secondary
site is up-to-date for promotion to primary server; 3) A quick
switch capability between a failing primary site and its backup
secondary one; 4) Parallel access of dynamically distributed
data on the enhanced clients and significant reduction on
the server’s I/O; 5) Preservation of the appropriate level of
centralized control.

In summary, the enhanced incremental client-server archi-
tecture provides the functional advantages of a distributed
architecture while retaining the high performance required to
support the MIB.

C. Network Control

The fundamental goal of network management is to be
able to control the state of the network. In the context of
an MIB, a network control process is any mechanism that
makes the network respond to stimuli collected by various
network sensors. Examples of such stimuli include traffic
data along links (e.g., load factors, retransmission rates),
switching information (e.g., queue lengths, throughput), and
network faults. In current large networks, numerous sensors
continuously monitor all aspects of the network operation and
generate vast quantities of data. Though most of this data is
routine, events such as link failures and switch malfunctions
may occur which require remedial action by the network
management system.

For network MIB systems, we classify network control
mechanisms along two dimensions: local versus global and

automatic versus manual. We present brief descriptions of each
class with illustrative examples.

1) Local Control: Local control mechanisms rely on local
data collection and local decision models. By local, we refer to
specifc components of the network as opposed to the network
as a whole. An example of a local network control mech-
anism is the classical window-based flow control scheme for
regulating traffic between a source destination pair [121. In this
protocol, incoming packets are accepted as long as the number
of unacknowledged packets is below a prespecified threshold.
If the threshold is exceeded, a local control mechanism turns
off the acceptance of further traffic until a sufficient number
of outstanding packets are acknowledged. The advantage of
local controls is that they incur little or no communication
overhead, since decisions are made locally with local data,
and minimal information exchange is involved. Due to this
locality of operation, local control processes are unaffected by
remote network failures and network congestion.

The logic for a local control process would reside com-
pletely within the local network element, e.g., switch, line
control unit, etc. However, this process would be a logical
part of the MIB, and its parameters could be modified via
MIB update. Specifically, the MIB would contain variables
corresponding to the local controller parameters. An update
to one or more of these database variables would trigger a
message from the MIB to the local element, specifying that
the corresponding change be made in the parameter value.

wide data and/or global decision models. Examples of global
control mechanisms include routing algorithms that compute
routes based on network-wide traffic estimates. Clearly,
global control processes are capable of optimizing network-
wide performance characteristics. However, they are more
vulnerable to network failures and have greater information
overhead since decisions must be communicated across the
network.

A global control action could be specified by an operator or
could be the result of an automatic process. The operator or
process would implement the control action by updating cer-
tain database variables. These updates would trigger messages
(OS1 M-ACTION requests) to the local network elements
specifying that the appropriate actions be taken.

It should be noted that a significant amount of research has
been devoted to the development of distributed implementa-
tion of network algorithms [151, [3 l]. These implementations
attempt to develop local controls that approach global perfor-
mance standards.

3) Automatic Control: Automatic controls monitor certain
network performance data. When specific conditions are met,
control settings are automatically changed without operator
intervention. For example, assume that a particular switch has
a local control process that equally allocates incoming calls
between a source destination pair among three different routes.
If one of these routes becomes overloaded, an automatic
control process embedded in the switch is triggered such
that only 20% of all new traffic is sent along the saturated
route and the remainder is split equally among the two other
routes. Automatic controls can be either global or local.

2) Global Control: Global control processes rely on network-

HARITSA er al.: MANDATE 1369

Automatic local controls are in abundance today and would
remain relatively unchanged in a MANDATE environment.
Automatical global controls would be based on two sets of
active database elements. First, triggers would sense a network
state indicating that the control process should be initiated and
would invoke the appropriate algorithm. Second, as explained,
the result of the global control algorithm would be to update
certain database variables. A second set of triggers would
dispatch the messages to the appropriate network elements.

4) Manual Control: Manual control processes either permit
or require human intervention. Network operators alter control
settings in the network using these processes. In a sense,
manual controls represent one of the major justifications of
the MIB. Clearly, the role of the MIB is to provide the
network manager with information that supports decision
making regarding the setting of control parameters. This
supporting activity may be achieved passively by simply
providing an interface between the network operator and
network status information. Alternatively, it may be achieved
through an alarm system that notifies the network manager of
network conditions that require actions on his or her part. As
in the previously described cases, operator-mandated controls
would be carried out by an operator update to the appropriate
database variable.

D. Embedded Optimization and Analysis Algorithm

One of the most significant potential advantages of the
MANDATE design is the ability to carry out sophisticated
global analyses based on network-wide data. To achieve this
objective, the design should provide a set of flexible mech-
anisms for interfacing optimization and analysis algorithms
with the MIB. In this context, we use the term optimization
algorithm to refer to a process that outputs a set of values
for certain control variables and the term analysis algorithm
to refer to a process that evaluates the impact on network per-
formance of a set of control settings input into the algorithm.
Thus, most types of simulations would be classified as analysis
algorithms. However, faster and simpler procedures, which
may be more appropriate in the context of real-time decision
making, are also included. The embedded optimization and
analysis features are expected to help network operators make
higher quality control decisions. Similar facilities are provided
in the NETMATE system [l l] .

We now discuss the interaction between embedded opti-
mization and analysis algorithms and the MIB. It is important
to note that the network control processes, which were dis-
cussed in the previous subsection, are different from embedded
algorithms. Network control processes comprise the entire
mechanism of controlling the process of network management.
As such, they include the process of data collection by network
sensors, the invocation of daemons under certain conditions
detected by the sensors, the execution of control algorithms
that accept the data as input and perform computations to
derive control settings, the potential screening of the settings
by human users, the potential execution of analysis algorithms
that output projected network performance based on the con-
trol settings, and the selection of the final settings and final

1
I-----I

Fig. 4. Interactions between algorithms and the MIB.

execution of these settings. Thus, network control processes
are complex mechanisms of which optimization and analy-
sis algorithms are only components. However, optimization
algorithms are an integral component of the global controller.

Fig. 4 gives a more detailed view of the interaction between
the algorithms and the MJB. Examples of optimization algo-
rithms include algorithms that output routes, flow controls,
and access controls. In general, the optimization algorithm
draws input from the MIB and outputs control settings. The
inputs to the algorithm consist of the current network state,
as embodied by some network view, and the existing control
settings. We also envision the presence of achieved control
settings in the MIB, which consist of old control settings and
the corresponding network states for which they were used.
These also may serve as input to optimizing the routines which
may find commonality between the current network state and
some old state, which could indicate that the corresponding
control setting is appropriate under the current conditions.

The output from an optimization algorithm will be used to
update either an active control variable or a nonactive control
variable. An update of an active control variable would trigger
the immediate execution of a control action as was described
in the previous section. Nonactive control variables would
usually be examined by users prior to making a final decision
on a control action. That is, if the user wished to use the control
setting, he or she would set the value of the active variable
to the value of the corresponding nonactive variable. Whether
the output of an algorithm is direct to an active or nonactive
variable is determined by the trigger that invoked the execution
of the algorithm. For example, a unstable network state may
trigger the algorithm to automatically take action by updating
an active variable, while a less critical situation may induce the
update of a nonactive variable and the subsequent examination
of the proposed control setting by the operator. In the latter
case, the operator may wish to run the algorithm several times,
possibly with different parameters, and compare the output.
Typically, in that case, as a result of multiple invocations of the
algorithm, there would be several versions of control settings

1370 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

present leading to the need of a version control scheme.
The role of an analysis algorithm is to evaluate the per-

formance effects of a proposed control setting. The inputs to
the analysis consist of a network state, an existing control
setting, and the proposed control setting. The output is a
detailed analysis of the effect on performance of using the
proposed control setting. A typical analysis algorithm might
be a queueing model which evaluated the effect of using a
particular route structure (the control setting) with a particular
traffic pattern (the network state). Such an analysis might make
use of simulation or, alternatively, other models might be
appropriate particularly if very fast response were required.

The general environment that we propose to support in
the MANDATE system is one in which a user can invoke a
given optimization algorithm several times to produce alternate
solution versions (proposed control settings). The user would
typically examine and possibly modify various versions and
may also wish to invoke an analysis algorithm that produced
a detailed evaluation of one or more of the proposed control
settings. Finally, the user would choose one of the versions as
a “final version” which, in MANDATE, would correspond to
making the control setting active.

E. Temporal Requirements

An important functionality that has to be provided by a
network MIB is that of supplying temporal views of the state
of the database; that is, a description of the network state as of
a specific point in time. This is necessary in order to conduct
postmortem fault analysis or to profile performance trends.
Therefore, the network MIB must support the retrieval and
analysis of network data describing the state of the network
as was known at a particular location and time. In addition,
the system must support the analysis of change of network
state data in order to provide information describing how the
network behavior at a particular location changed over time.
Such information constitutes an important basis for long-term
planning and fault analysis.

In typical conventional database systems, transactions are
usually processed in a first-come first-served manner and the
objective is to minimize average transaction response times. In
a network management database system, however, data from
numerous sources electronically arrives into the system in a
continuous fashion [l]. Due to the high rate of data arrivals,
delays in processing the data streams will cause the data
streams to back up and the database will cease to provide
an accurate picture of the network state. Therefore, in contrast
to a conventional DBMS where the goal usually is to minimize
transaction response times, the emphasis in the network MIB
is on processing the database updates in real time.

We discuss how MANDATE proposes to provide temporal
view to the network operators, and how the network state
information is installed in the database in real time.

1) Temporal Views: A requirement for transactions that ac-
cess network state information is that they have to enforce
temporal consistency; that is, the data items they read should
have existed in the real world at approximately the same
time. For example, using the link utilizations that were valid

ten seconds back in association with the node queue lengths
that were measured ten minutes ago clearly makes no sense.
Therefore, the “right” versions of data items have to be used
in processing each query. Note that temporal consistency is
evaluated with respect to the real-world time that the data
was valid, not the time at which the data was installed in the
database. (These two time concepts are referred to as valid time
and transaction time, respectively, in the database literature
[29].) As a consequence, the source and time of measurement
of network data are important attributes of data collected in a
network management system.

Two types of temporal queries are possible: a) Historical
queries: These queries expect their answer to be based on
the real-world network state as of some time in the past. b)
Current queries: These queries expect their answer to be based
on as recent a real-world network state as possible. In order
to help maintain temporal consistency for queries, each new
version of a data item is timestamped with the real-world time
of occurrence of the event or measurement. The valid time
of the kth version of data item d is denoted by Ek(d). Also,
the system maintains a table describing the periodicity Pd of
updates for each data item d that is periodically updated by
the network sensors. When a user submits a historical query
that requires the network state as of some earlier time Tp, for
each data item, the version v k of the data item which satisfies
the constraints Ek(d) 5 Tp and E k + l (d) > Tp is used for
computing the answer. For periodically updated data, if the
k + l t h version has not yet been installed in the database,
the v k version is used if T’ 5 Ek(d) + Pd. Otherwise, the
query processor waits for the Vk+1 version to be installed and
then uses it. If blocking cannot be tolerated, however, then an
alternative is to rerun the query as of an earlier time than Tp,
informing the operator of this change. A guaranteed earlier
time for which the query will run through without blocking
for unavailable data is t - Max (Pi) where t is the current
time and Pi are with reference to the periodically updated
data items that the query wishes to read. This scheme can be
used for processing current queries in a timely manner.

2) Real-Time Response: There are two types of network
updates that arrive to the MIB: periodic and sporadic. The
periodic data is the performance data that arrives in a regular
fashion, whereas the sporadic data is the billing and fault
information which arrives in random fashion based on the
network’s use and operational status. Since the sporadic data
is critical data that has to be registered in the database, higher
priority will be given in MANDATE to processing these
updates as compared to processing the periodic updates. In
addition, a dedicated processor with sufficient excess capacity
will be used in MANDATE in conjunction with Earliest-
Deadline scheduling to ensure that when the sporadic updates
are arriving at their normal rate, they will be registered in the
database before the expiration of their deadlines.

Under normal operations, when the sporadic updates are
arriving at their usual rate, MANDATE will also ensure that
all the periodic updates are entered into the database system.
This is done in the following manner: For each periodic sensor
Si, the system maintains information about its computation
requirement Ci and period Pi. The deadline for each of these

HARITSA et al.; MANDATE 1371

periodic update transactions is the time of the next triggering:
that is, the taks must be completed prior to the instant of
its next occurrence. In order to ensure that all the periodic
updates are registered, it is sufficient to use a coprocessor
with sufficient speed such that Cgv=, CilPi 5 1 in conjunction
with earliest deadline scheduling [20].

Under periods of stress loading or emergency situations,
which is when the sporadic updates arrive at a much higher
rate than normal, the system starts to miss the deadlines of
periodic updates since sporadic updates have higher priority
than periodic updates. To minimize the number of missed
deadlines under these overload conditions, we propose to use
the Adaptive Earliest Deadline scheduling policy described
in [16], which has been shown to provide robust good per-
formance under a variety of workloads and system loading
conditions.

VII. CONCLUSIONS
The Management Information Base (MIB) of a network

management system is a critical component since it provides
the interface between all functions of the network management
system. In this paper, we introduced the design of MAN-
DATE, a proposed database system for effectively supporting
the management of large networks. The MANDATE design
aims to provide network operators and customers with an
MIB interface that allows them to control and evaluate the
network operations by interacting solely with the database. The
actual implementation of the control decisions in the physical
network are expected to be handled by MANDATE’S internal
processes.

We showed that the network management environment
is a specialized application area with unique characteristics
that can best be taken advantage of by an MIB that is
designed specifically for this environment. To this end, MAN-
DATE’S design was built bottom-up, unlike other designs
discussed in the literature which have, for the most part,
added network-related modifications on top of commercially
available general-purpose database systems.

The proposed underlying structural framework of MAN-
DATE is a client-server architecture, which is enhanced by
the use of a DBMS functionality on the clients, and an incre-
mental computational model. This architecture is expected to
deliver both high-performance and functional advantages of a
distributed architecture.

We presented a detailed analysis of the different categories
of data that are stored in the MIB. Based on this analysis,
we showed that concurrency control and recovery protocols,
which are fundamental mechanisms in conventional database
systems, are not necessary for all categories of network man-
agement data. This insight is used in the MANDATE design
to selectively eliminate concurrency control and recovery
overheads. We expect that these optimizations will result in
significantly improved real-time performance.

We propose to provide a rich variety of control structures
in the MANDATE system. Both local control mechanisms,
which control specific network components, and global control
mechanisms, which control network-wide performance, will

be supported. For each control mechanism, the user can
either control it manually or have the system control it
automatically. We also plan to provide MANDATE support
for embedded network analysis and optimization algorithms,
which are essential for deriving high-quality control deci-
sions.

Network operators and customers will interact with MAN-
DATE through a view-based interface. Both customers and
operators obtain views of the network that are constructed ac-
cording to their individual requirements by the view processor
of the MANDATE system. These views will be maintained
on a real-time basis, an essential feature for viable network
management systems. In addition, MANDATE will provide
the network operators with a facility for obtaining historical
views of the database state. These views are extremely useful
for postmortem analysis of the causes for network faults and
to derive long-term performance profiles.

In summary, the MANDATE design proposes to use special
characteristics of network management data and transactions,
together with recent advances in database technology, to
efficiently derive its functionality. Currently, MANDATE is
still a paper design in which we have attempted to identify
the basic mechanisms that need to be incorporated in network
MIB’s. As part of our future research, we plan to test and
tune the MANDATE design by implementing it on a network
testbed and to follow this up with a detailed performance
study.

REFERENCES

[I] L. Wasson, B. Schwab, and J. Sholberg, “Database management for an
integrated network management system,” in Network Management and
Control, A. Kershenbaum and M. Malek, Eds. New York Plenum,
1990.

[2] L. Ball, Cost-Effective Network Management. New York: McGraw-
Hill, 1992.

[3] M. 0. Ball, A. Datta, and R. Dahl, “Building decision support systems
that use operations research models as database applications,” Tech. Rep.
SRC-TR 92-109, Inst. for Syst. Res., Univ. of Maryland at College Park,
1992.

[4] S. Bapat, “OS1 management base implementation,” inlntegrured Net-
work Mananementll. I. Krishnan and W. Zimmer, Eds. North Holland,
1991, pp. 817-831.

151 P. Bemstein. V. Hadzilakos. and N. Goodman. Concurrency Control and . .
Recovery in Database Systems. Reading, MA: Addison- Wesley, 1987.

[6] Sprint Network Management Center, Site Visit, Apr. 1992.
[7] M. Chemick, K. Mill, R. Aronoff, and J. Strauch, “A survey of OS1

network management standards activities,” Tech. Rep. NMSIG87/16
ICST-SNA-87-01, Nat. Bureau of Stand., 1987.

[8] Digital Equipment Corporation, “Enterprise management architec-
t u r e 4 e n e r a l description,” Tech. Rep. EK-DEMAR-GD-001, 1989.

[9] A. Delis and N. Roussopoulos, “Performance and scalability of
client-server database architectures,” in Proc. 18th Int. Conf. Very Large
Data Bases, Aug. 1992.

[lo] A. Dittrich, “Composite managed objects,” in Integrated Network Man-
agement 11, I. Krishnan and W. Zimmer, Eds. North Holland, 1991,

[l l] A. Dupuy, S. Sengupta, 0. Wolfson, and Y. Yemini, “NETMATE: A
network management environment,” IEEE Netw., Mar. 1991.

[12] A. Ephremides and S. Verdu, “Control and optimization methods in
communication network problems,” IEEE Trans. Aut. Contr., vol. 34,
no. 9, 1989.

[13] E. Ericson, L. Ericson, and D. Minoli, “Expert System Applications in
Integrated Network Management.”

[I41 K. Eswaran et al., “The notions of consistency and predicate locks in a
database system,” Commun. ACM, vol. 19, no. 11, 1976.

[15] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Comput., vol. 23, pp. 73-85, 1977.

pp. 789-799.

New York: Artech, 1989.

1372 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

1251

J. Haritsa, M. Livny, and M. Carey, “Earliest deadline scheduling for
real-time database systems,” in Proc. IEEE Real-Time Syst. Symp., Dec.
1991.
G. Held, Network Management (Techniques, Tools and Systems). New
York: Wiley, 1992.
S . Klerer, “The OS1 management architecture: An overview,” IEEE
Netw., vol. 2, no. 2, 1988.
S . Klerer and R. Cohen, “Distribution of managed object fragments and
managed object replication: The data distribution view of management
information,” in Integrated Network Management 11, I. Krishnan and
W. Zimmer, Eds.
C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” J . ACM, Jan. 1973.
M. Stonebraker, The Ingres Papers. Reading, MA: Addison Wesley,
1986.
Oracle Corporation, Oracle Users Guide, 1983.
R. Elmasri and S. Navathe, Fundamentals of Database Systems. Red-
wood City, CA: Benjamin Cummins, 1989.
C. Rauh, “The concept of the network management information base in
CNM, and TRANSDATA network management scheme,” in Integrated
Network Management 11, I. Krishnan and W. Zimmer, Eds. North
Holland, 1991, pp. 833-844.
M. Rose, The Simple B o o k 4 n Introduction to Management of TCPIIP
Based Inrerners. Enelewood Cliffs. NJ: Prentice Hall. 1991.

North Holland, 1991, pp. 763-773.

I261 N. Roussopoulos, “’&e incremental access method of View Cache:
Concept and cost analysis,” ACM Trans. Database Syst., vol. 16, no.
3, 1991.

[27] N. Roussopoulos, N. Economou, and A. Stamenas, “ADMS: A testbed
for incremental access methods,” IEEE Trans. Knowledge and Data
Eng., 1993.

[28] N. Roussopoulos and H. Kang, “Principles and techniques in the design
of ADMSh.” IEEE Trans. Comput., vol. 19, 1986.

[29] R. Snodgrass and I. Ahn, “A taxonomy of time in databases,” in Proc.
ACM SIGMOD. June 1985.

[30] K. Terplan, Communication Networks Management. Englewood Cliffs,
NJ: Prentice Hall, 1992.

[3 11 J. Tsitsiklis and D. Bertsekas, “Distributed asynchronous optimal routing
data networks,” IEEE Trans. Automatic Contr., vol. 31, pp. 325-332,
1986.

[32] J. D. Ullman, Principles of Database and Knowledge-Base Systems.
New York: Computer Science Press, 1988.

[33] P. Valduriez, S . Khoshafian, and G. Copeland, “Implementation tech-
niques of complex objects,” in Proc. 3rd Int. Con$ Very Large Data
Bases, Aug. 1977.

[34] R. Valta, “Design concepts for a global network management database,”
in Integrated Network Management I I , I. Krishnan and W. Zimmer, Eds.
North Holland, 1991, pp. 777-788.

[35] 0. Wolfson, S. Sengupta, and Y. Yemini, “Modeling network manage-
ment functions as database operations,” Tech. Rep. CUCS-038-90, Dept.
Comput. Sci., Columbia Univ., 1990.

Jayant R. Haritsa received the B.S. degree in electronics and communications
engineering from the Indian Institute of Technology, Madras, in 1985, and the
M.S. and Ph.D. degrees in computer science from the University of Wisconsin,
Madison, in 1987 and 1991, respectively.

During 1991-1992, he was a Post Doctoral Fellow at the Institute for
Systems Research, University of Maryland, College Park. He is currently an
Assistant Professor in the Supercomputer Education and Research Centre at
the Indian Institute of Science, Bangalore, India. His research interests include
database systems, real-time systems, network management, and performance
modeling.

Dr. Haritsa is a member of ACM.

Michael 0. Ball received B.E.S. and M.S.E. de-
grees in engineering science from Johns Hopkins
University, and the Ph.D. degree in operations re-
search from Cornel1 University.

He holds a joint appointment in the Institute for
Systems Research and the College of Business and
Management at the University of Maryland, College
Park. His research interests are in the areas of net-
work optimization and network reliability analysis,
particularly applied to the design of telecommu-
nications networks and transportation systems. He

has published extensively on these topics in a variety of journals. Hs is an
Area Editor for Operations Research, and is Associate Editor for Networks,
Operations Research Letters and IEEE Transactions on Reliability. He is
currently co-editing a volume on the Handbook of Operations Research
and Management Science. Prior to coming to the University of Maryland,
he was a member of the technical staff at Bell Laboratories. He has also
visited, for extended periods of time, the Center for Operations Research
and Econometrics (CORE) in Louvain, Belgium, the Institute for Economics
and Operations Research in Bonn, West Germany, and the Department of
Combinatorics and Optimization in Waterloo, Ontario. During the 1992-1993
academic year, he visited the Department of Operations Research at the
University of North Carolina, Chapel Hill.

Nicholas Roussopoulos received the B.S. degree from the University of
Athens, Athens, Greece, and the M.S. and Ph.D. degrees from the University
of Toronto, Toronto, Canada.

He is a Professor in the Department of Computer Science and the Institute
of Advanced Computer Studies at the University of Maryland. He served on
the Space Science Board Committee on Data Management and Computation
(CODMAC) from 1985 to 1988. He was the General Chairman of the
ACM International Conference on Data Management (1986). He has also
organized and chaired a series of workshops for the VHSIC Engineering
Information System program. He also serves on the Editorial Boards of three
international journals, information systems, decision support systems, and
intelligent and cooperative information systems. He has published over 50
refereed papers. His research area are in database systems, multiple databases
and interoperability, engineering information systems, geographic information
systems, expert database systems, and software engineering. He has worked
as a Research Scientist at IBM, San Jose, CA, and with the Department of
Computer Science, University of Texas, Austin.

Anindya Datta received the B.S. degree from the
Indian Institute of Technology, Kharagpur, India, in
1986 and the M.S. degree from the University of
Maryland.

He is a Ph.D. candidate in information systems
and operations research at the University of Mary-
land, College Park, and is part of the interdisci-
plinary research team at the Institute of Systems
Research. His research interests include telecom-
munication network management, databases, and
algorithms.

Mr. Datta is a member of ACM and ORSA.

John S. Baras, photograph and biography not available at the time of
publication.

