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MANDATE: MAnaging Networks 
Using DAtabase TEchnology 
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Abstract-In recent years, there has been a growing demand 
for the development of took to manage enterprise communication 
networks. A management information database is the heart 
of a network management system-it provides the interface 
between all functions of the network management system and, 
therefore, has to provide sophisticated functionality allied with 
high performance. In this paper, we introduce the design of 
MANDATE (MAnaging Networks using DAtabase TEchnology), 
a proposed database system for effectively supporting the man- 
agement of large enterprise networks. The MANDATE design 
makes a conscious attempt to take advantage of the special 
characteristics of network data and transactions, and of recent 
advances in database technology, to efficiently derive some of the 
required management functionality. 

I. INTRODUCTION 

N today’s global marketplace, most large-scale enterprises I have widely dispersed manufacturing and commercial op- 
erations for both economic and political reasons. For example, 
General Motors has manufacturing plants spread over the 
United States, Europe, and Japan. In order to effectively coor- 
dinate the functioning of a distributed enterprise, the subsidiary 
units need to be connected by a communications network. As 
the enterprise grows in size, its communications requirements 
increase correspondingly. The enterprise networks of the future 
are projected to be large agglomerations of subnetworks such 
as LAN’s (local area networks), MAN’S (metropolitan area 
networks), and WAN’S (wide area networks). These enterprise 
networks are expected to be heterogeneous in several dimen- 
sions: First, the underlying physical transmission facilities 
may be “mixed media.” For example, a local area network 
in Baltimore built with copper cables may be connected to a 
wide area network covering the Eastern United States based on 
fiber-optic technology, which is linked to the European com- 
munications system by satellite. Second, different subnetworks 
may be purchased from different vendors due to economic, 
performance, or historical reasons. For example, a company 
that uses SNA networking technology supplied by IBM may 
take over a company that has AppleTalk as its internal commu- 
nication mechanism. Therefore, individual subnetworks may 
have different vendor-specific network management systems. 
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Third, the information being transmitted over the network may 
be “multimedia,” that is, semantic differences exist in the types 
of transmitted information. For example, video images may be 
transmitted on the same channels as those carrying telephone 
calls. Finally, individual users of the network may differ in 
their performance objectives. For example, users needing the 
network for data transfer may require high throughput while 
others, whose concern is voice communications, may require 
low call blocking probability. 

For these reasons, future enterprise networks are expected 
to be highly complex in their transmission, performance, 
and communication characteristics. Due to this complexity 
and the disparity among management systems for individual 
subnetworks, efficient management of an enterprise network is 
an extremely challenging problem. Therefore, there is a clear 
need for research and development of network management 
tools. 

Network researchers are in common agreement that a 
(conceptually) global network database, which contains all 
management-related data, is central to the development of 
an efficient network management system (e.g., 141, [341, [23, 
[30]). The database is required to store information on network 
and system configuration, current and historic performance, 
trouble logs, security codes, accounting information, etc. 
[18]. In OS1 parlance, this database is called a Management 
Information Base (MIB). A practical example of an MIB- 
based architecture is DEC’s EMA (Enterprise Management 
Architecture), where a Management Information Repository is 
defined as a central component of the Director [SI. While there 
has been intensive research on network management systems 
in recent years, comparatively little has been published with 
respect to the actual design and implementation of an MIB. In 
this paper, we introduce the design of MANDATE, a proposed 
MIB system for effectively supporting the management 
of large enterprise networks. We have attempted, in this 
design, to identify the basic mechanisms that need to be 
incorporated in network MIB’s. Although this design has 
not been implemented in a network management setting, 
certain components have been implemented and tested in 
other contexts. In particular, the incremental client-server 
architecture we propose for use in MANDATE has been 
implemented and extensively tested [28], [27]. Moreover, 
experiments related to interfacing optimization algorithms with 
databases are given in [3]. As part of our future research 
agenda, we plan to test and tune the MANDATE design by 
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implementing these mechanisms on a network testbed. 
The guiding principle of the MANDATE design is to have 

the network operator( s) interact solely with the database; that 
is, from the operator’s perspective, the database logically 
embodies the network. Whenever the operator wishes to make 
changes in the network functioning, such as changing the 
routing scheme, for example, the operator merely updates the 
appropriate variables in the database. The actual implementa- 
tions of these changes in the physical network are made by 
the database system. This design approach allows the operator 
to concentrate on what has to be done, rather than on the 
mechanics of implementing the decisions. A second important 
aspect of the MANDATE design is that it is a bottom-up 
design, not a modified version of commercially available 
database systems. This results in a system architecture that 
is tailor-made specifically for network management. Finally, 
we have made an attempt to identify and take advantage of 
the special characteristics of network management data and 
transactions, and of recent advances in database technology, 
to efficiently derive the required MIB functionality. 

The remainder of this paper is organized in the following 
fashion. In Section 11, the role of database systems in network 
management is discussed in detail. In Section 111, the related 
work on database support for network management is briefly 
reviewed. Then, in Sections IV and V, we describe the data 
and transaction modeling aspects of network management. In 
Section VI, we describe the design of MANDATE and how 
our design proposes to achieve some of the required MIB 
functionalities. Finally, in Section VII, we summarize the main 
conlcusions of the study and outline future research avenues. 

11. ROLE OF DATABASES 

The ISO/ANSI standards committee [7] has classified the 
sophisticated functionality required of network management 
systems into the well-known six categories of configuration 
management, fault management, performance management, 
security management, accounting management, and directory 
management. The functional architecture defined by these six 
categories clearly identifies the different facets of network 
management and control, and enables a modular approach to 
be taken towards designing network management tools. How- 
ever, there is considerable overlap and interaction between the 
various management subsystems. For example, fault manage- 
ment and performance management are closely interrelated, 
since poor performance is often the only visible symptom 
of a fault deep down in the system. Similarly, detecting a 
faulty resource and isolating it from the remainder of the 
network requires both fault management and configuration 
management. In order for the various management modules 
to coordinate their activities, a common “public workspace” 
or database is necessary. Therefore, a logically integrated 
database is the heart of a network management system [ I]-it 
provides the interface between all functions of the network 
management system, as shown in Fig. 1. This database, or 
MIB, is the conceptual repository of all management-related 
information. The MIB defines the set of managed objects 
visible to a network management module, and the network 
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Fig. 1. Network management model. 

operators use the MIB to communicate all commands to the 
physical components of the network. 

A. Requirements on MIB 

ment system should provide the following functionalities: 
Ideally, the MIB module of an enterprise network manage- 

1. Homogeneous Interface: Present a uniform interface 
to the operator that is independent of the individual 
subnetwork characteristics. 

2. Graphical Interface: Allow the operator to view the 
network at any level of detail; that is, to graphically 
navigate the MIB. 

3. Scalable Design: Add new subnetworks or increase the 
functionality of existing subnetworks without requiring 
complete restructuring of the database. 

4. Fault Tolerance: Operate 24 hours on-line since the MIB 
is the core of the network management system. 

5. Real-Time Response: Store and process, in real time, the 
“network health” data which is continuously gathered by 
external network monitoring tools. 

6. Temporal Views: Provide a “snapshot” of the network as 
of some real-world time instant. This is necessary for 
post-mortem fault and performance analysis. 

7. Active Mechanisms: Support triggers that recognize and 
respond to special network situations (as reflected by the 
data) without requiring operator initiation. 

8. High-Performance: Minimize the overhead of network 
management on the performance of the network. In 
addition, the network management performance should 
gracefully degrade under overload conditions. 

9. Decision Support: Answer “what if” questions (for ex- 
ample, by executing on-line analysis algorithms), thus 
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helping the operator to evaluate the potential impacts of 
different control decisions. 

10. Embedded Control: Efficiently execute on-line con- 
trol algorithms (for example, expert systems) to adapt 
the network routing, configuration, etc. in response to 
changes in the network traffic or connectivity. 

From this list, we see that an MIB has architectural require- 
ments (fault tolerance, scalability, triggers), interface require- 
ments (homogeneous, navigational), temporal requirements 
(real-time response, temporal views), automation requirements 
(active mechanisms, decision support, control), and perfor- 
mance goals. Clearly, the design of the MIB is key to providing 
all of these complex functionalities in an integrated fashion. 

B. Need for New MIB Design 
Since current database technology is fairly mature, one 

might think that using a popular database management package 
(e.g., ORACLE [22], INGRES [21]) should be sufficient 
for implementing a network management MIB. There are 
several reasons, however, why existing DBMS products are 
not satisfactory from the network management perspective: 

Standard off-the-shelf DBMS’s lack many of the required 
MIB functionalities, such as real-time capabilities and 
decision support facilities. 
Conventional DBMS’s have been developed for the com- 
mercial query processing environment and are primarily 
geared towards applications such as banking, where the 
focus is on naive human users interactively performing 
transactions. In network management, however, software 
programs control the network behavior with human inter- 
vention restricted to skilled operators. 
The objective of conventional DBMS’s is to efficiently 
implement a transaction model that provides the so-called 
ACID property; that is atomicity, consistency, isolation, 
and durability [23]. However, this transaction model is 
unsuitable for processing of network management data, 
since these properties are not always essential here. 
For example, in banking databases, all updates have 
to be guaranteed for the database to be correct, and 
this guarantee is provided by conventional DBMS’s. In 
the network environment, however, updates to “network 
health” information such as packet retransmission rates or 
node queue lengths are not “sacred”-failing to register 
updates has only performance implications, but certainly 
no correctness implications. An MIB can use this property 
of network data to derive some of its functionality. For 
example, under overload conditions, it can continue to 
provide real-time response to critical network monitors by 
selectively ignoring the updates of less important sensors. 

In summary, the network management environment is a 
specialized application area with unique characteristics that 
can best be taken advantage of by a database system that is 
built specifically for this environment. 

111. RELATED WORK 

While network management has been an important research 
topic for the past several years, comparatively little work has 

been done, however, with respect to the database management 
aspect of network control. In this section, we provide a brief 
review of these papers. 

Issues similar to those addressed in this paper were consid- 
ered in [l]. The focus in that work was on evaluating how 
conventional relational DBMS packages would serve in the 
role of an MIB, and suggesting network-related modifications 
to these conventional packages. In contrast, our focus is on 
developing a new DBMS whose design is tailor-made for 
network management. 

The NETMATE project at Columbia University [ 111 has 
also investigated many of the issues discussed here. The 
project has primarily concentrated on the model of the network 
and its architectural relationship with management tools. In 
particular, a novel approach to network management is de- 
scribed in [35]. This paper presents a data-oriented approach 
to network management, in which network management func- 
tions are specified as data manipulation statements. The goal 
is to use the expressive power of database query languages 
to construct network management functions such as tests and 
alerts in an interactive, declarative, and set-oriented fashion. 
This approach appears promising and integrates nicely with 
the “data-centric’’ design described in this paper. 

An overview of the issues involved in implementing the 
MIB interface definition laid down by the OS1 Standards 
Committee is presented in [4]. The issues considered included 
the choice of data model, the architecture for distributing 
network management data, and the mechanisms for ensuring 
integrity of replicated data. While the paper describes several 
of the functionalities to be provided by an MIB, it does 
not, however, provide a detailed design for achieving these 
functionalities. 

Data modeling and data location issues are also discussed 
in [24]. A combination of Entity-Relationship model and 
object-oriented techniques is used in their approach, and a 
functional architecture for providing network management 
services is outlined. In [19] and [lo], techniques are proposed 
for modeling the relationship between logical OS1 objects and 
their concrete realization in a real implementation. 

A Layered Attributed Graph was proposed as a formal 
mechanism to model a network in [34]. Different graphs, 
each representing a single layer of a seven-layer OS1 network, 
are set into a formal layering relationship resulting in a 
layered attributed graph. It was suggested that this mechanism 
could be used as the basis for the design of a network 
management DBMS. The practicality of this approach remains 
to be seen. 

Very recently, several books that are devoted exclusively 
to network management have appeared (e.g., [30], [17], [2]). 
These books highlight the importance of database tools in 
developing network management systems, but focus more on 
the functionality requirements and evaluation of such tools and 
less so on the design aspect and mechanisms for realizing the 
functionality requirements. 

Finally, there are numerous papers on expert systems for 
network management (see [13] for a detailed survey), all of 
which rely on an underlying knowledge base on which to base 
their inferences. These papers usually assume the existence of 
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a database (typically in the form of rules) and develop expert 
systems on top of this knowledge base. 

IV. NETWORK DATA 
The first step in designing a database system is to understand 

the properties (semantics) of the data items that are resident in 
the database and to understand the properties of the tasks (or 
transactions) that store, process, and retrieve this data. Network 
management data can be broadly classified into three types: 
sensor data, structural data, and control data, as shown in Fig. 
2,  which describes a high-level abstraction of the MIB data 
model. As explained later, the structural data describes the 
physical and logical construction of the network, the control 
data captures the operational settings of the network, and the 
sensor data represents the observed state of the network. 

A .  Sensor Data 

The sensor (or measurement) data is the raw information 
that is received from the network monitoring processes, and 
includes variables such as node queue lengths, retransmis- 
sion rates, link status, and call statistics. The sensor data 
provides the primary input for three of the six OS1 network 
management categories: accounting management, performance 
management, and fault management. It represents the current 
“health” of the network in terms of the network’s usage and 
operational quality. Typically, each sensor’s data arrives at a 
regular frequency under normal network operation. However, 
under fault or overload conditions, sensors may generate data 
at a higher rate than normal. Another possibility is where a 
sensor supplies data only when an extraordinary event occurs 
(such as a link going down), or only upon explicit request from 
the MIB control processes. For example, in the Internet, trap- 
directed polling is employed for dealing with extraordinary 
network events [25]. Here, whenever an extraordinary event 
occurs, the managed network element sends a single trap to 
the MIB, and the MIB is then responsible for initiating further 
interactions with the network element. Since the traps are sent 
unreliably, the MIB also employs low-frequency polling of 
managed elements to determine their operational status. 

Sensor data can be divided into two groups: persistent and 
perishable. The persistent data consists of sensor data, whose 
utility is long term, and therefore needs to be maintained per- 
manently in the database. Critical data such as customer billing 
information, network alarms, and security violations belong to 
this category. Due to the requirement of permanence, persistent 
sensor data requires the complete set of recovery mechanisms 
(i.e., logging, mirroring, checkpointing [ 2 3 ] )  similar to those 
provided by commercial 

Perishable sensor data, on the other hand, is data that is 
of “limited time utility” in the sense that its current value 
is valid only until the network characteristic that is being 
monitored retains that value. Data such as node queue lengths, 
retransmission rates, and most other dynamic performance 
statistics fall into this category. There is no need for logging 
of these updates since the information will be out-of-date by 
the time the MIB recovers from a failure. Also, unlike the 
persistent sensor data, updates to perishable sensor data are not 
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“sacred” since every individual sample may not be essential; 
therefore, ignoring updates occasionally does not have serious 
implications. While the perishable sensor data has only limited 
time utility with respect to the immediate operation of the net- 
work, it may be necessary to retain a history of the data values 
for long-term postmortem performance and fault analysis. In 
order to fully implement this feature, a new version has to 
be created for each update of a perishable data item. From a 
practical storage perspective, however, it may be necessary to 
implement a coarser granularity of versioning, such that a new 
version is created only periodically (say, every tenth update) 
or only when the value of the observed variable has changed 
appreciably from its immediately previous archived value (say, 
by more than 10%). Further, it may be sufficient to version 
only those variables that are of critical importance in tracking 
the state of the database, such as the link utilizations and 
the number of retransmissions, and not verion less important 
variables such as the number of null-header packets or the 
byte count in individual packets. 

In current large networks, the quantity of sensor data that is 
gathered may be as large as 20-30 gigabytes per day 161. 

B.  Structural Data 
In contrast to sensor data, structural data is composed of 

“static” (slowly changing) network information such as the 
network topology, the configurations of the network switches 
and trunks, the data encryption keys, and the customer de- 
scription records. This data provides the primary input for the 
remaining three OS1 network management categories: con- 
figuration management, security management, and directory 
management. A point to note here is that, unlike sensor data, 
structural data is valid even when the network is not in 
operation. 

Most of the structural data is stored at system initiation 
time. This data is changed at a moderate rate consistent 
with more classical database applications. For example, events 
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which would require structural data updates include adding 
a new switch to the system, adding a new customer, or 
having a breach of security. The structural data needs to be 
recoverable for monetary reasons (customer records are of 
vital importance), for efficiency reasons (restart quickly from 
a database crash), and for security reasons (accessing copies 
of data encryption keys remotely over the network could lead 
to security compromises). 

In a typical large network, the quantity of configuration data 
depends on the level of detail at which the network equipment 
is represented, and may be of the order of several gigabytes. 

C. Control Data 

The final data category is control data, which captures 
the current setting of network tuning parameters such as the 
maximum flows on individual trunks, the traffic split ratios on 
the output links of switches, and the routing table. The process 
for changing an existing set of control settings is usually 
initiated by the network operators. Alternatively, the changes 
may be automatically triggered as a function of the information 
contained in the sensor data. For example, if there is a serious 
security violation (such as introduction of a virus) at a node, 
the links going through the node may be automatically shut 
down pending investigation of the problem by the network 
operators. In addition to the current parameter settings, the 
control database also stores a library of predefined control 
settings (often called “profiles”) that reflect the appropriate 
settings for a variety of common traffic patterns and network 
configurations. For example, different suites of settings may 
be appropriate for day and night traffic. 

In order to support the functionality requirement that oper- 
ators should be able to obtain historical views of the network 
state, it is necessary to maintain a record of changes that are 
made to the structural and control data. However, since these 
changes occur at a moderate rate, we expect that the overhead 
of maintaining the update history will not be significant. 

V. NETWORK TRANSACTIONS 

Having discussed the characteristics of network manage- 
ment data, we now move on to considering the various types 
of transactions that operate on the data in the MIB. We note 
that we assume, in this paper, that transactions use a lock- 
based paradigm for accessing data objects, where shared locks 
are used for reading objects and exclusive locks are used for 
updating objects. 

A .  Sensor Data 

Two distinct groups of transactions, “updates” and “read- 
ers,’’ access the performance data (perishable sensor data). The 
updaters are network monitoring tools, while the readers are 
internal MIB processes. The updaters work in private data 
partitions since they update different sets of network variables 
and, therefore, do not interfere with each other. These updates 
are different from typical database updates in that the updated 
value is independent of the current value of the data object. 
Such updates are referred to as “blind writes” [5 ] .  Since 
the performance data is versioned, readers can always read 

the data that they want without delay. Therefore, due to the 
absence of Read-Write and Write-Write conflicts, no explicit 
concurrency control is necessary for the performance data. 
If it is required to ensure atomicity of the set of updates 
made by each updater, updaters will have to follow a “degree 
1” lock protocol [14] (update locks are held until the end 
of the transaction) while accessing data objects. However, 
since it should not be necessary for perishable sensor data to 
be recoverable, for performance reasons, we intend to allow 
updaters to follow the less restrictive “degree 0” lock protocol 
(update locks are short-term). 

For accounting and fault information (the persistent sensor 
data), the network monitors append records to existing tables. 
The MIB internal processes may both read and update these 
persistent records. For example, a network monitor may reg- 
ister a trouble ticket in the fault database. Once the fault is 
fixed, the trouble ticket is updated by the operator to reflect 
this fact. Due to the concurrent reading and updating and the 
sensitive nature of the data contained in the accounting and 
fault tables, the MIB internal processes have to follow the 
classical “degree 3” locking protocol used in conventional 
database systems (both read and update locks are held until 
the end of the transaction) in accessing this data. However, 
the network monitors may only have to use a degree 1 lock 
protocol if their update accesses are restricted to appending 
new records and do not involve altering the contents of existing 
records. 

B.  Structural Data 

Strucural data can be both read and written by the network 
operator(s) or by MIB control processes. For example, the 
addition of new equipment or facilities are usually entered 
into the MIB by the operator, while the configuration details 
of network switches and trunks may be automatically handled 
by MIB processes. Standard network management operations, 
such as inventory verification and customer authentication, are 
typically executed on the structural data. Since it is possible 
that multiple processes may access the same structural data 
simultaneously, structural data transactions have to follow the 
complete (degree 3) locking protocol in making their data 

C. Control Data 

Control data can be both read and written by the network 
operator(s) or by MIB control processes. The process for 
changing an existing set of control settings is usually initiated 
by the network operators. Alternatively, the changes may 
be automatically triggered as a function of the information 
contained in the sensor data. For example, if the operator 
observes from the sensor data that some links are becoming 
excessively utilized, he/she may decide to replace the routing 
scheme that is currently employed by a different scheme. 
Another source of change for the control data is that produced 
by reexecuting the optimization algorithms to reflect changes 
in the network configuration or activity profile, thus generating 
a new set of control settings. 

Control parameters may be either under operator control 
or under automatic control. In the former case, the operator 
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manually determines the setting of the control parameter while, 
in the latter case, the MIB 's internal processes automatically 
update the control settings. A facility will be provided in 
MANDATE, whereby a control setting may be moved from 
automatic control to manual control and vice versa. This 
allows the operator to assume full control under emergency 
or unanticipated situations. In a properly designed network, 
no more than one process should be able to update a given 
set of control variables at a time (it is meaningless to have 
concurrent updaters since the control of the network then 
becomes a function of the order in which the transactions 
are processed.) Therefore, concurrency control is not required 
for regulating access to control data. However, the transaction 
construct is necessary for installing the updates in order to 
ensure the atomicity of the updates (half-implemented control 
settings may cause havoc in the network). Changes to the 
control data trigger network executors (see Fig. 2 ) ,  which 
are processes that actually implement in the physical network 
the control structure that is logically described by the updated 
control data. 

D. Subnetwork Managers 

In the most general setting, some of the objects managed 
by the MIB will include higher-level entities that have their 
own local network manager [ 2 5 ] .  These subsidiary network 
managers may request information from the MIB in order to 
perform their local network management, or may inform the 
MIB of significant updates to their configuration or status. 

VI. THE MANDATE DESIGN 

In the previous sections, we identified the special charac- 
teristics of network management data and transactions. We 
follow up in this section by describing how the MANDATE 
design proposes to use these special characteristics, and recent 
advances in database technology, to achieve some of the 
required MIB functionalities. 

A .  Data Processing Model 

As mentioned in the Introduction, the guiding principle of 
the MANDATE design is to have the network operator(s) 
interact solely with the MIB; that is, from the operator's per- 
spective, the MIB embodies the network. Therefore, whenever 
changes have to be made to the network topology, routing 
scheme, switch software, etc., the operator merely initiates 
that update the corresponding data objects in the MIB. The 
actual implementation of these changes in the physical network 
will be made by execution processes that are activated or 
triggered by the database system. The design approach results 
in modularity and efficiency since the operator does not need 
to know the internal mechanisms of the physical network, but 
can focus, instead, exclusively on the logical operations of the 
network. 

I ) Overhead Minimization: In conventional database sys- 
tems, an elaborate set of concurrency control and recover 
mechanisms are utilized to provide the ACID property such 
as two-phase locking, write-ahead-logging, and checkpointing. 
However, in the network management domain, as discussed in 

Sections IV and V, weaker forms of the ACID property may 
be acceptable for certain data categories. In the MANDATE 
system, we propose to incorporate mechanisms that permit 
different degrees of concurrency control and recovery to be 
selectively implemented on a data partition basis. By doing so, 
we expect to realize considerable performance improvements. 

Since some categories of structural data (see Section IV-B, 
V-B) are updated only very rarely and others at a moderate 
rate, concurrency control is not a major performance issue 
with respect to transactions having to block while accessing 
this category of data objects. Yet, it is wasteful to have all 
transactions pay the computational overhead of invoking the 
lock manager for each access to a data object given that 
regulated access is only rarely necessary. Therefore, we plan to 
use the following solution in MANDATE: For each structural 
data category, the system maintains a special StructuralCC 
integer variable which is initially set to 0. Whenever the 
StructuralCC variable has a value of 0, no concurrency control 
is employed by transactions accessing that class of structural 
data. For any other value of StructuralCC, newly arriving 
transactions have to follow the standard locking protocol. 
Any transaction that is potentially an updater of the structural 
data increments the StructuralCC variable at arrival, and 
decrements the variable when it has finished accessing the 
structural data. This means that read-only transactions, which 
amve when no update transactions are executing, can access 
their data objects without incurring the overhead of locking. If 
an update transaction arrives when the StructuralCC variable 
is 0, the StructuralCC variable is incremented and all the read- 
only transactions that are currently accessing that category of 
structural data are aborted and restarted, thus ensuring that 
they too follow the locking protocol. 

In order to enter the updates transmitted by subnetwork 
managers (see Section V-D) to initiate transactions over the 
network that directly updates the central MIB. This would 
require each local manager to know about the implementation 
of the central MIB and to possess transaction processing mech- 
anisms. Another approach is for the local network managers 
to merely send the information to the central MIB, which 
then packages this information into a local transaction that 
implements the updates in the database. We anticipate that the 
second approach would be much easier to implement in large 
networks and, therefore, plan to incorporate it in MANDATE. 

2) Data Storage: In Section IV, we described the semantics 
of the different categories of network management data. A re- 
lated issue is the choice of storage model, such as the relational 
model or the object-oriented model, for physically storing the 
data. Relational models are used in most current database 
systems since they are compatible with powerful data access 
languages that are, at the same time, simple and declarative 
(e.g., SQL) [ 3 2 ] .  However, the OS1 standards definitions for 
the MIB interface are based on an object-oriented paradigm 
[ 2 5 ] ,  which might suggest that an object-oriented model is 
the appropriate storage model. Note, however, that the OS1 
standards refer only to the abstract model of management 
information that is visible at the interface. Therefore, the actual 
implementation of the persistent storage model could be quite 
different and is a design choice. 
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In the MANDATE design, we propose to provide an OSI- 
compatible object-oriented query interface but leave open, for 
now, whether a relational model or object-oriented model is 
used for physical storage. In particular, we note that the use 
of a relational model for physical storage has merit due to the 
existence of highly efficient relational data retrieval operators. 
Algorithms for mapping from an object-oriented interface 
to the equivalent relational storage model are available in 
database literature [33]. This approach to MIB design is sim- 
ilar to the common practice among designers of commercial 
database systems of using the entity-relationship model during 
the design stage and then converting the final design into a 
relational model at the physical level [32].  In the NETMATE 
research project [ 1 11, VBase, a commercial object-oriented 
database system, is used to implement the network model. 
It is stated in the same paper that one of the future goals of 
the project is to develop object-oriented network models on 
top of relational database storage systems. 

3 )  Network Views: The MIB should be able, at all times, 
to provide the operator(s) with a view of the current state 
(as best known) of the entire network. This is achieved 
by combining the current sensor information, the structural 
information, and the control settings in effect, as shown in 
Fig. 2. In MANDATE, this idea is generalized to allow the 
operators to create different views of the network by incorpo- 
rating a view processor that provides the appropriate view to 
each operator based on the information in the database. For 
example, the structural database holds information about the 
customer subnetworks, which includes details of the physical 
customer access links and the logical mapping of a customer 
to the public shared network. An operator trying to find the 
cause of a customer complaint would use a view, wherein the 
customer subnetwork is superimposed on the public network 
to determine whether the fault lies in the public network or is 
local to the customer subnet. The network views also serve as 
inputs to the embedded analysis and optimization algorithms. 

There is not clear-cut distinction between performance data 
and fault data, since poor performance can be viewed as a 
fault. Our definition, however, is that fault data is performance 
data that is sufficiently critical to appear spontaneously on the 
operator’s console without explicit request; that is, fault data 
generates an alarm. Therefore, a message about the fault pops 
up on the operator’s console whenever a new fault is either 
indicated by the sensor data or explicitly sent as an alarm 
message by a network managed entity. 

4 )  Physical Realization of Logical Objects: Each resource 
in the managed network, which in OS1 parlance is referred 
to as a managed object (MO), will have a correspond- 
ing representation in MANDATE. The representations of 
managed objects will follow established OS1 guidelines 
outlined in SMI/GDMO (Structure of Management Infor- 
matiodGuidelines for the Definition of Managed Objects). 
However, as outlined in Section IV, MO’s are managed 
through a set of control processes that rely on a three-way 
partition of MIB data into sensor, structural, and control 
data. This data partitioning may not always be consistent 
with OS1 MO definitions. For example, it may be desirable 
to attach to a “structural” object an attribute that is based 

on sensor information [e.g., the attributes of an object or 
link might include its end nodes, bandwidth, or propagation 
delay (structural data) together with the current link utilization 
(sensor data)]. Where such “cross-overs’’ occur, we propose 
that data be physically stored according to the MANDATE 
classification. This will allow for the most efficient provision 
of the data-specific database controls described in Section IV. 
However, the logical views of the data will be consistent with 
those specified in the OS1 MO definitions. 

Note that this problem might occur even if the physical 
partitioning matched that of object definitions, because the 
network data locations are distributed. For example, as dis- 
cussed in detail in [ 191, implementation considerations may 
dictate that less than a whole managed object be stored in a 
single system. Therefore, they introduce the notion of object 
fragments and propose techniques for naming and managing 
of object fragments. Similar issues of “composite managed 
objects” are discussed in [IO]. 

5)  Network-MIB Communications: Information flow (con- 
trol actions, status information, etc.) between the MANDATE 
MIB and the network should follow OS1 requirements. Thus, 
MANDATE will offer services according to CMIS and trans- 
mit and receive requests through CMIP. However, since most 
current systems interact through the SNMP protocol, we 
propose to make our design generic enough such that an SNMP 
interface could also be integrated into the system. 

Of course, the MIB would have to support a naming conven- 
tion consistent with the communications protocol. Specifically, 
from an OS1 perspective, the heterogeneous network consists 
of a set of interconnected CME’s (conformant management 
entity). Each CME may be anything from a WAN to a terminal 
attached to a node, as long as all elements belonging to a 
particular CME share identical services and protocols. Each 
CME should have a unique name and address in the MIB, and 
each network element, i.e., managed object (MO), should be 
identified by the CME it resides in together with its identifier 
within that CME. 

B .  Architectural Model 
Although an MIB is logically a centralized repository of 

all network management data, its physical implementation in 
large networks will have to be distributed for performance 
reasons. We assume that there is a central main database which 
stores all structural data, the most critical sensor data, and 
the major control settings, while the remaining network state 
data is stored in the local memories and disks of network 
components. As shown in Fig. 3, the recently developed 
concept of a client-server architecture integrates well with 
this design. In this picture, the DB server is the primary data 
store site where all updates are synchronized for maintenance 
of consistency. The network switches periodically propagate 
status data to the DB server; the switches can also be queried 
on demand. The client modules are typically workstations for 
running the application and the user interface software. All 
database accessing and processing is done at the server. A 
second server, shown in Fig. 3, is used to mirror the database 
of the main server and thereby provide fault tolerance. All 
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Fig. 3. An enhanced client-server database architecture for the MIB. 

to blocking, Second, because sites collectively carry a large 
variety of data subsets, each subset is pertinent to a client's 
function, place of deployment, and response requirements. The 
database servers waste most of their capacity in keeping track 
of who-needs-what-when in order to propagate changes that 
affect individual clients. On the other hand, if all changes are 
broadcast to all clients, the clients would be incapacitated by 
having to check all relevant and irrelevant updates (most of 
them are irrelevant to each individual client). Therefore, the in- 
telligence-namely who-needs-what-when-must be distributed 
to the client workstations, which would selectively request 
only relevant updates from the logs maintained at the servers. 
In the following subsections, we show how the problems can 
be resolved by using incremental update algorithms. 

I )  Incremental Computation Models: We present the re- 
cently developed concept of incremental computation models 
[26], [27]. Conventional computation models are based on 
reexecution; that is, the entire computation is repeated each 
and every time results are needed. Nothing is retained from 
previous executions and, often, even the optimization of the 
computation is repeated. In contrast, incremental computation 
models utilize cached results or access paths to generate these 

updates are made on both servers. During normal operation, 
query retrieval is load balanced between the two servers. If 
the primary server happens to fail, the secondary server is 
promoted to be the primary server for registering updates. 

to be an 
attractive design choice, a straightforward implementation 
of a client-server architecture creates serious performance 
problems as it requires enormous processing and I/O on the 
servers and very large data transmission on the network. For 
example, if a query is issued at the client, transmitted to and 
executed at the servers, and if the query's result has to be 
transmitted in its entirety every time a client needs to access 
the MIB, a good fraction of the server's and network's capacity 
would have to be allocated to the support of the database itself 
rather than the MIB. 

To alleviate this problem, we have enhanced the client-server 
architecture by adding full DBMS functionality on the clients 
for caching and processing views (subsets) of the MIB data 
[28]. At any point in time, a particular view is maintained 
in each client. In many cases, the client workstation will be 
supporting an operator who is responsible for real-time control 
decisions. Therefore, updates to the MIB must be propagated 
to the client views in real time. The client and server DBMS's 
cooperate and split the task of query processing. By placing 
client workstations at strategic nodes on the network, database 
access is performed in parallel from multiple client databases, 
thereby alleviating the bottleneck at the primary server. Some 
of these client workstations may be located at customer sites, 
as shown in Fig. 3. 

Having data downloaded on a large number of clients can in- 
crease performance, provided that the overhead of maintaining 
consistency amongst them is manageable. First, the activities 
of synchronizing and refreshing downloaded data are repeated 
very often in a network; therefore, as the number of sites in- 
creases, the processing throughput can rapidly deteriorate due 

While this client-server architecture appears 

- 
results [26]. With these models, the results of subsequent 
accesses to the same portion of the database are realized by 
applying the computation to the input differentials, rather than 
reexecuting the computation on the whole input. 

The following example illustrates this concept. Consider the 
following two tables: 

C=Cust-call(cust-id, call-id, route-id) 
R=Route(route-id, link-id) 

where C stores information about customer calls and R 
stores the routes that these calls go through. Assume that 
a customer representative needs to know which customers 
use what links so that, if a link goes down, the affected 
customers can be identified. This requires computation of 
the join C*R. In the incremental model, the C*R join is 
computed only once, and thereafter maintained incrementally 
by using only the differential files 6C and SR, S(C * R)  = 
(SC * R) U (C * SR) U (SC * SR) (here, C and R refer to 
the updated versions of the relations). The records of quey 
results are not stored explicitly but, instead, use a storage 
structure called Viewcache [26]. It consists of a collection of 
pointers to the underlying base table records and can quickly 
be dereferenced to generate the actual records. ViewCache is 
both compact and efficient for the incremental update of the 
pointers. 

Incremental Computation can be performed on demand, 
periodically, or immediately. Each invocation is performed on 
small input increments, which permits a significant reduction 
of the response time. The cost of computing is amortized over 
the lifecycle of the computed information, a concept that is 
absolutely orthogonal to the reexecution model of transient 
and nonpersistent software. Since computation is done in 
increments, performance is improved by several orders or 
magnitude. 

2) Incremental Client-Server Architecture: The previously 
mentioned problems associated with distributed network data- 
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base processing in client-server architectures can be resolved 
by integrating the enhanced client-server architecture with 
the incremental computation model. The database activities, 
which include I/O and processing, are now distributed between 
the server and the requesting client. A portion of I/O and 
processing is related to the incremental updates of the cached 
data done at the server, leaving all the rest to be done 
on the client. Both 1/0 and processing on multiple clients 
can be done in parallel, and is the major factor in the 
significant increase of overall throughput. A recent study has 
shown that the client-server architecture, in association with 
the incremental computation model, achieves two orders of 
magnitude performance increase over a standard client-server 
database architecture [9]. More importantly, the incremental 
model seems especially appropriate for real-time maintenance 
of network views, which are continuously being used by the 
network operators and customers. This is because, with this 
model, keeping the views up-to-date requires only incremental 
computations and relieves the system from the burden of hav- 
ing to recompute the entire view in each refresh cycle. Since, 
under normal network operations, the views change only very 
slowly over time, the incremental model can realize great 
improvements in performance and minimize the overhead of 
maintaining the views on the other system functions. 

In MANDATE, we intend to use the incremental 
client-server database architecture to provide the following: 
1) Real-time refreshing of network views; 2) Immediate 
update propagation from the primary site to its secondary 
backups-this guarantees that, in case of failure, the secondary 
site is up-to-date for promotion to primary server; 3) A quick 
switch capability between a failing primary site and its backup 
secondary one; 4) Parallel access of dynamically distributed 
data on the enhanced clients and significant reduction on 
the server’s I/O; 5) Preservation of the appropriate level of 
centralized control. 

In summary, the enhanced incremental client-server archi- 
tecture provides the functional advantages of a distributed 
architecture while retaining the high performance required to 
support the MIB. 

C. Network Control 

The fundamental goal of network management is to be 
able to control the state of the network. In the context of 
an MIB, a network control process is any mechanism that 
makes the network respond to stimuli collected by various 
network sensors. Examples of such stimuli include traffic 
data along links (e.g., load factors, retransmission rates), 
switching information (e.g., queue lengths, throughput), and 
network faults. In current large networks, numerous sensors 
continuously monitor all aspects of the network operation and 
generate vast quantities of data. Though most of this data is 
routine, events such as link failures and switch malfunctions 
may occur which require remedial action by the network 
management system. 

For network MIB systems, we classify network control 
mechanisms along two dimensions: local versus global and 

automatic versus manual. We present brief descriptions of each 
class with illustrative examples. 

1)  Local Control: Local control mechanisms rely on local 
data collection and local decision models. By local, we refer to 
specifc components of the network as opposed to the network 
as a whole. An example of a local network control mech- 
anism is the classical window-based flow control scheme for 
regulating traffic between a source destination pair [ 121. In this 
protocol, incoming packets are accepted as long as the number 
of unacknowledged packets is below a prespecified threshold. 
If the threshold is exceeded, a local control mechanism turns 
off the acceptance of further traffic until a sufficient number 
of outstanding packets are acknowledged. The advantage of 
local controls is that they incur little or no communication 
overhead, since decisions are made locally with local data, 
and minimal information exchange is involved. Due to this 
locality of operation, local control processes are unaffected by 
remote network failures and network congestion. 

The logic for a local control process would reside com- 
pletely within the local network element, e.g., switch, line 
control unit, etc. However, this process would be a logical 
part of the MIB, and its parameters could be modified via 
MIB update. Specifically, the MIB would contain variables 
corresponding to the local controller parameters. An update 
to one or more of these database variables would trigger a 
message from the MIB to the local element, specifying that 
the corresponding change be made in the parameter value. 

wide data and/or global decision models. Examples of global 
control mechanisms include routing algorithms that compute 
routes based on network-wide traffic estimates. Clearly, 
global control processes are capable of optimizing network- 
wide performance characteristics. However, they are more 
vulnerable to network failures and have greater information 
overhead since decisions must be communicated across the 
network. 

A global control action could be specified by an operator or 
could be the result of an automatic process. The operator or 
process would implement the control action by updating cer- 
tain database variables. These updates would trigger messages 
(OS1 M-ACTION requests) to the local network elements 
specifying that the appropriate actions be taken. 

It should be noted that a significant amount of research has 
been devoted to the development of distributed implementa- 
tion of network algorithms [ 151, [3 l]. These implementations 
attempt to develop local controls that approach global perfor- 
mance standards. 

3) Automatic Control: Automatic controls monitor certain 
network performance data. When specific conditions are met, 
control settings are automatically changed without operator 
intervention. For example, assume that a particular switch has 
a local control process that equally allocates incoming calls 
between a source destination pair among three different routes. 
If one of these routes becomes overloaded, an automatic 
control process embedded in the switch is triggered such 
that only 20% of all new traffic is sent along the saturated 
route and the remainder is split equally among the two other 
routes. Automatic controls can be either global or local. 

2) Global Control: Global control processes rely on network- 
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Automatic local controls are in abundance today and would 
remain relatively unchanged in a MANDATE environment. 
Automatical global controls would be based on two sets of 
active database elements. First, triggers would sense a network 
state indicating that the control process should be initiated and 
would invoke the appropriate algorithm. Second, as explained, 
the result of the global control algorithm would be to update 
certain database variables. A second set of triggers would 
dispatch the messages to the appropriate network elements. 

4)  Manual Control: Manual control processes either permit 
or require human intervention. Network operators alter control 
settings in the network using these processes. In a sense, 
manual controls represent one of the major justifications of 
the MIB. Clearly, the role of the MIB is to provide the 
network manager with information that supports decision 
making regarding the setting of control parameters. This 
supporting activity may be achieved passively by simply 
providing an interface between the network operator and 
network status information. Alternatively, it may be achieved 
through an alarm system that notifies the network manager of 
network conditions that require actions on his or her part. As 
in the previously described cases, operator-mandated controls 
would be carried out by an operator update to the appropriate 
database variable. 

D. Embedded Optimization and Analysis Algorithm 

One of the most significant potential advantages of the 
MANDATE design is the ability to carry out sophisticated 
global analyses based on network-wide data. To achieve this 
objective, the design should provide a set of flexible mech- 
anisms for interfacing optimization and analysis algorithms 
with the MIB. In this context, we use the term optimization 
algorithm to refer to a process that outputs a set of values 
for certain control variables and the term analysis algorithm 
to refer to a process that evaluates the impact on network per- 
formance of a set of control settings input into the algorithm. 
Thus, most types of simulations would be classified as analysis 
algorithms. However, faster and simpler procedures, which 
may be more appropriate in the context of real-time decision 
making, are also included. The embedded optimization and 
analysis features are expected to help network operators make 
higher quality control decisions. Similar facilities are provided 
in the NETMATE system [ l l ] .  

We now discuss the interaction between embedded opti- 
mization and analysis algorithms and the MIB. It is important 
to note that the network control processes, which were dis- 
cussed in the previous subsection, are different from embedded 
algorithms. Network control processes comprise the entire 
mechanism of controlling the process of network management. 
As such, they include the process of data collection by network 
sensors, the invocation of daemons under certain conditions 
detected by the sensors, the execution of control algorithms 
that accept the data as input and perform computations to 
derive control settings, the potential screening of the settings 
by human users, the potential execution of analysis algorithms 
that output projected network performance based on the con- 
trol settings, and the selection of the final settings and final 
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Fig. 4. Interactions between algorithms and the MIB. 

execution of these settings. Thus, network control processes 
are complex mechanisms of which optimization and analy- 
sis algorithms are only components. However, optimization 
algorithms are an integral component of the global controller. 

Fig. 4 gives a more detailed view of the interaction between 
the algorithms and the MJB. Examples of optimization algo- 
rithms include algorithms that output routes, flow controls, 
and access controls. In general, the optimization algorithm 
draws input from the MIB and outputs control settings. The 
inputs to the algorithm consist of the current network state, 
as embodied by some network view, and the existing control 
settings. We also envision the presence of achieved control 
settings in the MIB, which consist of old control settings and 
the corresponding network states for which they were used. 
These also may serve as input to optimizing the routines which 
may find commonality between the current network state and 
some old state, which could indicate that the corresponding 
control setting is appropriate under the current conditions. 

The output from an optimization algorithm will be used to 
update either an active control variable or a nonactive control 
variable. An update of an active control variable would trigger 
the immediate execution of a control action as was described 
in the previous section. Nonactive control variables would 
usually be examined by users prior to making a final decision 
on a control action. That is, if the user wished to use the control 
setting, he or she would set the value of the active variable 
to the value of the corresponding nonactive variable. Whether 
the output of an algorithm is direct to an active or nonactive 
variable is determined by the trigger that invoked the execution 
of the algorithm. For example, a unstable network state may 
trigger the algorithm to automatically take action by updating 
an active variable, while a less critical situation may induce the 
update of a nonactive variable and the subsequent examination 
of the proposed control setting by the operator. In the latter 
case, the operator may wish to run the algorithm several times, 
possibly with different parameters, and compare the output. 
Typically, in that case, as a result of multiple invocations of the 
algorithm, there would be several versions of control settings 



1370 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 ,  NO. 9, DECEMBER 1993 

present leading to the need of a version control scheme. 
The role of an analysis algorithm is to evaluate the per- 

formance effects of a proposed control setting. The inputs to 
the analysis consist of a network state, an existing control 
setting, and the proposed control setting. The output is a 
detailed analysis of the effect on performance of using the 
proposed control setting. A typical analysis algorithm might 
be a queueing model which evaluated the effect of using a 
particular route structure (the control setting) with a particular 
traffic pattern (the network state). Such an analysis might make 
use of simulation or, alternatively, other models might be 
appropriate particularly if very fast response were required. 

The general environment that we propose to support in 
the MANDATE system is one in which a user can invoke a 
given optimization algorithm several times to produce alternate 
solution versions (proposed control settings). The user would 
typically examine and possibly modify various versions and 
may also wish to invoke an analysis algorithm that produced 
a detailed evaluation of one or more of the proposed control 
settings. Finally, the user would choose one of the versions as 
a “final version” which, in MANDATE, would correspond to 
making the control setting active. 

E. Temporal Requirements 

An important functionality that has to be provided by a 
network MIB is that of supplying temporal views of the state 
of the database; that is, a description of the network state as of 
a specific point in time. This is necessary in order to conduct 
postmortem fault analysis or to profile performance trends. 
Therefore, the network MIB must support the retrieval and 
analysis of network data describing the state of the network 
as was known at a particular location and time. In addition, 
the system must support the analysis of change of network 
state data in order to provide information describing how the 
network behavior at a particular location changed over time. 
Such information constitutes an important basis for long-term 
planning and fault analysis. 

In typical conventional database systems, transactions are 
usually processed in a first-come first-served manner and the 
objective is to minimize average transaction response times. In 
a network management database system, however, data from 
numerous sources electronically arrives into the system in a 
continuous fashion [l]. Due to the high rate of data arrivals, 
delays in processing the data streams will cause the data 
streams to back up and the database will cease to provide 
an accurate picture of the network state. Therefore, in contrast 
to a conventional DBMS where the goal usually is to minimize 
transaction response times, the emphasis in the network MIB 
is on processing the database updates in real time. 

We discuss how MANDATE proposes to provide temporal 
view to the network operators, and how the network state 
information is installed in the database in real time. 

1 )  Temporal Views: A requirement for transactions that ac- 
cess network state information is that they have to enforce 
temporal consistency; that is, the data items they read should 
have existed in the real world at approximately the same 
time. For example, using the link utilizations that were valid 

ten seconds back in association with the node queue lengths 
that were measured ten minutes ago clearly makes no sense. 
Therefore, the “right” versions of data items have to be used 
in processing each query. Note that temporal consistency is 
evaluated with respect to the real-world time that the data 
was valid, not the time at which the data was installed in the 
database. (These two time concepts are referred to as valid time 
and transaction time, respectively, in the database literature 
[29].) As a consequence, the source and time of measurement 
of network data are important attributes of data collected in a 
network management system. 

Two types of temporal queries are possible: a) Historical 
queries: These queries expect their answer to be based on 
the real-world network state as of some time in the past. b) 
Current queries: These queries expect their answer to be based 
on as recent a real-world network state as possible. In order 
to help maintain temporal consistency for queries, each new 
version of a data item is timestamped with the real-world time 
of occurrence of the event or measurement. The valid time 
of the kth version of data item d is denoted by Ek(d). Also, 
the system maintains a table describing the periodicity Pd of 
updates for each data item d that is periodically updated by 
the network sensors. When a user submits a historical query 
that requires the network state as of some earlier time Tp, for 
each data item, the version v k  of the data item which satisfies 
the constraints Ek(d) 5 Tp and E k + l ( d )  > Tp is used for 
computing the answer. For periodically updated data, if the 
k + l t h  version has not yet been installed in the database, 
the v k  version is used if T’ 5 Ek(d) + Pd. Otherwise, the 
query processor waits for the Vk+1 version to be installed and 
then uses it. If blocking cannot be tolerated, however, then an 
alternative is to rerun the query as of an earlier time than Tp,  
informing the operator of this change. A guaranteed earlier 
time for which the query will run through without blocking 
for unavailable data is t - Max (Pi) where t is the current 
time and Pi are with reference to the periodically updated 
data items that the query wishes to read. This scheme can be 
used for processing current queries in a timely manner. 

2) Real-Time Response: There are two types of network 
updates that arrive to the MIB: periodic and sporadic. The 
periodic data is the performance data that arrives in a regular 
fashion, whereas the sporadic data is the billing and fault 
information which arrives in random fashion based on the 
network’s use and operational status. Since the sporadic data 
is critical data that has to be registered in the database, higher 
priority will be given in MANDATE to processing these 
updates as compared to processing the periodic updates. In 
addition, a dedicated processor with sufficient excess capacity 
will be used in MANDATE in conjunction with Earliest- 
Deadline scheduling to ensure that when the sporadic updates 
are arriving at their normal rate, they will be registered in the 
database before the expiration of their deadlines. 

Under normal operations, when the sporadic updates are 
arriving at their usual rate, MANDATE will also ensure that 
all the periodic updates are entered into the database system. 
This is done in the following manner: For each periodic sensor 
Si, the system maintains information about its computation 
requirement Ci and period Pi. The deadline for each of these 
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periodic update transactions is the time of the next triggering: 
that is, the taks must be completed prior to the instant of 
its next occurrence. In order to ensure that all the periodic 
updates are registered, it is sufficient to use a coprocessor 
with sufficient speed such that Cgv=, CilPi 5 1 in conjunction 
with earliest deadline scheduling [20]. 

Under periods of stress loading or emergency situations, 
which is when the sporadic updates arrive at a much higher 
rate than normal, the system starts to miss the deadlines of 
periodic updates since sporadic updates have higher priority 
than periodic updates. To minimize the number of missed 
deadlines under these overload conditions, we propose to use 
the Adaptive Earliest Deadline scheduling policy described 
in [16], which has been shown to provide robust good per- 
formance under a variety of workloads and system loading 
conditions. 

VII. CONCLUSIONS 
The Management Information Base (MIB) of a network 

management system is a critical component since it provides 
the interface between all functions of the network management 
system. In this paper, we introduced the design of MAN- 
DATE, a proposed database system for effectively supporting 
the management of large networks. The MANDATE design 
aims to provide network operators and customers with an 
MIB interface that allows them to control and evaluate the 
network operations by interacting solely with the database. The 
actual implementation of the control decisions in the physical 
network are expected to be handled by MANDATE’S internal 
processes. 

We showed that the network management environment 
is a specialized application area with unique characteristics 
that can best be taken advantage of by an MIB that is 
designed specifically for this environment. To this end, MAN- 
DATE’S design was built bottom-up, unlike other designs 
discussed in the literature which have, for the most part, 
added network-related modifications on top of commercially 
available general-purpose database systems. 

The proposed underlying structural framework of MAN- 
DATE is a client-server architecture, which is enhanced by 
the use of a DBMS functionality on the clients, and an incre- 
mental computational model. This architecture is expected to 
deliver both high-performance and functional advantages of a 
distributed architecture. 

We presented a detailed analysis of the different categories 
of data that are stored in the MIB. Based on this analysis, 
we showed that concurrency control and recovery protocols, 
which are fundamental mechanisms in conventional database 
systems, are not necessary for all categories of network man- 
agement data. This insight is used in the MANDATE design 
to selectively eliminate concurrency control and recovery 
overheads. We expect that these optimizations will result in 
significantly improved real-time performance. 

We propose to provide a rich variety of control structures 
in the MANDATE system. Both local control mechanisms, 
which control specific network components, and global control 
mechanisms, which control network-wide performance, will 

be supported. For each control mechanism, the user can 
either control it manually or have the system control it 
automatically. We also plan to provide MANDATE support 
for embedded network analysis and optimization algorithms, 
which are essential for deriving high-quality control deci- 
sions. 

Network operators and customers will interact with MAN- 
DATE through a view-based interface. Both customers and 
operators obtain views of the network that are constructed ac- 
cording to their individual requirements by the view processor 
of the MANDATE system. These views will be maintained 
on a real-time basis, an essential feature for viable network 
management systems. In addition, MANDATE will provide 
the network operators with a facility for obtaining historical 
views of the database state. These views are extremely useful 
for postmortem analysis of the causes for network faults and 
to derive long-term performance profiles. 

In summary, the MANDATE design proposes to use special 
characteristics of network management data and transactions, 
together with recent advances in database technology, to 
efficiently derive its functionality. Currently, MANDATE is 
still a paper design in which we have attempted to identify 
the basic mechanisms that need to be incorporated in network 
MIB’s. As part of our future research, we plan to test and 
tune the MANDATE design by implementing it on a network 
testbed and to follow this up with a detailed performance 
study. 
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