
MIRROR: A State-Conscious Concurrency Control Protocol for

Replicated Real-Time Databases
�

Ming Xiong
�
, Krithi Ramamritham

�
Department of Computer Science

University of Massachusetts

Amherst, MA 01003
�
xiong, krithi � @cs.umass.edu

Jayant R. Haritsa �
SERC

Indian Institute of Science

Bangalore 560012, India

haritsa@dsl.serc.iisc.ernet.in

John A. Stankovic �
Department of Computer Science

University of Virginia

Charlottesville, VA 22903

stankovic@cs.virginia.edu

Abstract

Data replication can help database systems meet the stringent temporal constraints of current real-time

applications, especially Web-based directory and electronic commerce services. A pre-requisite for realizing

the benefits of replication, however, is the development of high-performance concurrency control mechanisms.

In this paper, we present MIRROR (Managing Isolation in Replicated Real-time Object Repositories), a con-

currency control protocol specifically designed for firm-deadline applications operating on replicated real-time

databases. MIRROR augments the classical O2PL concurrency control protocol with a novel state-based real-

time conflict resolution mechanism. In this scheme, the choice of conflict resolution method is a dynamic

function of the states of the distributed transactions involved in the conflict. A feature of the design is that

acquiring the state knowledge does not require inter-site communication or synchronization, nor does it require

modifications to the two-phase commit protocol.

Using a detailed simulation model, we compare MIRROR’s performance against the real-time versions of

a representative set of classical replica concurrency control protocols for a range of transaction workloads and

system configurations. Our performance studies show that (a) the relative performance characteristics of these

protocols in the real-time environment can be significantly different from their performance in a traditional
�
A short version of this paper [25] appeared in the 5th IEEE Real-Time Technology and Applications Symposium, Vancouver, Canada,

June, 1999.�
Current address: Bell Labs, 600 Mountain Ave., Room 2A-404, Murray Hill, NJ 07974.	
Also affiliated with Indian Institute of Technology, Bombay. Research supported in part by the National Science Foundation Grant

IRI-9619588.

Research supported in part by grants from the Dept. of Science and Technology and the Dept. of Bio-technology, Govt. of India.�
Research supported in part by the National Science Foundation Grant EIA-9900895.

1

(non-real-time) database system, (b) MIRROR provides the best performance in both fully and partially repli-

cated environments for real-time applications with low to moderate update frequencies, and (c) MIRROR’s

simple to implement conflict resolution mechanism works almost as well as more sophisticated strategies.

1 Introduction

Many real-time database applications are inherently distributed in nature. These include the intelligent network

services database described in [16], telecom databases [21, 6], the mobile telecommunication system discussed in

[26], and the 1-800 telephone service in the United States. More recent applications include the directory, data-

feed and electronic commerce services that have become available on the World Wide Web. The performance,

reliability, and availability of such applications can be significantly enhanced through the replication of data on

multiple sites of the distributed network.

A prerequisite for realizing the benefits of replication, however, is the development of efficient replica manage-

ment mechanisms. In particular, for many of these applications, especially those related to on-line information

provision and electronic commerce, stringent consistency requirements need to be supported while achieving high

performance. Therefore, a major issue is the development of efficient replica concurrency control protocols. While

a few isolated efforts in this direction have been made, they have resulted in schemes wherein either the standard

notions of database correctness are not fully supported [19, 20], the maintenance of multiple historical versions

of the data is required [18], or the real-time transaction semantics and performance metrics pose practical prob-

lems [22]. Further, none of these studies have considered the optimistic two-phase locking (O2PL) protocol [4]

although it is the best-performing algorithm in conventional (non-real-time) replicated database systems [4].

In contrast to the above studies, we focus in this paper on the design of one-copy serializable concurrency con-

trol protocols for replicated Real-Time Database Systems (RTDBS). One-copy serializability is also adopted by a

commercial Real-Time DBMS, ClustRa [21, 6], which has been used in telecom applications. Our study is tar-

geted towards real-time applications with “firm deadlines”� . For such applications, completing a transaction after

its deadline has expired is of no utility and may even be harmful. Therefore, transactions that miss their deadlines

are immediately aborted and discarded from the system without being executed to completion. Accordingly, the

performance metric is the percentage of transactions that miss their deadlines.

Our choice of firm-deadline applications is based on the observation that many of the current distributed real-

time applications belong to this category. For example, in the 1-800 service, a customer may hang up the phone if

the answer to his query is not provided in a timely manner – obviously, there is no value in continuing to process

�
In the rest of this paper, when we refer to real-time databases, we mean firm real-time databases unless specified otherwise.

2

his request after this event. Similarly, most Web-based services employ “stateless” communication protocols with

timeout features.

For the above application and system framework, we present in this paper a replica concurrency control proto-

col called MIRROR (Managing Isolation in Replicated Real-time Object Repositories). MIRROR augments the

optimistic two-phase locking (O2PL) algorithm with a novel, simple to implement, state-based data conflict reso-

lution mechanism called state-conscious priority blocking. In this scheme, the choice of conflict resolution method

is a function of the states of the distributed transactions involved in the conflict. A feature of the design is that

acquiring the state knowledge does not require inter-site communication or synchronization, nor does it require

modifications to the two-phase commit protocol [9] (the standard mechanism for ensuring distributed transaction

atomicity).

Using a detailed simulation model of a distributed real-time database system (DRTDBS), we compare MIR-

ROR’s performance against the real-time versions of a representative set of classical replica concurrency control

protocols over a range of transaction workloads and system configurations. These protocols include two phase

locking (2PL), optimistic concurrency control (OCC) and optimistic two phase locking (O2PL).

The remainder of this paper is organized as follows: In Section 2, we present the transaction execution model

and commitment protocol. In Section 3, we present the distributed concurrency control algorithms evaluated

in our study. We also develop a practical implementation of the OCC algorithm for replicated data. The options

available for real-time conflict resolution are discussed in Section 4. Then, our new MIRROR protocol is presented

in Section 5. We describe the replicated RTDBS simulation model in Section 6, and highlight the experimental

results in Section 7. Related work is reviewed in Section 8. Finally, we summarize the conclusions of our study in

Section 9.

2 Transaction Execution and Commitment

Before we go on to describe the CC protocols themselves, we first present the distributed transaction execution

model and commit protocol adopted in our study.

2.1 Transaction Execution Model

We follow the common “subtransaction model” [4] in which there is one process, called the master, which is

executed at the site where the transaction is submitted, and a set of other processes, called cohorts, which execute

on behalf of the transaction at the various sites that are accessed by the transaction. Cohorts are created by the

master sending a STARTWORK message to the local transaction manager at that site. This message includes the

3

work to be done at that site and is passed on to the cohort. Each cohort sends a WORKDONE message to the master

after it has completed its assigned data processing work. The master initiates the commit protocol (only) after it

has received this message from all its cohorts.

Within the above framework, a transaction may execute in either sequential or parallel fashion. The distinction

is that cohorts in a sequential transaction execute one after another, whereas cohorts in a parallel transaction

execute concurrently. Both modes of transaction execution are supported in commercial database systems, and we

evaluate them in our study as well.

Each cohort that updates a replicated data item has one or more remote replica update processes (called up-

daters) associated with it at other sites to update the remote site copies. In particular, a cohort has a remote update

process at every site that stores a copy of a data item that it updates. The cohort communicates with its remote

update processes for concurrency control purposes, and also sends them copies of the relevant updates. The time

at which these remote update processes are invoked is a function of the CC protocol, as described later in Section

3.4.

Note that independent of whether the parent transaction’s execution is sequential or parallel, the replica updaters

associated with a cohort always execute in parallel.

2.2 Two-Phase Commit

We assume that the master implement the classical two-phase commit protocol [9] to maintain transaction atom-

icity. In this protocol, the master, after receiving the WORKDONE message from all its cohorts, initiates the first

phase of the commit protocol by sending PREPARE (to commit) messages in parallel to all its cohorts. Each cohort

that is ready to commit first force-writes a prepare log record to its local stable storage and then sends a YES

vote to the master. At this stage, the cohort has entered a prepared state wherein it cannot unilaterally commit or

abort the transaction, but has to wait for the final decision from the master. On the other hand, each cohort that

decides to abort force-writes an abort log record and sends a NO vote to the master. Since a NO vote acts like a

veto, the cohort is permitted to unilaterally abort the transaction without waiting for the decision from the master.

After the master receives votes from all its cohorts, the second phase of the protocol is initiated. If all the votes

are YES, the the master moves to a committing state by force-writing a commit log record and sending COMMIT

messages to all its cohorts. Each cohort, upon receiving the COMMIT message, moves to the committing state,

force-writes a commit log record, and sends an ACK message to the master.

On the other hand, if the master receives one or more NO votes, it moves to the aborting state by force-writing

an abort log record and sends ABORT messages to those cohorts that are in the prepared state. These cohorts,

after receiving the ABORT message, move to the aborting state, force-write an abort log record and send an

4

ACK message to the master.

Finally, the master, after receiving ACKs from all the prepared cohorts, writes an end log record and then

“forgets” the transaction (by removing from virtual memory all information associated with the transaction).

3 Distributed Concurrency Control Protocols

In this section, we review three families of distributed concurrency control (CC) protocols, namely, 2PL [7],

OCC and O2PL [4]. All three protocol classes belong to the ROWA (“read one copy, write all copies”) category

with respect to their treatment of replicated data. While the 2PL and O2PL implementations are taken from the

literature, our OCC implementation is new. The discussion of the integration of real-time features into these

protocols is deferred to the next section.

3.1 Distributed Two-Phase Locking (2PL)

In the distributed two-phase locking algorithm described in [7], a transaction that intends to read a data item has

to only set a read lock on any one copy of the item; to update an item, however, write locks are required on all

copies. Write locks are obtained as the transaction executes, with the transaction blocking on a write request until

all of the copies of the item to be updated have been successfully locked by a local cohort and its remote updaters.

Only the data locked by a cohort is updated in the data processing phase of a transaction. Remote copies locked by

updaters are updated after those updaters have received copies of the relevant updates with the PREPARE message

during the first phase of the commit protocol. Read locks are held until the transaction has entered the prepared

state while write locks are held until they are committed or aborted.

3.2 Distributed Optimistic Concurrency Control (OCC)

Since, to the best of our knowledge, there have been no replicated OCC algorithms presented in the literature, we

have devised a new algorithm for this purpose. Our algorithm extends the implementation strategy for centralized

OCC algorithms proposed in [12] to handle data distribution and replication.

In OCC, transactions execute in three stages: read, validation, and write. In the read stage, cohorts read and

update data items freely, storing their updates into private workspaces. Only local data items are accessed and all

updating of replicas is deferred to the end of transaction, that is, to the commit processing phase. More specifically,

the 2PC protocol is “overloaded” to perform validation in its first phase, and then public installation of the private

updates of successfully validated transactions in its second phase.

In the validation stage, the following procedure is followed: After receiving a PREPARE message from its

5

master, a cohort initiates local validation. If a cohort fails during validation, it sends an ABORT message to its

master. Otherwise, it sends PREPARE messages as well as copies of the relevant updates to all the sites that store

copies of its updated data items. Each site which receives a PREPARE message from the cohort initiates an updater

to update the data in the private workspace used by OCC. When the updates are done, the updater performs local

validation and sends a PREPARED message to its cohort. After the cohort collects PREPARED messages from all

its updaters, it sends a PREPARED message to the master. If the master receives PREPARED messages from all its

cohorts, the transaction is successfully globally validated and the master then issues COMMIT messages to all the

cohorts.

A cohort that receives a COMMIT message enters the write stage (the third stage) of the OCC algorithm. In

this write stage, the cohort first installs all the private updates in the public database and then it sends a COMMIT

message to all its updaters which then complete their write phase in the same manner as the cohort.

A validation test is performed for each local validation initiated by a cohort or updater. For the implementation

of the validation test itself, we employ an efficient strategy called Lock-based Distributed Validation, which is

described in the Appendix.

An important point to note here is that in contrast to centralized databases where transactions that validate

successfully always commit, a distributed transaction that is successfully locally validated might be aborted later

because it fails during global validation. This can lead to “wasteful” aborts of transactions – a transaction that is

locally validated may abort other transactions in this process, as discussed above. If this transaction is itself later

aborted during global validation, it means that all the aborts it caused during local validation were unnecessary.

3.3 Distributed Optimistic Two-Phase Locking (O2PL)

The O2PL algorithm [4] is a hybrid occupying the middle ground between 2PL and OCC. Specifically, O2PL

handles read requests in the same way that 2PL does; in fact, 2PL and O2PL are identical in the absence of

replication. However, O2PL handles replicated data optimistically. When a cohort updates a replicated data item,

it requests a write lock immediately on the local copy of the item. But it defers requesting write locks on any of

the remote copies until the beginning of the commit phase is reached.

As in the OCC algorithm, replica updaters are initiated by cohorts in the commit phase. Thus, communication

with the remote copy site is accomplished by simply passing update information in the PREPARE message of the

commit protocol. In particular, the PREPARE message sent by a cohort to its remote updaters includes a list of

items to be updated, and each remote updater must obtain write locks on these copies before it can act on the

PREPARE request
�

.
�

To speed up conflict detection, special “copy locks” rather than normal write locks are used for updaters. Copy locks are identical to

6

Since O2PL waits until the end of a transaction to obtain write locks on copies, both blocking and abort are

possible rather late in the execution of a transaction. In particular, if two transactions at different sites have updated

different copies of a common data item, one of the transactions has to be aborted eventually after the conflict is

detected. In this case, the lower priority transaction is usually chosen for abort in RTDBS.
�

3.4 Scheduling of Updates to Replicas

It is important to note that the time at which the remote update processes are invoked is a function of the choice

of CC protocol: In 2PL, a cohort invokes its remote replica update processes to obtain locks before the cohort

updates a local data item in the transaction execution phase. Replicas are updated during the commitment of the

transaction. However, in the O2PL and OCC protocols, a cohort invokes the remote replica update processes only

during the commit processing (more precisely, during the first phase of commit processing).

4 Real-Time Conflict Resolution Mechanisms

We now move on to discussing the integration of real-time data conflict resolution mechanisms with the replica

concurrency control protocols of the previous section. In particular, we consider three different ways – Priority

Blocking, Priority Abort, and Priority Inheritance – to introduce real-time priorities into the locking proto-

cols, while for the optimistic protocol, we utilize Priority Wait. These various mechanisms are described in the

remainder of this section.

4.1 Priority Blocking (PB)

The PB mechanism is similar to the conventional locking protocols in that a transaction is always blocked when it

encounters a lock conflict and can obtain the lock only after the lock is released. The lock request queue, however,

is ordered by transaction priority.

4.2 Priority Abort (PA)

The PA scheme [1] attempts to resolve all data conflicts in favor of high-priority transactions. Specifically, at the

time of a data lock conflict, if a lock holding cohort or updater has higher priority than the priority of a cohort or

updater that is requesting the lock, the requester is blocked. Otherwise, the lock holder is aborted and the lock is

write locks in terms of their compatibility matrix, but they enable the lock manager to know when a lock is being requested by a replica

updater.
�

The exception occurs when the lower priority transaction is prepared in which case the other transaction has to be aborted.

7

granted to the requester. Upon the abort of a cohort (updater), a message is sent to its master (cohort) to abort and

then restart the whole transaction (if its deadline has not already expired by this time).

The only exception to the above policy is when the low priority cohort (updater) has already reached the PRE-

PARED state at the time of the data conflict. In this case, it cannot be aborted unilaterally since its destiny can only

be decided by its master and therefore the high priority transaction is forced to wait for the commit processing to

be completed.

4.3 Priority Inheritance (PI)

In the PI scheme [17], whenever data conflict occurs the requester is inserted into the lock request queue which is

ordered by priority. If the requester’s priority is higher than that of any of the current lock holders, then these low

priority cohort(s) holding the lock subsequently execute at the priority of the requester, that is, they “inherit” this

priority. This means that lock holders always execute either at their own priority or at the priority of the highest

priority cohort waiting for the lock, whichever is greater.

The implementation of priority inheritance in distributed databases is not trivial. For example, whenever a

cohort inherits a priority, it has to notify its master about the inherited priority. The master propagates this infor-

mation to all the sibling cohorts of the transaction. This means that the dissemination of inheritance information

to cohorts takes time and effort and significantly adds to the complexity of the system implementation.

4.4 Priority Wait (PW)

In the PW mechanism [11], which is used in conjunction with the OCC protocol, a transaction that reaches valida-

tion and finds higher priority transactions in its conflict set is “put on the shelf”, that is, it is made to wait and not

allowed to commit immediately. This gives the higher priority transactions a chance to make their deadlines first.

After all conflicting higher priority transactions leave the conflict set, either due to committing or due to aborting,

the on-the-shelf waiter is allowed to commit. Note that a waiting transaction might be restarted due to the commit

of one of the conflicting higher priority transactions.

5 The MIRROR Protocol

Our new replica concurrency control protocol, MIRROR (Managing Isolation in Replicated Real-Time Object

Repositories), augments the O2PL protocol described in Section 3 with a novel, and simple to implement, state-

based conflict resolution mechanism called state-conscious priority blocking. In this scheme, the choice of conflict

resolution method is a dynamic function of the states of the distributed transactions involved in the conflict. A

8

feature of the design is that acquiring the state knowledge does not require inter-site communication or synchro-

nization, nor does it require modifications of the 2PC protocol.

The key idea of the MIRROR protocol is to resolve data conflicts based on distributed transaction states. As ob-

served in earlier work on centralized RTDBS, it is very expensive to abort a transaction when it is near completion

because all the resources consumed by the transaction are wasted [13]. Therefore, in the MIRROR protocol, the

state of a cohort/updater is used to determine which data conflict resolution mechanism should be employed. The

basic idea is that Priority Abort (PA) should be used in the early stages of transaction execution, whereas Priority

Blocking (PB) should be used in the later stages since in such cases a blocked higher priority transaction may not

wait too long before the blocking transaction completes. More specifically, it follows the mechanism given below:

State-Conscious Priority Blocking (PA PB): To resolve a conflict, the CC manager uses PA if the lock holder

has not passed a point called the demarcation point, otherwise it uses PB.

The demarcation points of a cohort/updater
���

are assigned as follows:

� ���
is a cohort: when

���
receives a PREPARE message from its master

� ���
is a replica updater: when

���
has acquired all the local write locks

5.1 Choice of Demarcation Points

We now explain the rationale behind the above assignment of demarcation points. Essentially, we wish to set

the demarcation point in such a way that, beyond that point, the cohort or the updater does not incur any locally

induced waits. In the case of O2PL, a cohort reaches its demarcation point when it receives a PREPARE message

from its master. This happens before the cohort sends PREPARE messages to its remote updaters. It is worth

noting that, to a cohort, the difference between PA and PA PB is with regard to when the cohort reaches the point

after which it cannot be aborted by lock conflict. In the case of the classical PA mechanism, a cohort enters

the PREPARED state after it votes for COMMIT, and a PREPARED cohort cannot be aborted unilaterally. This

happens after all the remote updaters of the cohort vote to COMMIT. On the other hand, in the PA PB mechanism,

a cohort reaches its demarcation point before it sends PREPARE messages to its remote updaters. Thus, in state-

conscious protocols, cohorts or updaters reach demarcation points only after the start of the 2PC protocol. This

means that a cohort/updater cannot reach its demarcation point unless it has acquired all the locks. Note also that

a cohort/updater that reaches its demarcation point may still be aborted due to write lock conflict, as discussed

earlier in Section 3.3.

9

5.2 Implementation Complexity

We now comment on the overheads involved in implementing MIRROR in a practical system. First, note that

MIRROR does not require any inter-site communication or synchronization to determine when its demarcation

points have been reached. This information is known at each local cohort or updater by virtue of its own local

state. Second, it does not require any modifications to the messages, logs, or handshaking sequences that are

associated with the two-phase commit protocol. Third, the changes to be made to the local lock manager at each

site to implement the protocol are quite simple because PB is applied based on its local cohort or updater state.

5.3 Incorporating PA PB with 2PL

The PA PB conflict resolution mechanism, which we discussed above in the context of the O2PL-based MIRROR

protocol, can be also integrated with the distributed 2PL protocol, as described below.

For 2PL, we assign the demarcation points of a cohort/updater
� �

as follows:

� � �
is a cohort: when

� �
receives a PREPARE message from its master

� ���
is a replica updater: when

���
receives a PREPARE message from its cohort

A special effect in combining PA PB with 2PL, unlike the combination with O2PL, is that a low priority transaction

which has reached its demarcation point and has blocked a high priority transaction will not suffer any lock based

waits because the low priority transaction has already acquired all the locks.

5.4 The Priority Inheritance Alternative

In the above description, Priority Blocking (PB) was used as the post-demarcation conflict resolution mechanism.

Alternatively, we could use Priority Inheritance instead, as given below:

State-Conscious Priority Inheritance (PA PI): To resolve a conflict, the CC manager uses PA if the lock holder

has not passed the demarcation point, otherwise it uses PI.

At first glance, the above approach may appear to be significantly better than PA PB since not only are we pre-

venting close-to-completion transactions from being aborted, but also are helping them complete quicker, thereby

reducing the waiting time of the high-priority transactions blocked by such transactions. However, as we will show

later in Section 7.10, this does not turn out to be the case, and it is therefore the simpler and easier to implement

PA PB that we finally recommend for the MIRROR implementation.

10

6 Simulation Model, Metrics, and Settings

To evaluate the performance of the concurrency control protocols described in Section 3, we developed a detailed

simulation model of a distributed real-time database system. Our model is based on the distributed database model

presented in [4], which has also been used in several other studies (for example, [10, 14]) of distributed database

system behavior, and the real-time processing model of [24]. A summary of the parameters used in the simulation

model are presented in Table 1.

6.1 Simulation Model

The database is modeled as a total collection of ���������
	 pages � that are distributed over �����������	�� sites. The

number of replicas of each page, that is, the “replication degree”, is determined by the ��	�������	�� �!	"	 parameter. The

physical resources at each site consist of �����#�$&%'� CPUs, ����(��) ��)
���*�,+-� data disks and ����(.0/��
�1�2��+-�

log disks. At each site, there is a single common queue for the CPUs and the scheduling policy is preemptive

Highest-Priority-First. Each of the disks has its own queue and is scheduled according to a Head-Of-Line policy,

with the request queue being ordered by transaction priority. The $�)!�3	�#4$5% and $�) �6	7���*�,+ parameters capture

the CPU and disk processing times per data page, respectively. The parameter 8!9:����;<�=�>��	�#4$5% models the CPU

overhead associated with initiating a disk write for an updated page. When a transaction makes a request for

accessing a data page, the data page may be found in the buffer pool, or it may have to be accessed from the disk.

The BufHitRatio parameter gives the probability of finding a requested page already resident in the buffer pool.

The communication network is simply modeled as a switch that routes messages and the CPU overhead of

message transfer is taken into account at both the sending and receiving sites and its value is determined by the
? �7�3#4$5% parameter – the network delays are subsumed in this parameter. This means that there are two classes of

CPU requests – local data processing requests and message processing requests. We do not make any distinction,

however, between these different types of requests and only ensure that all requests are served in priority order.

With regard to logging costs, we explicitly model only forced log writes since they are done synchronously, i.e.,

operations of the transaction are suspended during the associated disk writing period. This logging cost is captured

by the .@/��
���*�,+ parameter.

Transactions arrive according to a Poisson process with rate AB�=�,��C
)6�D�4)
��	 , and each transaction has an associ-

ated firm deadline, assigned as described below. Each transaction randomly chooses a site in the system to be the

site where the transaction originates and then forks off cohorts at all the sites where it has to access data. Transac-

tions in a distributed system can execute in either sequential or parallel fashion. This is determined by parameter

E
This is the basic set of database pages without replication.

11

Parameter Meaning Setting

��������>��	"� Number of sites 4

���5� ��� 	 Number of pages in the databases 1000 pages

��	�� �D� 	 �
� 	�	 Degree of replication 4

�����#4$5%'� Number of CPUs per site 2

����(��) ��)
���*�,+-� Number of data disks per site 4

����(.@/��
���*�,+-� Number of log disks per site 1

� ��� �>���4) �2��/ Buffer hit ratio on a site 0.1
� �)
9 � ��� � 	 Trans. Type (Parallel/Sequential) Sequential

AB�,�=�>C6)
���4)
��	 Transaction arrival rate (Trans./Second) Varied

� ��)�� +	�)
� ��/�� Slack factor in deadline assignment 6.0
� �)
9 �,���*� 	 No. of pages accessed per trans. 16 pages

%@���)
��	�4�!	�� Update frequency 0.25

$�) �6	�#�$&% CPU page processing time 10 ms

8!9:����;<�=�>��	�#4$5% Time to initiate a disk write 2 ms

$�) �6	7���*�,+ Disk access time per page 20 ms

.@/��
���*�,+ Log force time 5 ms
? ���3#�$&% CPU message send/receive time 1 ms

Table 1: Simulation Model Parameters and Default Values.

� �) 9 � ��� � 	 . The distinction is that cohorts in a sequential transaction execute one after another, whereas cohorts

in a parallel transaction are started together and execute independently until commit processing is initiated. We

consider both sequential and parallel transactions in this study. Note, however, that replica updaters belonging to

the same cohort always execute in parallel.

The total number of pages accessed by a transaction, ignoring replicas, varies uniformly between 0.5 and

1.5 times
� �)
9 �,���*� 	 . These pages are chosen uniformly (without replacement) from the entire database. The

proportion of accessed pages that are also updated is determined by %0���)
��	�4�!	�� .
Upon arrival, each transaction

�
is assigned a firm completion deadline using the formula

� 	7)�� �D�>9 	���� AB�=�,��C
)6� � �>� 	���� � �D)���+	��)�� ��/,���@���

where � 	7)�� �D�>9 	�� , AB�=�=�>C
)6� � �>� 	�� , and ��� are the deadline, arrival time, and resource time, respectively, of

12

transaction
�

, while � �D)���+	��)�� ��/,� is a slack factor that provides control of the tightness/slackness of transaction

deadlines. The resource time is the total service time at the resources (including CPUs and disks) at all sites that the

transaction requires for its execution in the absence of data replication. This is computed in this manner because

the replica-related cost differs from one CC protocol to another. It is important to note that while transaction

resource requirements are used in assigning transaction deadlines, the system itself lacks any knowledge of these

requirements in our model since for many applications it is unrealistic to expect such knowledge. This also implies

that a transaction is detected as being late only when it actually misses its deadline.

As discussed earlier, transactions in an RTDBS are typically assigned priorities so as to minimize the number of

killed transactions. In our model, all cohorts inherit their parent transaction’s priority. Messages also retain their

sending transaction’s priority. The transaction priority assignment used in all of the experiments described here

is the widely-used Earliest Deadline policy [15], wherein transactions with earlier deadlines have higher priority

than transactions with later deadlines.

Deadlock is possible with some of the CC protocols that we evaluate – in our experiments, deadlocks are

detected using a time-out mechanism. Both our own simulations as well as the results reported in previous studies

[3, 8] show that the frequency of deadlocks is extremely small – therefore a low-overhead solution like timeout is

preferable to more expensive graph-based techniques.

6.2 Performance Metric

The performance metric employed is MissPercent, the percentage of transactions that miss their deadlines. MissPer-

cent values in the range of 0 to 30 percent are taken to represent system performance under “normal” loads, while

MissPercent values in the range of 30 to 100 percent represent system performance under “heavy” loads. Several

additional statistics are used to aid in the analysis of the experimental results, including the abort ratio, which is

the average number of aborts per transaction � ; the message ratio, which is the average number of messages sent

per transaction; the priority inversion ratio (PIR), which is the average number of priority inversions per transac-

tion; and the wait ratio, which is the average number of waits per transaction. Further, we also measure the useful

resource utilization as the resource utilization made by those transactions that are successfully completed before

their deadlines.
�
In RTDBS, transaction aborts can arise out of deadline expiration or data conflicts. Only aborts due to data conflicts are included in

this statistic.

13

6.3 Parameter Settings

Table 1 presents the settings of the simulation model parameters for our first experiment. With these settings,

the database is fully replicated and each transaction executes in a sequential fashion (note, however, that replica

updaters belonging to the same cohort always execute in parallel). The parameter values for CPU, disk and mes-

sage processing times are similar to those in [4]. While these times have certainly decreased due to technology

advances in the interim period, we continue to use them here for the following reasons: 1) To enable easy com-

parison and continuity with the several previous studies that have used similar models and parameter values; 2)

the ratios of the settings, which is what really matters in determining performance behavior, have changed less

than the decrease in absolute values; 3) our objective is to evaluate the relative performance characteristics of the

protocols, not their absolute levels. As in several other studies for replicated databases (for example, [2, 22]), here

the database size represents only the “hot spots”, that is, the heavily accessed data of practical applications, and

not the entire database.

7 Experiments and Results

Using the firm-deadline DRTDBS model described in the previous section, we conducted an extensive set of

simulation experiments comparing the real-time performance of the various replica CC protocols. In this section,

we present the results of a representative set of experiments.

We first analyze the performance of the different conflict-resolution mechanisms for the locking protocols and,

in particular, determine whether MIRROR can provide better performance as compared to the other O2PL varia-

tions. Then, we move on to comparing the relative performance of the locking and optimistic protocols. We explore

the impacts of resource contention (I/O and CPU contention), data contention, and time contention (deadline dis-

tribution) in our experiments. In addition, we also evaluate locking and OCC based algorithms for both sequential

and parallel transactions. Finally, we compare the performance of MIRROR and its alternative – O2PL-PA PI.

In the experiments, 90% confidence intervals have been obtained whose widths are less than
�������

of the

point estimate for the the Missed Deadline Percentage (MissPercent). Only statistically significant differences are

discussed here.

7.1 Expt. 1: O2PL Based Conflict Resolution

Our goal in this experiment was to investigate the performance of the various conflict resolution mechanisms (PB,

PA, PI and PA PB) when integrated with the O2PL concurrency control protocols.

14

0

10

20

30

6 8 10 12 14 16

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

O2PL-PB
O2PL-PI

O2PL-PA
MIRROR

NoCC

Figure 1: O2PL Algorithms MissPercent with Normal Load

0

20

40

60

80

100

16 18 20 22 24 26 28 30

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

O2PL-PB
O2PL-PI

O2PL-PA
MIRROR

NoCC

Figure 2: O2PL Algorithms MissPercent with Heavy Load

0

0.4

0.8

1.2

1.6

6 10 14 18 22 26 30

P
rio

rit
y

In
ve

rs
io

n
R

at
io

Arrival Rate

O2PL-PA
O2PL-PI
MIRROR
O2PL-PB

Figure 3: Priority Inversion Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

6 10 14 18 22 26 30
W

ai
t R

at
io

Arrival Rate

O2PL-PA
O2PL-PI
MIRROR
O2PL-PB

Figure 4: Wait Ratio

For this experiment, Figures 1 and 2 present the MissPercent of transactions for the O2PL-PB, O2PL-PA, O2PL-

PI, and MIRROR protocols under normal loads and heavy loads, respectively. To help isolate the performance

degradation arising out of concurrency control, we also show the performance of NoCC – that is, a protocol which

processes read and write requests like O2PL, but ignores any data conflicts that arise in this process and instead

grants all data requests immediately. It is important to note that NoCC is only used as an artificial baseline in our

experiments.

Focusing our attention first on O2PL-PA, we observe that O2PL-PA and O2PL-PB have similar performance

at arrival rates lower than 14 transactions per second, but O2PL-PA outperforms O2PL-PB under heavier loads.

This is because O2PL-PA ensures that urgent transactions with tight deadlines can proceed quickly since they

are not made to wait for transactions with later deadlines in the event of data conflicts. This is clearly brought

out in Figures 3, 4 and 5 which present the priority inversion ratio, the wait ratio and the wait time statistics,

respectively. These figures show that O2PL-PA greatly reduces these factors as compared to O2PL-PB. In contrast

to centralized RTDBS, a non-zero priority inversion ratio for O2PL-PA is seen in Figure 3 – this is due to the

inherent non-preemptability of prepared data of a low priority cohort (updater) which has already reached the

PREPARED state at the time of the data conflict. In this case, it cannot be aborted unilaterally since its destiny

can only be decided by its master and therefore the conflicting high priority transaction is forced to wait for the

15

0

0.2

0.4

0.6

0.8

1

6 10 14 18 22 26 30

W
ai

t T
im

e
(S

ec
.)

Arrival Rate

O2PL-PA
O2PL-PI
MIRROR
O2PL-PB

Figure 5: Average Wait Time Per Wait Instance

0

0.1

0.2

0.3

6 10 14 18 22 26 30

P
rio

rit
y

In
ve

rs
io

n
R

at
io

Arrival Rate

O2PL-PA
MIRROR

Figure 6: PIR due to Unprepared Data beyond Demarcation

Point

commit processing to be completed.

Note, however, that O2PL-PI and O2PL-PB perform basically the same with O2PL-PI being slightly better than

O2PL-PB under normal load. This is because (1) a low priority transaction whose priority is increased holds the

new priority until it commits, i.e., the priority inversion persists for a long time. Thus, higher priority transactions

which are blocked by that transaction may miss their deadlines. In contrast, normal priority inheritance in real-time

systems only involves critical sections which are usually short so that priority increase of a task only persists for

a short time, i.e., until the low priority task gets out of the critical section. This is the primary reason that priority

inheritance works well for real-time tasks accessing critical sections, but it fails to improve performance in real-

time transaction processing; (2) it takes considerable time for priority inheritance messages to be propagated

to the sibling cohorts (or updaters) on different sites, and (3) under high loads, high priority transactions are

repeatedly data-blocked by lower priority transactions. As a result, many transactions are assigned the same

priority by “transitive inheritance” and priority inheritance essentially degenerates to “no priority”, i.e., to basic

O2PL, defeating the original intention. This is confirmed in Figures 3, 4 and 5 where we observe that O2PL-PI

and O2PL-PB have similar priority inversion ratio (PIR), wait ratio and wait time statistics.

Turning our attention to the MIRROR protocol, we observe that MIRROR has the best performance among all

the protocols. The improved behavior here is due to MIRROR’s feature of avoidance of transaction abort after a

cohort (or updater) has reached its demarcation point. The performance improvement obtained in MIRROR can

be explained as follows: Under O2PL-PA, priority inversions that occur beyond the demarcation point involving a

lower priority (unprepared) cohort (or updater) result in transaction abort. On the other hand, under MIRROR, such

priority inversions do not result in transaction abort. The importance of this is quantified in Figure 6, where it is

seen that a significant number of priority inversions due to unprepared data take place after the demarcation point.

In such situations, a high priority transaction may afford to wait for a lower priority transaction to commit since

it is near completion, and wasted resources due to transaction abort can be reduced, as is done by the MIRROR

16

0

5

10

15

20

25

6 8 10 12 14 16

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

2PL-PA_PB
MIRROR

OCC

Figure 7: CC Algorithms MissPercent with Normal Load

0

20

40

60

80

100

16 18 20 22 24 26 28 30

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

2PL-PA_PB
MIRROR

OCC

Figure 8: CC Algorithms MissPercent with Heavy Load

protocol.

In fact, MIRROR, i.e., O2PL-PA PB, does better than all the other O2PL-based algorithms under all the work-

load ranges that we tested.

7.2 Expt. 2: Baseline - Concurrency Control Algorithms

The goal of our next experiment was to investigate the performance of CC protocols based on the three different

techniques: 2PL, O2PL and OCC. For this experiment, the parameter settings are the same as those used for

Experiment 1. The MissPercent of transactions is presented in Figures 7 and 8 for the normal load and heavy load

regions, respectively.

Focusing our attention on the locking-based schemes, we observe that MIRROR outperforms 2PL-PA PB in

both normal and heavy workload ranges. For example, MIRROR outperforms 2PL-PA PB by about 12% (abso-

lute) at an arrival rate of 14 transactions/second. This can be explained as follows: First, 2PL results in much

higher message overhead for each transaction, as was indicated by the message ratio statistic collected in the

experiments. The higher message overhead results in higher CPU utilization, thus aggravating CPU contention.

Second, 2PL-PA PB detects data conflicts earlier than MIRROR. However, data conflicts cause transaction blocks

or aborts. 2PL-PA PB results in more number of waits per transaction and a longer wait time per wait instance.

Thus 2PL-PA PB results in more transaction blocks and longer blocking times than MIRROR. On the other hand,

MIRROR exhibits fewer transaction blocks. In other words, unlike in 2PL-PA PB, a cohort with O2PL cannot

be blocked or aborted by data conflicts with cohorts on other sites before one of them reaches the commit phase.

Thus, with MIRROR, transactions can proceed faster. In addition, MIRROR improves performance by detecting

global CC conflicts late in the transaction execution thereby reducing wasted transaction aborts.

Turning our attention to the OCC protocol, we observe that OCC is slightly worse than 2PL-PA PB and MIR-

ROR under arrival rates less than 14 transactions/second. This is due to the fact that OCC has a higher CC abort

17

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5

M
is

se
d

D
ea

dl
in

e
%

Update Probability

2PL-PA_PB
MIRROR

OCC

Figure 9: MissPercent with Low ���������
	����	��

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

M
is

se
d

D
ea

dl
in

e
%

No. of Replicas

2PL-PA_PB
MIRROR

OCC

Figure 10: MissPercent with Partial Replication

(����������	������ �"!$#&%�'(�)�*�
	�+,���)

ratio than 2PL-PA PB and MIRROR under those loads. With higher loads, OCC outperforms 2PL-PA PB because

OCC has less number of wasteful aborts, less number of waits and shorter blocking time of a transaction than

2PL-PA PB.

It may be considered surprising that MIRROR has the best performance over a wide workload range, even

slightly outperforming OCC. We observe that MIRROR has higher useful CPU and disk utilization, even though

its overall CPU and disk utilization is lower than OCC. This clearly indicates that OCC wastes more resources

than MIRROR does. It implies that the average progress made by transactions before they were aborted due to

CC conflicts is larger in OCC than that in MIRROR.
-

As observed in the previous studies of centralized RTDB

settings[11], the wait control in OCC can actually cause all the conflicting transactions of a validating transaction to

be aborted at a later point in time, thereby wasting more resources even if OCC has slightly less CC abort ratio than

MIRROR. In contrast, MIRROR reduces wasted resources by avoiding transaction aborts after cohorts/updaters

reach demarcation points.

In summary, MIRROR outperforms OCC and 2PL-PA PB in the tested workloads.

7.3 Expt. 3: Varying Update Frequency

So far we observed that MIRROR outperforms OCC and 2PL-PA PB under a certain update frequency. The

next experiment investigates the performance of these algorithms under different update frequencies. For this

experiment, Figure 9 presents the MissPercent when the update frequencies are low and moderate for an arrival

rate of 14 transactions/second. It should be noted that data is normally replicated in distributed database systems

only when the update frequency is not very high. Therefore, the update frequency results that we present here can

aid in understanding the tradeoffs of different protocols in replicated RTDBS.

.
A transaction’s progress is measured in terms of the CPU and disk services it has received.

18

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

A
bo

rt
 R

at
io

No. of Replicas

MIRROR
OCC

MIRROR(Useful)
OCC(Useful)

Figure 11: Abort Ratio with Partial Replication

(����������	 � ��� �"!$#&%�'(�)�*�
	�+ � �)

0

20

40

60

80

1 2 3 4 5 6 7 8

M
is

se
d

D
ea

dl
in

e
%

Slack Factor

2PL-PA_PB
MIRROR

OCC

Figure 12: MissPercent with Slack Factor

When the update frequency is varied from low to moderate, we observe that the qualitative behavior of the

various algorithms is similar to that of Experiment 1. However, we also observe in Figure 9 that the performance

of MIRROR degrades more drastically with the increase of update frequency. For example, MIRROR performs

only slightly better than OCC when the update frequency is 0.5. The reason for the degraded performance of

MIRROR is that with higher update frequency, MIRROR causes much more aborts due to both data contention

in the local site and global update conflicts, as discussed earlier in Section 7.2, and more aborts are wasted under

MIRROR.

In summary, for low to moderate update frequencies, MIRROR is the preferred protocol.

7.4 Expt. 4: Partial Replication

Previous experiments were conducted when data are fully replicated. The purpose of this experiment is to examine

the impact of replication level on the three algorithms: MIRROR, OCC and 2PL-PA PB. For this experiment,

� ������>��	"� and �������*� 	 are fixed at 8 and 800, respectively, while � ���#4$&%4� and ����(��) ��)6�1�*�,+-� per site

are set to 1 and 2, respectively. These changes were made to provide a system operational region of interest without

having to model very high transaction arrival rates. The other parameter values are the same as those given in

Table 1. For this environment, Figure 10 presents the MissPercent of transactions when the number of replicas is

varied from 1 to 8, i.e., from no replication to full replication, for an arrival rate of 14 transactions/second.

In the absence of replication, we observe first that 2PL-PA PB and MIRROR perform identically as expected

since O2PL reduces to 2PL in this situation. Further, OCC outperforms all the other algorithms in the absence of

replication under tested workloads.

As the number of replicas increases, the performance difference between MIRROR and 2PL-PA PB increases.

Because of its inherent mechanism for detecting data conflicts, 2PL-PA PB suffers much more from data replica-

19

0

10

20

30

40

50

60

0 1000 2000 3000 4000

M
is

se
d

D
ea

dl
in

e
%

Database Size

O2PL-PA
MIRROR

OCC

Figure 13: MissPercent with ��� ������	 (
� 	 ��� ��	����	�	 ���)

0

20

40

60

80

100

6 8 10 12 14 16 18 20 22 24 26 28

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

2PL-PA_PB
MIRROR

OCC

Figure 14: MissPercent with MsgCPU = 5ms

tion than MIRROR and OCC do. We observe a performance crossover between MIRROR and OCC. The reason

for this change in their relative performance behavior is explained by the abort curves shown in Figure 11 (for

graph clarity, we only show the abort ratio and useful abort ratio of MIRROR and OCC), where we see that the

number of aborts under MIRROR is significantly reduced as number of replicas increases. This helps reduce the

resource wastage in MIRROR.

In Figure 10, we also observe that the performance of MIRROR is initially improved, then it is degraded as the

number of replicas is increased.
�

In O2PL, read operations can benefit from local data when data is replicated.

However, as the data replication level goes up, update operations suffer due to updates to remote data copies.

Hence, the performance degrades after a certain replication level. For example, the performance of MIRROR is

improved when the number of replicas is from 1 to 3, then it is degraded as the number of replicas is larger than 3.

On the other hand, we observe that the performance of 2PL-PA PB always degrades as data replication level goes

up. This is due to the pessimistic conflict detection mechanism in 2PL since the number of messages sent out for

conflict detection increases drastically which in turn increases CPU contention. Such performance degradation of

OCC and 2PL is also observed in conventional replicated databases [5].

7.5 Expt. 5: Varying Slack Factor

In this section, we study the behavior of MIRROR, OCC and 2PL-PA PB as we vary the slack factor, a real-time

parameter. Figure 12 presents the MissPercent when the slack factor is varied from 1.5 to 8 while the arrival

rate is fixed at 14 transactions/second. The Other parameters take default values as in Table 1. We observe that

MissPercent of all algorithms increases rapidly at low slack factors. As the slack factor decreases, transactions

are given less time to complete, and the missed deadline percentage of all algorithms increases. With moderate

to high slack factors, the relative performance of OCC, 2PL-PA PB and MIRROR remains to be the same as in

�
The same behavior is also observed for the performance of OCC when the update frequency is lower.

20

0

10

20

30

40

50

60

6 8 10 12 14 16 18 20 22 24 26 28

M
es

sa
ge

 R
at

io

Arrival Rate

2PL-PA_PB
MIRROR

OCC

Figure 15: Message Ratio with MsgCPU = 5ms

0

20

40

60

80

100

8 12 16 20 24 28

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

2PL-PA_PB
MIRROR

OCC

Figure 16: MissPercent with BufHitRatio = 0.8

previous experiments. As the slack factor increases, transactions are given more time to complete, and the missed

deadline percentage of all algorithms decreases. However, after the slack factor increases beyond a value, the

MissPercent stays almost constant. For example, in the case of MIRROR, the missed deadline percentage stays

almost constant beyond a slack factor of 6. Since increasing the slack factor provides transactions with more time

to complete, it results in a higher restart ratio of transactions and more transactions running concurrently in the

system. Eventually, resources in the system are saturated and MissPercent becomes stable for a fixed arrival rate.

7.6 Expt. 6: Varying Data Access Ratio

Our next experiment investigates the impact that data access ratio (DAR) has on the performance of 2PL, O2PL

and OCC based algorithms by varying the database size. Data access ratio is defined to be the maximum number of

pages that can be simultaneously accessed by all the transactions in the system relative to the size of the database

[11]. It has been shown that data access ratio has an impact on the qualitative performance of concurrency control

algorithms [11]. The parameter values are identical to Expt. 4 except that the number of replicas is fixed at 3. For

graph clarity, we focus on OCC, MIRROR and O2PL-PA. Here we choose O2PL-PA because it is observed in a

centralized database setting [11] that there is a performance crossover of 2PL-PA and OCC while the database size

is varied. In Figure 13, we also observe a performance crossover of O2PL-PA and OCC while the database size is

increased. We actually observe that MIRROR is always the best choice under the tested database sizes. The same

performance is also observed in our study by varying the level of data replication.

7.7 Expt. 7: Varying Message Cost

Our next experiment investigates the impact of an increase of message cost on concurrency control algorithms.

So far we assumed a low message cost of
? �7�3#4$5% � � � � . Figure 14 presents the missed deadline percentage

when
? ���3#�$&% is �,� � . As we can observe from the figure, the performance of 2PL-PA PB degrades drastically

21

due to the increase of message cost. Both OCC and MIRROR constantly outperform 2PL-PA PB throughout the

workload range. This, however, is due to the much larger number of messages transmitted under 2PL-PA PB.

This is clearly brought out in Figure 15. The increased message costs significantly aggravate the CPU contention

of 2PL-PA PB, thereby drastically degrading 2PL-PA PB’s performance. It is also observed that the increase of

message cost does not change the qualitative performance of MIRROR and OCC.

We have also done experiments with different
? ���-#4$&% values and the results in these other experiments were

similar.

7.8 Expt. 8: The Impact of Buffering

The purpose of this experiment is to examine the impact of buffering on the performance of 2PL-PA PB, MIRROR

and OCC. To this end, Figure 16 presents the missed deadline percentage when � ��� �>���4) �2��/ is set to 80 percent.

Other parameters are identical to the previous experiment (Expt. 7). We found that the main impact of having an

80 percent � ��� �>�2�4)
�2��/ is to make the system heavily CPU-bound. The qualitative performance of 2PL-PA PB,

MIRROR and OCC is not changed as compared to the previous experiment. However, we also observe a difference.

Compared to MIRROR and OCC, 2PL-PA PB in Figure 16 begins to miss deadlines at a lower arrival rate than

in Figure 14. For example, in Figure 16, 2PL-PA PB begins to miss deadlines when the transaction arrival rate

is greater than 8 transactions/second, whereas OCC begins to miss deadlines when the transaction arrival rate is

greater than 12 transactions/second. On the other hand, in Figure 14, 2PL-PA PB begins to miss deadlines when

the transaction arrival rate is greater than 6 transactions/second, whereas OCC begins to miss deadlines when

the transaction arrival rate is greater than 8 transactions/second. Compared to OCC and MIRROR, the behavior

of 2PL-PA PB is relatively worse with a higher buffer hit ratio. This is because 2PL-PA PB aggravates CPU

contention and the CPU is the primary bottleneck when the buffer hit ratio is high.

7.9 Expt. 9: Parallel Execution of Cohorts

In all of the previous experiments, the cohorts of each transaction executed in sequence. We also conducted

similar experiments for transaction workloads with parallel cohort execution and we report on those results here.

Due to similarity of the experiments and results, we only illustrate one set of performance results. The goal of this

experiment is to investigate the performance of MIRROR compared to OCC and 2PL-PA PB.

In this experiment, all parameters are set identical to those in the previous experiment (Expt. 8) except that the

� ������>��	"� and �������*� 	 are again fixed at 8 and 800, respectively, while the number of replicas (��	�������	�� �!	")

is fixed at 3 to model a partially replicated database. These changes were made to provide a system operational

region of interest without having to model very high transaction arrival rates. The execution sites for a transaction’s

22

0

10

20

30

40

50

60

12 14 16 18 20 22 24 26

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

2PL-PA_PB
MIRROR

OCC

Figure 17: MissPercent of Parallel Execution

0

20

40

60

80

6 10 14 18 22 26 30

M
is

se
d

D
ea

dl
in

e
%

Arrival Rate

MIRROR
O2PL-PA_PI

Figure 18: MissPercent of MIRROR and O2PL-PA PI

cohorts are determined in the following manner: If a page is present at the originating site of the transaction, use

the local copy; otherwise, choose uniformly from among the sites that have remote copies. In the latter case, a site

is favored if it has already been chosen by the same transaction. Figure 17 presents the missed deadline percentage

of MIRROR, OCC and 2PL-PA PB when cohorts of a transaction are executed in parallel. It can be observed that

MIRROR still outperforms OCC in parallel execution of cohorts. Further, both MIRROR and OCC outperform

2PL-PA PB.

7.10 Efficiency of MIRROR

Our previous experiments demonstrated MIRROR’s ability to provide good performance. But there still remains

the question of how efficient is MIRROR’s use of its state knowledge – in particular, could performance be further

improved by replacing the PA PB mechanism with the PA PI mechanism described in Section 5, wherein priority

inheritance is used for conflict resolution after the demarcation point, result in even better performance? This

expectation is because, as mentioned earlier in Section 4, PI seems capable of providing earlier termination of the

(priority-inversion) blocking condition than PB.

We conducted experiments to evaluate the above possibility and results are shown in Figure 18. We found that

the performance of O2PL-PA PI was virtually identical to that of MIRROR in all cases. The reason for this perhaps

counter-intuitive result is that priority-inheritance in the distributed environment involves excessive message costs

and dissemination delay, thereby neutralizing its positive points. Further, PI comes into play only when a high

priority transaction is blocked by a low priority transaction in commit phase. Due to message propagation delay

in PI, it is too late for PI to be effective. The similar observation is also observed in [10].

In summary, MIRROR provides the same level of performance as O2PL-PA PI without having its implementa-

tion difficulties – we therefore recommend it as the algorithm of choice for replicated RTDBS.

23

Parameter Algorithms’ Performance

2PL O2PL OCC

Load MsgCost DAR PA PB PB PI PA MIRROR Wait

Low Low High Good Poor Poor Good Best Good

Low High High Poor Poor Poor Good Best Good

High Low High Fair Poor Poor Fair Best Good

High High High Poor Fair Fair Good Best Good

* * Low Fair Good Good Good Best Good

Table 2: Performance of Algorithms.

7.11 Summary

Apart from the experiments described above, we have conducted a variety of experiments that cover a range of

workloads and system configurations. Table 2 summarizes these results under both tight and loose slack factors

with low to moderate update frequencies: In the table, system parameters, i.e., load, message cost and data access

ratio (DAR) have been coarsely categorized into low and high, and ’*’ refers to both low and high categories. The

terms “poor”, “fair”, “good”, and “best” are used to describe the relative performance in a given system state and

for a given algorithm. Whereas in a particular row, “fair” is better than “poor”, “good” is better than “fair”, and

“best” represents the best algorithm in a row, the terms in two different rows are not comparable. The following

general observations pertain to Table 2.

1. 2PL based algorithms perform poorly in most cases, especially when the message cost is high. Thus 2PL

based algorithms are not the proper choices for high message cost environments.

2. O2PL-PA and MIRROR achieve good performance at low to moderate update frequencies.

3. OCC achieves better performance than most of the O2PL-based and 2PL-based algorithms, except for MIR-

ROR, when the update frequencies are low to moderate in value.

4. Protocols integrated with only PB or PI (e.g., O2PL-PB, O2PL-PI) do not perform very well. Thus they are

not suited to distributed real-time databases. A similar poor performance of these mechanisms has also been

observed earlier for centralized real-time databases [11].

5. MIRROR (O2PL-PA PB) performs best for low to moderate update frequencies. Since we expect most

replicated RTDBS applications will belong to the category of low to moderate update frequencies, MIRROR

appears to be the best overall choice for implementation in these systems.

24

8 Related Work

Concurrency control algorithms and real-time conflict resolution mechanisms for RTDBS have been studied ex-

tensively (e.g. [11, 12, 13, 22]). However, concurrency control for replicated DRTDBS has only been studied in

[18, 19, 20, 22]. An algorithm for maintaining consistency and improving the performance of replicated DRTDBS

is proposed in [18]. In this algorithm, a multiversion technique is used to increase the degree of concurrency.

Replication control algorithms that integrate real-time scheduling and replication control are proposed in [19, 20].

These algorithms employ Epsilon-serializability (ESR) [23] which is less stringent than conventional one-copy-

serializability.

In contrast to the above studies, our work retains the standard one-copy-serializability as the correctness crite-

rion and focuses on the locking and OCC based concurrency control protocols.

The performance of the classical distributed 2PL locking protocol (augmented with the priority abort (PA) and

priority inheritance(PI) conflict resolution mechanisms) and of OCC algorithms in replicated DRTDBS was stud-

ied in [22] for real-time applications with “soft” deadlines. � The results indicate that 2PL-PA outperforms 2PL-PI

only when the update transaction ratio and the level of data replication are both low. Similarly, the performance of

OCC is good only under light transaction loads.

Making clear-cut recommendations on the performance of protocols in the soft deadline environment is rendered

difficult, however, by the following: (1) There are two metrics – Missed Deadlines and Mean Tardiness, and

protocols which improve one metric usually degrade the other. (2) The choice of the post-deadline value function

has considerable impact on relative protocol performance; (3) There is no inherent load control, so the system

could enter an unstable state. Due to such problems with the soft-deadline framework and, more importantly,

because many of the replicated applications fall into the firm-deadline category, we have modeled firm real-time

transactions in this paper. Finally, we include an investigation of the O2PL algorithm which has not been studied

before in the real-time context. We demonstrated that MIRROR, which is O2PL enhanced with PA PB, performs

best in most situations.

In [13], a conditional priority inheritance mechanism is proposed to handle priority inversion. This mechanism

capitalizes on the advantages of both priority abort and priority inheritance in real-time data conflict resolution.

It outperforms both priority abort and priority inheritance when integrated with two phase locking in centralized

real-time databases. However, the protocol assumes that the length (in terms of the number of data accesses) of

transactions is known in advance which may not be practical in general, especially for distributed applications. In

contrast, our state-conscious priority blocking and state-conscious priority inheritance protocols resolve real-time
�
With soft deadlines, a reduced value is obtained by the application from transactions that are completed after their deadlines have

expired.

25

data conflicts based on the states of transactions rather than their lengths.

9 Conclusions

In this paper, we have addressed the problem of accessing replicated data in DRTDBS where transactions have

firm deadlines, a framework under which many current real-time applications, especially Web-based ones, operate.

In particular, for this environment we proposed a novel state-conscious protocol called MIRROR which can be

easily integrated and implemented in current systems, and investigated its performance relative to the performance

of the 2PL, O2PL and OCC based concurrency control algorithms. Our performance studies show the following:

1. The relative performance characteristics of replica concurrency control algorithms in the real-time environ-

ment could be significantly different from their performance in a traditional (non-real-time) database system.

For example, the O2PL algorithm, which is reputed to provide the best overall performance in traditional

databases, performs poorly in RTDBS.

2. the MIRROR protocol provides the best performance in both fully and partially replicated environments for

real-time applications with low or moderate update frequencies. Given that most of the distributed real-time

applications that we are aware of fall into this category, MIRROR appears to be an attractive choice for

designers of replicated RTDBS.

3. as mentioned earlier, MIRROR implements a state-conscious priority blocking based conflict resolution

mechanism. We also evaluated alternative implementations of MIRROR with more sophisticated, and diffi-

cult to implement, conflict resolution mechanisms such as state-conscious priority inheritance. Our exper-

iments demonstrate, however, that little value is added with these enhancements – that is, the basic simple

implementation of MIRROR itself is sufficient to deliver good performance.

In summary, our study indicates that MIRROR is simple, practical, and efficient, making it an attractive candidate

for high-performance replicated DRTDBS.

References
[1] Abbott, R., and Garcia-Molina, H., “Scheduling Real-Time Transactions: a Performance Evaluation,” Proc. of the 14th

VLDB Conf., Los Angeles, CA, 1988.

[2] Anderson, T., Breitbart, Y., Korth, H. and Wool, A., “Replication, Consistency, and Practicality: Are These Mutually
Exclusive?” Proceedings of the ACM-SIGMOD 1998 International Conference on Management of Data, Seattle, WA.,
pp. 484-495, 1998.

[3] Agrawal, R., Carey, M., and McVoy, L., ”The Performance of Alternative Strategies for Dealing With Deadlocks in
Database Management Systems”, IEEE Trans. on Software Engg., Dec 1987.

[4] Carey, M., and Livny, M., “Conflict Detection Tradeoffs for Replicated Data,” ACM Transactions on Database Systems,
Vol. 16, pp. 703-746, 1991.

26

[5] Ciciani, B., Dias, D. M., Yu, P. S., “Analysis of Replication in Distributed Database Systems,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 2, No. 2, June 1990.

[6] The ClustRa White Paper. http://www.clustra.com.

[7] Gray, J., “Notes On Database Operating Systems,” in Operating Systems: An Advanced Course, R. Bayer, R. Graham,
and G. Seegmuller, eds., Springer-Verlag, 1979.

[8] Gray, J., Homan, P., Obermarck, R., and Korth, H., ”A Strawman Analysis of Probability of Waiting and Deadlock in a
Database System,” IBM Res. Rep. RJ 3066, San Jose, CA.

[9] Gray, J. and Reuter A., “Transaction Processing: Concepts and Techniques,” Morgan Kaufmann, 1992.

[10] Haritsa, J., Ramamritham, K., and Gupta, R., “The PROMPT Real-Time Commit Protocol,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 11, No. 2, pp. 160-181, February 2000.

[11] Haritsa, J. R., Carey, M., and Livny, M., “Data Access Scheduling in Firm Real-Time Database Systems,” The Journal
of Real-Time Systems, 4, 203-241 (1992).

[12] Huang, J., Stankovic, J.A., Ramamritham, K., Towsley, D., “Experimental Evaluation of Real-Time Optimistic Concur-
rency Control Schemes,” Proc. of the 17th International Conference on Very Large Data Bases, Barcelona, September,
1991.

[13] Huang, J., Stankovic, J.A., Ramamritham, K., Towsley, D., and Purimetla, B., “Priority Inheritance In Soft Real-Time
Databases,” The Journal of Real-Time Systems, 4, pp. 243-268, 1992.

[14] Lam, K.Y., “Concurrency Control in Distributed Real-Time Database Systems,” Ph.D. Dissertation, City University of
Hong Kong, Oct., 1994.

[15] Liu, C., and Layland, J., “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,” Journal
of the ACM, 20(1), 1973.

[16] Purimetla, B., Sivasankaran, R., Stankovic, J.A., and Ramamritham, K., “A Study of Distributed Real-Time Active
Database Applications,” IEEE Workshop on Parallel and Distributed Real-Time Systems, Newport Beach, California,
1993.

[17] Sha, L., Rajkumar, R., and Lehoczky, J.P., “Priority Inheritance Protocols: An Approach to Real-Time Synchroniza-
tion,” In IEEE Transactions on Computers, vol. 39, pp. 1175-1185, Sep. 1990.

[18] Son, S., ”Using Replication for High Performance Database Support in Distributed Real-Time Systems,” Proceedings
of the 8th IEEE Real-Time Systems Symposium, pp. 79-86, 1987.

[19] Son, S., and Kouloumbis, S., “A Real-Time Synchronization Scheme for Replicated Data in Distributed Database
Systems,” Information Systems, 18(6), 1993.

[20] Son, S., and Zhang, F., “Real-Time Replication Control for Distributed Database Systems: Algorithms and Their
Performance,” 4th International Conference on Database Systems for Advanced Applications, Singapore, April, 1995.

[21] Torbjornsen, O., Hvasshovd, S. O., and Kim, Y. K., “Towards Real-Time Performance in a Scalable, Continuously
Available Telecom DBMS,” in Proc. of the First International Workshop on Real-Time Databases, Newport Beach,
CA, April, 1996.

[22] Ulusoy, O., “Processing Real-Time Transactions in a Replicated Database System,” Distributed and Parallel Databases,
2, pp. 405-436, 1994.

[23] Wu, K.L., Yu, P.S. and Pu, C., “Divergence Control for Epsilon-Serializability,” In Proceedings of Eighth International
Conference on Data Engineering, Phoenix, February 1992.

[24] Xiong, M., Sivasankaran, R., Stankovic, J.A., Ramamritham, K. and Towsley, D., “Scheduling Transactions with Tem-
poral Constraints: Exploiting Data Semantics,” Proceedings of the 17th IEEE Real-Time Systems Symposium, pp. 240-
251, Washington, DC, December 1996.

[25] Xiong, M., Ramamritham, K., Haritsa, J., and Stankovic, J., “MIRROR: A State-Conscious Concurrency Control
Protocol in Replicated Real-Time Databases,” Proceedings of the 5th IEEE Real-Time Technology and Applications
Symposium, Vancouver, Canada, June, 1999.

[26] Yoon, Y., “Transaction Scheduling and Commit Processing for Real-Time Distributed Database Systems”, Ph.D. Thesis,
Korea Adv. Inst. of Science and Technology, May 1994.

Recommended by Patrick O’Neil, Area Editor.

27

Appendix: Distributed Validation Using Locks

The validation process can be carried out in either of two ways: backward validation or forward validation [11, 12].

In real-time databases, to provide flexibility for priority based conflict resolution, a transaction should be validated

against active transactions instead of committed ones, i.e., forward validation is preferable.

As in [12], a lock-based implementation strategy for OCC is used – the lock types are read-phase lock (R-lock)

and validation-phase lock (V-lock). An R-lock for a data item is set by a transaction in its read phase while a

V-lock is set by a transaction only in its validation phase. An R-lock is compatible with another R-lock, but an

R-lock is incompatible with a V-lock and a V-lock is incompatible with another V-lock. The pseudo code of the

OCC algorithm which is derived from [12] is given below (critical sections are bracketed by “ � ” and “ � ”):

� Read phase of a cohort/updater of transaction
� �

:

for every data object to be read or written do
�

place it in ReadSet(
���

) or WriteSet(
���

);

� set an R-lock; ���
� Validation phase of a cohort/updater of transaction

� �
:

Valid := TRUE;

� for every data object in WriteSet(
���

) do
�

release
���

’s R-lock on the data object;

if another transaction has R-locked it

then Valid:=FALSE & request a V-lock;

else set a V-lock; �
if not Valid

then invoke real-time conflict resolution; �

If a validating transaction attempts to hold a V-lock on an object currently held by R-lock(s), then a real-time

conflict resolution mechanism from [11] is invoked to determine which lock(s) should prevail. In the centralized

OCC algorithm, R-locks of a transaction can be released when it gets validated. However, in a distributed system

all the R-locks of a cohort/updater must be held until commit time, i.e., when a cohort/updater receives the COM-

MIT message from its parent. Release of R-locks when a cohort/updater gets validated but before the commit time

may result in the violation of serializability. All the V-locks must be held until the write phase is finished.

28

