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AbstractÐWe investigate the performance implications of providing transaction atomicity for firm-deadline real-time applications

operating on distributed data. Using a detailed simulation model, the real-time performance of a representative set of classical

transaction commit protocols is evaluated. The experimental results show that data distribution has a significant influence on real-time

performance and that the choice of commit protocol clearly affects the magnitude of this influence. We also propose and evaluate a

new commit protocol, PROMPT (Permits Reading Of Modified Prepared-data for Timeliness), that is specifically designed for the real-

time domain. PROMPT allows transactions to ªoptimisticallyº borrow, in a controlled manner, the updated data of transactions currently

in their commit phase. This controlled borrowing reduces the data inaccessibility and the priority inversion that is inherent in distributed

real-time commit processing. A simulation-based evaluation shows PROMPT to be highly successful, as compared to the classical

commit protocols, in minimizing the number of missed transaction deadlines. In fact, its performance is close to the best on-line

performance that could be achieved using the optimistic lending approach. Further, it is easy to implement and incorporate in current

database system software. Finally, PROMPT is compared against an alternative priority inheritance-based approach to addressing

priority inversion during commit processing. The results indicate that priority inheritance does not provide tangible performance

benefits.

Index TermsÐDistributed real-time database, commit protocol, two phase commit, three phase commit, priority inheritance,

performance evaluation.
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1 INTRODUCTION

MANY real-time database applications are inherently

distributed in nature [39], [44]. These include the

intelligent network services database described in [10]

and the mobile telecommunication system discussed in

[46]. More recent applications include the multitude of

directory, data-feed, and electronic commerce services

that have become available on the World Wide Web.

However, although real-time research has been underway

for close to a decade now, the focus has been primarily on

centralized database systems. In comparison, distributed

real-time database systems (DRTDBS) have received little

attention, making it difficult for their designers to make

informed choices.
Real-time database systems operating on distributed

data have to contend with the well-known complexities of

supporting transaction ACID semantics in the distributed

environment [3], [35]. While the issue of designing real-time

protocols to ensure distributed transaction serializability has

been considered to some extent (for example, [28], [37], [43],

[45]), very little work has been done with regard to the

equally important issue of ensuring distributed transaction

atomicity. We address this lacuna here.

1.1 Commit Protocols

Distributed database systems implement a transaction
commit protocol to ensure transaction atomicity. Over the
last two decades, a variety of commit protocols have been
proposed (for non-real-time database systems) by database
researchers (see [5], [26], [35] for surveys). These include the
classical Two Phase Commit (2PC) protocol [16], [30], its
variations, such as Presumed Commit (PC) and Presumed
Abort (PA) [29], [34], and Three Phase Commit (3PC) [38]. To
achieve their functionality, these commit protocols typically
require exchange of multiple messages, in multiple phases,
between the participating sites where the distributed
transaction was executed. In addition, several log records
are generated, some of which have to be ªforced,º that is,
flushed to disk immediately in a synchronous manner. Due
to this series of synchronous message and logging costs,
commit processing can significantly increase the execution
times of transactions [29], [12], [40]. This is especially
problematic in the real-time context, since it has a direct
adverse effect on the system's ability to meet transaction
timing constraints. Therefore, the choice of commit protocol is
an important design decision for DRTDBS.

The few papers in the literature that have tried to
address this issue [8], [15], [46] have required either relaxing
the traditional notion of atomicity or strict resource
allocation and resource performance guarantees from the
system. Instead of resorting to such fundamental alterations
of the standard distributed DBMS framework, we take a
different approach in this paperÐwe attempt to design
high-performance real-time commit protocols by incorpor-
ating novel protocol features. The advantage of this approach
is that it lends itself to easy integration with current
application and system software.

Our study is conducted in the context of real-time
applications that impose ªfirm deadlinesº [24] for

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 2, FEBRUARY 2000

. J.R. Haritsa is with the Database Systems Lab, Supercomputer Education
and Research Centre, Indian Institute of Science, Sir C.V. Raman Rd.,
Bangalore 560012, India. E-mail: haritsa@dsl.serc.iisc.ernet.in.

. K. Ramamritham is with the Department of Computer Science, University
of Massachusetts, Amherst, MA 01003, and the Indian Institute of
Technology, Bombay. E-mail: krithi@cs.umass.edu.

. R. Gupta is with Goldencom Technologies, 392 Acoma Way, Fremont, CA
94539. E-mail: ramesh@goldencom.com.

Manuscript received 6 July 1998; revised 22 Dec. 1998; accepted 16 Mar.
1999.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 107109.

1045-9219/00/$10.00 ß 2000 IEEE



transaction completion. For such applications, completing a
transaction after its deadline has expired is of no utility and
may even be harmful. Therefore, transactions that miss their
deadlines are ªkilledº; that is, immediately aborted and
discarded from the system without being executed to
completion. Accordingly, the performance metric is Kill-
Percent, the steady-state percentage of killed transactions.1

1.2 Contributions

For the above real-time context, the main contributions of
this paper are the following:

1. We precisely define the semantics of firm deadlines
in the DRTDBS environment.

2. We investigate the performance implications of
supporting transaction atomicity in a DRTDBS.
Using a detailed simulation model, we profile the
KillPercent performance of a representative set of
classical commit protocols, including 2PC, PA, PC,
and 3PC. To the best of our knowledge, this is the
first quantitative evaluation of these protocols in the
real-time environment.

3. We propose and evaluate a new commit protocol
called PROMPT (Permits Reading Of Modified
Prepared-data for Timeliness), which is designed
specifically for DRTDBS. The main feature of
PROMPT is that it allows transactions to ªoptimis-
ticallyº borrow the updated data of transactions
currently in their commit phase. This borrowing
speeds up transaction execution by reducing the
data inaccessibility and the priority inversion that is,
as explained later, inherent in distributed commit
processing. At the same time, the borrowing is
controlled to ensure that cascading aborts, usually
associated with the use of dirty (i.e., modified and
uncommitted) data, do not occur. PROMPT also
incorporates several other features that cater to the
special characteristics of the real-time environment.
Finally, PROMPT is easy to implement and incorpo-
rate in current systems, and can be integrated, often
synergistically, with many of the optimizations
proposed earlier, including industry standard pro-
tocols such as PC and PA.

1.3 Organization

The remainder of this paper is organized as follows: The
performance framework of our study is outlined in
Section 2. A representative set of commit protocols
designed for traditional (non-real-time) databases and their
drawbacks in DRTDBS environments are described in
Section 3. The semantics of firm deadlines in distributed
database environments are presented in Section 4. Section 5
introduces PROMPT, our new commit protocol designed
specifically for distributed real-time transactions. The
performance model is described in Section 6, and the
results of the simulation experiments, which compare
PROMPT with the traditional commit protocols, are high-
lighted in Section 7. A few options in PROMPT's design are
explored in Section 8. An alternative priority inheritance-
based approach for reducing the effect of priority inversion

during commit processing is presented and evaluated

against PROMPT in Section 9. Related work on real-time

commit protocols is reviewed in Section 10. Finally, in

Section 11, we present the conclusions of our study.

2 PERFORMANCE FRAMEWORK

From a performance perspective, commit protocols can be

compared with respect to the following issues:

1. Effect on Normal Processing. This refers to the
extent to which the commit protocol affects the
normal (no-failure) distributed transaction proces-
sing performance. That is, how expensive is it to
provide atomicity using this protocol?

2. Resilience to Failures. When a failure occurs in a
distributed system, ideally, transaction processing in
the rest of the system should not be affected during
the recovery of the failed component. With most
commit protocols, however, failures can lead to
transaction processing grinding to a halt (as ex-
plained in Section 3.4), and they are therefore termed
as ªblocking protocols.º

To ensure that such major disruptions do not

occur, efforts have been made to design ªnonblock-

ing commit protocols.º These protocols, in the event

of a site failure, permit transactions that had cohorts

executing at the failed site to terminate at the

operational sites without waiting for the failed site

to recover [35], [38].2 To achieve their functionality,

however, they usually incur additional messages and

forced-log-writes than their blocking counterparts.
In general, ªtwo-phaseº commit protocols are

susceptible to blocking, whereas ªthree-phaseº

commit protocols are nonblocking.
3. Speed of Recovery. This refers to the time required

for the database to be recovered to a consistent state
when the failed site comes back up after a crash.
That is, how long does it take before transaction
processing can commence again in a recovering site?

Of the three issues highlighted above, the design

emphasis of most commit protocols has been on the first

two (effect on normal processing and resilience to failures)

since they directly affect ongoing transaction processing. In

comparison, the last issue (speed of recovery) appears less

critical for two reasons: First, failure durations are usually

orders of magnitude larger than recovery times. Second,

failures are usually rare enough that we do not expect to see

a difference in average performance among the protocols

because of one commit protocol having a faster recovery

time than the other. Based on this viewpoint, our focus here

also is on the mechanisms required during normal (no-

failure) operation to provide for recoverability and resi-

lience to failures, and not on the post-failure recovery process.
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1. Or, equivalently, the percentage of missed deadlines.

2. It is impossible to design commit protocols that are completely
nonblocking to both site and link failures [3]. However, the number of
simultaneous failures that can be tolerated before blocking arises depends
on the protocol design.



3 TRADITIONAL DISTRIBUTED COMMIT PROTOCOLS

We adopt the common ªsubtransaction modelº [6] of
distributed transaction execution in our study. In this
model, there is one process, called the master, which is
executed at the site where the transaction is submitted, and
a set of other processes, called cohorts, which execute on
behalf of the transaction at the various sites that are
accessed by the transaction.3 Cohorts are created by the
master sending a STARTWORK message to the local
transaction manager at that site. This message includes
the work to be done at that site and is passed on to the
cohort. Each cohort sends a workdone message to the master
after it has completed its assigned data processing work,
and the master initiates the commit protocol (only) after it
has received this message from all its cohorts.

For the above transaction execution model, a variety of
commit protocols have been devised, most of which
are based on the classical 2PC protocol [16]. In our study,
we focus on the 2PC, PA, PC, and 3PC protocols since
these protocols are well-established and have received
the most attention in the literature. We briefly describe
these protocols in the remainder of this sectionÐcomplete
descriptions are available in [34], [12], [38]. For ease of
exposition, the following notations are used in the sequelÐ
ªSMALL CAPS FONTº for messages, ªtypewriter fontº
for log records, and ªsans serif fontº for transaction states.

3.1 Two Phase Commit Protocol

The two-phase commit (2PC) protocol, as suggested by its
name, operates in two phases: In the first phase, called the
ªvoting phase,º the master reaches a global decision
(commit or abort) based on the local decisions of the
cohorts. In the second phase, called the ªdecision phase,º
the master conveys this decision to the cohorts. For its
successful execution, the protocol assumes that each cohort
of a transaction is able to provisionally perform the actions of
the transaction in such a way that they can be undone if the
transaction is eventually aborted. This is usually imple-
mented by using logging mechanisms such as write-ahead-
logging (WAL) [16], which maintain sequential histories of
transaction actions in stable storage. The protocol also
assumes that, if necessary, log records can be force-written,
that is, written synchronously to stable storage.

After receiving the WORKDONE message from all the
cohorts participating in the distributed execution of the
transaction, the master initiates the first phase of the
commit protocol by sending PREPARE (to commit) messages
in parallel to all its cohorts. Each cohort that is ready to
commit first force-writes a prepare log record to its local
stable storage and then sends a YES vote to the master. At
this stage, the cohort has entered a prepared state wherein it
cannot unilaterally commit or abort the transaction but has
to wait for the final decision from the master. On the other
hand, each cohort that decides to abort force-writes an
abort log record and sends a NO vote to the master. Since a
NO vote acts like a veto, the cohort is permitted to

unilaterally abort the transaction without waiting for the
decision from the master.

After the master receives votes from all its cohorts, the
second phase of the protocol is initiated. If all the votes are
YES, the master moves to a committing state by force-writing
a commit log record and sending COMMIT messages to all
its cohorts. Each cohort, upon receiving the COMMIT

message, moves to the committing state, force-writes a
commit log record, and sends an ACK message to the
master.

On the other hand, if the master receives even one NO

vote, it moves to the aborting state by force-writing an
abort log record and sends ABORT messages to those
cohorts that are in the prepared state. These cohorts, after
receiving the ABORT message, move to the aborting state,
force-write an abort log record and send an ACK message
to the master.

Finally, the master, after receiving ACKs from all the
prepared cohorts, writes an end log record and then
ªforgetsº the transaction (by removing from virtual
memory all information associated with the transaction).

3.2 Presumed Abort

As described above, the 2PC protocol requires transmission
of several messages and writing or force-writing of several
log records. A variant of the 2PC protocol, called presumed

abort (PA) [34], tries to reduce these message and logging
overheads by requiring all participants to follow, during
failure recovery, an ªin the no-information case, abortº rule.
That is, if after coming up from a failure a site queries the
master about the final outcome of a transaction and finds no
information available with the master, the transaction is
(correctly) assumed to have been aborted. With this
assumption, it is not necessary for cohorts to send ACK

for ABORT messages from the master, or to force-write the
abort record to the log. It is also not necessary for an
aborting master to force-write the abort log record or to
write an end log record.

In short, the PA protocol behaves identically to 2PC for
committing transactions, but has reduced message and
logging overheads for aborted transactions.

3.3 Presumed Commit

Another variant of 2PC, called presumed commit (PC) [34],
is based on the observation that, in general, the number of
committed transactions is much more than the number of
aborted transactions. In PC, the overheads are reduced for
committing transactions, rather than aborted transactions, by
requiring all participants to follow, during failure recovery,
an ªin the no-information case, commitº rule. In this
scheme, cohorts do not send ACKs for a commit decision
sent from the master, and also do not force-write the
commit log record. In addition, the master does not write
an end log record. On the down side, however, the master
is required to force-write a collecting log record before
initiating the two-phase protocol. This log record contains
the names of all the cohorts involved in executing that
transaction.

The above optimizations of 2PC have been implemented
in a number of database products and standards [12].
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3. In the most general case, each of the cohorts may itself spawn off
subtransactions at other sites, leading to the ªtree of processesº transaction
structure of System R� [9Ðfor simplicity, we only consider a two-level tree
here.



3.4 Three Phase Commit

A fundamental problem with all of the above protocols
is that cohorts may become blocked in the event of a site
failure and remain blocked until the failed site recovers.
For example, if the master fails after initiating the proto±
col but before conveying the decision to its cohorts, these
cohorts will become blocked and remain so until the
master recovers and informs them of the final decision.
During the blocked period, the cohorts may continue to
hold system resources such as locks on data items, making
these unavailable to other transactions. These trans±
actions, in turn, become blocked waiting for the resources
to be relinquished, resulting in ªcascading blocking.º So, if
the duration of the blocked period is significant, the
outcome could be a major disruption of transaction
processing activity.

To address the blocking problem, a three phase commit

(3PC) protocol was proposed in [38]. This protocol achieves
a nonblocking capability by inserting an extra phase, called

the ªprecommit phase,º in between the two phases of the

2PC protocol. In the precommit phase, a preliminary

decision is reached regarding the fate of the transaction.

The information made available to the participating sites as

a result of this preliminary decision allows a global decision
to be made despite a subsequent failure of the master site.

Note, however, that the price of gaining nonblocking

functionality is an increase in the communication and

logging overheads since: 1) There is an extra round of

message exchange between the master and the cohorts, and

2) both the master and the cohorts have to force-write
additional log records in the precommit phase.

3.5 Master and Cohort Execution Phases

As described above, commit protocols typically operate in
two or three phases. For ease of exposition, we will

similarly divide the overall execution of masters (which

represent the entire transaction), and of individual cohorts,

into phases.
A master's execution is composed of two phases: the

ªdata phaseº and the ªcommit phase.º The data phase

begins with the sending of the first STARTWORK message
and ends when all the WORKDONE messages have been

received, that is, it captures the data processing period. The

commit phase begins with the sending of the PREPARE

messages and ends when the transaction is forgotten; that

is, it captures the commit processing period.
A cohort's execution is composed of three phases: the

ªdata phase,º the ªcommit phase,º and the ªwait phase.º In

the data phase the cohort carries out its locally assigned

data processingÐit begins with the receipt of the START-

WORK message from the master and ends with the sending

of the WORKDONE message to the master. The commit

phase begins with the cohort receiving the PREPARE

message and ends with the last commit-related action taken

by the cohort (this is a function of the commit protocol in

use). The wait phase denotes the time period in between the

data phase and the commit phase, that is, the time period

between sending the WORKDONE message and receiving

the PREPARE message.

3.6 Inadequacies in the DRTDBS Environment

The commit protocols described in this section were

designed for traditional database systems where transaction

throughput or average response time is usually the primary

performance metric. With respect to meeting (firm) real-

time objectives, however, they fail on two related counts:

First, by making prepared data inaccessible, they increase

transaction blocking times and therefore have an adverse

impact on the number of killed transactions. Second,

prioritized scheduling policies are typically used in RTDBS

to minimize the number of killed transactions. These

commit protocols, however, do not take transaction

priorities into account. This may result in high priority

transactions being blocked by low priority transactions, a

phenomenon known as priority inversion in the real-time

literature [36]. Priority inversion can cause the affected

high-priority transactions to miss their deadlines and is

clearly undesirable.
Priority inversion is usually prevented by resolving all

conflicts in favor of transactions with higher priorities. At

the CPU, for example, a scheduling policy such as Priority

Preemptive Resume ensures the absence of priority inver-

sion. Removing priority inversion in the commit protocol,

however, is not fully feasible. This is because, once a cohort

reaches the prepared state, it has to retain all its update data

locks until it receives the global decision from the

masterÐthis retention is fundamentally necessary to main-

tain atomicity. Therefore, if a high priority transaction

requests access to a data item that is locked by a ªprepared

cohortº of lower priority, it is not possible to forcibly obtain

access by preempting the low priority cohort. In this sense,

the commit phase in a DRTDBS is inherently susceptible to

priority inversion. More importantly, the priority inversion is

not bounded since the time duration that a cohort is in the

prepared state can be arbitrarily long (for example, due to

network delays). If the inversion period is large, it may have

a significantly negative effect on performance.
It is important to note that this ªprepared data blockingº

is distinct from the ªdecision blockingº (because of failures)

that was discussed in Section 3.4. That is, in all the commit

protocols, including 3PC, transactions can be affected by

prepared data blocking. In fact, 3PC's strategy for removing

decision blocking increases the duration of prepared data

blocking. Moreover, such data blocking occurs during

normal processing, whereas decision blocking only occurs

during failure situations.
To address the above-mentioned drawbacks (prepared

data inaccessibility and priority inversion) of the classical

commit protocols, we have designed a new commit

protocol called PROMPT. The PROMPT design is based

on a specific semantics of firm deadlines in DRTDBS,

defined in the following sectionÐthe description of

PROMPT itself is deferred to Section 5.

4 FIRM DEADLINE SEMANTICS IN DRTDBS

The semantics of firm deadlines is that a transaction should

be either committed before its deadline or be killed when
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the deadline expires. To implement this notion in a

distributed RTDBS, ideally the master and all the cohorts of

a successfully executed transaction should commit the

transaction before the deadline expires or they should

abort immediately upon deadline expiry. In practice,

however, it is impossible to provide such guarantees

because of the arbitrary message delays and the possibility

of failures [8]. To avoid inconsistencies in such cases, we

define the firm deadline semantics in the distributed

environment as follows:

Definition. A distributed firm-deadline real-time transaction
is said to be committed if the master has reached the
commit decision (that is, forced the commit log record to
the disk) before the expiry of the deadline at its site. This
definition applies irrespective of whether the cohorts have also
received and recorded the commit decision by the deadline.

To ensure transaction atomicity with the above definition,

we require prepared cohorts that receive the final decision

after the local expiry of the deadline to still implement this

decision. Note that this is consistent with the intuitive

notion of firm deadlines, since all that happens is that access

to prepared data is prevented even beyond the deadline

until the decision is received by the cohort; other transac-

tions which would normally expect the data to be released

by the deadline only experience a delay. We expect that

many real-time database applications, especially those

related to electronic commerce (e.g., electronic auctions),

will subscribe to these semantics.

Typically, the master is responsible for returning the

results of a transaction to the invoker of the transaction.

From the above discussion, it is clear that the semantics

we prescribe are such that, if a transaction commits, its

results will begin to be output before the deadline. Further,

the problem of delayed access to data, even after the expiry

of the deadline of the cohort holding these data items,

applies primarily to the classical protocolsÐthe effect is

considerably reduced with PROMPT, as discussed in the

following section.

5 THE PROMPT REAL-TIME COMMIT PROTOCOL

The main feature of our new PROMPT commit protocol is

that transactions requesting data items held by other

transactions in the prepared state are allowed to access this

data.4 That is, prepared cohorts lend their uncommitted data

to concurrently executing transactions (without, of course,

releasing the update locks). The mechanics of the interac-

tions between such ªlendersº and their associated ªbor-

rowersº are captured in the following three scenarios, only

one of which will occur for each lending:

1. Lender Receives Decision Before Borrower Com-
pletes Data Processing. Here, the lending cohort

receives its global decision before the borrowing
cohort has completed its local data processing. If the
global decision is to commit, the lending cohort
completes in the normal fashion. On the other hand,
if the global decision is to abort, the lender is aborted
in the normal fashion. In addition, the borrower is
also aborted since it has utilized dirty data.

2. Borrower Completes Data Processing Before Len-
der Receives Decision. Here, the borrowing cohort
completes its local data processing before the
lending cohort has received its global decision. The
borrower is now ªput on the shelf,º that is, it is made
to wait and not allowed to send a WORKDONE

message to its master. This means that the borrower
is not allowed to initiate the (commit-related)
processing that could eventually lead to its reaching
the prepared state. Instead, it has to wait until either
the lender receives its global decision or its own
deadline expires, whichever occurs earlier. In the
former case, if the lender commits, the borrower is
ªtaken off the shelfº (if it has no other ªpendingº
lenders) and allowed to send its WORKDONE

message, whereas if the lender aborts, the borrower
is also aborted immediately, since it has utilized
dirty data (as in Scenario 1 above). In the latter case
(deadline expiry), the borrower is killed in the
normal manner.

3. Borrower Aborts During Data Processing Before
Lender Receives Decision. Here, the borrowing
cohort aborts in the course of its data processing
(due to either a local problem, deadline expiry, or
receipt of an ABORT message from its master) before
the lending cohort has received its global decision. In
this situation, the borrower's updates are undone
and the lending is nullified.

In summary, the PROMPT protocol allows transactions to

access uncommitted data held by prepared transactions in

the ªoptimisticº belief that this data will eventually be

committed.5 It uses this approach to mitigate the effects of

both the data inaccessibility and the priority inversion

problems that were identified earlier for traditional commit

protocols (Section 3.6).
We wish to clarify here that while the PROMPT design

may superficially appear similar to that of optimistic
concurrency control [27], it is actually quite different, since
updates are made in-place and not to copies or versions of
the data; also, data is lent only by transactions that have
completed their data processing.

5.1 Additional Real-Time Features of PROMPT

To further improve its real-time performance, three addi-
tional features are included in the PROMPT protocol:
Active Abort, Silent Kill, and Healthy Lending. These
features are described below.

5.1.1 Active Abort

In the basic 2PC protocol, cohorts are ªpassiveº in that they
inform the master of their status only upon explicit request
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5. A similar, but unrelated, strategy of allowing access to uncommitted
data has also been used to improve real-time.



by the master. This is acceptable in conventional distributed
DBMS since, after a cohort has completed its data phase,
there is no possibility of the cohort subsequently being
aborted due to serializability considerations (assuming a
locking-based concurrency control mechanism).

In a DRTDBS, however, a cohort which is not yet
in its commit phase can be aborted due to conflicts with
higher priority transactions. Therefore, it may be better
for an aborting cohort to immediately inform the master so
that the abort of the transaction at the sibling sites can be
done earlier. Early restarts are beneficial in two ways: First,
they provide more time for the restarted transaction to
complete before its deadline. Second, they minimize the
wastage of both logical and physical system resources.
Accordingly, cohorts in PROMPT follow an ªactive abortº
policyÐthey inform the master as soon as they decide to
abort locally; the subsequent abort process implemented by
the master is the same as that followed in the traditional
passive environment.

5.1.2 Silent Kill

For a transaction that is killed before the master enters its
commit phase, there is no need for the master to invoke the
abort protocol, since the cohorts of the transaction can
independently realize the missing of the deadline (assuming
global clock synchronization).6 Eliminating this round of
messages may help to save system resources. Therefore, in
PROMPT, aborts due to deadline misses that occur before
the master has initiated the commit protocol are imple-
mented ªsilentlyº without requiring any communication
between the master and the cohort.

5.1.3 Healthy Lending

A committing transaction that is close to its deadline may be
killed due to deadline expiry before its commit processing
is finshed. Lendings by such transactions must be avoided,
since they are likely to result in the aborts of all the
associated borrowers. To address this issue, we have added
a feature to PROMPT whereby only ªhealthyº transactions,
that is, transactions whose deadlines are not very close, are
allowed to lend their prepared data. This is realized in the
following manner: A health factor, HFT , is associated with
each transaction T and a transaction is allowed to lend its
data only if its health factor is greater than a (system-
specified) minimum value MinHF . The health factor is
computed at the point of time when the master is ready to
send the PREPARE messages and is defined to be the ratio
TimeLeft / MinTime, where TimeLeft is the time left until the
transaction's deadline, and MinTime is the minimum time
required for commit processing (recall that a minimum of
two messages and one force-write need to be processed
before the master can take a decision).

The success of the above scheme is directly dependent on
the threshold health factor MinHFÐset too conservatively
(large values), it will turn off the borrowing feature to a
large extent, thus effectively reducing PROMPT to standard
2PC; on the other hand, set too aggressively (small values),

it will fail to stop several lenders that will eventually abort.
In our experiments, we consider a range of values for
MinHF to determine the best choices.

An important point to note here is that the health factor
is not used to decide the fate of the transaction, but merely
to decide whether the transaction can lend its data. Thus,
erroneous estimates about the message processing times
and log force-write times only affect the extent to which the
optimistic feature of PROMPT is used, as explained above.

5.2 Aborts in PROMPT Do Not Arbitrarily Cascade

An important point to note here is that PROMPT's policy of
using uncommitted data is generally not recommended in
traditional database systems, since this can potentially lead
to the well-known problem of cascading aborts [3] if the
transaction whose dirty data has been accessed is later
aborted. However, for the PROMPT protocol, this problem
is alleviated due to the following two reasons:

First, the lending transaction is typically expected to commit
because: 1) The lending cohort is in the prepared state and
cannot be aborted due to local data conflicts, and 2) The
sibling cohorts are also expected to eventually vote to
commit, since they have survived7 all their data conflicts
that occurred prior to the initiation of the commit protocol
(given our Active Abort policy).

The only situation where a lending cohort will finally
abort is if 1) the deadline expires at the master's node before
the master reaches a decision, or 2) a sibling cohort votes
NO. The latter case can happen only if the ABORT message
sent by the sibling cohort and the PREPARE message sent by
the master to the sibling cohort ªcross each otherº on the
network. As the time during which a message is in transit is
usually small compared to the transaction execution times,
these situations are unlikely to occur frequently. Hence, a
lending transaction is typically expected to commit.8

Second, even if the lending transaction does eventually
abort, it only results in the abort of the immediate borrower
and does not cascade beyond this point (since the borrower
is not in the prepared state, the only situation in which
uncommitted data can be accessed). That is, a borrower
cannot simultaneously be a lender. Therefore, the abort chain
is bounded and is of length one. Of course, if an aborting
lender has lent to multiple borrowers, then all of them
will be aborted, but the length of each abort chain is
limited to one. In short, PROMPT implements a controlled

lending policy.

5.3 System Integration

We now comment on the implementation issues that arise
with regard to incorporating the PROMPT protocol in a
DRTDBS. The important point to note here is that the
required modifications are local to each site and do not
require intersite communication or coordination.
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6. Our firm deadline semantics ensure that skew in clock synchroniza-
tion, if any, only affects performance, but not atomicity. Further, for minor
skews, the performance impact is expected to be marginal.

7. We assume a locking-based concurrency control mechanism.
8. Of course, aborts could also occur after receiving the prepare message

due to non-concurrency-related issues such as, for example, violation of
integrity constraints. Although not described here, our experiments have
shown that unless the frequency of such ªsurprise abortsº is unrealistically
high (more than 20 percent), the improvement offered by PROMPT
continues to be significant.



. For a borrower cohort that finishes its data proces-
sing before its lenders have received their commit/
abort decisions from their masters, the local transac-
tion manager must not send the WORKDONE message
until the fate of all its lenders is determined.

. When a lender is aborted and consequently its
borrowers are also aborted, the local transaction
manager should ensure that the actions of the
borrowers are undone first and only then are the
updates of the associated lender undoneÐthat is, the
recovery manager should be invoked in a ªbor-
rowers first, lender nextº sequence.

Note that in the event of a system crash, the log
records will naturally be processed in the above
order, since the log records of lenders will always
precede those of the borrowers in the sequential log
and the log is always scanned backwards during
undo processing.

. The local lock manager must be modified to permit
borrowing of data held by prepared cohorts. The
lock mode used by the borrowing cohort should
become the current lock mode of the borrowed data
item as far as other executing transactions are
concerned.

. The local lock manager must keep track of the lender-
borrower relationships. This information will be
needed to handle all possible outcomes of the
relationship (for example, if the lender aborts, the
associated borrowers must be immediately identi-
fied and also aborted), and can be easily maintained
using hash tables.

The above modifications do not appear difficult to
incorporate in current database system software. In fact,
some of them are already provided in current DBMSÐfor
example, the high-performance industrial-strength ARIES
recovery system [11] implements operation logging to
support semantically rich lock modes that permit updating
of uncommitted data. Moreover, as shown later in our
experiments, the performance benefits that can be derived
from these changes more than compensate for the small
amount of run-time overheads entailed by the above
modifications and the effort needed to implement them.

5.4 Integrating PROMPT with Other 2PC
Optimizations

A particularly attractive feature of PROMPT is that it can be
integrated with many of the other optimizations suggested
for 2PC. For example, Presumed Commit and Presumed
Abort (Section 3) can be directly added as a useful
supplement to reduce processing overheads. Moreover,
the integration may often be synergistic in that PROMPT
may retain the good features of the added optimization and
simultaneously minimize its drawbacks. This is the case, for
example, when PROMPT is combined with 3PC: In its
attempt to prevent decision blocking, 3PC suffers an increase
in the prepared data blocking period, but this drawback is
reduced by PROMPT's lending feature. The performance
improvement that could be obtained from such integrations
is evaluated in our experiments (Section 7).

Among additional optimizations [12], PROMPT can be
integrated in a straightforward manner with Read-Only (one

phase commit for read-only transactions), Long Locks

(cohorts piggyback their commit acknowledgments onto

subsequent messages to reduce network traffic), and Shared

Logs (cohorts that execute at the same site as their master

share the same log and therefore do not need to force-write

their log records). Further, PROMPT is especially attractive

to integrate with protocols such as Group Commit [12]

(forced writes are batched together to save on disk I/O) and

linear 2PC [16] (message overheads are reduced by ordering

the sites in a linear chain for communication purposes). This

is because these optimizations extend, like 3PC, the period

during which data is held in the prepared state, thereby

allowing PROMPT to play a greater role in improving

system performance.
Finally, we do not consider here optimizations such as

Unsolicited Vote [42], wherein cohorts enter the prepared

state at the time of sending the WORKDONE message

itself, effectively resulting in ªone-phaseº protocols.9 While

these protocols reduce the overheads of commit processing

due to eliminating an entire phase, they also result in

substantially increased priority inversion durations (recall

that cohorts in the prepared state cannot be aborted due to

conflicts with higher priority transactions). We plan to

assess the real-time capabilities of these protocols in our

future work.

6 SIMULATION MODEL, METRICS, AND BASELINES

To evaluate the performance of the various commit

protocols described in the previous sections, we developed

a detailed simulation model of a DRTDBS. Our model is

based on a loose combination of the distributed database

model presented in [6] and the real-time processing model

of [24].
The model consists of a (nonreplicated) database that is

distributed over a set of sites connected by a network. Each

site has six components: a source which generates transac-

tions; a transaction manager which models the execution

behavior of the transaction; a concurrency control manager}

which implements the concurrency control algorithm; a

resource manager which models the physical resources; a

recovery manager which implements the details of commit

protocols; and a sink which collects statistics on the

completed transactions. The behavior of the communication

network is modeled by a network manager component.
The following subsections describe the database model,

the workload generation process, and the hardware

resource configuration. Subsequently, we describe the

execution pattern of a typical transaction and the policies

adopted for concurrency control and recovery. A summary

of the parameters used in the model is given in Table 1.

6.1 Database Model

The database is modeled as a collection of DBSize pages

that are uniformly distributed across all the NumSites sites.

Transactions make requests for data pages and concurrency

control is implemented at the page level.
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9. A detailed survey of such protocols is available in [7].



6.2 Workload Model

At each site, transactions arrive in an independent Poisson
stream with rate ArrivalRate, and each transaction has an
associated firm deadline. All transactions have the ªsingle
masterÐmultiple cohortº structure described in Section 3.
Transactions in a distributed system can execute in either
sequential or parallel fashion. The distinction is that the data
phases of cohorts in a sequential transaction occur one after
another, whereas for cohorts in a parallel transaction the
data phases occur concurrently. We consider both types of
transactions in our studyÐthe parameter TransType
specifies whether the transaction execution is sequential
or parallel.

The number of sites at which each transaction executes is
specified by the DistDegree parameter. The master and one
cohort reside at the site where the transaction is submitted,
whereas the remaining DistDegreeÿ 1 cohorts are set up at
different sites chosen at random from the remaining
NumSitesÿ 1 sites. At each of the execution sites, the
number of pages accessed by the transaction's cohort varies
uniformly between 0.5 and 1.5 times CohortSize. These
pages are chosen uniformly (without replacement) from
among the database pages located at that site. A page that is
read is updated with probability UpdateProb.10 A transac-
tion that is aborted due to a data conflict is immediately
restarted and makes the same data accesses as its original
incarnation.

6.3 Deadline Assignment

Upon arrival, each transaction T is assigned a deadline
using the formula DT � AT � SF �RT , where DT , AT , and
RT are its deadline, arrival time, and resource time,
respectively, while SF is a slack factor. The resource time
is the total service time at the resources that the transaction
requires for its execution. The SlackFactor parameter is a
constant that provides control over the tightness/slackness
of transaction deadlines.

There are two issues related to the resource time
computation: First, since the resource time is a function of

the number of messages and the number of forced-writes,
which differ from one commit protocol to another, we
compute the resource time assuming execution in a
centralized system. Second, while the workload generator
utilizes information about transaction resource require-
ments in assigning deadlines, the RTDBS system itself has
no access to such information, since this knowledge is
usually hard to come by in practical environments.

6.4 System Model

The physical resources at each site consist of NumCPUs
processors, NumDataDisks data disks and NumLogDisks
log disks. The data disks store the data pages while the log
disks store the transaction log records. There is a single
common queue for the processors and the service discipline
is Preemptive Resume, with preemptions based on transac-
tion priorities. Each of the disks has its own queue and is
scheduled according to a Head-Of-Line (HOL) policy, with
the request queue ordered by transaction priority. The
PageCPU and PageDisk parameters capture the CPU and
disk processing times per data page, respectively. When a
transaction makes a request for accessing a data page, the
data page may be found in the buffer pool, or it may have to
be accessed from the disk. The BufHit parameter gives the
probability of finding a requested page already resident in
the buffer pool.

The communication network is simply modeled as a
switch that routes messages since we assume a local area
network that has high bandwidth. However, the CPU
overheads of message transfer, given by the MsgCPU
parameter, are taken into account at both the sending and
the receiving sites. In our simulations, all requests for the
CPU, whether for message processing or data processing,
are served in priority order.

Finally, specifically for the PROMPT protocol, the
minimum health factor value is determined by the
MinHF parameter.

6.5 Transaction Execution

When a transaction is initiated, it is assigned the set of sites
where it has to execute and the data pages that it has to
access at each of these sites. The master is then started up at
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TABLE 1
Simulation Model Parameters

10. A page write operation is always preceded by a read for the same
page; that is, there are no ªblind writesº [3].



the originating site, which in turn forks off a local cohort
and sends messages to initiate each of its cohorts at the
remote participating sites.

Based on the transaction type, the cohorts execute either
in parallel or in sequence. Each cohort makes a series of
read and update accesses. A read access involves a
concurrency control request to obtain access, followed by
a disk I/O to read the page if not already in the buffer pool,
followed by a period of CPU usage for processing the page.
Update requests are handled similarly, except for their disk
I/OÐthe writing of the data pages takes place asynchro-
nously after the transaction has committed.11 We assume
sufficient buffer space to allow the retention of data updates
until commit time.

If the transaction's deadline expires at any time during
its data processing, it is immediately killed. Otherwise, the
commit protocol is initiated when the transaction has
completed its data processing. If the transaction's deadline
expires before the master has written the global decision log
record, the transaction is killed (as per the firm deadline
semantics defined in Section 4). On the other hand, if the
master writes the commit decision log record before the
expiry of the deadline at its site, the transaction is
eventually committed at all of its execution sites.

6.6 Priority Assignment

For simplicity, we assume here that all transactions have the
same ªcriticalityº or ªvalueº [41].12 Therefore, the goal of
the priority assignment is to minimize the number of killed
transactions. In our model, all cohorts inherit their parent
transaction's priority. Further, this priority, which is
assigned at arrival time, is maintained throughout the
course of the transaction's existence in the system, includ-
ing the commit processing stage, if any. Messages also
retain their sending transaction's priority.

The only exception to the above priority rule is in the PIC
commit protocol, described in Section 9. In this protocol, a
low priority transaction that blocks a high priority transac-
tion inherits the priority of the high priority transaction.

The transaction priority assignment used in all of the
experiments described here is the widely used Earliest
Deadline First (EDF) policy [32], wherein transactions with
earlier deadlines have higher priority than transactions with
later deadlines.

6.7 Concurrency Control

For transaction concurrency control, we use an extended
version of the centralized 2PL High Priority (2PL-HP)
protocol proposed in [1].13 The basic 2PL-HP protocol,
which is based on the classical strict two-phase locking
protocol (2PL) [14], operates as follows: When a cohort
requests a lock on a data item that is held by one or more
higher priority cohorts in a conflicting lock mode, the

requesting cohort waits for the item to be released (the wait
queue for a data item is managed in priority order). On the
other hand, if the data item is held by only lower priority
cohorts in a conflicting lock mode, the lower priority
cohorts are aborted and the requesting cohort is granted the
desired lock. Note that if priorities are assigned uniquely (as
is usually the case in RTDBS), 2PL-HP is inherently
deadlock-free. Finally, a new reader can join a group of
lock-holding readers only if its priority is higher than that of
all the writers waiting for the lock.

The extensions that we have made to the above basic
protocol for our distributed real-time environment are the
following: First, on receipt of the PREPARE message from
the master, a cohort releases all its read locks but retains its
update locks until it receives and implements the global
decision from the master. Second, a cohort that is in the
prepared state cannot be aborted, irrespective of its priority.
Third, in the PROMPT-based commit protocols, cohorts in
the data phase are allowed optimistic access to data held by
conflicting prepared cohorts.

6.8 Logging

With regard to logging costs, we explicitly model only forced
log writes, since they are done synchronously and suspend
transaction operation until their completion. The cost of
each forced log write is the same as the cost of writing a
data page to the disk. The overheads of flushing the
transaction log records related to data processing (i.e., WAL
[16]), however, are not modeled. This is because these
records are generated during the cohort's data phase and
are therefore independent of the choice of commit protocol.
We therefore do not expect their processing to affect the
relative performance behavior of the commit protocols
evaluated in our study.

6.9 Default Parameter Settings

The default settings used in our experiments for the
workload and system parameters are listed in Table 1.
They were chosen to be in accordance with those used in
earlier studies (e.g. [6], [24]). While the absolute perfor-
mance profiles of the commit protocols would, of course,
change if alternative parameter settings are used, we expect
that the relative performance of these protocols will remain
qualitatively similar, since the model parameters are not
protocol-specific. Further, these settings ensure significant
levels of both resource contention (RC) and data contention
(DC) in the system, thus helping to bring out the
performance differences between the various commit
protocols.14

6.10 Performance Metric

The performance metric in all of our experiments is
KillPercent, which is the steady-state percentage of input
transactions that are killed, i.e., the percentage of input
transactions that the system is unable to complete before
their deadlines.15 KillPercent values in the range of zero to
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11. Update-locks are acquired when a data page intended for modifica-
tion is first read, i.e., lock upgrades are not modeled.

12. For applications with transactions of varying criticalities, the value-
cognizant priority assignment mechanisms proposed in the literature (e.g.,
[25]) can be utilized.

13. The problem of inaccessibility to prepared data does not arise with
optimistic CC protocols since they permit unrestricted reads. However,
open problems remain with respect to integrating optimistic schemes in
practical systems [23], [33].

14. The contention levels are assessed by measuring the CPU and disk
utilizations and the data conflict frequencies.

15. Only statistically significant differences are discussed here. All the
KillPercent values shown have relative half-widths about the mean of less
than 10 percent at the 90 percent confidence levelÐafter elimination of the
initial transient, each experiment was run until at least 20,000 transactions
were processed by the system.



20 percent are taken to represent system performance under
ªnormalº loads, while values beyond this represent
ªheavyº load performance.16 A long-term operating region
where the KillPercent value is high is obviously unrealistic
for a viable DRTDBS. Exercising the system to high
KillPercent levels, however, provides information on the
response of the algorithms to brief periods of stress loading.

The simulator was instrumented to generate several
other statistics, including resource utilizations, number of
transaction restarts, number of messages and force-writes,
etc. These secondary measures help to explain the Kill-
Percent behavior of the commit protocols under various
workloads and system conditions. For the PROMPT
protocol, specifically, we also measure its borrow factor, that
is, the average number of data items (pages) borrowed per
transaction, and the success ratio, that is, the fraction of times
that a borrowing was successful in that the lender
committed after loaning the data.

6.11 Baseline Protocols

To help isolate and understand the effects of distribution
and atomicity on KillPercent performance, and to serve as a
basis for comparison, we have also simulated the perfor-
mance for two additional scenarios: CENT and DPCC,
below described.

In CENT (Centralized), a centralized database system that
is equivalent (in terms of overall database size and number
of physical resources) to the distributed database system is
modeled. Messages are obviously not required here and
commit processing only requires writing a single decision
log record (force-write if the decision is to commit).
Modeling this scenario helps to isolate the overall effect of
distribution on KillPercent performance.

In DPCC (Distributed Processing, Centralized Commit),
data processing is executed in the normal distributed
fashion, that is, involving messages. The commit processing,
however, is like that of a centralized system, requiring only
the writing of the decision log record at the master. While
this system is clearly artificial, modeling it helps to isolate
the effect of distributed commit processing on KillPercent
performance (as opposed to CENT, which eliminates the
entire effect of distributed processing).

7 EXPERIMENTS AND RESULTS

Using the firm-deadline DRTDBS model described in the
previous section, we conducted an extensive set of simula-
tion experiments comparing the real-time performance of
the 2PC, PA, PC, 3PC, and PROMPT commit protocols. In
this section, we present the results of a representative set of
experiments (the complete set is available in [18]).

7.1 Experiment 1: Resource and Data Contention

Our first experiment was conducted using the default
settings for all model parameters (Table 1), resulting in
significant levels of both resource contention (RC) and data
contention (DC). Here, each transaction executes in a
sequential fashion at three sites, accessing and updating an

average of six pages at each site. Each site has two CPUs,
three data disks and one log disk. For this environment,
Figs. 1a and 1b show the KillPercent behavior under normal
load and heavy load conditions, respectively. In these
graphs, we first observe that there is considerable difference
between centralized performance (CENT) and the perfor-
mance of the standard commit protocols throughout
the loading range. For example, at a transaction arrival
rate of two per second at each site, the centralized system
misses less than five percent of the deadlines whereas 2PC
and 3PC miss in excess of 25 percent. This difference
highlights the extent to which a conventional implementa-
tion of distributed commit processing can affect the real-
time performance.

Moving on to the relative performance of 2PC and 3PC,
we observe that there is a noticeable but not large difference
between their performance at normal loads. The difference
arises from the additional message and logging overheads
involved in 3PC. Under heavy loads, however, the
performance of 2PC and 3PC is virtually identical. This is
explained as follows: Although their commit processing is
different, the abort processing of 3PC is identical to that of
2PC. Therefore, under heavy loads, when a large fraction of
the transactions wind up being killed (i.e., aborted) the
performance of both protocols is essentially the same.
Overall, it means that, in the real-time domain, the price
paid during regular processing to purchase the nonblocking
functionality is comparatively modest.

Shifting our focus to the PA and PC variants of the 2PC
protocol, we find that their performance is only marginally
different to that of 2PC. The reason for this is that
performance in a firm-deadline RTDBS is measured in
Boolean terms of meeting or missing the deadline. So,
although PC and PA reduce overheads under commit and
abort conditions, respectively, all that happens is that the
resources made available by this reduction only allow
transactions to execute further before being restarted or
killed, but is not sufficient to result in many more
completions. This was confirmed by measuring the number
of forced writes and the number of acknowledgements,
normalized to the number of committed transactions,
shown in Figs. 1c and 1d. In these figures, we see that PC
has significantly lower overheads at normal loads (when
commits are more), while PA has significantly lower
overheads at heavy loads (when aborts are more). More-
over, while PA always does slightly better than 2PC, PC
actually does worse than 2PC at heavy loads since PC has
higher overheads (the additional collecting log record)
than 2PC for aborts.

Finally, turning to our new protocol, PROMPT, we
observe that its performance is considerably better than that
of the standard algorithms over most of the loading range
and especially so at normal loads. An analysis of its
improvement showed that it arises primarily from 1) the
optimistic access of uncommitted prepared data which
allows transactions to progress faster through the system,
and 2) the Active Abort policy. The former effect is
quantified in Fig. 1e, which plots PROMPT's borrow
factorÐthis graph clearly shows that borrowing is signifi-
cant, especially in the low to medium loading range. For
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16. Heavy load may arise due to a variety of factors: increased
transaction arrival rate, more stringent time constraints, etc.



example, at an arrival rate of two trans/sec, each transac-

tion on average borrows approximately one page. At high

loads, however, only a few transactions are able to make it

to the commit processing phase and correspondingly there

are very few lenders, leaving little opportunity for the

optimistic feature to come into play, as indicated by the dip

in the borrow factor.

The Silent Kill optimization (not sending abort messages

for kill-induced aborts), on the other hand, gives only a very

minor improvement in performance. At low loads this is

because transaction kills are few in number and the

optimization does not come into play; at high loads, the

optimization's effect is like that of PA and PC for the

standard 2PC protocolÐalthough there is a significant

reduction in the number of messages, the resources released
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Fig. 1. Sequential Transactions (RC+DC). (a) KillPercent (normal load). (b) KillPercent (heavy load). (c) Forced writes (normalized). (d) Acks

(normalized). (e) PROMPT borrow factor. (f) PROMPT success ratio.



by this reduction only allow transactions to proceed fur±
ther before being restarted, but does not result in many
more completions. This was confirmed by measuring the
number of pages that were accessed by a transaction before
being abortedÐit was significantly more when Silent Kill
was included.

As part of this experiment, we also wanted to quantify
the degree to which the PROMPT protocol's optimism
about accessing uncommitted data was well-foundedÐthat
is, is PROMPT safe or foolhardy? To evaluate this, we
measured the success ratioÐthis statistic, shown in Fig. 1f,
clearly indicates that under normal loads, optimism is the
right choice since the success ratio is almost one. Under
heavy loads, however, there is a decrease in the success
ratioÐthe reason for this is that transactions reach their
commit phase only close to their deadlines and in this
situation, a lending transaction may often abort due to
missing its deadline. That is, many of the lenders turn out to
be ªunhealthy.º Note that PROMPT's Healthy Lending
feature, which was intended to address this problem, did
not come into play, since MinHF , the minimum health factor,
was set to zero in this experimentÐwe return to this issue
in Experiment 6.

To conclude the discussion of PROMPT's performance,
in Fig. 1g we show the successful borrow factor, that is, the
combination (through multiplication) of Figs. 1e and 1f, and
in Fig. 1h we graph the (absolute) reduction in Kill Percent
achieved by PROMPT as compared to 2PC. Note the close
similarity between the shapes of these two graphs, con-
clusively demonstrating that allowing for borrowing is
what results in PROMPT's better performance.

Last, another interesting point to note is the following:

In Figs. 1a and 1b, the difference between the CENT

and DPCC curves shows the effect of distributed data

processing, whereas the difference between the commit

protocol curves and the DPCC curve shows the effect of

distributed commit processing. We see in these figures that

the effect of distributed commit processing is considerably

more than that of distributed data processing for the

standard commit protocols, and that the PROMPT protocol

helps to significantly reduce this impact. These results clearly

highlight the necessity for designing high-performance real-time

commit protocols.

7.2 Experiment 2: Pure Data Contention

The goal of our next experiment was to isolate the influence
of data contention (DC) on the performance of the commit
protocols.17 Modeling this scenario is important because
while resource contention can usually be addressed by
purchasing more and/or faster resources, there do not exist
any equally simple mechanisms to reduce data contention.
In this sense, data contention is a more ªfundamentalº
determinant of database system performance. Further,
while abundant resources may not be typical in conven-
tional database systems, they may be more common in
RTDBS environments, since many real-time systems are
sized to handle transient heavy loading. This directly relates
to the application-domain of RTDBSs, where functionality,
rather than cost, is usually the driving consideration.

For this experiment, the physical resources (CPUs and
disks) were made ªinfinite,º that is, there is no queueing for
these resources [2]. The other parameter values are the same
as those used in Experiment 1. The KillPercent performance
results for this system configuration are presented in Figs. 2a
and 2b for the normal load and heavy load conditions,
respectively, and PROMPT's supporting statistics are
shown in Figs. 2c and 2d. We observe in these figures that
the relative performance of the various protocols remains
qualitatively similar to that seen for the RC+DC environ-
ment of the previous experiment. Quantitatively, however,
the performance of the standard protocols relative to the
baselines is markedly worse than before. This is because in
the previous experiment, the considerable difference in
overheads between CENT and 2PC, for example, was
largely submerged due to the resource and data contention
in the system having a predominant effect on transaction
response times. In the current experiment, however, the
commit phase occupies a bigger proportion of the overall
transaction response time, and therefore, the overheads of
2PC are felt to a greater extent. Similarly, 3PC performs
significantly worse than 2PC due to its considerable extra
overheads.

Moving on to PROMPT, we observe that it exhibits much
better performance as compared to the standard algorithms
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Fig. 1. Sequential Transactions (RC+DC) (continued). (g) PROMPT successful borrow factor. (h) PROMPT Kill reduction.

17. The corresponding experiment, pure RC, is not considered here since
our goal of reducing prepared data inaccessibility ceases to be an issue in
the pure RC environment.



over the entire loading range. This is explained in Fig. 2c,

which shows the borrow factor being even higher than that

of the RC+DC case. Moreover, the success ratio is also better

than that of the RC+DC case, not going below 75 percent

even at the highest loading levels (Fig. 2d).
The above experiment indicates that when resource

contention is reduced by upgrading the physical resources,

it is even more important to employ protocols such as

PROMPT to mitigate the ill effects of data contention.

7.3 Experiment 3: Fast Network Interface

In the previous experiments, the cost for sending and

receiving messages modeled a system with a relatively slow

network interface (MsgCpu � 5 ms). We conducted another

experiment wherein the network interface was faster by a

factor of five, that is, where MsgCpu � 1 ms. The results of

this experiment are shown in Figs. 3a and 3b for the RC+DC

and Pure DC environments, respectively.18 In these figures,

we see that the performance of all the protocols comes

closer together (as compared to that seen in Experiments 1

and 2). This improved behavior of the protocols is only to be

expected, since low message costs effectively eliminate the

effect of a significant fraction of the overheads involved in

each protocol. Their relative performance, however, re-

mains the same. Note also that the PROMPT protocol now

provides a performance that is close to that of DPCC; that is,

close to the best commit processing performance that could

be obtained in a distributed RTDBS.
In summary, this experiment shows that adopting

the PROMPT principle can be of value even with very

high-speed network interfaces, because faster message

processing does not necessarily eliminate the data

contention bottleneck.

7.4 Experiment 4: Higher Degree of Distribution

In the experiments described so far, each transaction

executed on three sites. To investigate the impact of having

a higher degree of distribution, we performed an experi-

ment wherein each transaction executed on six sites. The

CohortSize in this experiment was reduced from six pages

to three pages in order to keep the average transaction

length equal to that of the previous experiments. In

addition, a higher value of SlackFactor � 6 was used to

cater to the increase in response times caused by the

increased distribution.
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Fig. 2. Sequential Transactions (Pure DC). (a) KillPercent (normal load). (b) KillPercent (heavy load). (c) PROMPT borrow factor. (d) PROMPT

success ratio.

18. The default parameter settings for the RC+DC and Pure DC scenarios
in this experiment, as well as in the following experiments, are the same as
those used in Experiment 1 and Experiment 2, respectively.



The results of this experiment are shown in Figs. 4a
and 4b for the RC+DC and Pure DC environments,
respectively. In these figures, we observe that increased
distribution results in an increase in the magnitudes of the
performance differences among the commit protocols. This
is to be expected, since the commit processing overheads
are larger in this experiment. The relative performance of
the protocols, however, remains qualitatively the same
with PROMPT continuing to perform better than the
standard protocols.

7.5 Experiment 5: Parallel Execution of Cohorts

In all of the previous experiments, the cohorts of each
transaction executed in sequence. We also conducted similar
experiments for transaction workloads with parallel cohort
execution and we report on those results here. The
performance under the RC+DC environment is shown in
Figs. 5a, 5b, and 5c, and we observe here that the general
trends are like those seen for sequential transactions in
Experiment 1. In particular, the effect of distributed commit

processing on the KillPercent performance remains con-

siderably more than that of distributed data processing. But,

there are also a few changes, as below described.
First, we observe that the differences between the

performance of CENT and that of 2PC and 3PC have

increased for parallel transactions as compared to that for

sequential transactions. The reason for this is that the

parallel execution of the cohorts reduces the transaction

response time, but the time required for the commit processing

remains the same. Therefore, the effect of the commit phase

on overall transaction response time is significantly more.
Second, although PROMPT continues to perform the best

under normal loads, its effect on the KillPercent perfor-

mance is partially reduced as compared to that for sequential

transactions. This is because the Active Abort policy, which

had significant impact in the sequential environment, is less

useful in the parallel domain. The reason for its reduced

utility is that due to cohorts executing in parallel, the

duration of the wait phase of the cohorts is shorter, and so
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Fig. 3. Fast Network Interface. (a) KillPercent (RC + DC). (b) KillPercent (Pure DC).

Fig. 4. Higher Degree of Distribution. (a) KillPercent (RC + DC). (b) KillPercent (Pure DC).



there are much fewer chances of a cohort aborting during
the wait phase, which is when the Active Abort policy
mostly comes into play for the parallel case.

Third, the performance of PROMPT under heavy loads is
marginally worse than that of 2PC, whereas in the sequential
case PROMPT was always better than or matched 2PC. This
is explained by comparing PROMPT's success ratios in
Figs. 1f and 5c, which clearly indicate that the heavy-load
degradation in PROMPT's success ratio is much more
under parallel workloads than under sequential workloads.
The reason for this is the following: The data contention
level is smaller with parallel execution than with sequential
execution, since locks are held for shorter times on average

(this was also confirmed by PROMPT's borrow factor,

which was about 30 percent less than in its sequential

counterpart). Cohorts are therefore able to obtain the

necessary locks sooner than in the sequential case, and

hence, those that are aborted due to deadline expiry tend to

make further progress than in the sequential case. This

leads to a proportionally larger group of cohorts finishing

their work closer to the deadline, resulting in a worse

success ratio due to more ªunhealthy lenders.º
When the above experiment was conducted for the Pure

DC environment, we obtained Figs. 5d, 5e, and 5f.

Interestingly, the performance of PROMPT in these figures
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Fig. 5. Parallel TransactionsÐRC+DC and Pure DC. (a) Normal load (RC + DC). (b) Heavy load (RC + DC). (c) PROMPT success ratio (RC + DC).
(d) Normal load (Pure DC). (e) Heavy load (Pure DC). (f) PROMPT success ratio (Pure DC).



does not show the deterioration observed in the RC+DC

environment. The reason is that when DC is the main

performance bottleneck, PROMPT, which primarily ad-

dresses DC, has the maximum impact. In this case,

PROMPT's borrow factor and success ratio (5f) are quite

high, resulting in its performance being considerably better

than the standard commit protocols.

7.6 Experiment 6: Lending Restricted to Healthy
Lenders

Results for the parallel cohort execution workloads of the
previous experiment may seem to suggest that PROMPT
may not be the best approach for all workloadsÐhowever,

as we will now show, the reduced success ratio of

PROMPT can be easily rectified by appropriately setting

the MinHF parameter (which was zero in the experiments

described thus far). After this optimization is incorporated,

PROMPT provides better performance than all the other

classical protocols.
A range of MinHF values were considered in our

experiments, including MinHF � 0, which corresponds

to the PROMPT protocol evaluated in the previous

experiments, MinHF � 1, MinHF � 2, and MinHF � 1,

which is equivalent to the 2PC protocol. The results for

these various settings are shown in Figs. 6a, 6b, and 6c, and
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Fig. 6. PROMPT's Healthy Lending FeatureÐRC+DC and Pure DC. (a) KillPercent (RC + DC). (b) Success ratio (RC + DC). (c) Borrow factor (RC + DC).
(d) KillPercent (Pure DC). (e) Success ratio (Pure DC). (f) Borrow factor (Pure DC).



in Figs. 6d, 6e, and 6f for the workloads of the

previous experiment.
In the KillPercent graphs (Figs. 6a and 6d), we see

that MinHF � 1 is, in general, slightly better than

MinHF � 0, and especially so under heavy loads in the

Pure DC environment. Further, note that its performance

matches that of 2PC in the heavy load region, thereby

correcting the problem observed in the previous experi-

ment. The reason for the performance improvement is

evident in Figs. 6b and 6e, where the success ratio of

MinHF � 1 is seen to be considerably higher than that of

MinHF � 0. Further, from Figs. 6c and 6f, which present

the borrow factors, it is clear that MinHF � 1 is ªefficientº

in that it restricts borrowing only in the heavy load region,

but not in the normal load region where optimism is almost

always a good idea. That is, healthy lenders are very rarely

tagged as unhealthy.
The last observation deals with the ªcompletenessº and

ªprecisionº of borrowing: 1) ªDo we always borrow when

the borrowing is going to be successful?º, and 2) ªIs what

we borrow always going to be successful?º PROMPT with

MinHF � 0 is complete by design, since it does not miss

out on any successful borrowing opportunities; but because

it may also borrow without success, it is not precise. The

experimental results show that MinHF � 1, in contrast, is

quite precise while sacrificing very little completeness in

achieving this goal.
Turning our attention to MinHF � 2, we observe that

the performance of PROMPT for MinHF � 1 and for

MinHF � 2 is almost identical, indicating that a health

threshold of unity is sufficient to filter out the transactions

vulnerable to deadline kill in the commit phase. The reason

for this is that, by virtue of the EDF priority policy used in

our experiments, transactions that are close to their dead-

lines have the highest priority at the physical resources, and

therefore the minimum time required to carry out the

commit processing is actually sufficient for them to

complete this operation.

7.7 PROMPT Combinations

While presenting the PROMPT protocol in Section 5, we

had mentioned that one of the attractive features of

PROMPT is its ability to combine with other optimizations.

We now evaluate the performance benefits possible from

such combinations.

7.7.1 Experiment 7: PROMPT-PA and PROMPT-PC

When we analyzed the performance effects of adding the

PA and PC optimizations to PROMPT (graphs available in

[18]), we observed that just as PA and PC provided little

improvement over the performance of standard 2PC, here

also they provide no tangible benefits to the performance of

the PROMPT protocol, and for the same reasons. While

PROMPT-PA is very slightly better than basic PROMPT,

PROMPT-PC performs worse than basic PROMPT under

heavy loads, especially when data contention is the primary

performance bottleneck.

7.7.2 Experiment 8: Nonblocking PROMPT

In our second experiment, we evaluated the effect of

combining PROMPT with 3PC, resulting in a nonblocking

version of PROMPT. The results of this experiment are

shown in Figs. 7a and 7b for the RC+DC and Pure DC

environments, respectively.
We observe in these figures that the performance of

PROMPT-3PC is not only superior to that of 3PC, but also

significantly better than that of 2PC. In fact, the performance

of PROMPT-3PC is close to that of the basic PROMPT itself.

The reason for this superior performance of PROMPT-3PC

is that the optimistic feature has more effect on 3PC than on

2PC due to the larger commit processing phase of 3PC (as

mentioned earlier in Section 5).
These results indicate that, in the real-time domain, the

nonblocking functionality, which is extremely useful in the

event of failures, can be purchased for a small increase in

the KillPercent value.
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Fig. 7. Nonblocking PROMPT. (a) KillPercent (RC +DC). (b) KillPercent (Pure DC).



7.8 Summary of the Results

The set of experiments discussed above, which covered a

variety of transaction workloads and system configurations,

demonstrated the following:

1. Distributed commit processing can have consider-
ably more effect than distributed data processing on
the real-time performance, especially on systems
with slow network interfaces. This highlights the
need for developing commit protocols tuned to the
real-time domain.

2. The classical commit protocols generally perform
poorly in the real-time environment due to their
passive nature and due to preventing access to data
held by cohorts in the prepared state.

3. Our new protocol, PROMPT, provides significantly
improved performance over the standard algo-
rithms. Its good performance is attained primarily
due to its optimistic borrowing of uncommitted data
and Active Abort policy. The optimistic access
significantly reduces the effect of priority inversion
which is inevitable in the prepared state. Supporting
statistics showed that PROMPT's optimism about
uncommitted data is justified, especially under
normal loads. The other optimizations of Silent Kill
and Presumed Commit/Abort, however, had com-
paratively little beneficial effect.

4. The results obtained for parallel distributed transac-
tion workloads were generally similar to those
observed for the sequential-transaction environ-
ment. But, performance improvement due to the
PROMPT protocol was not as high for two reasons:
1) Its Active Abort policy, which contributed
significantly to improved performance in the se-
quential environment, has reduced effect in the
parallel domain. 2) Parallel execution, by virtue of
reducing the data contention, results in an increased
number of unhealthy lenders. These problems were
rectified, however, by appropriately setting the
MinHF parameter.

5. We have also found that a health threshold of
MinHF � 1 provides good performance for a wide
range of workloads and system configurations, that
is, this setting is robust.19

6. Experiments combining PROMPT with 3PC indicate
that the nonblocking functionality can be obtained in
the real-time environment at a relatively modest cost
in normal processing performance. This is especially
encouraging given the high desirability of the
nonblocking feature in the real-time environment.

In summary, the above results show that the PROMPT

protocol may be an attractive candidate for use in DRTDBS

commit processing. In the following section, we discuss a

variety of options in PROMPT's design.

8 ALTERNATIVE DESIGN CHOICES IN PROMPT

We first present and evaluate Shadow-PROMPT, which
incorporates a special mechanism to reduce the adverse
effects in those cases where lending optimism turns out to
be misplaced. Then, we present and evaluate FullLending-
PROMPT, which incorporates a mechanism intended to
increase the lending opportunities.

8.1 The Shadow-PROMPT Protocol and Its
Performance

The Shadow-PROMPT protocol combines PROMPT with
the ªshadow transactionº approach proposed in [4]. In this
combined technique, a cohort forks off a replica of the
transaction, called a shadow, whenever it borrows a data
page. The original incarnation of the transaction continues
execution while the shadow transaction is blocked at the
point of borrowing. If the lending transaction finally
commits, the (original) borrowing cohort continues its
ongoing execution and the shadow is discarded (since the
optimistic borrowing proved to be a correct decision).
Otherwise, if the lender aborts, the borrowing cohort is
aborted and the shadow, which was blocked so far, is
activated. Thus, the work done by the borrowing transac-
tion prior to its borrowing is never wasted, even if the wrong
borrowing choice is made. Therefore, if we ignore the
overheads of the shadow mechanism (which may be significant
in practice20), Shadow-PROMPT represents the best on-line
performance that could be achieved using the optimistic
lending approach.

We conducted experiments to evaluate the performance
of the Shadow-PROMPT protocol. In these experiments, we
modeled a zero-overhead Shadow-PROMPT protocol. In
addition, as in [4], at most one shadow (for each cohort) is
allowed to exist at any given time. The first shadow is
created at the time of the first borrowingÐcreation of
another shadow is allowed only if the original cohort aborts
and the current shadow resumes its execution replacing the
original cohort.

Our experimental results showed the performance of
PROMPT (with MinHF set to 1) and Shadow-PROMPT to
be so close that they are difficult to distinguish visually (the
graphs are available in [18]). In fact, in all our experiments,
the performance difference between Shadow-PROMPT and
PROMPT was never more than two percent. This means that
Healthy Lending can provide performance gains similar to
that of the ideal Shadow mechanism without attracting the
associated implementation overheads and difficulties.21

That is, PROMPT is efficient in its use of the optimistic
premise, since this premise holds most of the time, as
expected, especially in conjunction with the Healthy
Lending optimization.

8.2 The FL-PROMPT Protocol and Its Performance

A situation may arise in PROMPT wherein the borrower
cohort finishes its execution before the lender cohort
receives the final decision from its master. In such a case,
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19. Even otherwise, it should be easy to set MinHF during the inevitable
initial system/application tuning process.

20. For example, it is mentioned in [4] that for a single-shadow per
transaction environment, a 15 percent increase in number of messages was
observed.

21. A significant reworking of the transaction management system is
required to support the shadow concept.



the borrower cohort is put ªon the shelfº waiting for the
lender to complete and is not allowed to immediately send
the WORKDONE message to its master (as described in
Section 5). This can increase the response time of the
transaction, especially for sequential execution, and may
therefore result in more missed deadlines. Allowing the
borrower to immediately send the WORKDONE message in
the normal manner, however, is not a solution because it
would lead to the problem of cascading aborts, since a
borrower at one site could become a lender at other sites.

To address the above issue, we designed another variant
of PROMPT, called Full-Lending PROMPT (FL-PROMPT),
which operates in the following manner: When sending the
WORKDONE message to the master, the borrowerÐwhich is
waiting for its lending to completeÐalso sends an extra bit,
called the ªborrower bit,º piggybacked on this message.
The master, while subsequently sending the PREPARE

message to the cohorts, passes on this information to the
other sibling cohorts. Cohorts receiving this bit do not lend
their data, thereby ensuring that borrower transactions
cannot simultaneously be lenders (the condition necessary
to ensure the absence of cascading aborts). Note that while
this mechanism ensures that the aborts do not cascade, it
does not allow the borrower transaction to become a lender
even after the borrowing is over. This problem is overcome by
having such borrowers send a BORROW-OVER message to
the master if the lender subsequently commits and the
borrower cohort has not yet received a PREPARE message
from the master. This message to the master effectively
invalidates the borrower bit sent earlier.22 A related issue
arising out of the distributed nature of execution is the
situation wherein the BORROW-OVER and PREPARE mes-
sages ªcrossº each other on the networkÐin this situation,
the master ignores the BORROW-OVER message.

Our experiments to evaluate the performance of the
FL-PROMPT protocol showed that under RC+DC
conditions, its performance was virtually identical to that
of basic PROMPT (the graphs are available in [18]). This
is because the performance gains due to FL-PROMPT's
full lending feature are largely offset by the extra
CPU message processing overheads arising out of the
BORROW-OVER messages.

Even in Pure DC environments, where the CPU
overheads are not a factor, the difference between
FL-PROMPT and PROMPT turned out to be negligible for
most of the loading range. This is because the situation
when a ªborrower bitº is sent with the WORKDONE

message does not occur frequently in this environment.
Only a marginal difference at light loads was observed
where FL-PROMPT performed slightly better because it
allows more transactions to become lenders (by using the
BORROW-OVER message).

Thus, even though Full Lending appears to be a useful
idea in principle, its effects were not observed in our
experiments. However, for priority assignment policies that
lead to longer commit phase durations as compared with

those occuring with EDF, it may have more impact on
performance.

9 PRIORITY INHERITANCE: AN ALTERNATIVE TO

PROMPTÐAND ITS PERFORMANCE

As discussed earlier, PROMPT addresses the priority

inversion problem in the commit phase by allowing

transactions to access uncommitted prepared data. A

plausible alternative approach is the well-known priority

inheritance (PI) mechanism [36]. In this scheme, a low

priority transaction that blocks a high priority transaction

inherits the priority of the high priority transaction. The

expectation is that the blocking time of the high priority

transaction will be reduced, since the low priority transac-

tion will now execute faster and release its resources earlier.
A positive feature of the PI approach is that it does not

run the risk of transaction aborts, unlike the lending

approach. Further, a study of PI in the context of

(centralized) transaction concurrency control [13] sug±

gested that priority inheritance is useful only if it occurs

towards the end of the low priority transaction's lifetime.

This seems to fit well with handling priority inversion

during commit processing, since this stage occurs at the end

of transaction execution.
Motivated by these considerations we now describe

Priority Inheritance Commit (PIC), a real-time commit

protocol based on the PI approach. In the PIC protocol,

when a high priority transaction is blocked due to the data

locked by a low priority cohort in the prepared state, the

latter inherits the priority of the former to expedite its

commit processing. To propagate this inherited priority to

the master and the sibling cohorts, the priority inheriting

cohort sends a PRIORITY-INHERIT message to the master.

The master, in turn, sends this message to all other cohorts.

After the master or a cohort receives a PRIORITY-INHERIT

message, all further processing related to the transaction at

that site (processing of the messages, writing log records,

etc.) is carried out at the inherited priority.23 Our experi-

ments to evaluate the performance of the PIC showed that

the performance of PIC is virtually identical to that of 2PC

(the graphs are available in [18]). The reason for this

behavior is the following: PI comes into play only when a

high priority transaction is blocked by a low priority

prepared cohort, which means that this cohort has already

sent the YES vote to its master. Since it takes two message

delays for dissemination of the priority inheritance in-

formation to the sibling cohorts, PIC expedites at most the

processing of only the decision message. Further, even the

minor advantage that may be obtained by PIC is partially

offset by the extra overheads involved in processing the

priority inheritance information messages.
Thus, PIC fails to provide any performance benefits over

2PC due to the delays that are inherent in distributed

processing. Specifically, it is affected by the delay in the
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22. If multiple cohorts concurrently send the borrow bit, the master waits
till it receives the BORROW-OVER message from all such borrowers before
turning lending on again.

23. For simplicity, the priority is not reverted to its old value if the high
priority waiter is restarted.



dissemination of priority inheritance information to the

sibling cohorts at remote sites.

10 RELATED WORK

As mentioned in the Introduction, distributed real-time
commit processing has received little attention in the
literature and the only papers that we are aware of dealing
with this issue are [8], [15], [46]. In this section, we briefly
summarize these papers and contrast them with our study.

A centralized timed 2PC protocol is described in [8] that
guarantees that the fate of a transaction (commit or abort) is
known to all the cohorts before the expiry of the deadline
when there are no processor, communication, or clock faults. In
case of faults, however, it is not possible to provide such
guarantees, and an exception state is allowed which indicates
the violation of the deadline. Further, the protocol assumes
that it is possible for the DRTDBS to guarantee allocation of
resources for a duration of time within a given time
interval. Finally, the protocol is predicated upon the
knowledge of worst-case communication delays.

Our work is different from [8] in the following respects:
First, their deadline semantics are different from ours
(Section 4) in that even if the coordinator of a transaction
is able to reach the decision by the deadline, but it is not
possible to convey the decision to all the cohorts by the
deadline, the transaction is killed. Thus, their primary
concern is to ensure that all the participants of a transaction
reach the decision before the expiry of the deadline, even at
the cost of eventually killing more transactions. In our
work, however, we have focused instead on increasing the
number of transactions that complete before their deadlines
expire, which is of primary concern in the ªfirm-deadlineº
application framework. Second, we do not assume any
guarantees provided by the system for the services offered,
whereas such guarantees are fundamental to the design of
their protocol. Note that in a dynamic prioritized system,
such guarantees are difficult to provide and, further, are
generally not recommended, since it requires preallocation of
resources, thereby running the risk of priority inversion.

A common theme of allowing individual sites to
unilaterally commit is used in [15], [46]Ðthe idea is that
unilateral commitment results in greater timeliness of
actions. If it is later found that the decision is not consis±
tent globally, ªcompensationº transactions are executed
to rectify the errors. While the compensation-based ap-
proach certainly appears to have the potential to improve
timeliness, there are quite a few practical difficulties.

1. The standard notion of transaction atomicity is not
supportedÐinstead, a ªrelaxedº notion of atomicity
[31] is provided.

2. The design of a compensating transaction is an
application-specific task, since it is based on the
application semantics.

3. The compensation transactions need to be designed
in advance so that they can be executed as soon as
errors are detectedÐthis means that the transaction
workload must be fully characterized a priori.

4. ªReal actionsº [17] such as firing a weapon or dis±
pensing money may not be compensatable at all [31].

5. From a performance viewpoint also, there are some
difficulties:

a. The execution of compensation transactions
imposes an additional burden on the system;

b. It is not clear how the database system should
schedule compensation transactions relative to
normal transactions.

6. Finally, no performance studies are available to
evaluate the effectiveness of this approach.

Due to the above limitations of the compensation-
based approach, we have in our research focused on
improving the real-time performance of transaction atom-
icity mechanisms without relaxing the standard database
correctness criterion.

11 CONCLUSIONS

Although a significant body of research literature exists for
centralized real-time database systems, comparatively little
work has been done on distributed RTDBS. In particular,
the problem of commit processing in a distributed
environment has not yet been addressed in detail. The
few papers on this topic require fundamental alterations of
the standard distributed DBMS framework. We have
instead taken a different approach of achieving high-
performance by incorporating novel protocol features.

We first precisely defined the process of transaction
commitment and the conditions under which a transaction
is said to miss its deadline in a distributed firm real-time
setting. Subsequently, using a detailed simulation model
of a firm-deadline DRTDBS, we evaluated the perform±
ance of a variety of standard commit protocols including
2PC, PA, PC and 3PC, with respect to the number of killed
transactions. We also developed and evaluated a new
commit protocol, PROMPT, that is designed specifically for
the real-time environment and includes features such as
controlled optimistic access to uncommitted data, Active
Abort, Silent Kill, and Healthy-Lending. To the best of
our knowledge, these are the first quantitative results in
this area.

Our performance results showed that distributed commit
processing can have considerably more effect than dis-
tributed data processing on the real-time performance.
This highlights the need for developing commit protocols
tuned to the real-time domain. The new PROMPT proto±
col, which was an attempt in this direction, provided
significantly improved performance over the classical
commit protocols. By appropriately setting the MinHF
parameter, it was possible to eliminate most of the
unhealthy lendings, and with this optimization the differ-
ence between PROMPT and Shadow-PROMPT, which
represents the best on-line usage of the optimistic lending
approach, never exceeded two percent. Further, this high
level of performance was achieved without incurring the
implementation overheads and integration difficulties
associated with the Shadow mechanism. Finally, PROMPT's
conservatism in preventing borrowers from continuing to
execute if their associated lenders had not yet received their
decisions was addressed by incorporating an additional bit
and message that informed the master about the borrowing
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state and the completion of borrowing by a cohort.
However, only minor KillPercent improvements were
realized by this optimization.

We also evaluated the priority inheritance approach to
addressing the priority inversion problem associated with
prepared data. Our experiments showed that this approach
provides virtually no performance benefits, primarily due
to the intrinsic delays involved in disseminating informa-
tion in a distributed system. It therefore does not appear to
be a viable alternative to PROMPT for enhancing distrib-
uted commit processing performance.

In summary, we suggest that DRTDBS designers may
find the PROMPT protocol to be a good choice for high-
performance real-time distributed commit processing.
Viewed in toto, PROMPT is a portable (can be used with
many other optimizations), practical (easy to implement),
high-performance (substantially improves real-time perfor-
mance), and efficient (makes good use of the lending
approach) distributed commit protocol.
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