
Implementation of SPINE Genomic Index and

Graphical User Interface in BODHI

A Project Report

Submitted in Partial Fulfilment of the

Requirements for the Degree of
� �������	��

�����������������������

in

Computer Science and Engineering

by

Abhijit Kadlag

Department of Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012

JULY 2004

Acknowledgments

I sincerely thank Prof. Jayant Haritsa for providing me the opportunity of being a part of the highly

spirited Database Systems Lab. I thank him also for providing all the encouragement, guidance and

support during my work.

Database Systems Lab was a wonderful place to work in and I am thankful to all the members of

DSL: Amol, Anoop, Kumaran, Maya, Parag, Shipra, Srikanta and Suresha for making the lab a lively

place. My special thanks to Srikanta for all the helpful suggestions, timely help and all the cooperation

as a project partner.

Finally with a deep sense of belonging I must mention that my association with the students, faculty

and staff members of the Department of Computer Science and Automation for the last two years has

been an extremely memorable and enriching period of my life.

i

Abstract

Modern bio-diversity research involves systematic and simultaneous study of macro- and micro-level

relationship between various biological entities. BODHI1 [3, 4] is a native object oriented database

system which seamlessly integrates the taxonomy, spatial and sequence types of data occurring in bio-

diversity studies.

BODHI implements the heuristics based BLAST algorithm to handle sequence similarity queries.

Performance evaluation of BODHI indicated that these BLAST operations are far costlier than other

operators supported in BODHI, indicating need for efficient sequence index structures. Popular sequence

alignment packages like Mummer use suffix trie indexing techniques to get accurate sequence alignments

efficiently, without using BLAST like heuristics. SPINE is a recently proposed, horizontally compressed

suffix trie index which was reported to perform better than Mummer. The first part of this project was to

integrate the SPINE indexing technique with BLAST implementation in BODHI to speed up sequence

similarity queries.

BODHI fully supports OQL/ODL querying interface on the server side. However for bio-diversity

researchers the system is more convenient if BODHI comes with a user friendly interface that allows

them to specify queries without having to know OQL. The interface should take care of converting

the user specified queries into OQL, run the OQL query on server and display the answers to users in

an elegant manner. The second part of this project aimed at building a graphical query interface for

plant bio-diversity database currently being hosted with BODHI. We have developed a web-based query

interface which achieves this aim.

1BODHI is the tree under which Budhha gained enlightenment

ii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

1.1 Part I: The SPINE Genomic Index . 2

1.2 Part II: Graphical User Interface Framework . 2

1.3 Organization of the Report . 3

2 Architecture of BODHI 4

2.1 Object Services . 4

2.2 Spatial Services . 6

2.3 Sequence Services . 6

3 The SHORE Storage Manager 7

3.1 Architecture of SHORE . 7

3.1.1 SHORE Software Components . 8

3.1.2 The Language Independent Library . 8

3.1.3 The SHORE server . 8

3.1.4 Value Added Server . 8

3.2 The VAS-SM Programming Interface . 9

3.3 VAS API : Storage Facilities . 10

3.3.1 Devices . 10

3.3.2 Volumes . 10

3.3.3 Files of Records . 10

iii

CONTENTS iv

3.3.4 B+-tree Indexes . 11

3.3.5 R∗-tree Indexes . 11

3.4 VAS API : Transaction Facilities . 11

3.4.1 Transactions . 11

3.4.2 Concurrency Control . 12

3.5 VAS API : Crash Recovery Facilities . 12

3.5.1 Logging . 12

3.5.2 Checkpointing . 12

3.5.3 Recovery . 12

3.6 VAS API : Thread Management . 13

3.7 VAS API : Communication and RPC Facilities . 13

4 The SPINE Genomic Index 14

4.1 State-of-the-Art . 14

4.2 Structure of SPINE . 15

4.3 Original Spine Implementation . 16

5 Integration of SPINE with BODHI 18

5.1 Re-Implementation of SPINE . 19

5.1.1 Implementation as a VAS . 19

5.1.2 B+ Trees for storing records . 20

5.1.3 Multiple SPINE indexes on the same volume 20

5.1.4 Handling multiple transactions simultaneously 21

5.1.5 Record size optimizations . 21

5.1.6 Workarounds for log size limitations . 22

5.2 Integration with BODHI . 22

5.2.1 Query flow in BODHI . 22

5.2.2 Functional Enhancements to the Object Model 23

5.2.3 Index Creation . 24

5.2.4 Querying the Index . 24

5.3 Performance Study . 25

5.3.1 Index construction . 25

CONTENTS v

5.3.2 Index size . 26

5.3.3 Subsequence match queries . 26

6 Implementation of Graphical User Interface Framework 30

6.1 Architecture of the Graphical User Interface Framework 32

6.2 Technology Choices . 32

6.3 Capabilities of the Query Interface . 33

6.3.1 Taxonomy: . 33

6.3.2 Sequence: . 34

6.3.3 Spatial: . 34

6.4 Snapshots of the Interface . 35

7 Conclusions and Future Work 38

Bibliography 38

List of Figures

1.1 Expressing a Multi-domain Query in BODHI . 2

2.1 Architecture of BODHI . 5

2.2 Implementation of BODHI . 5

3.1 Application - Server Interface . 8

3.2 SHORE System Architecture . 9

4.1 Example SPINE Index (for aaccacaaca) . 15

4.2 Optimized SPINE Implementation . 17

5.1 Storage Structure Organization for SPINE . 21

5.2 Query Flow in BODHI with SPINE . 23

5.3 Object model of plant bio-diversity database . 24

5.4 Index Construction Time . 25

5.5 Sequence similarity query performance in BODHI 27

5.6 Subsequence Match Query Times . 28

6.1 Graphical User Interface Framework Architecture 32

6.2 Query Input Form (Markings highlight the sample query in Chapter 1) 34

6.3 Rubber-band selection of Spatial Query . 35

6.4 Help Tags . 35

6.5 Zooming: (a) Operation (b) Result . 36

6.6 Results are in XML(Displayed in Notepad as the source of result) (Using View-Source

menu in browser) . 36

6.7 XML Results shown as HTML . 37

vi

Chapter 1

Introduction

Modern bio-diversity research involves systematic and simultaneous study of macro- and micro-level

relationships between various biological entities. Multi-domain queries of the following kind are in-

creasingly common among the researchers in this field:

Retrieve the names of all plant species that have common inflorescence location character-

istics, share a part of their habitats, and have a high chromosomal DNA sequence similarity

with Actinodaphne-bourneae.

Answering this query requires the ability to process data across: (a) taxonomy hierarchies (common

inflorescence location), (b) recorded spatial distribution of species (common habitat), and (c) genomic

sequences (chromosomal DNA sequence similarity). Unfortunately, due to the lack of holistic database

systems, biologists are often forced to split the query into component queries, each of which can be

processed separately over specialized independent tools and services. Further, the individual results have

to be combined either manually or through the use of a customized tool.

Motivated by this lacuna of an information management system that can support complex queries

common to bio-diversity research, BODHI (Biodiversity Object Database arcHItecture) [3, 4], a na-

tive object-oriented database system that seamlessly integrates multiple types of data occurring in bio-

diversity studies, has been developed in Indian Institute of Science over last few years. BODHI expresses

the sample multi-domain query presented above using an OQL(Object Query Language) [6] syntax as

shown in Figure 1.1.

To the best of our knowledge, BODHI is the first system to provide such an integrated view of diverse

biological domains ranging from molecular to organism-level information.

1

CHAPTER 1. INTRODUCTION 2

SELECT species2.name FROM
species1 IN PlantSpecies, species2 IN PlantSpecies,
dna1 IN species1.DNAEntries, dna2 IN species2.DNAEntries

WHERE
species1.name = ”Actinodaphne-bourneae” AND
species1.flowerchar.inflochar = species2.flowerchar.inflochar AND
species1.georegion OVERLAPS species2.georegion AND
dna1 BLAST dna2 WITHIN 70;

Figure 1.1: Expressing a Multi-domain Query in BODHI

1.1 Part I: The SPINE Genomic Index

BODHI achieves high performance by employing a variety of specialized access structures reported in

the research literature for handling predicates over taxonomy hierarchies and spatial data. However

performance evaluation of BODHI [4] indicated that sequence similarity operations are far costlier than

other operators supported in BODHI, indicating need for efficient sequence index structures.

Suffix trees [10] (i.e.suffix trie indexes) are popular choice for indexing sequences in the database

community. Widely used sequence alignment packages like Mummer use suffix tree technique to get

accurate alignments efficiently. Recently Neelapala et.al. [21] suggested a novel horizontally compacted

suffix trie index structure which was found to consume much lesser space as compared to the traditional

suffix trees and more amenable for a disk-based version. It was also found to perform better on disk

when compared to the Mummer [7] package popularly used for sequence similarity queries.

As the first part of this project we have integrated the SPINE [21] index structure with BLAST

implementation in BODHI and studied the performance of the modified algorithm as opposed to the

original BLAST implementation.

1.2 Part II: Graphical User Interface Framework

The BODHI database server supports full ODL (Object Definition Language) [6] interface for schema

definition and OQL interface for querying the database. However for BODHI to be useful in a convenient

manner to the bio-diversity researchers, it should provide a user friendly graphical query interface. The

bio-diversity researchers should be able to express their queries using this interface and the interface

should take care of converting the input information to OQL queries automatically. This user interface

is required to be intuitive, easily learnable and should provide the maximum functionality possible. It

should also be possible to query the database from anywhere in the world.

CHAPTER 1. INTRODUCTION 3

To provide the above mentioned functionality we have implemented a web-based graphical user in-

terface for querying the database as well as for visualization of results. Easy dissemination of information

is supported through the use of XML in publishing the results of queries, providing added semantics for

future data exchange requirements.

1.3 Organization of the Report

Chapter 2 describes the architecture of BODHI in brief. Chapter 3 describes the SHORE storage man-

ager which has been used as a backend for implementing the SPINE index. In Chapter 4 we describe the

structure of SPINE index in brief and the relevant implementation details from the work of Neelapala

et.al. Chapter 5 describes our work of re-implementation and integration of the SPINE index structure in

BODHI. The issues involved in the design of the user interface, the technology choices, and implementa-

tion as a web based interface are explained in Chapter 6. Finally Chapter 7 summarizes the achievements

of this project and the future work.

Chapter 2

Architecture of BODHI

The architecture of BODHI is shown in Figure 2.1. The SHORE [5] storage manager, available from Uni-

versity of Wisconsin, at the base provides the fundamental needs of a database server such as device and

storage management, transaction processing, logging and recovery management. The application spe-

cific modules, which supply the object, spatial and genomic services, are built over this storage manager

and form the functional core of the system. The λ-DB [11] extensible rule-based query processor and

optimizer interfaces with these functional modules and performs query processing and produces efficient

execution plans using the metadata exported by the modules. BODHI supports full OQL/ODL query and

data modeling interface for creation of new database schemas, data manipulation and querying.

Finally, the user interface and XML publishing engine form the external interface to BODHI. The

second part of this project was to implement this part.

The BODHI server is partitioned into three service modules: Object, Spatial, and Sequence, each

handling the associated data domain. The service modules provide appropriate storage, a modeling

interface, and evaluation algorithms for predicates over the corresponding data types.

2.1 Object Services

In querying over bio-diversity data, it is common to specify predicates over long relationship paths, or

over an inheritance hierarchy rooted at a chosen base type. To efficiently handle these predicates, access

methods for both inheritance (multi-key type Index [18]) and aggregation hierarchies (path-dictionary

index [17]) are included in this module.

4

CHAPTER 2. ARCHITECTURE OF BODHI 5

Figure 2.1: Architecture of BODHI

aggregation paths

SHORE Type Layer

S H O R E S t o r a g e M a n a g e r

RUNTIME ENVIRONMENT

raw
sequences

type
information

Server
Value Added

Model

GeneStore Genome

Type

Spatial

System
Value Added

Server

PD Index

Hilbert

R−Tree

Index

B+−Tree

Index

R*−Tree

Spatial
Model

Genome
Model

Type System Layer

Index

System

Type

Taxonomy

T
O

P
−Q

SP
IN

E

Figure 2.2: Implementation of BODHI

CHAPTER 2. ARCHITECTURE OF BODHI 6

2.2 Spatial Services

This module provides a spatial type system for modeling of spatial data associated with biological in-

formation. Various geometric operators such as overlap, adjacent, area, etc., are implemented over this

type system. The module incorporates R*-Tree [2] and Hilbert R-Tree [16] indexing to speed up these

otherwise expensive operators.

2.3 Sequence Services

This module provides efficient storage and operations over genome sequence data of species. It im-

plements the de-facto standard alignment-based sequence similarity algorithm of BLAST [1] A Value

Added Server (explained in Chapter 3), GeneStore, handles the querying of sequence data for this algo-

rithm. We have implemented the SPINE index in this module.

Figure 2.1 indicates the positions of the SPINE and user interface modules in the overall BODHI

architecture. Figure 2.2 shows the implementation details of BODHI and the interactions between the

various functional modules of the system. For more details on the implementation we refer the reader

to [3, 4].

Chapter 3

The SHORE Storage Manager

Please Note: Most of the text in this Chapter is taken from [5] and SHORE manual pages [22].

SHORE (Scalable Heterogeneous Object REpository) [5] is a persistent object system that represents

a merger of object-oriented database (OODB) and file system technologies. In this Chapter, we describe

features of the SHORE (or Shore) system, which forms the back-end of the BODHI database system.

The SHORE system has also been used for the implementation of SPINE genomic index.

3.1 Architecture of SHORE

SHORE executes as a group of communicating processes called SHORE servers. SHORE servers con-

stitute exclusively of trusted code, including those parts of the system that are provided as part of the

standard SHORE release, as well as code for Value Added Servers (VASs) that can be added by so-

phisticated users to implement specialized facilities (e.g., a query shipping SQL server). Application

processes manipulate objects, while servers deal primarily with fixed-length pages allocated from disk

volumes, each of which is managed by a single server.

The SHORE server plays several roles. First, it is the page-cache manager. Second, the server acts as

an agent for local application processes. When an application needs an object, it sends an RPC request

to the local server, which fetches the necessary pages and returns the object. Finally, the SHORE server

is responsible for concurrency control and recovery. A server obtains and caches locks on behalf of its

local clients. The owner of each page is responsible for arbitrating lock requests for its objects as well as

logging and committing changes to the page.

7

CHAPTER 3. THE SHORE STORAGE MANAGER 8

3.1.1 SHORE Software Components

The main software components of SHORE (Figure 3.1) constitute the SHORE server and the Language

Independent Library.

SERVER

SHORE VAS Interface

Storage Manager

Page Cache

Language
Object CacheIndependent

Library

RPC Interface

Application Code

CLIENT

Figure 3.1: Application - Server Interface

3.1.2 The Language Independent Library

The Language Independent Library contains the object-cache manager which takes care of converting

object references on disk to main memory addresses.

3.1.3 The SHORE server

The SHORE server (Figure 3.2) is divided into two main components: a Server Interface, which com-

municates with applications, and the Storage Manager (SM), which manages the persistent object store.

The Server Interface is responsible for providing access to SHORE objects stored using the SM.

3.1.4 Value Added Server

The SHORE server code is modularly constructed so that users can build application-specific servers,

thus supporting the notion of “value-added” servers (VAS). The Server Interface is an example of one

CHAPTER 3. THE SHORE STORAGE MANAGER 9

Transaction Object Index

VAS-SM Interface

Object Access Control NFS VAS

SHORE VAS

SM Core

Transaction Manager

Recovery Manager

Page Cache

Lock Table

Operating System

Interface

Threads

Asynchronous
IO

Figure 3.2: SHORE System Architecture

such VAS. Another example for VAS is the NFS file server which is used to mount the entire subtree of

the SHORE name space on an existing Unix file system. When applications attempt to access files in

this portion of the name space, the Unix kernel generates NFS protocol requests that are handled by the

SHORE NFS value added server.

Each VAS provides an alternative interface to the storage manager. They all interact with the storage

manager through a common interface that is similar to the RPC interface between applications and the

server. It is thus possible to write a new VAS as a client process and then migrate it into the server for

added efficiency. Below the server interface lies the Storage Manager (SM). The SM can be viewed as

having three sub-layers. The highest is the VAS-SM interface, which consists primarily of functions to

control transactions and to access objects and indexes. The middle level comprises the core of the SM.

It implements records, indexes, transactions, concurrency control and recovery. At the lowest level are

extensions for distributed server capabilities. In addition to these layers, the SM contains an operating

system interface that packages together multithreading, asynchronous I/O and inter-process communica-

tion.

3.2 The VAS-SM Programming Interface

The SHORE Storage Manager (SSM) is a package of libraries for building object repository servers and

their clients. These libraries are useful for managing persistent storage and caching of un-typed data and

indexes. They also provide disk and buffer management, transactions, concurrency control and recovery.

A VAS relies on the SSM for the above capabilities and extends it to provide more functionality. In

CHAPTER 3. THE SHORE STORAGE MANAGER 10

the following Sections we describe some of the facilities that can be accessed through the VAS-SM

programming interface.

3.3 VAS API : Storage Facilities

The SSM provides a hierarchy of storage structures. A description of each type of storage structure is

given below.

3.3.1 Devices

A device is a location, provided by the operating system, for storing data. A device is either a disk

partition or an operating system file. A device is identified by the name used to access it through the

operating system. Each device is managed by a single server. For each mounted device, the server forks

a process to perform asynchronous I/O on the device. These processes communicate with the server

through sockets and shared memory.

3.3.2 Volumes

A volume is a collection of file and index storage structures (described below) managed as a unit. All

storage structures reside entirely on one volume. A volume has a quota specifying how must large it can

grow. Every volume has a dedicated B+-tree index, called the root index, to be used for cataloging the

data on the volume.

3.3.3 Files of Records

A record is an un-typed container of bytes, consisting of a tag, header and body. The tag is a small, read-

only location that stores the record size and other implementation-related information. The header has a

variable length, but is limited by the size of a physical disk page. A VAS may store -information about the

record (such as its type) in the header. The body is the primary data storage location. A record can grow

and shrink in size by operations that append and truncate bytes at the end of the record. A file is a collec-

tion of records. Files are used for clustering records and have an interface for iterating over all the records

they contain. The number of records that a file can hold is limited only by the space available on the vol-

ume containing the file. Methods for creating/destroying files, creating/destroying/appending/truncating

records and pinning records for reading are also provided as part of the interface.

CHAPTER 3. THE SHORE STORAGE MANAGER 11

3.3.4 B
+-tree Indexes

B+ tree is the most popular indexing method in database community. The B+-tree index facility in

SHORE provides associative access to data. Keys and their associated values can be variable length

(up to the size of a page). Keys can be composed of any of the basic C-language types or variable

length character strings. A bulk-loading facility is provided. The number of key-value pairs that an

index can hold is limited only by the space available on the volume containing the index. Routines

for creating/destroying indexes, searching and iterating over a range of keys are provided as part of the

interface.

3.3.5 R
∗-tree Indexes

An R-Tree [14] is a height-balanced tree structure designed specifically for indexing multi-dimensional

spatial objects. It stores the minimum bounding box (with 2 or more dimensions) of a spatial object as

the key in the leaf pages. The current implementation in SHORE is a variant of R-Tree called R*-Tree

[2], which improves the search performance by using a better heuristic for redistributing entries and dy-

namically reorganizing the tree during insertion. All the operations provided for B+-tree implementation

are also provided for R∗-tree.

3.4 VAS API : Transaction Facilities

As a database storage engine, the SSM provides the atomicity, consistency, isolation, and durability

(often referred to as ACID) properties associated with transactions.

3.4.1 Transactions

A transaction is an atomic set of operations on records, files, and indexes. The interface provides meth-

ods for beginning, committing and aborting transactions. Updates made by committed transactions are

guaranteed to be reflected on stable storage, even in the event of software or processor failure. Updates

made by aborted transactions are rolled back and are not reflected on stable storage.

Although nested transactions are not provided , the notion of save−points is there. Save-points delineate

a set of operations that can be rolled back without rolling back the entire transaction.

CHAPTER 3. THE SHORE STORAGE MANAGER 12

3.4.2 Concurrency Control

Transactions are also a unit of isolation. Locking is provided by the SSM as a way to keep a transaction

from seeing the effect of another, uncommitted transaction. Normally, locks are implicitly acquired by

operations that access or modify persistent data structures, but the SSM interface also provides methods

for locks to be acquired explicitly.

The SSM uses a standard hierarchical, two-phase locking protocol [13]. For a file, the hierarchy is

volume, file, page, record ; for an index, it is volume, index, key-value.

Chained transactions are also provided. Chaining involves committing a transaction, retaining its locks,

starting a new transaction and giving the locks to the new transaction.

3.5 VAS API : Crash Recovery Facilities

The crash recovery facilities of the SSM consist of logging, checkpointing, and recovery management.

3.5.1 Logging

Updates performed by transactions are logged so that they can be rolled back (in the event of a transaction

abort) or restored (in the event of a crash). Both the old and new values of an updated location are logged

(so-called undo/redo logging). This technique supports buffer management policies with the properties

called steal (a dirty page can be written to disk at any time) and no force (dirty page need not be forced

to disk at commit time).

The log is a sequence of log records. The log is stored in Unix files in a special directory. The size and

location of the log is determined by configuration options.

3.5.2 Checkpointing

Checkpoints are taken periodically by the SSM in order to free log space and shorten recovery time.

Checkpoints are ”fuzzy” and do not require the system to pause while they are completing. However no

interface is provided for a VAS programmer to control checkpointing.

3.5.3 Recovery

The SSM recovers from software, operating system, and CPU failure by restoring updates made by

committed transactions and rolling back all updates by transactions that did not commit by the time of

CHAPTER 3. THE SHORE STORAGE MANAGER 13

the crash.

3.6 VAS API : Thread Management

Providing the facilities to implement a multi-threaded server capable of managing multiple transactions

is one of the distinguishing features of the SSM. Any program using the thread package automatically

has one thread. In addition, the SSM starts one thread to do background flushing of the buffer pool and

another to take periodic checkpoints. SSM also provides latches which are a read/write synchronization

mechanism for threads, as opposed to locks which are used for synchronizing transactions. Latches are

much lighter weight than locks, have no symbolic names, and have no deadlock detection.

3.7 VAS API : Communication and RPC Facilities

Clients (applications) need a way to communicate with servers. The SSM contains a version of the

publicly available Sun RPC package, modified to operate with the SSM’s thread package. The SHORE

value-added server uses this package. More details on SSM programming interface can be found in

SHORE manual pages [22].

Chapter 4

The SPINE Genomic Index

Please Note: Some part of the text in this Chapter is taken from [21].

Performance evaluation of BODHI indicated that it was the sequence similarity queries which were

the costliest and affected the performance of cross domain queries. Thus the need for an index structure

to improve the performance of sequence similarity queries was felt.

In this Chapter we describe the various methods used by biologists for sequence similarity queries

and the structure of the SPINE genomic index, which has been proposed recently as an alternative to

traditional suffix trie indexes.

4.1 State-of-the-Art

The sequence search tools that are currently used by biologists can be broadly classified under two

heads [19]: Seed-based, exemplified by BLAST, the classical sequence alignment package [1], and Suf-

fix Tree-based, exemplified by MUMmer [7], the recently-developed alignment software from Celera

Genomics and TIGR (The Institute for Genomics Research) .

In the seed-based approach, the data sequence is first searched for exact-matches of short seed se-

quences from the query sequence. These seed sequences are stored in a keyword tree that is usually

implemented as a hash table. The successful exact matches then form the candidates that are extended

into better alignments [1].

In the Suffix Tree-based approach, on the other hand, an explicit index called the suffix tree [10] is

created for the entire data sequence – this index stores all suffixes of the data sequence in a vertically-

compacted trie structure. The popularity of suffix trees can be ascribed to their having linear (in the size

14

CHAPTER 4. THE SPINE GENOMIC INDEX 15

CL
Vertebra

a

c

a

c

a

a

c

a

c

1

a

0

2

3

4

5

6

7

8

9

10

c(0)

a(1)

c(1)

1(3)

1(2)

a(2)

(0)
(0)

(1)

(1)

(2)

(2)

(3)

(1)
(2)

(3)

Link

Rib

Extension Rib

(LEL)

CL(PT)

PRT(PT)

Figure 4.1: Example SPINE Index (for aaccacaaca)

of the data) construction time and space complexity as well as linear (in the size of the query) searching

times. This tree is then used for finding all subsequence1 matches of a given length of more (i.e. seed

sequences) with the query sequence. These matches are then extended in both directions to get local

alignments [7].

4.2 Structure of SPINE

Neelapala et.al. [21] recently presented a new index structure, called SPINE (Sequence Processing IN-

dexing Engine), which they found to have a variety of advantages with regard to the suffix tree in terms

of its search performance.

We introduce here, the SPINE index structure in brief. A sample picture of a SPINE index is shown

in Figure 4.1 for the data sequence aaccacaaca. At its core, the SPINE index consists of a backbone

formed by a linear chain of nodes connected by vertebra edges, representing the underlying genome

sequence. The nodes are additionally connected by forward ribs and extension ribs, and backward links

1a substring is called subsequence by the biologists

CHAPTER 4. THE SPINE GENOMIC INDEX 16

for facilitating fast traversals over the backbone during the index construction and query search processes.

All the edges have associated labels that are assigned during the construction process and are used to

determine which paths are valid for traversal in the SPINE structure.

In particular, each vertebra corresponds to a character in the input data sequence, and this character

is used to provide a character label (CL) for the vertebra. The ribs and extension ribs represent (in con-

junction with the backbone) all possible suffixes of the data sequence. Each rib is also labeled with a

character label, corresponding to the character that it represents in the associated suffix. The coalescing

of all the paths into a single path leads to the possibility of introducing false positives during search on

SPINE. To avoid this the ribs and extension ribs are labeled with a Pathlength Threshold (PT) which

indicates the maximum path length that can be traversed before traversing that particular rib. The ex-

tension ribs have an additional label called Parent Rib Threshold (PRT) associated to identify them with

a particular rib. The links have an integer label called Longest Early terminating suffix Length (LEL)

which is also assigned during index creation and helps avoid false positives. Due to lack of space, for

more details on the structure we refer the reader to [21].

From an abstract viewpoint, SPINE can be viewed as a horizontal compaction of the trie of the

data sequence, in marked contrast to suffix trees which represent, as mentioned earlier, a vertical trie

compaction. The motivation behind this horizontal compaction is to avoid the duplication of common

segments among the various paths in the trie, thus reducing the number of nodes and thereby the space

required to index a sequence. In fact, it carries this to the logical extreme of representing each character

of the original data sequence only once in the index structure. This is in contrast to the suffix trees, where

the number of nodes may go upto double the number of characters in the sequence.

Further, the improvement is not restricted to just the number of nodes, but the size of SPINE nodes,

with the implementation of Neelapala et.al., is also smaller than their suffix-tree counterparts. The av-

erage index overhead per sequence character is about 12 bytes as mentioned in [21], whereas MUMmer

requires 17.4 bytes per character indexed.

4.3 Original Spine Implementation

We enlist here few properties of the SPINE index structure, which are important for understanding the

implementation aspects. These properties are discussed in more details in [21].

• Each node has a link associated with it.

CHAPTER 4. THE SPINE GENOMIC INDEX 17

• The vertebras need not be explicitly represented, due to sequential allocation of nodes.

• Each node can have from 0 to 4 rib entries.

• A node can have atmost one extension rib emanating from it.

Due to the above properties the original implementation of SPINE as mentioned in [21] uses five

different tables. It consists of a Link Table (LT) and four RibTables (RTs), entries of which are shown

in Figure 4.2. The LT contains one entry for each node (character) in the string. It stores LEL of the

node’s link as one of its columns while the other column represents either the destination node of that

link (the LD field) or a pointer to an entry in one of the RTs (the PTR field). In particular, the LT stores

the link destinations only for the nodes that don’t have any ribs/extension rib. For the remaining nodes,

they are stored in the RT entries only.

Each node features in at most one RT table. A RT entry for a node stores the destination node of the

link of that node and also the destination nodes (the RD fields) and the threshold values (the PT fields) of

all the ribs/extension ribs emanating from the node. And, lastly, the PRT field denotes the PRT value of

the extension rib.

LD

LD

LD

LD

LD / PTR

RT1

RT2

RT3

RT4

LT LEL

PT

PT

PT

PT PT

PT

PT

PT

PT PT

PRT

PRT

PRT

PRT

RD

RD

RD

RD RD

RD

RD

RD

RD RD

Figure 4.2: Optimized SPINE Implementation

By implementing all the above optimizations, the net effect is that the average node size in SPINE is

less than 12 bytes, that is, the index takes upto 12 bytes per indexed character. The advantage of smaller

node sizes is reflected not only in space occupancy but also in improved construction and searching

times.

Chapter 5

Integration of SPINE with BODHI

We had at our hands the source code of implementation of SPINE from Neelapala et.al. The code written

by them was required to be re-engineered in order to integrate it with BODHI.

In this Chapter we first describe the features of original SPINE implementation that required changes.

We then discuss in Chapter 5.1, how we have changed these features and a few issues which are relevant

to our implementation using SSM. Finally in Chapter 5.2 we discuss the integration of SPINE with

BODHI which required SPINE to be merged with the implementation of BLAST in BODHI.

The features of original SPINE code which largely required re-engineering are:

1. Original implementation used operating system files for storing the entries in the LT and RT[1..4]

tables. Each table was stored in a single file. This needed to be changed to using a database storage

manager, in particular the SSM.

2. Use of SSM required the storage technique to be changed. Original SPINE program stored records

of each table in a separate file in a sequential manner. The records were accessed back using the

record number as a key. Due to the limited programming interface provided by SSM, this storage

scheme of one file per table could not be implemented and alternative storage scheme was needed

to be devised.

3. BODHI is a client-server database system, which required us to support SPINE index creation and

querying using a client-server interface. This needed significant code restructuring, modifications

and adding RPC based client-server functionality.

4. BODHI allows for multiple users to access, read and modify the database simultaneously. When

using an index like SPINE with BODHI, the ACID (Atomicity, Consistency, Isolation, Durability)

18

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 19

properties of all transactions need to be preserved, which was not required with the stand alone

file-based implementation of Neelapala et.al. The SSM provides transaction facilities to preserve

ACID properties. To use these facilities, the interface for adding, modifying, deleting and reading

records was needed to be modified.

5. The original source code of SPINE was written in C, whereas BODHI has been implemented using

C++. Thus the code was required to be rewritten by adding a class interface, making syntactic

changes and providing proper interfaces for interacting with other BODHI modules.

5.1 Re-Implementation of SPINE

In order to support the above requirements we made the following changes to the implementation of

SPINE:

5.1.1 Implementation as a VAS

We chose to implement SPINE as a Value Added Server (VAS). The advantages of implementing it as a

VAS can be easily seen to be:

1. The code of SHORE was not required to be changed. Changes in the code of SHORE would

have had system-wide implications on BODHI and every module might have required to undergo

changes.

2. This easily satisfies our requirement of providing a client-server interface.

3. The index works as a separate module which interacts with other modules of BODHI, thus facili-

tating modular code and easier development.

4. It could further help the performance by running the SPINE server in parallel with SHORE and

other VASs in BODHI.

5. The handling of index becomes independent of handling of sequences. Sequences are still being

handled by the Genestore VAS already existing in BODHI. The SPINE VAS interacts with Gene-

store for fetching sequences to build indexes. (As mentioned in [21]: once the index is built, for

subsequent querying one does not need to remember/know the original sequence.)

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 20

5.1.2 B
+ Trees for storing records

As mentioned in Chapter 3, the SSM interface provides both files of records and B+ tree interfaces.

The simple solution of using a separate file for each of the five tables of SPINE was not found to

be viable due to following reason: The interface for storing and retrieving records from files uses a

structure called serial t [22] as a key on the file. An integer key based storage and retrieval interface

is not provided. However, all the records in the LT or RT[14] tables need to be accessed by simple

array-indexing style technique. Thus using files of records would require a mapping between the integer

indices and serial t structure. Such a mapping can be provided by using the B+ tree structure. The index

would store the serial t structure as the data and use the integer index as the key. However, now the

access to a record requires accessing both the index and file of records. To avoid this double access, we

chose to store the record itself in the B+ tree as data and use the integer index as the key.

Storing records in B+ tree has the disadvantage of reducing fan-out of the tree and increasing se-

quential scan overheads but the advantage of avoiding access to a file as well as B+ tree scores over the

disadvantages.

Thus our implementation of SPINE uses five B+ trees for storing each of the five tables explained in

Chapter 4. This implementation has the advantage that after creation of the index, access to records can

be done in logarithmic time while the earlier implementation in [21] had a linear time access.

5.1.3 Multiple SPINE indexes on the same volume

BODHI hosts a large number of species and their sequences. (One specie may have more than one

sequence stored for it, e.g., all the chromosomes of that specie). It should be possible to create a SPINE

index on each of the sequences on the same volume and access it back for querying.

To support this feature, our implementation uses a master B+ tree index (Note that this is not the

same as root index discussed in Chapter 3). The master B+ tree index uses the Logical Object IDentifier

(LOID) of the sequence as a key. The LOID which is assigned to each data item is guaranteed to be

unique by SSM. Also, all the storage structures managed by SSM (e.g. records, indexes, files, etc.) have

associated with them a serial t structure guaranteed to be unique. The data indexed by the master B+

tree index is a record containing the serial t ids of the five B+ trees (one for LT and four for RTs) of

the SPINE index. Thus we can locate the LT and RT[1-4] tables for any of the species and any of its

sequences on the volume after the index has been built. Figure 5.1 shows the design of storage structure.

Please note that the access to master B+ tree index is made only once(per sequence) while creating

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 21

Figure 5.1: Storage Structure Organization for SPINE

the index or while using the index for querying.

5.1.4 Handling multiple transactions simultaneously

Using the VAS interface we have implemented SPINE as a multithreaded server. Thus multiple clients

can connect to it simultaneously. As discussed in Chapter 3 the ACID properties of transactions are taken

care by the SSM.

We have implemented client interface for SPINE in two versions: (a) a command line driven interface

(b) a library interface. The command line driven interface can be used by users to access the SPINE

server independent of BODHI while the library interface has been built for integrating the SPINE VAS

with other softwares like BODHI. The server itself also supports the command line driven interface.

5.1.5 Record size optimizations

The implementation of SPINE as explained in [21] uses various optimizations to reduce the sizes of

records. However in a C/C++ program these optimizations can not hold due to the alignment restrictions

that the compiler imposes on the sizes of structures. Thus a record which holds total 6 bytes of data

elements could be stored as a 8 byte record by the compiler. Neelapala et.al. treated the C structures

as arrays of characters and stored the exact number of bytes on disk, in their implementation.

Thus even the access to any of the elements inside the LT or RT table records was done by manipulating

arrays of characters.

This could not be done with SSM because the interface provided by it accepts a structure for storage

and not an array of characters. Thus the tricks employed in [21] could not be used anymore. Thus,

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 22

the optimizations suggested in [21] for the sizes of the records could not be implemented with SHORE.

This resulted in the sizes of records with our implementation to be bigger than the implementation of

Neelapala et.al.

5.1.6 Workarounds for log size limitations

SSM logs both the old and new values of data for all the updates(see Chapter 3). This makes log records

of size twice the data modified. Thus the log requirements become very huge if we are trying to create

SPINE index for very big sequences (size in millions). However even with the maximum possible log

size allowed by SSM, we could create index for sequences of length upto 800,000 only. To improve on

this we tried turning off the logging for the records. However the page-level logs were still big enough

to allow us build indexes upto length 5 million only.

To handle this problem we have implemented a workaround which makes use the chained transac-

tions facility provided by SSM. We commit the transaction after each 5 million characters have been seen

for building index and restart the transaction. Since committing and starting a new transaction requires

acquiring all the locks again we use a chained transaction instead. The effect of committing transaction

is to make SSM reuse the log space used so far and significant amount of log space is regained. In our

experiments, we observed that the linear time complexity of building SPINE was not affected due to this.

5.2 Integration with BODHI

Though SPINE is implemented as an independent client-server module, for a user of BODHI the SPINE

VAS should appear as an integral part of BODHI. As described earlier, we have implemented the client-

side interface of SPINE VAS as a library also. Using this RPC client interface, we have changed the

existing implementation of BLAST algorithm in BODHI as explained ahead in details.

5.2.1 Query flow in BODHI

Figure 5.2 shows query flow in BODHI. The ODL and OQL queries are compiled by the corresponding

compilers into equivalent C++ code. This C++ code is then compiled into an executable by the C++

compiler. The executable is also linked with the RPC (Remote Procedure Call) libraries of the SHORE

server, the GeneStore VAS, the path-dictionary index server (not shown in figure) and the SPINE VAS.

When the executable is run, the desired query gets executed.

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 23

ODL

Manager

Compiler

OQL
Compiler

C++
Compiler

Query

C++
Header Filesin ODL

Query Processor

C++
code

Sequence
data definition

APP − SVAS API

User query
in OQL

BODHI

Meta Data

RPC

Schema

Executable

Calls

SHORE STORAGE MANAGER

VAS API

SPINE VAS Genestore VAS SHORE VAS

Figure 5.2: Query Flow in BODHI with SPINE

5.2.2 Functional Enhancements to the Object Model

Figure 5.3 shows the object model of the plant bio-diversity database currently being used with BODHI.

The DNA entity represents a DNA entry for each species.

The current implementation of the GeneStore VAS uses functions defined for each DNA object for

its operation. Thus a BLAST query on a DNA sequence is actually executed as a function of that DNA

object.

On lines similar to the GeneStore VAS, we have added two more functions to the DNA entity on the

object model. First: createIndex, for creating the SPINE index and Second: findMatches, a function

which finds all maximal subsequence matches of the the DNA sequence with another sequence passed

as an argument.

We explain the implementation of these two functions in more details ahead. Please note that the

DNA entity would remain the same for any other object model of BODHI, hence our integration of

SPINE with BODHI will work for all object models dealing with DNAs.

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 24

TaxonomyLevel

strName : string

IdentLevelIdentChararcteristic 1..n1..n 1..n1..n

MedicinalPlants

DiseaseStrains

0..n0..n 0..n0..n

Order

Family

0...
1...

0...
1...InfloChar

SepalChar

Genera

0...

1...

0...

1...

FruitChar

FlowerChar

0...
1...

0...
1...

0...

1...

0...

1...

SpatialObject

PointSpatialCollection Line

Network

1...

0...

1...

0...

SequenceObject

Protein

storeSequence()

Layer

Polygon

1...

0...

1...

0...

GeoRegion

1

1

1

1

PlantSpecies

0...

1...

0...

1...
0...

1...

0...

1...

0...

1...

0...

1...

1...

1...

1...

1...

DNA

storeSequence()

EMBLEntry

0..n

1..1

0..n

1..1

sequences

Figure 5.3: Object model of plant bio-diversity database

5.2.3 Index Creation

The createIndex function builds SPINE index on that DNA’s sequence. Using the SPINE client library

(explained in Chapter 5.1) it creates a SPINE client. The SPINE client makes a RPC call to the method

for creating index on the SPINE server, passing the DNA sequence and its LOID as arguments. The

SPINE VAS then builds the index and an entry is made into the Master B+ tree index using the DNA’s

LOID as the key.

5.2.4 Querying the Index

As explained in Chapter 4, suffix trees are used for sequence similarity queries. The difference between

the seed-based and index-based approaches towards sequence similarity query processing lies mainly in

the first stage, where two given sequences are matched against each other for finding seed sequences.

After this first stage the second stage of extending the seed sequences is the same for both approaches.

To integrate SPINE with sequence similarity algorithm of BLAST in BODHI, we have modified the

existing implementation of BLAST to use the SPINE index during the first stage of sequence similarity

query computation.

The new implementation of BLAST calls the findMatches function during its first stage. This func-

tion takes the query string as an argument. It creates a SPINE client object which in turn makes a RPC

call to the SPINE server with the DNA’s LOID and the query string as arguments. The SPINE server

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 25

0

5

10

15

20

25

30

0 2e+06 4e+06 6e+06 8e+06 1e+07

C
on

st
ru

ct
io

n
T

im
e

(H
rs

)

Sequence length

Figure 5.4: Index Construction Time

checks first if the SPINE index already exists for that particular DNA (using the LOID key). If the index

exists then it is used for finding all the maximal subsequence matches of a particular length of more. All

the matches found are returned through the SPINE client to the BLAST function. If the SPINE index for

the DNA does not exist then an error is returned and the BLAST function runs the seed-based first stage.

RPC implementations impose certain system specific limits on the sizes of data that can be transferred

(around a few thousand bytes). Hence our integration of SPINE with BLAST has the limitation to handle

sequences of only a few thousands of length.

It should be noted that the SPINE VAS does not need to contact the GeneStore VAS once given the

query. This is because SPINE does not require the original sequence for querying.

5.3 Performance Study

The platform used for our experiments was a Pentium-IV 2.4 GHz, 1 GB memory machine running

Redhat Linux.

5.3.1 Index construction

Figure 5.4 shows the index construction time for our implementation of SPINE using SHORE. It can be

seen that the construction time is almost linear in size of sequence. This is expected since the construction

algorithm is linear in time complexity. The construction time in absolute numbers is high, but since index

creation cost is occurred only once, it is not much a concern.

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 26

5.3.2 Index size

We observed the size occupied by index on the volume to be very high at around 85 bytes per character

indexed. The reasons that we can site for this are: (a) The sizes of records in LT and RT[1-4] tables are

bigger than 12 bytes since we can not manipulate them as arrays of characters (b) SSM adds its own

headers to records, increasing their sizes further (c) The occupancy of B+ trees is not guaranteed to be

100% and may be as low as 50% also. The non-occupied space in each page of B+ tree is an overhead.

5.3.3 Subsequence match queries

We have compared the performance of our implementation of SPINE using SSM with (a) BLAST im-

plementation in BODHI and (b) BLAST implementation done by NCBI [20] which is a tool commonly

used by biologists.

Comparison with BLAST in BODHI

Figure 5.5 shows the performance of sequence similarity queries in BODHI using original BLAST im-

plementation in BODHI and using modified BLAST implementation (using SPINE).

The data used consisted of 100 species with one sequence per specie. The sequences were obtained

by taking random substrings from the sequences [ECO], [VIB], [CLS], [CEL] as explained subsequently.

The query sequences used were also obtained similarly and were of same length as each data sequence.

The memory allocated to SPINE VAS and Genestore VAS was 30MB each.

Figure 5.5 shows the results of the comparison. It is a stack graph and upper layer in each stack

shows the extra time taken by original BLAST implementation. It can be clearly seen that use of SPINE

index has improved the performance. The performance improvement varies from half to almost one or-

der of magnitude. Also, with increasing sequence length and/or decreasing seed length we get more and

more gains by using index. We could not obtain query performance for bigger sequences due to the RPC

limitations mentioned earlier.

Comparison with NCBI BLAST:

NCBI [20] BLAST is a sequence similarity query tool commonly used by biologists. The tool runs totally

in memory. We have done a comparative study of subsequence match query performance of SPINE and

NCBI-BLAST. The sequences used were

• ECO: E.Coli earthworm genome of length 3.5 million characters;

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 27

Figure 5.5: Sequence similarity query performance in BODHI

• VIB: Vibrio bacterial genome of length 1.0 million

• CLS: Clostridium-tetani bacterial genome of length 2.7 million

• CEL: 4.0 million length prefix of C.Elegans bacterial genome of length 15.5 million characters;

The experiments were conducted using the following methods:

• BLAST-11: NCBI-BLAST with seed length of 11

• BLAST-10: NCBI-BLAST with seed length of 10

• MEM-SPINE: Neelapala et.al’s implementation of SPINE in memory

• SHORE-SPINE: Our implementation of SPINE using SHORE with 30 MB memory and 300 MB

memory. The size of 300 MB was chosen to ensure that any of the indexes fits in memory.

Figure 5.6 shows the results of our experiments. The timings reported for MEM-SPINE and SHORE-

SPINE are only for subsequence matching and do not include the time for extending matched subse-

quences (for finding alignment). This is because (a) MEM-SPINE’s implementation from Neelapala

et.al. does not have the code for doing extension and (b) SHORE-SPINE’s performance was studied us-

ing the command-line interface since the client-interface integrated with BODHI suffers from sequence

length limitations discussed earlier.

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 28

Figure 5.6: Subsequence Match Query Times

We observe that BLAST with seed length of 11, which is the heuristic value, performs much better

compared to SHORE-SPINE. Though MEM-SPINE appears to perform better than BLAST, it actually

is performing as good as BLAST-11 considering the time BLAST-11 takes for extending matches.

BLAST is a heuristic based algorithm and performs best for seed length 11, however while doing so

it may miss out some matches of smaller length which when extended may result in good alignments. A

solution to this is to run BLAST with smaller value of seed sequence length, e.g. 10. However Figure 5.6

shows that, BLAST-10 performs much worse than BLAST-11, worse than SHORE-SPINE with 300 MB

memory and almost same as SHORE-SPINE with 30 MB memory. We have observed that BLAST

performs even worse when the seed lengths are decreased further. On the contrary either MEM-SPINE’s

or SHORE-SPINE’s performance does not depend on the seed length. The seed length only determines

which matches are returned. Thus SPINE offers accurate results while performing as good as BLAST,

when seed lengths are small.

It may appear strange that SHORE-SPINE with 300 MB of memory performs much slower than

MEM-SPINE, when 300 MB is enough for any of the indexes to fit in memory. We attribute this to

more memory accesses made by SHORE-SPINE due to the following reasons: (a) The size of an index

with SHORE-SPINE is almost one order of magnitude more than with MEM-SPINE. MEM-SPINE

requires 12 bytes per character while SHORE-SPINE requires around 85 bytes. Thus we access more

memory with SHORE-SPINE. (b) Access to a record with MEM-SPINE is directly made by using array

indexing, whereas with SHORE-SPINE each record access requires traversing internal nodes of a B+

CHAPTER 5. INTEGRATION OF SPINE WITH BODHI 29

tree. (c) The page tables maintained by storage manager of SHORE are accessed frequently and with 300

MB memory, page table size is also big enough. (d) Cache misses would be more with 300 MB memory

than with 30 MB memory. (e) The program size is much bigger implying more running times also. We

have verified these reasons by doing profiling of our program using the gprof tool available in Linux.

Thus the performance of SPINE is found to be affected due to the environment (SHORE) in which it is

implemented.

Chapter 6

Implementation of Graphical User

Interface Framework

BODHI supports full OQL/ODL [6] querying interface on the server side [3, 4]. However for the bio-

diversity researchers, who are the end users of the BODHI system, learning a querying language is a

cumbersome task. Typically they do not have any experience of using such languages and are reluctant

to learn it. Thus, in order to be really useful to its end users, BODHI requires a graphical user interface

for expressing the queries.

BODHI currently hosts a plant bio-diversity database, the schema of which has been shown in Fig-

ure 5.3. Our aim was to build a user interface to allow querying this particular schema comprehensively.

We enlist below the properties and functionality desired from the user interface.

1. Intuitive and simple: The user interface should be intuitively clear to the end user. The layout

and the fields provided for querying should be simple enough to be understood by just looking at

them. The semantics associated with each querying facility should be intuitively clear from their

appearance.

2. Automated and correct: The queries expressed by users should be automatically and correctly

converted into OQL. The OQL queries should be run on the server, and the results returned to the

user in a transparent manner.

3. Compact: A screenful of information [23] is what the human eye can grasp easily. By an intel-

ligent placement of query fields and conscious attempt at reducing the number of querying fields,

30

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 31

the interface should be kept compact. Also, one should be able to express multi-domain as well as

uni-domain queries using the same interface.

4. Utility: While being compact the interface should also allow the user to form as many queries

as possible with as less effort as possible. The OQL allows users to form any number of queries,

given the database schema. The query interface should aim at going as close as possible to this

ideal situation.

5. Accessibility: Accessibility over the internet is a highly desired feature. This allows the re-

searchers all over the world to use and extract information from the database. Also it makes

the user interface system platform independent, as most of the popular browsers run on most of

the platforms.

6. Customizable output : The output of user queries should be presented in a customizable manner.

The users should be able to apply their own formatting and view the results the way they want.

7. Data exchange: The output should also be in a format that can satisfy future data exchange

requirements that may arise.

8. Convenient spatial querying: Expressing the spatial queries is a pain for the users if they are

required to enter the latitude-longitude parameters by hand. To simplify this kind of querying, the

querying interface should provide graphical ways of specifying the spatial components of queries.

Facilities like zooming, panning and rubber-band selection would facilitate the task greatly.

9. Easy navigation: It should be possible to navigate easily throughout the query interface. Quicker

ways of reaching the desired part of the interface should be provided.

10. Help: Apart from being intuitive and simple, an online help facility would greatly enhance the

understandability of the interface for the end users.

We have implemented a graphical user interface for BODHI which satisfies all of the above require-

ments to a large extent. We now explain the architecture of the user interface framework,the technologies

involved in the implementation, the capabilities of the interface and provide few snapshots of the inter-

face.

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 32

Figure 6.1: Graphical User Interface Framework Architecture

6.1 Architecture of the Graphical User Interface Framework

Figure 6.1 shows the architecture of the Graphical User Interface Framework of BODHI. It is a typical

4-tier architecture which consist of a backend database system (BODHI), a webserver serving HTML

webpages (apache), CGI-scripts for the application logic (perl) and the web browser at the user end.

6.2 Technology Choices

We chose the following technologies for implementing the user interface of BODHI:

• HTML form for query input: The requirement of having BODHI accessible over the internet

translates into having web based graphical user interface. We have implemented the query input

interface as an HTML form as shown in Figure 6.2.

• Javascript for query conversion to OQL: Javascript is the most popular language for client side

programming with webpages. It is an object-based programming language with C like syntax and

supported by most of the browsers. All the popular web browsers like Internet Explorer, Netscape,

Opera support it.

• Java Applet for spatial querying: We have used the GIS4 applet available from [12] for spatial

data viewing and querying. The original applet taken from [12] allowed only for viewing of spatial

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 33

data. We have modified the applet code to also allow rubber-band selection of queries, as shown

in Figure 6.3.

• Java-Javascript interaction: Interaction between Java and Javascript is required for exchange of

the spatial query information. The Java applet does the job of rubber-band selection of query and

passes on the information to Javascript code for converting it into OQL. To perform this we used

the LiveConnect Java package available from Netscape [15].

• CGI-Perl scripts for server side processing: CGI (Common Gateway Interface) is a standard for

external gateway programs to interface with information servers such as HTTP servers. Perl has

became a popular language for doing CGI programming due to the large set of libraries available

with it. The queries from the user interface are processed by the CGI-perl scripts on the server

side. They do the job of submitting the queries to the translator and returning the results from

BODHI system back to users.

• XML for output: XML [8] has become the de-facto standard for data exchange over the web.

Hence it is highly desirable for the results to be presented using XML. This allows the users

to apply their own formatting to the results (using XSL stylesheets) for viewing, thus allowing

customization of result-viewing. Use of XML in publishing results also makes provisions for

future data exchanges if required.

6.3 Capabilities of the Query Interface

Figure 6.2 shows the query input form. The current implementation of the querying interface is capable

of specifying multi-domain as well as uni-domain queries involving upto four species.

In particular for each of the three domains, viz. taxonomy, spatial and sequence, it has the following

capabilities:

6.3.1 Taxonomy:

The left half of the form allows us to query the taxonomy and phenotype (concerning the characteristics

of species) information. One can specify:

• Equality predicates on species name, genera, family and order.

• Display predicates on all the attributes.

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 34

Figure 6.2: Query Input Form (Markings highlight the sample query in Chapter 1)

• Equality predicates on each of the characteristics of the species.

• Join predicates on each of the characteristics. Multiple join predicates can also be specified on the

same characteristic.

6.3.2 Sequence:

The upper right part of the form allows us to query the sequence information. It can specify:

• Display predicate on the sequence.

• Blast query with specie vs. specie or specie vs. sequence join predicate.

• Predicates for blast query like cutoff score, number of outputs.

6.3.3 Spatial:

The lower right part of the form allows us to query the spatial information. It can specify:

• Equality predicates on the names of spatial attributes, viz. forests, georegions and rivers. Only the

forest part can be seen in Figure 6.2.

• Display predicates on all the spatial attributes.

• Join predicates like overlaps, intersects, contains, equals across the spatial attributes of species.

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 35

Figure 6.3: Rubber-band selection of Spatial Query

Figure 6.4: Help Tags

• The spatial applet (GIS4 [12]) allows zooming, panning, switching on-off the information layers

for better visualization of the query map. One can specify a rubber-band rectangle-selection query

using this applet.

6.4 Snapshots of the Interface

We already have discussed the query input form shown in Figure 6.2. It can be seen that it is as compact

as one and half screens. It also shows how one can specify the sample query specified in Chapter 1 using

the query form.

A comparison of Figure 5.3 and Figure 6.2 shows that the query interface comprehensively covers the

object model for the plant database currently being hosted with BODHI. Figure 6.3 shows specification

of a region by using rubber-band selection on the map seen on applet. The help tags associated with

each query input field appear as shown in Figure 6.4. Figure 6.5 shows the zooming operation being

performed using the GIS applet.

The results returned from server are in XML which can be seen in Figure 6.6. Finally the results are

displayed in HTML as shown in Figure 6.7. We have used a XSL [9] style sheet to specify the conversion

from the XML results to HTML. The hyperlink shown in Figure 6.7, when clicked, displays the spatial

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 36

Figure 6.5: Zooming: (a) Operation (b) Result

Figure 6.6: Results are in XML(Displayed in Notepad as the source of result) (Using View-Source
menu in browser)

CHAPTER 6. IMPLEMENTATION OF GRAPHICAL USER INTERFACE FRAMEWORK 37

Figure 6.7: XML Results shown as HTML

results using the GIS4 applet (not shown in Figure).

Chapter 7

Conclusions and Future Work

BODHI now comes equipped with the SPINE genomic index, which has helped improve the perfor-

mance of sequence similarity queries. The improvements are more for smaller seed lengths and larger

sequences.

The web based query interface has simplified the task of specifying queries over the plant bio-

diversity database to a great extent and the system is useful in a convenient fashion to the plant bio-

diversity researchers. We have demonstrated the user interface to researches at Center for Ecological

Sciences at Indian Institute of Science and they have opined the interface to be useful.

Future work can concentrate on defining cost model for SPINE and integrating it with query opti-

mizer. Also, efforts can be directed towards using the SPINE index to support various sequence opera-

tions like finding all occurrences of a string, maximal matching substrings, etc. independently.

38

Bibliography

[1] S. Altschul, W. Gish, W. Miller, E.W. Myers, and D. Lipman. A Basic Local Alignment Search Tool. Journal

of Molecular Biology, (215), 1990.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R∗-Tree : An Efficient and Robust Access

Method for Points and Rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on

Management of Data, 1990.

[3] S. Bedathur, A. Kadlag, and J. Haritsa. BODHI: A database habitat for bio-diversity information (demo). In

ACM SIGMOD Intl. Conf. on Management of Data, Paris, France, 2004.

[4] S. Bedathur, J. Haritsa, and U. Sen. The Building of BODHI, a Bio-diversity Database System. Information

Systems, 28(4), 2003.

[5] M. J. Carey et.al. Shoring up Persistent Applications. In Proceedings of the 1994 ACM SIGMOD Interna-

tional Conference on Management of Data, 1994.

[6] R.G.G. Cattel, editor. The Object Database Standard: ODMG-93. Morgan-Kaufmann Publishers, 1994.

[7] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg. Alignment of whole

genomes. Nucleic Acids Research, 27:2369–2376, 1999.

[8] Extensible Markup Language. http://www.w3.org/TR/REC-xml.

[9] The Extensible Stylesheet Language Family. www.w3.org/Style/XSL/.

[10] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

[11] L. Fegaras. An Experimental Optimizer for OQL. Technical Report TR-CSE-97-007, University of Texas at

Arlington, 1997.

[12] Global Information Systems. http://elib.cs.berkeley.edu/gis.

[13] J. Gray and A. Reuter. Transaction Processing: concepts and techniques. Morgan Kaufmann, San Matego,

CA, 1993.

39

BIBLIOGRAPHY 40

[14] A. Gutteman. R-trees: A dynamic index structure for spatial searching. In ACM SIGMOD Intl. Conf. on

Management of Data, 1984.

[15] Java-Javascript Interaction. http://wp.netscape.com/ eng/mozilla/3.0/handbook/javascript/packages.htm.

[16] I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree Using Fractals. In VLDB’94, Proceedings of

20th International Conference on Very Large Databases, 1994.

[17] W. Lee and D. L. Lee. Path Dictionary: A New Access Method for Query Processing in Object-oriented

Databases. IEEE Transactions on Knowledge and Data Engineering, 10(3), May 1998.

[18] T. A. Mück and M. L. Polaschek. A Configurable Type Hierarchy Index for OODB. VLDB Journal, 6(4),

1997.

[19] B. Ma, J. Tromp, and M. Li. Pattern hunter: Faster and more sensitive homology search. Bioinformatics,

18(3):440–445, 2002.

[20] National Center for Biotechnology Information. http://www.ncbi.nih.gov/BLAST/.

[21] N. Neelapala, R. Mittal, and J. Haritsa. SPINE: Putting Backbone into String Indexing. In Proceedings of

the IEEE Conference on Data Engineering, 2004.

[22] Shore documentation. http://www.cs.wisc.edu/shore.

[23] B. Shneiderman. Designing the User Interface. Addison-Wesley Publishing Company, 1998.

[24] T.A. Smith and M.S. Waterman. Identification of Common Molecular Subsequences Journal of Molecular

Biology, 284, 1981.

