Incorporating Intersection in Hidden Query Extraction

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
Ntaster of Technology
IN
Saculty of Engineering

BY

Abhinav Jaiswal

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

June, 2022

Declaration of Originality

I, Abhinav Jaiswal, with SR No. 04-04-00-10-42-20-1-18011 hereby declare that the

material presented in the thesis titled
Incorporating Intersection in Hidden Query Extraction

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2020-2022.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

nj/
9

W
&

Date: 30-06-2022 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

(© Abhinav Jaiswal
June, 2022
All rights reserved

DEDICATED TO

My Friends and Famaly

Acknowledgements

First of all, I would like to express my sincere gratitude to my project advisor, Prof. Jayant
R. Haritsa for giving me an opportunity to work on this project. I am thankful to him for his
valuable guidance and moral support. His immense knowledge and plentiful experience have
encouraged me in all the time of my academic and daily life.

I am very thankful to Anupam Sanghi for providing me the unparalleled guidance. The
conversations with him have always brought me more clarity and understanding regarding my
project problems. I am also thankful to Kapil Khurana for his mentoring on several occasions.

I also want to thank all my lab mates specially Aman Sachan and Mukul Sharma for
their invaluable comments and constructive criticism, which made my thesis stronger and more
precise.

Finally, I would also like to thank the Indian Institute of Science and the Department of
Computer Science and Automation for providing an excellent study environment. The learning

experience has been really wonderful here.

Abstract

Queries in the database application often appear in a hidden form. Further, encryption or
obfuscation may have been used to secure the application logic. Hidden Query Extraction
(HQE) is a new variant of query reverse-engineering problem where the ground-truth query
is additionally available but in a hidden form. This problem has diverse use cases ranging
from resurrecting legacy code to query rewriting. To address this problem, a tool named
‘UNMASQUE'’ follows the active-learning extraction algorithms to expose a basal class of hidden
warehouse queries.

In the real world, queries containing the set operators are common and they are also present
across the various benchmarks. The intersection operator is one of the widely used set opera-
tors. Therefore, if the hidden query contains the Intersection operator, the existing HQE tool
cannot extract the query correctly. This project will extract the hidden queries containing the
Intersection operator under certain assumptions. The extraction process will use some of the
existing modules of UNMASQUE as a black box. It will also overcome the challenges faced by
‘UNMASQUE’ in the case of the Intersection query. Furthermore, potent optimizations have

been done to reduce the extraction overheads.

1

Contents

Acknowledgements
Abstract

Contents

List of Figures
List of Tables

1 Introduction

2 UNMASQUE
2.1 UNMASQUE modules
2.1.1 From Clause Extractor,
2.1.2 Database Minimizer
2.1.3 Filter Predicates Extractor
2.1.4 Join Predicate Extractor Lo
2.1.5 Projected Attribute Extractor
2.2 Challenges

3 Problem Framework
4 Solution Overview

5 Unmasking Intersection
5.1 Extended DB Minimizer
5.2 Join Extractor
5.3 Filter Extractor

1l

ii

iii

vi

CONTENTS

5.4 Projection Extractor Lo 19
6 Experiments 22
7 Conclusion and Future Work 24
Bibliography 25
Appendix 26

v

List of Figures

1.1

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

6.1

OQu = Qu N O . . e 2
UNMASQUE Pipeline 4
Filter Predicate Cases 5
Hidden Query Qy 10
Database Instance Dy 10
Intersection Pipeline Architecture 11
®min on ‘DI 11
Mapping of rows in equi-join predicates 11
Connected Components 12
Components corresponding to Qpy 12
Components corresponding to Qpr, 13
Comparison of Minimization Time vs Extraction Time 23

List of Tables

3.1 Notations

vi

Chapter 1
Introduction

In Database Applications, queries are often present in a hidden form, and the encryption and
obfuscation may further secure the application logic. These types of queries are known as
hidden queries, and the executable of these queries is denoted by £. Hidden Query Extraction
(HQE) has recently been introduced to extract these types of queries. It is a novel variation of
the Query Reverse Engineering (QRE) problem where the ground-truth query is also available
in a hidden form that is not easily accessible. The generic problem tackled in QRE is as follows:
Given a database instance D; and a populated result R;, identify a candidate SQL query Q.
such that Q.(D;) = R; [4].

HQE can be defined as follows: Given a black-box application A containing a hidden query
Qn (in either SQL format or its imperative equivalent), and a Database instance Dy on which
A produces a populated result Ry, unmask Qg to reveal the original query (in SQL format) [3].

The presence of the hidden ground-truth query has several advantages: (i) The output query
is no longer dependent on the initial (Dy, R;) instance. (ii) Since the application executable can
be executed repeatedly on different databases, efficient and focused procedures can be designed
for precisely identifying Qy.

Database applications widely use the queries containing the Intersection operator. There-
fore, if the hidden query contains the Intersection operator, the existing HQE tool (i.e., UN-
MASQUE) cannot extract the query correctly because it will be out of its extractable domain
class.

We will extract the hidden Intersection queries containing SPJ (Select, Project, Join) clauses
under the certain assumptions. In the case of Intersection query, SPJ is widely used and present
across the various benchmarks. We have checked the TPC-H [2] and TPC-DS [1] benchmark,
in which we found that none of the Intersection queries contains GAOL (Group by, Aggregate,

Order By and Limit) clauses in the sub-queries. Currently, we are handling SPJ clause and

1

Select P, ,From T, Where J., and F,
Intersect
Select P, From T, Where J., and F,

Figure 1.1: Qg = Qu N 9y,

GAOL has been marked as future work. In the case of a Hidden Intersection query, the query
template we will handle for Qg is shown in Figure 1.1. The Qg template can be extended for
multiple Intersection operator in a similar manner.

In Figure 1.1, Pgx denotes the projected columns, Tgx denotes the set of extracted tables,
Jex denotes the equi-join predicates, Fgx denotes the Filter predicates and ‘X’ denotes either

‘U’ or ‘L’ where ‘U’ represents upper sub-query and ‘L’ represents lower sub-query of Qy.

Organization

In Chapter 2, we will discuss the background of the existing HQE tool and briefly describe
some of the modules we have used in our work with modifications. We will also discuss the
challenges faced by the existing tool in the case of the Hidden Intersection query. Chapter 3
will discuss the problem statement and the assumptions to address the problem. Chapter 4
will discuss the overview of our proposed work, and Chapter 5 will discuss the architecture
of the extraction process in detail. The experimental results on various aspects of the query
extraction process are discussed in Chapter 6. Finally, we have discussed the conclusions and

future work in Chapter 7.

Chapter 2

UNMASQUE

UNMASQUE is a platform-agnostic HQE tool that uses a variety of methods to reveal the
hidden query Qg via active-learning i.e., by examining the outputs of application executions on
specially built Database instances. It uses a sophisticated combination of Database Mutation
and Database Generation strategies to extract the hidden queries.

Currently, UNMASQUE can extract a substantial class of SPJGAOL (Select, Project, Join,
Group By, Aggregate, Order By and Limit) under certain assumptions [4]. The UNMASQUE
pipeline is shown in Figure 2.1 in which Database Mutation strategies are used to extract the
SPJ clauses from the queries, whereas Database Generation strategies are required for the
subsequent clauses (GAOL)[4]. The Query class that UNMASQUE can extract is defined as
Eztractable Query Class (EQC). It is defined as (i) All filter predicates are present on the non-
key columns and of the form column op value. Further, for numeric columns, op € {=, <, >,
<, >, between}, whereas for textual columns, op € {=, like}; (ii) Join graph is a sub-graph of
schema graph comprised of all valid PK-FK and FK-FK edges.

Currently, UNMASQUE cannot extract the hidden query containing the Intersection op-
erator. Therefore, if the hidden query Qg is of the form shown in Figure 1.1, in that case,

UNMASQUE will either extract the wrong query or throw an error.

2.1 UNMASQUE modules

Now, we will discuss some of the UNMASQUE modules that we have used in our work with

modifications.

2.1.1 From Clause Extractor

The following procedure is applied in order to identify whether a table T" is present in Qg or

not: Pick a table T and temporarily rename it to temp. Next, run the executable € on this

3

Where Clause Extractor N \
Join Filter Projected

Predicate Predicate Attribute
Extractor Extractor) Extractor

Database
Minimizer

From Clause
Extractor

>

Database Mutation

Database Generation
-
LIMIT Order By
Extractor Clause
Extractor
S

Figure 2.1: UNMASQUE Pipeline

Query
Assembler &
Checker

Group By
Clause

Extractor /

Aggregation
Extractor

mutated schema; if the database engine immediately throws an error, then the table T is part
of the hidden query; else, the execution will terminate after a short timeout period. At last,
the renamed table temp reverted to its original name. Perform this operation iteratively for all

the tables present in database instance Dy.

2.1.2 Database Minimizer

The database size for the enterprise database applications can be very large. Consequently,
running the Qg multiple times on a large database during the extraction process may take
an excessive amount of time. As a result, the UNMASQUE pipeline relies heavily on the
Database Minimizer module due to the performance point of view. So, Database Minimizer
is an important module used in the UNMASQUE pipeline. It addresses the row-minimality
problem, which is defined as: Given a Database instance Dy and an executable & producing a
populated result Ry on Dy, derive a reduced Database instance D, from Dy such that removing
any row from any table present in Qy results in empty or null output [4].

To produce D,,;, from Dy the following elementary procedures are applied by the Database
Minimizer: Pick a table T from the set of extracted tables that contains more than one row,
and divide it roughly into two halves. Run &€ on the first half, and if the output result is
populated, retain the first half. Otherwise, retain only the second half.

In the case of queries belonging to the EQC class, there always exists a D, denoted by

D!, where each table in T's contains only a single row.

| Case | Ry |=¢ I [Ry |=¢ | Predicate Type Action Required

1 No No imin < A < imax No Predicate
2 Yes No | <A <imax Find [
3 No Yes imin <AS<Tr Find r
4 Yes Yes I<A<r Find [and r

Figure 2.2: Filter Predicate Cases

2.1.3 Filter Predicates Extractor

We iteratively check each set of (non-key) columns present in T, for its presence in a filter
predicate (note that as per FQC' class each such attribute can appear in at most one filter
predicate), Similarly for Intersection query each attribute can appear in at most one filter
predicate of each sub-query. For ease of presentation, we will explain this module in context of
integer columns.

Numeric Predicates: Let [imin, imax] be the value range of column A’s integer domain,
and assume a range predicate | < A < r, where 1 and r need to be identified. Note that all the
comparison operators (=, <, >, <, >, between) can be represented in this generic format — for
eg., A < 25 can be written as iy, < A < 24. To check for presence of a filter predicate on
column A, we first create a D™ instance by replacing the value of A in one row with iy, in
Diin , then run € and get the result — call it R;. We get another result — call it Ry, — by applying
the same process with i,.,. Now, the existence of a filter predicate is determined based on one
of the four disjoint cases shown in Figure 2.2. If the match is with Case 2 (resp. 3), we use a
binary-search-based approach over (imm, a] (resp. [a, imax)), to identify the specific value of 1
(resp. 1), where a is the value of column A that is present in D, . After this search completes,
the associated predicate is added to the filter predicate. Finally, Case 4 is a combination of
Cases 2 and 3, and can therefore be handled in a similar manner. Since the value of only one
column (say t.A) is changed at a time, it ensures that any change in the result is solely due to
the change in t.A. This enumerative method ensures that we correctly identify filter predicates
of the type column op value with op € (=, <, >, <, >, between) for each numeric database

column [3].

2.1.4 Join Predicate Extractor

To extract the key-based equi-join predicates in the Qy, it begins with SG, the schema graph of
the original database composed of all semantically valid key connecting edges. They generate an
(undirected) induced sub-graph from SG, where vertices represent the key columns in tg, and

edges represent potential join connections between them. The sub-graph is then transitively

closed into a set of cliques using the transitive property of inner equi-joins. Finally, by keeping
one of the fundamental n-length cycles (n = number of nodes in the clique), each clique is turned
into a cycle graph, hereafter referred to as a cycle. The candidate join-graph is the collection
of cycles. They pick a cycle CYC' from the candidate join-graph and remove a pair of edges
(e1, €2) which results in partitioning the cycle into two new connected components. Then, the
new components are converted back into smaller cycles (CYC} and CYCy) by reintroducing
the relevant missing edge. Next, it will negate all the column values in D,;, corresponding to
the vertices present in C'Y C;. After that, it will run € on this mutated database and check for
the result; if the result is empty, it concludes that at least one of the edges, either e; or e, is
present in the join-graph. So, both e; and ey are returned to the parent cycle C'Y C'; otherwise,

CYC(C, and CY s are included as new candidates in the candidate join-graph.

2.1.5 Projected Attribute Extractor

The projected columns in the Select clause can appear in various forms — native database
columns, renamed columns, aggregated columns, and computed columns. In order to extract
these columns, this module treats each result column as an (unknown) constrained scalar func-
tion of one or more database columns. It identifies the scalar function, assuming linear de-
pendence on the column variables. Let O denote the visible output column, and A, B be
the (unknown) database columns that may affect O. Under the assumption of linearity, the

function connecting A and B to O can be expressed with the following equation structure:
aA+bB + cAB +d =0

where a, b, ¢ and d are constant coefficients. With this framework, the extraction process
proceeds with identifying the dependency list, which establishes the identities of A and B,

followed by the function identification, which computes the values of a, b, ¢ and d.

2.2 Challenges
Now, we will discuss the challenges faced by some of the UNMASQUE modules in the case of

hidden Intersection queries.

(i) Table mapping problem: The From Clause Extractor is only able to extract the set of
tables present in the Qp, but will not be able to map the extracted tables to their respective
sub-query in Q.

(i) Incorrect D in: When the Database Minimizer tries to minimize the given Database in-
stance Dy, it will produce the D,,;, on which € will produce empty result, and the UNMASQUE

pipeline will not proceed further. This problem may occur in the case of Intersection query in

which an attribute having mutually disjoint filter range predicate may present across all the
sub-queries. Therefore, we need to find another way to compute D, such that it results in
the populated output.

(iii) Additional Filter predicates: When the Filter Predicates Extractor tries to extract
the predicates present in the Q, it will extract the additional predicates consisting of the ‘=’
operator on the attributes that are part of the Select clause of the hidden query. When the
extractor mutates the attributes’ value present in the Select clause, the output result of the &€
will be empty due to its corresponding projected attribute in another sub-query of Qy.

(iv) Incorrect Filter predicates: If the Qu and Qy, contains the overlapping filter predicate on
the same attribute, then filter extractor may extract the subsumed predicate on that attribute.
For eg. c_acctbal < 4000 in Qy and c_acctbal between 1000 and 5000 in Qp, then the extracted
predicate will be c_acctbal between 1000 and 4000. The extracted predicate is incorrect because
there is no lower bound on attribute c_acctbal in Qy but the extracted predicate is putting a
lower bound of 1000.

(v) Mapping of Filter predicates: The Filter Predicates Extractor is only able to extract
the set of predicates present in the Qy, but will not be able to map the extracted predicates to

their respective sub-query in Q.

Chapter 3

Problem Framework

This chapter will discuss the problem statement and the underlying assumptions of our proposed

solution.

Problem Statement:

Given a hidden query Qg containing the Intersection operator, and a database instance D on

which Qg produces populated result R;, unmask Qg to reveal the original query.

Assumptions

In this work, we will extract the hidden Intersection queries containing SPJ (Select, Project,

Join) clauses under the following assumptions:
1. Attributes having the Filter predicates should not be the part of the Select clause.

2. There must be an attribute present in all the sub-queries having mutually disjoint filter

range predicate.
3. All the tables present in the sub-queries must be joined via equi-join.

4. Each key column can appear in at most one equi-join predicate p. However, that p
can present across multiple sub-queries. We can see these types join predicates on the

databases of type star schema.

Table 3.1: Notations

’ SymbolH Meaning H SymbolH Meaning
& Application Executable D min Minimized database
Qx Hidden Query D; Database instance
Qp Extracted Query Diput Mutated database instance
Qu Upper sub-query Drmut Mutated D,
Qr Lower sub-query v Attribute’s domain value
Qpu Extracted Upper sub-query SG Schema Graph of Dy
Qpr, Extracted Lower sub-query EQC Extractable Query Class
Dt Database with at most t rows in || C Connected components list

tables of Qg

Chapter 4

Solution Overview

This chapter will give an overview of our extraction approach on the hidden Intersection query

Qy and the database instance Dy, shown in Figure 4.1 and Figure 4.2, respectively. The

Intersection extraction pipeline is shown in Figure 4.3.

select c_mktsegment as segment

from customer, nation

where c_acctbal <3000 and c_nationkey = n_nationkey

and n_name= 'BRAZIL'

intersect

select c_mktsegment

from customer, nation, orders

where c_acctbal between 4000 and 5000 and c_nationkey = n_nationkey
and c_custkey = o_custkey and o_orderdate < '1995-03-15'

Figure 4.1: Hidden Query Qg

Customer Nation Orders Output
A e e e s e el P e
2500 BUILDING 1 FRANCE 2 1996-03-02 €
1 1000 FURNITURE 2 BRAZIL 9 il 1995-04-07 BUILDING
2 4500 BUILDING 3 CANADA 10 3 1994-02-10
3 2458 MACHINERY

1
2
3
4

Figure 4.2: Database Instance D

Firstly, we will input the given Qg and Dy to the existing From Clause Extractor module of
UNMASQUE. This module will extract the set of tables T'r present in Q. Furthermore, the

extracted set extracted tables Ty and Dy will be given as input to our Extended DB Minimizer

module.

10

Qi Dr| From Clause
|:{> =

Extractor UNMASQUE

Figure 4.3: Intersection Pipeline Architecture

This module follows an algorithm that performs binary halving on each table in T'g. After
each halving, it checks the output result of by running the executable €. If it gets the populated
result on any of the halves, it retains that half; otherwise, it further partitions both the halves
into two more halves, and checks for the combination that produces the populated result. The

output produced by this module on D; is shown in Figure 4.4.

Customer Nation Orders Output

2500 BUILDING BRAZIL 1994-02-10 BUILDING
3 2 4500 BUILDING

Figure 4.4: D, on Dy

After getting the D,,;,, we will check the cardinality of each table T" present in the D;,. If
any of the tables contain two rows (because of our assumption 2), the pipeline proceeds with
our Join Extractor module; otherwise, by assuming that the Qg belongs to the EQC, it will
call the UNMASQUE pipeline.

The Join Extractor module takes D ,;, and the schema graph of the database as input. The
schema graph contains the vertices and edges where each vertex represents a key column, and
an edge represents the linkage between a pair of key columns. This module will use the Join
Predicate Eztractor module of UNMASQUE, which will extract all the equi-join predicates

present in the Q.

Nation Customer Orders

e |
2 BRAZIL _\—: 2500 BUILDING / 1994-02-10
3! 2 4500 BUILDING

Figure 4.5: Mapping of rows in equi-join predicates

11

The extracted join predicates will not contain any information about the mapping to their
respective sub-queries in the Qy. Therefore, the Join Fxtractor module will extract this infor-
mation in the following manner: For each pair of attributes present in the extracted equi-join
predicates, it mutates the attribute’s value on a tuple by tuple basis, and finds the mapping of
tuples between the pair of attributes, as shown in Figure 4.5.

Now, we will replicate the tuple of the tables consisting of only one row in the D,.;,, and
getting joined with all the tuples of the tables having two rows (same pair of attributes) as

shown in Figure 4.6.

Nation Customer Orders
[nationkey | n_name _
2 R " 2500 BUILDING 3 1994-02-10
-2 BRAZIL —— 3 -2 4500 BUILDING /

Figure 4.6: Connected Components

In this Figure, the Nation table consists of only one row in the D,;, and getting joined
with all the rows of the Customer table on the same pair of attributes (i.e., n_nationkey,
c_nationkey). So, we will replicate the tuple in the Nation table and change its value to v on
the n_nationkey attribute. Furthermore, we will also change the value of any one mapped rows
in the Customer table on attribute c_nationkey by the same value v (i.e., attibute’s domain
value).

Replication of tuples will form the two connected components graph from a single compo-
nent, where each vertex denotes a tuple, and an edge denotes the connection between a pair of
tuples. Each of the connected components will work as D! for a sub-query in the Qy, and will
help in mapping all the extracted tables and predicates to their respective sub-queries.

After getting the connected components, we will use the existing Filter Predicates Extrac-
tor module to extract all the filter predicates present in the D,;,, and map these extracted

predicates to their respective sub-query using the component graph.

Nation Customer
PR B T
BRAZIL. —— 2500 BUILDING

Projection: c_mktsegment as segment, From: nation, customer Filter: c_nationkey = n_nationkey, c_acctbal <= 2999,
n_name = 'BRAZIL'

Figure 4.7: Components corresponding to Qg

12

Nation Customer Orders

Tl e P Py

£2 BRAZIL — 4500 BUILDING —— 3 1994-02-10

Projection: c_ mktsegment, From: nation, customer, orders, Filter: c_nationkey = n_nationkey, c_custkey = o_custkey,
c_acctbal between 4000 and 5000, o_orderdate <= 1995-03-14

Figure 4.8: Components corresponding to Qg

In the case of the Intersection query, each of the columns in the Select clause of Qy will be
present in the extracted filter predicate containing the ‘=’ operator.

It is due to the mapping to their corresponding column in the Select clause of other sub-
queries. The Projected Columns modules will mutate each such predicates’ column and check
its effect on the output. If it still gets the populated result, it will add those predicates’ columns
to the Select clause of their respective component. The extracted predicates and the projected
columns is shown in Figure 4.7 and Figure 4.8. At last, the Query Assembler module will

assemble all the components and extracts the hidden query Qy.

13

Chapter 5
Unmasking Intersection

This chapter will discuss in detail about the modules that we have used in the Intersection

Pipeline Architecture in order to extract the hidden Intersection query.

5.1 Extended DB Minimizer

Dmin for the Intersection query

In the case of a hidden Intersection query, the maximum cardinality of a table present in D,;,
depends on the number of Intersection operators present in the Qp. In this section, we will

attempt to substantiate our assertion.

Lemma 1: Eristence of D** for the queries containing k Intersection operators.

Proof. We will be using the fact that the query belonging to FQC must have a single-row
database D! such that it produces a populated result (proved in [3]). As in the case of queries
containing intersection operators, each of the sub-queries will lie in the domain of EQC'. So,
if there are k Intersection operators, there will be k + 1 sub-queries. Based on D! for EQC,
the Dyin should be D*+1 but the same tuple can satisfy more than one sub-query. As per our
assumption, there should be at least one column with a mutually disjoint range predicate in
each of the sub-queries. Therefore, that column should have k + 1 different values in the D,
leading to a table of size k + 1. Hence, the D, will be D*+1,

This module is an extended version of the Database Minimizer which can produce D,
even if the Qg contains the Intersection operator. It takes a set of extracted tables Ty and the
database instance D; as input. The problem with the earlier minimizer was that if it does not
get the populated result on the first half of the table, it implicitly assumes that the result will
be in the second half, which was true for the queries belonging to the EQC' class. In the case

14

of the Intersection query, the minimum tuples required from a table 7" to produce a populated
result can lie across both the table halves. So explicitly, we need to check for the second half’s

result if the table’s first half fails to produce the populated result.

Algorithm 1: Eztended DB Minimizer
Data: Tg, Qg and Dy
Result: D,
foreach table T' in T do
while |T'| > 1 do
Divide T" into two halves Ty and 17,
T+ Ty
if (D7) #£ ¢ then
| Drop 17,
else
T + TL
if &(D7) # ¢ then
| Drop Ty
else
Divide T into two halves Ti;; and Ty
Divide T}, into two halves T, and Tro
T« Ty; Ty, ; // i, j €A1, 2}
if 3 (i, j) s.t. E(DPV) £ ¢ then
Drop Ty and T7,

if |T| =2 then
| break
else
| Partition Table
end
end
end
if |T| = 1 then
| break
end
end
end

The Extended DB Minimizer works in the following manner to produce the D, It picks
a table T from Tg, and divides it into roughly two halves (i.e., { Ty, T1}). Next, it runs the
€ on the first half, and if the output result is populated, it retains the first half; otherwise,
it runs € on the second half. If the output result on the second half is populated, it retains
the second half; otherwise, performs binary halving on both the halves of table such that, it
divides them into further two halves (i.e., { Ty, Tue} for Ty and {Ty;, Tre} for Tp). Then,

15

checks the populated result on all the possible four combinations (i.e., { Ty; Tr:}, {Tvs Tre},
{Tye Tri} and {Tys Trs}) as T. If the Qy contains only one Intersection operator, in that
case, the maximum cardinality of a table in D,,;, will be 2. Therefore, each of these tuples is
guaranteed to lie among one of the possible four combinations. The minimizer algorithm will
pick a combination that produces the populated result and reduce the table T' to that selected

combination.

Algorithm 2: Partition Table
Data: T
if |7 < 2(k+1) then
foreach row r in T do
Delete r from T
if (D) = ¢ then
| Restore r into T'
end

end

break
else

Divide T into 2(k + 1) parts

foreach part p in T do
Delete p from T'
if (D7) = ¢ then
| Restore p into T’
end

end

end

The above approach will work for the Qp containing at most one Intersection operator,
but if the Qy contains more than one Intersection operator, then all the possible combinations
may fail to produce the populated result. In that case, the minimizer algorithm will call the
Partition Table algorithm that will reduce the size of the table T to half in the worst case.
This algorithm assumes that there will be at most £ Intersection operator in the Qy. Based on
this assumption, the algorithm divides the table T" into 2(k + 1) parts and iteratively checks
the requirement of each part in order to get the populated output. If the output result is still

populated while discarding any part, discard it; otherwise, it retains that part.

Time Complexity

Let T4, Ti41, Ty be the set of tables present in T'gy and T, T11,.....T in T'gr,. Tm denotes
|T5| * |T'ip1] * ... ¥ |[T's| (i-e., the product of table sizes) and 7, denotes |T| * |Tj41] * ... x [T}

16

where |T'| is the cardinality of table T.

We have used 7 (i.e., 7, + 7,) to denote the time taken by the application to operate
on the original database instance D; on which it produces the result R;. Consider the case
when the hidden query Qp contains at most one Intersection operator. In the worst case of the
algorithm, the table T" will be present in both Qy and Qy, (i.e., Try and Tg, are the same), and
the algorithm needs to execute the € at most six times in order to reduce the size of the table
T to its half (i.e., (T,n/2 + 74/2). Therefore, the time complexity of the algorithm in the worst
case will be 6*(7/2 + 7/4 +..+1) ie., O(7).

Consider the case when the Qy contains more than one Intersection operator, in this case
the minimizer need to execute the executable € for at most 2k times in a single iteration, which
guarantees to reduce the size of table T to its half in the worst case. Hence, the time complexity
of the Partition Table algorithm in the worst case will be 2k*(7 4+ 7/2 + 7/4 +....1) i.e., O(kT
).

Therefore, the overall time complexity of the Fxtended DB Minimizer algorithm will be
O(kT).

5.2 Join Extractor

This module will extract all the equi-join predicates present in the Qg, and map these extracted
predicates to their respective sub-queries. It starts by taking the schema graph SG as input,
which would be an induced subgraph on the original schema graph of the database. In the SG,
vertices are the key columns in the Ty, whereas each edge denotes the join linkage between a
pair of key attributes. This algorithm will use the existing Join Predicate Ezxtractor module of
the UNMASQUE to extract the set of equi-join predicates present in the Qg [3]. However, it will
not extract any information about mapping these predicates to their respective sub-queries. In
the case of an Intersection query, the same equi-join predicate may present across the different
sub-queries. Therefore, to overcome this problem, we will find the mapping information of each
tuples, present across the tables whose attributes are the part of equi-join predicate. We will
get this information by mutating the attributes of equi-join predicates on a tuple basis.

For each pair of attributes (i.e., (as, a,)) present in the extracted join predicates, we will
check the cardinality of their respective table (i.e., (¢, t,))and based on that we will mutate
the values. These are the possible combinations of tuples present across (t, t,):

Case 1: t, and t, has only one row

%
7

In this case, both the rows (i.e., (1}, })) are getting joined with each other. This case is

automatically handled by the Join Predicate Extractor module.

17

Algorithm 3: Join Extractor

Data: D,;, and SG

JG E <
foreach

Join Predicate Extractor C < ¢ count < 0
(az, a,) in JGE do

if |tw| > |ty| ;
then

foreach row r’ int, ;
do

Mutate r¢ on a,
if (D) = ¢ then

C<—CU(7‘;,T§);
count <+ count + 1
end

e

restore t,
nd

if count = 2 then

Replicate 7 in t, as)%
For any value of i € (0, 1)
Mutate 7*! on a, and 7, on a, by v

e
Ise

@

Replace (%, 7)) in C by (rh, 7J*1)
nd
if |t,| = |t,| and |t;| =2 then

foreach row !, in t, do

foreach row r} in t, do

. . . i j

if a, = a, in (ry, r}) then
Mutate a, and a, to a value v

if &(Dmut) £ ¢ then

min

| C«CuU(ri, 7))

e
end

end
foreach

end
Restore t, and t,
end
end
nd

(az, a,) in JGg do

if |t,| = |t,| and |t;] =1 then
‘ C%Cu(r;,'r’g)

end
end

// similary for |t,| < [t,]

// i e (0, 1)

18

Case 2: Both t, and t, have two rows

In this case, we compare the pair of attributes present in the equi-join predicates on a tuple
basis. If the values are the same, we mutate their values simultaneously to a new value v and
run the &; if the output result is populated, it means they are getting joined with each other.
We will restore the values of the tuples.

Case 3: t, has two rows while t, has only one row (vice-versa)

We will mutate the join attribute of the table that has two rows. In this case, £, has two rows,
so that we will mutate its attribute a, on a tuple basis. For each tuple r’, we will mutate a,
and check the output result of &; if it is empty, it means r’ is getting joined by ri. We will
restore the tuple value.

On attribute (a,, a,), if both the rows in ¢, are getting joined by the row in table t,, then
we will replicate the tuple present in ¢,. After replication, we will change the attribute a, with
a value v on the replicated tuple and will also change a, for any one tuple in the ¢, by the same
value. It results in the formation of two connected components from the one component where
each component works as D! for the sub-queries present in the Q. With the help of connected

components, we will map all the extracted join predicates to their respective sub-queries.

Time Complexity

Let E be the set of edges in the schema graph SG and C*® denotes the set of key columns
in Tg. The time complexity of the Join Predicate Ezxtractor module to extract the equi-join
predicate will be O(F x |C*¥|?) discussed in [3]. Consider the number of distinct equi-join
predicates present in the hidden Intersection query as n. For each extracted equi-join predicate,
this algorithm mutates the key-column and executes the € on mutated D,,;, which will take

constant time. So, the overall time complexity of this algorithm will be O(n + E * |C*¥|?).

5.3 Filter Extractor
This module will use the existing Filter Predicate Extractor module of UNMASQUE [3]. It

will take the extracted list of connected component as input where each component represents
in which vertices represents the tuples and edge represents the connection between the tuples.
So, we will extract predicates on each component and map them accordingly to their respective

sub-queries.

5.4 Projection Extractor

This module will extract all the attributes in the Select clause of sub-queries present in Qy. It

takes a refined filter list RF'L as input consists of all the Filter predicates having ‘=" operator.

19

It also requires the information about the maximum cardinality of the tables present in Dy,
to find the number of Select clause present in Q. We have shown the Projection FExtractor

algorithm for one Intersection operator i.e., the maximum cardinality of the tables will be two.

Algorithm 4: Projection Extractor

Data: RFL, C
Result: y = 2"
PL + ¢

output < E(Dyin)
foreach elt in output do
L+ ¢

foreach p in RFL do

if p.val = elt then
| L+~ LUp
end
end
oreach p;, ps in L do
Choose a different value for py, po’s attribute
if &(Dmut) £ ¢ and v € output then

PL + PL U (p;.att, ps.att)

=t

break
end
Restore py1, po’s attribute
end
end

To identify all the attributes in the Select clause of Qy, the following elementary procedure
is applied: For each attributes in the populated result of D ;,, it extracts all the predicates from
RFL whose value is same as attribute’s value and stores them in an empty list L. It picks two
predicates at a time from list L, and change the values of both predicate’s attribute to a value
v in their respective component. Next, it runs the executable € and checks the output result;
if it is populated and v is present in the output, then it adds the selected predicates’ attribute
to the projection list of their respective component; otherwise, choose another pair and repeat
the process. At last, it will return the Projection List PL containing all the attributes present

in the Select clause and we can map these predicates using the connected components.

Time Complexity

Let us assume that the number of attributes present in the output of the hidden query is ¢,
and the number of predicates present in the RFL is n. So for each output column, we need to
once iterate the RFL. Therefore, it will be of O(cn).

20

In the worst case, the size of list L will be O(n), when all the predicates have the same
value. So we need to perform (];[) operations to find the correct pairs of predicates present
in the Select clause of QQy, and we will do this operation for each of the columns present in

the output. So, it will be O(cn?). Therefore, the overall time complexity of the Projection
Extractor algorithm will be O(cn?).

21

Chapter 6
Experiments

The proposed intersection extractor is implemented in Python 3.6 and integrated with the ex-
isting UNMASQUE codebase. We have broadened the extractable domain of Hidden Query
Extraction. Our experiments are carried out on a vanilla PostgreSQL 11 database platform
(Intel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux) with default primary-key
indices. We have reported the extraction overhead to unmask the hidden queries containing
the intersection operator. To conduct a better evaluation, we need complexity in queries that
TPC-H and TPC-DS benchmarks provide. These complex queries are derived from the TPC-H
and TPC-DS benchmarks so that all of our assumptions hold.

All these derived benchmark queries are listed in the appendix. The total end-to-end time
taken to extract each of the seven queries on a 1 GB and 10 GB initial instance (with a pop-
ulated result) is shown in Figure 6.1a and 6.1b. The first three queries are derived from the
TPC-H benchmark, and the other four are derived from the TPC-DS benchmark. In addition,
the breakup of the Intersection extractor module and the Minimization time is also shown in

the figure.

We have done the manual verification of all the output extracted queries. The extraction
times are practical for offline analysis environments. When we drilled down into the performance
profile, intersection extraction time was independent of the initial database Dy size. This module
operates with a miniscule database, so the extraction overhead is less. By the definition of D;,,
the Intersection extractor module time for both 1GB and 10GB database instances will similar.
Our extraction process is database scale independent.

We are internally sampling the database tables before running Extended DB Minimizer.

Sampling is a non-deterministic process where sometimes few tables are left unsampled. If a

22

SF1 SF10
25 180

20

80
10 E

60

40

20 I
0 - =

0

Execution Time (in sec)
Execution Time (in sec)

(%]

Queryl Query2 Query3 Query4 Query5 Query6 Query7 Queryl Query2 Query3 Query4 QueryS Query6 Query7

B Minimization time m Extraction Time ® Minimization Time ~ m Extraction Time

(a) Extraction Time Comparison on 1GB (b) Extraction Time Comparison on 10GB

Figure 6.1: Comparison of Minimization Time vs Extraction Time

table left unsampled, then the minimizer goes for the full copy of the table in order to minimze
the database. Sampling is the reason for the variable nature of Minimization time. As a case in
point, Query 7 on a 1GB database instance has the second largest Minimization time, whereas

Query 3 on a 10GB database instance has the second largest Minimization time.

23

Chapter 7

Conclusion and Future Work

In this work, we have extracted the hidden query Qg containing the Intersection operator, which
will extend the scope of the existing HQE tool (i.e., UNMASQUE). Earlier, the UNMASQUE
could only handle the Union among the set operators. We have also extended the working of
Database Minimizer such that it will produce D* instead of D! in the case of the Intersection
query. The extraction process of the Intersection query is independent of the database sizes
as the detection of the Intersection query is confirmed only after the Fxtended DB Minimizer
module.

We have extracted the Intersection query only in the case of the SPJ clause as they are
widely used, and in the future, we will try to extend its scope for the GAOL clause. We will

also try to relax our assumption for the extraction of the Intersection query.

24

Bibliography

[1] TPC-DS. www.tpc.org/tpcds/, . 1
[2] TPC-H. www.tpc.org/tpch/, . 1

[3] K. Khurana and J. Haritsa. Opaque query extraction. technical report. https://dsl.
cds.iisc.ac.in/publications/report/TR/TR-2021-02.pdf, 2021. Indian Institute of
Science. 1, 5, 14, 17, 19

[4] K. Khurana and J. Haritsa. Shedding Light on Opaque Application Queries. Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, Xi’an, China, June 2021. 1, 3, 4

25

www.tpc.org/tpcds/
www.tpc.org/tpch/
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-02.pdf
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-02.pdf

Appendix

Hidden Query Qg

Query 1

select c_mktsegment as segment

from customer,nation

where c_acctbal < 3000 and c_nationkey = n_nationkey and n_name = ‘BRAZIL’
intersect

select c_mktsegment

from customer,nation,orders

where c_acctbal between 1000 and 5000 and c_nationkey=n_nationkey and c_custkey = o_custkey
and n_name = ‘ARGENTINA’;

Query 2

select o_orderstatus, o_totalprice

from customer,orders

where c_custkey = o_custkey and o_orderdate < date ‘1995-03-10’

intersect

select o_orderstatus, o_totalprice

from lineitem, orders

where o_orderkey = l_orderkey and o_orderdate > date ‘1995-03-10" and 1_shipmode = ‘AIR’;
Query 3

select p_container,p_retailprice,ps_availqty

from part,supplier,partsupp

where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_brand=‘Brand45’
intersect

select p_container,p_retailprice,ps_availqty

from part,supplier,partsupp

where p_partkey = ps_partkey and s_suppkey=ps_suppkey and p_brand=‘Brand15’ and p_size

26

> 10;

Query 4

select cs_quantity,cs_wholesale_cost

from catalog_sales,customer_demographics

where cs_bill_cdemo_sk = c¢d_demo_sk and cs_sales_price <50 and cd_education_status = ‘Col-
lege’

intersect

select cs_quantity,cs_wholesale_cost

from catalog_sales,customer

where cs_bill_customer_sk = c_customer_sk and cs_sales_price between 70 and 150;

Query 5

select c_first_ name,c_last_name

from customer, customer_address

where c_current_addr_sk = ca_address_sk and c_birth_year < 1950 and c_birth_country = ‘ICE-
LAND’

intersect

select c_first_name,c_last_name

from customer, customer_demographics

where c_current_cdemo_sk = cd_demo_sk and c_birth_year between 1956 and 1996 and cd_education_status
= ‘College’;

Query 6

select c_first_name, ca_country

from customer_address,customer,date_dim

where ca_address_sk = c_current_addr_sk and d_date_sk = c_first_sales_date_sk and c_birth_country
= ‘AUSTRALIA’

intersect

select c_last_name,ca_country

from customer_address, customer,date_dim

where ca_address_sk = c_current_addr_sk and d_date_sk = c_first_sales_date_sk and c_birth_country
= ‘HUNGARY’;

Query 7

select cs_quantity, cs_wholesale_cost, d_day_name, c_first_name

from catalog_sales, customer, date_dim

where cs_bill_customer_sk = c_customer_sk and d_date_sk = c_first_sales_date_sk and cs_sales_price
< 50

27

intersect

select cs_quantity, cs_wholesale_cost, d_day_name, c_first_ name

from catalog_sales, customer, date_dim

where cs_bill_customer_sk = c_customer_sk and d_date_sk = c_first_sales_date_sk and cs_sales_price
between 70 and 150 and d_year between 1998 AND 1998 + 2;

Extracted Query Qg

Query 1

Select c_mktsegment as segment

From customer, nation

Where n_nationkey = c_nationkey and c_acctbal < 2999.0 and n_name = ‘BRAZIL’
Intersect

Select ¢_mktsegment

From customer, nation, orders

Where n_nationkey = c_nationkey and c_custkey = o_custkey and c_acctbal between ‘1000.0’
and ‘5000.0” and n_name = ‘ARGENTINA’;

Query 2

Select o_orderstatus, o_totalprice

From customer, orders

Where c_custkey = o_custkey and o_orderdate < ‘1995-03-09’

Intersect

Select o_orderstatus, o_totalprice

From lineitem, orders

Where o_orderkey = l_orderkey and I_shipmode = ‘AIR’ and o_orderdate > ‘1995-03-11" ;
Query 3

Select p_retailprice, ps_availqty, p_container

From part, partsupp, supplier

Where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_brand = ‘Brand15’ and
psize > 11

Intersect

Select p_retailprice, ps_availqty, p_container

From part, partsupp, supplier

Where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_brand = ‘Brand45’;
Query 4

Select cs_wholesale_cost, cs_quantity

28

From catalog_sales, customer_demographics

Where cd_demo_sk = cs_bill_cdemo_sk and cs_sales_price < 49.0 and cd_education_status =
‘College’

Intersect

Select cs_wholesale_cost, cs_quantity

From catalog_sales, customer

Where c_customer_sk = cs_bill_customer_sk and cs_sales_price between ‘70.0" and ‘150.0;
Query 5

Select c¢_last_name, c_first_name

From customer, customer_address

Where c_current_addr_sk = ca_address_sk and c_birth_year < 1949 and c_birth_country = ‘ICE-
LAND’

Intersect

Select c_last_name, c_first_name

From customer, customer_demographics

Where c_current_cdemo_sk = cd_demo_sk and c_birth_year between ‘1956” and ‘1996 and cd_education_sta
= ‘College’;

Query 6

Select ca_country, c_last_name

From customer, customer_address, date_dim

Where c_current_addr_sk = ca_address_sk and c_first_sales_date_sk = d_date_sk and c_birth_country
= ‘HUNGARY’

Intersect

Select ca_country, c_first_name

From customer, customer_address, date_dim

Where c_current_addr_sk = ca_address_sk and c_first_sales_date_sk = d_date_sk and c_birth_country
= ‘AUSTRALIA’;

Query 7

select cs_quantity,cs_wholesale_cost,d_day_name, c_first_name

from catalog_sales, customer, date_dim

where cs_bill_customer_sk = c_customer_sk and d_date_sk = c_first_sales_date_sk and cs_sales_price
< 49.0

Intersect

select cs_quantity, cs_wholesale_cost, d_day_name, c_first_name

from catalog_sales, customer, date_dim

29

where cs_bill_customer_sk = c_customer_sk and d_date_sk = c_first_sales_date sk and d_year be-
tween ‘1998 and ‘2000’ and cs_sales_price between ‘70.0” and ‘150.0’;

30

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 UNMASQUE
	2.1 UNMASQUE modules
	2.1.1 From Clause Extractor
	2.1.2 Database Minimizer
	2.1.3 Filter Predicates Extractor
	2.1.4 Join Predicate Extractor
	2.1.5 Projected Attribute Extractor

	2.2 Challenges

	3 Problem Framework
	4 Solution Overview
	5 Unmasking Intersection
	5.1 Extended DB Minimizer
	5.2 Join Extractor
	5.3 Filter Extractor
	5.4 Projection Extractor

	6 Experiments
	7 Conclusion and Future Work
	Bibliography
	Appendix

