
Incorporating Intersection in Hidden Query Extraction

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
IN

Faculty of Engineering

BY

Abhinav Jaiswal

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2022

Declaration of Originality

I, Abhinav Jaiswal, with SR No. 04-04-00-10-42-20-1-18011 hereby declare that the

material presented in the thesis titled

Incorporating Intersection in Hidden Query Extraction

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2020-2022.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: 30-06-2022 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

© Abhinav Jaiswal

June, 2022

All rights reserved

DEDICATED TO

My Friends and Family

Acknowledgements

First of all, I would like to express my sincere gratitude to my project advisor, Prof. Jayant

R. Haritsa for giving me an opportunity to work on this project. I am thankful to him for his

valuable guidance and moral support. His immense knowledge and plentiful experience have

encouraged me in all the time of my academic and daily life.

I am very thankful to Anupam Sanghi for providing me the unparalleled guidance. The

conversations with him have always brought me more clarity and understanding regarding my

project problems. I am also thankful to Kapil Khurana for his mentoring on several occasions.

I also want to thank all my lab mates specially Aman Sachan and Mukul Sharma for

their invaluable comments and constructive criticism, which made my thesis stronger and more

precise.

Finally, I would also like to thank the Indian Institute of Science and the Department of

Computer Science and Automation for providing an excellent study environment. The learning

experience has been really wonderful here.

i

Abstract

Queries in the database application often appear in a hidden form. Further, encryption or

obfuscation may have been used to secure the application logic. Hidden Query Extraction

(HQE) is a new variant of query reverse-engineering problem where the ground-truth query

is additionally available but in a hidden form. This problem has diverse use cases ranging

from resurrecting legacy code to query rewriting. To address this problem, a tool named

‘UNMASQUE’ follows the active-learning extraction algorithms to expose a basal class of hidden

warehouse queries.

In the real world, queries containing the set operators are common and they are also present

across the various benchmarks. The intersection operator is one of the widely used set opera-

tors. Therefore, if the hidden query contains the Intersection operator, the existing HQE tool

cannot extract the query correctly. This project will extract the hidden queries containing the

Intersection operator under certain assumptions. The extraction process will use some of the

existing modules of UNMASQUE as a black box. It will also overcome the challenges faced by

‘UNMASQUE’ in the case of the Intersection query. Furthermore, potent optimizations have

been done to reduce the extraction overheads.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 UNMASQUE 3

2.1 UNMASQUE modules . 3

2.1.1 From Clause Extractor . 3

2.1.2 Database Minimizer . 4

2.1.3 Filter Predicates Extractor . 5

2.1.4 Join Predicate Extractor . 5

2.1.5 Projected Attribute Extractor . 6

2.2 Challenges . 6

3 Problem Framework 8

4 Solution Overview 10

5 Unmasking Intersection 14

5.1 Extended DB Minimizer . 14

5.2 Join Extractor . 17

5.3 Filter Extractor . 19

iii

CONTENTS

5.4 Projection Extractor . 19

6 Experiments 22

7 Conclusion and Future Work 24

Bibliography 25

Appendix 26

iv

List of Figures

1.1 QH = QU \ QL . 2

2.1 UNMASQUE Pipeline . 4

2.2 Filter Predicate Cases . 5

4.1 Hidden Query QH . 10

4.2 Database Instance DI . 10

4.3 Intersection Pipeline Architecture . 11

4.4 Dmin on DI . 11

4.5 Mapping of rows in equi-join predicates . 11

4.6 Connected Components . 12

4.7 Components corresponding to QEU . 12

4.8 Components corresponding to QEL . 13

6.1 Comparison of Minimization Time vs Extraction Time 23

v

List of Tables

3.1 Notations . 9

vi

Chapter 1

Introduction

In Database Applications, queries are often present in a hidden form, and the encryption and

obfuscation may further secure the application logic. These types of queries are known as

hidden queries, and the executable of these queries is denoted by E. Hidden Query Extraction

(HQE) has recently been introduced to extract these types of queries. It is a novel variation of

the Query Reverse Engineering (QRE) problem where the ground-truth query is also available

in a hidden form that is not easily accessible. The generic problem tackled in QRE is as follows:

Given a database instance Di and a populated result Ri, identify a candidate SQL query Qc

such that Qc(Di) = Ri [4].

HQE can be defined as follows: Given a black-box application A containing a hidden query

QH (in either SQL format or its imperative equivalent), and a Database instance DI on which

A produces a populated result RI, unmask QH to reveal the original query (in SQL format) [3].

The presence of the hidden ground-truth query has several advantages: (i) The output query

is no longer dependent on the initial (DI, RI) instance. (ii) Since the application executable can

be executed repeatedly on di↵erent databases, e�cient and focused procedures can be designed

for precisely identifying QH.

Database applications widely use the queries containing the Intersection operator. There-

fore, if the hidden query contains the Intersection operator, the existing HQE tool (i.e., UN-

MASQUE) cannot extract the query correctly because it will be out of its extractable domain

class.

We will extract the hidden Intersection queries containing SPJ (Select, Project, Join) clauses

under the certain assumptions. In the case of Intersection query, SPJ is widely used and present

across the various benchmarks. We have checked the TPC-H [2] and TPC-DS [1] benchmark,

in which we found that none of the Intersection queries contains GAOL (Group by, Aggregate,

Order By and Limit) clauses in the sub-queries. Currently, we are handling SPJ clause and

1

Figure 1.1: QH = QU \ QL

GAOL has been marked as future work. In the case of a Hidden Intersection query, the query

template we will handle for QH is shown in Figure 1.1. The QH template can be extended for

multiple Intersection operator in a similar manner.

In Figure 1.1, PEX denotes the projected columns, TEX denotes the set of extracted tables,

JEX denotes the equi-join predicates, FEX denotes the Filter predicates and ‘X’ denotes either

‘U’ or ‘L’ where ‘U’ represents upper sub-query and ‘L’ represents lower sub-query of QH.

Organization

In Chapter 2, we will discuss the background of the existing HQE tool and briefly describe

some of the modules we have used in our work with modifications. We will also discuss the

challenges faced by the existing tool in the case of the Hidden Intersection query. Chapter 3

will discuss the problem statement and the assumptions to address the problem. Chapter 4

will discuss the overview of our proposed work, and Chapter 5 will discuss the architecture

of the extraction process in detail. The experimental results on various aspects of the query

extraction process are discussed in Chapter 6. Finally, we have discussed the conclusions and

future work in Chapter 7.

2

Chapter 2

UNMASQUE

UNMASQUE is a platform-agnostic HQE tool that uses a variety of methods to reveal the

hidden query QH via active-learning i.e., by examining the outputs of application executions on

specially built Database instances. It uses a sophisticated combination of Database Mutation

and Database Generation strategies to extract the hidden queries.

Currently, UNMASQUE can extract a substantial class of SPJGAOL (Select, Project, Join,

Group By, Aggregate, Order By and Limit) under certain assumptions [4]. The UNMASQUE

pipeline is shown in Figure 2.1 in which Database Mutation strategies are used to extract the

SPJ clauses from the queries, whereas Database Generation strategies are required for the

subsequent clauses (GAOL)[4]. The Query class that UNMASQUE can extract is defined as

Extractable Query Class (EQC). It is defined as (i) All filter predicates are present on the non-

key columns and of the form column op value. Further, for numeric columns, op 2 {=, <, >,

, �, between}, whereas for textual columns, op 2 {=, like}; (ii) Join graph is a sub-graph of

schema graph comprised of all valid PK-FK and FK-FK edges.

Currently, UNMASQUE cannot extract the hidden query containing the Intersection op-

erator. Therefore, if the hidden query QH is of the form shown in Figure 1.1, in that case,

UNMASQUE will either extract the wrong query or throw an error.

2.1 UNMASQUE modules

Now, we will discuss some of the UNMASQUE modules that we have used in our work with

modifications.

2.1.1 From Clause Extractor

The following procedure is applied in order to identify whether a table T is present in QH or

not: Pick a table T and temporarily rename it to temp. Next, run the executable E on this

3

Figure 2.1: UNMASQUE Pipeline

mutated schema; if the database engine immediately throws an error, then the table T is part

of the hidden query; else, the execution will terminate after a short timeout period. At last,

the renamed table temp reverted to its original name. Perform this operation iteratively for all

the tables present in database instance DI.

2.1.2 Database Minimizer

The database size for the enterprise database applications can be very large. Consequently,

running the QH multiple times on a large database during the extraction process may take

an excessive amount of time. As a result, the UNMASQUE pipeline relies heavily on the

Database Minimizer module due to the performance point of view. So, Database Minimizer

is an important module used in the UNMASQUE pipeline. It addresses the row-minimality

problem, which is defined as: Given a Database instance DI and an executable E producing a

populated result RI on DI, derive a reduced Database instance Dmin from DI such that removing

any row from any table present in QH results in empty or null output [4].

To produce Dmin from DI the following elementary procedures are applied by the Database

Minimizer : Pick a table T from the set of extracted tables that contains more than one row,

and divide it roughly into two halves. Run E on the first half, and if the output result is

populated, retain the first half. Otherwise, retain only the second half.

In the case of queries belonging to the EQC class, there always exists a Dmin denoted by

D1, where each table in TE contains only a single row.

4

Figure 2.2: Filter Predicate Cases

2.1.3 Filter Predicates Extractor

We iteratively check each set of (non-key) columns present in TE, for its presence in a filter

predicate (note that as per EQC class each such attribute can appear in at most one filter

predicate), Similarly for Intersection query each attribute can appear in at most one filter

predicate of each sub-query. For ease of presentation, we will explain this module in context of

integer columns.

Numeric Predicates: Let [imin, imax] be the value range of column A’s integer domain,

and assume a range predicate l  A  r, where l and r need to be identified. Note that all the

comparison operators (=, <, >, , �, between) can be represented in this generic format – for

eg., A < 25 can be written as imin  A  24. To check for presence of a filter predicate on

column A, we first create a Dmin
mut instance by replacing the value of A in one row with imin in

Dmin , then run E and get the result – call it R1. We get another result – call it R2 – by applying

the same process with imax. Now, the existence of a filter predicate is determined based on one

of the four disjoint cases shown in Figure 2.2. If the match is with Case 2 (resp. 3), we use a

binary-search-based approach over (imin, a] (resp. [a, imax)), to identify the specific value of l

(resp. r), where a is the value of column A that is present in Dmin . After this search completes,

the associated predicate is added to the filter predicate. Finally, Case 4 is a combination of

Cases 2 and 3, and can therefore be handled in a similar manner. Since the value of only one

column (say t.A) is changed at a time, it ensures that any change in the result is solely due to

the change in t.A. This enumerative method ensures that we correctly identify filter predicates

of the type column op value with op 2 (=, <, >, , �, between) for each numeric database

column [3].

2.1.4 Join Predicate Extractor

To extract the key-based equi-join predicates in the QH, it begins with SG, the schema graph of

the original database composed of all semantically valid key connecting edges. They generate an

(undirected) induced sub-graph from SG, where vertices represent the key columns in tE, and

edges represent potential join connections between them. The sub-graph is then transitively

5

closed into a set of cliques using the transitive property of inner equi-joins. Finally, by keeping

one of the fundamental n-length cycles (n = number of nodes in the clique), each clique is turned

into a cycle graph, hereafter referred to as a cycle. The candidate join-graph is the collection

of cycles. They pick a cycle CY C from the candidate join-graph and remove a pair of edges

(e1, e2) which results in partitioning the cycle into two new connected components. Then, the

new components are converted back into smaller cycles (CY C1 and CY C2) by reintroducing

the relevant missing edge. Next, it will negate all the column values in Dmin corresponding to

the vertices present in CY C1. After that, it will run E on this mutated database and check for

the result; if the result is empty, it concludes that at least one of the edges, either e1 or e2 is

present in the join-graph. So, both e1 and e2 are returned to the parent cycle CY C; otherwise,

CY C1 and CY C2 are included as new candidates in the candidate join-graph.

2.1.5 Projected Attribute Extractor

The projected columns in the Select clause can appear in various forms – native database

columns, renamed columns, aggregated columns, and computed columns. In order to extract

these columns, this module treats each result column as an (unknown) constrained scalar func-

tion of one or more database columns. It identifies the scalar function, assuming linear de-

pendence on the column variables. Let O denote the visible output column, and A, B be

the (unknown) database columns that may a↵ect O. Under the assumption of linearity, the

function connecting A and B to O can be expressed with the following equation structure:

aA + bB + cAB + d = O

where a, b, c and d are constant coe�cients. With this framework, the extraction process

proceeds with identifying the dependency list, which establishes the identities of A and B,

followed by the function identification, which computes the values of a, b, c and d.

2.2 Challenges

Now, we will discuss the challenges faced by some of the UNMASQUE modules in the case of

hidden Intersection queries.

(i) Table mapping problem: The From Clause Extractor is only able to extract the set of

tables present in the QH, but will not be able to map the extracted tables to their respective

sub-query in QH.

(ii) Incorrect Dmin: When the Database Minimizer tries to minimize the given Database in-

stance DI, it will produce the Dmin on which E will produce empty result, and the UNMASQUE

pipeline will not proceed further. This problem may occur in the case of Intersection query in

6

which an attribute having mutually disjoint filter range predicate may present across all the

sub-queries. Therefore, we need to find another way to compute Dmin such that it results in

the populated output.

(iii) Additional Filter predicates: When the Filter Predicates Extractor tries to extract

the predicates present in the QH, it will extract the additional predicates consisting of the ‘=’

operator on the attributes that are part of the Select clause of the hidden query. When the

extractor mutates the attributes’ value present in the Select clause, the output result of the E

will be empty due to its corresponding projected attribute in another sub-query of QH.

(iv) Incorrect Filter predicates : If the QU and QL contains the overlapping filter predicate on

the same attribute, then filter extractor may extract the subsumed predicate on that attribute.

For eg. c acctbal < 4000 in QU and c acctbal between 1000 and 5000 in QL, then the extracted

predicate will be c acctbal between 1000 and 4000. The extracted predicate is incorrect because

there is no lower bound on attribute c acctbal in QU but the extracted predicate is putting a

lower bound of 1000.

(v) Mapping of Filter predicates: The Filter Predicates Extractor is only able to extract

the set of predicates present in the QH, but will not be able to map the extracted predicates to

their respective sub-query in QH.

7

Chapter 3

Problem Framework

This chapter will discuss the problem statement and the underlying assumptions of our proposed

solution.

Problem Statement:

Given a hidden query QH containing the Intersection operator, and a database instance DI on

which QH produces populated result RI, unmask QH to reveal the original query.

Assumptions

In this work, we will extract the hidden Intersection queries containing SPJ (Select, Project,

Join) clauses under the following assumptions:

1. Attributes having the Filter predicates should not be the part of the Select clause.

2. There must be an attribute present in all the sub-queries having mutually disjoint filter

range predicate.

3. All the tables present in the sub-queries must be joined via equi-join.

4. Each key column can appear in at most one equi-join predicate p. However, that p

can present across multiple sub-queries. We can see these types join predicates on the

databases of type star schema.

8

Table 3.1: Notations

Symbol Meaning Symbol Meaning

E Application Executable Dmin Minimized database
QH Hidden Query DI Database instance
QE Extracted Query Dmut

I
Mutated database instance

QU Upper sub-query Dmut

min
Mutated Dmin

QL Lower sub-query v Attribute’s domain value
QEU Extracted Upper sub-query SG Schema Graph of DI

QEL Extracted Lower sub-query EQC Extractable Query Class
Dt Database with at most t rows in

tables of QE

C Connected components list

9

Chapter 4

Solution Overview

This chapter will give an overview of our extraction approach on the hidden Intersection query

QH and the database instance DI, shown in Figure 4.1 and Figure 4.2, respectively. The

Intersection extraction pipeline is shown in Figure 4.3.

Figure 4.1: Hidden Query QH

Figure 4.2: Database Instance DI

Firstly, we will input the given QH and DI to the existing From Clause Extractor module of

UNMASQUE. This module will extract the set of tables TE present in QH. Furthermore, the

extracted set extracted tables TE and DI will be given as input to our Extended DB Minimizer

module.

10

Figure 4.3: Intersection Pipeline Architecture

This module follows an algorithm that performs binary halving on each table in TE. After

each halving, it checks the output result of by running the executable E. If it gets the populated

result on any of the halves, it retains that half; otherwise, it further partitions both the halves

into two more halves, and checks for the combination that produces the populated result. The

output produced by this module on DI is shown in Figure 4.4.

Figure 4.4: Dmin on DI

After getting the Dmin, we will check the cardinality of each table T present in the Dmin. If

any of the tables contain two rows (because of our assumption 2), the pipeline proceeds with

our Join Extractor module; otherwise, by assuming that the QH belongs to the EQC, it will

call the UNMASQUE pipeline.

The Join Extractor module takes Dmin and the schema graph of the database as input. The

schema graph contains the vertices and edges where each vertex represents a key column, and

an edge represents the linkage between a pair of key columns. This module will use the Join

Predicate Extractor module of UNMASQUE, which will extract all the equi-join predicates

present in the QH.

Figure 4.5: Mapping of rows in equi-join predicates

11

The extracted join predicates will not contain any information about the mapping to their

respective sub-queries in the QH. Therefore, the Join Extractor module will extract this infor-

mation in the following manner: For each pair of attributes present in the extracted equi-join

predicates, it mutates the attribute’s value on a tuple by tuple basis, and finds the mapping of

tuples between the pair of attributes, as shown in Figure 4.5.

Now, we will replicate the tuple of the tables consisting of only one row in the Dmin, and

getting joined with all the tuples of the tables having two rows (same pair of attributes) as

shown in Figure 4.6.

Figure 4.6: Connected Components

In this Figure, the Nation table consists of only one row in the Dmin and getting joined

with all the rows of the Customer table on the same pair of attributes (i.e., n nationkey,

c nationkey). So, we will replicate the tuple in the Nation table and change its value to v on

the n nationkey attribute. Furthermore, we will also change the value of any one mapped rows

in the Customer table on attribute c nationkey by the same value v (i.e., attibute’s domain

value).

Replication of tuples will form the two connected components graph from a single compo-

nent, where each vertex denotes a tuple, and an edge denotes the connection between a pair of

tuples. Each of the connected components will work as D1 for a sub-query in the QH, and will

help in mapping all the extracted tables and predicates to their respective sub-queries.

After getting the connected components, we will use the existing Filter Predicates Extrac-

tor module to extract all the filter predicates present in the Dmin, and map these extracted

predicates to their respective sub-query using the component graph.

Figure 4.7: Components corresponding to QEU

12

Figure 4.8: Components corresponding to QEL

In the case of the Intersection query, each of the columns in the Select clause of QH will be

present in the extracted filter predicate containing the ‘=’ operator.

It is due to the mapping to their corresponding column in the Select clause of other sub-

queries. The Projected Columns modules will mutate each such predicates’ column and check

its e↵ect on the output. If it still gets the populated result, it will add those predicates’ columns

to the Select clause of their respective component. The extracted predicates and the projected

columns is shown in Figure 4.7 and Figure 4.8. At last, the Query Assembler module will

assemble all the components and extracts the hidden query QH.

13

Chapter 5

Unmasking Intersection

This chapter will discuss in detail about the modules that we have used in the Intersection

Pipeline Architecture in order to extract the hidden Intersection query.

5.1 Extended DB Minimizer

Dmin for the Intersection query

In the case of a hidden Intersection query, the maximum cardinality of a table present in Dmin

depends on the number of Intersection operators present in the QH. In this section, we will

attempt to substantiate our assertion.

Lemma 1: Existence of Dk+1 for the queries containing k Intersection operators.

Proof. We will be using the fact that the query belonging to EQC must have a single-row

database D1 such that it produces a populated result (proved in [3]). As in the case of queries

containing intersection operators, each of the sub-queries will lie in the domain of EQC. So,

if there are k Intersection operators, there will be k + 1 sub-queries. Based on D1 for EQC,

the Dmin should be Dk+1, but the same tuple can satisfy more than one sub-query. As per our

assumption, there should be at least one column with a mutually disjoint range predicate in

each of the sub-queries. Therefore, that column should have k+ 1 di↵erent values in the Dmin,

leading to a table of size k + 1. Hence, the Dmin will be Dk+1.

This module is an extended version of the Database Minimizer which can produce Dmin

even if the QH contains the Intersection operator. It takes a set of extracted tables TE and the

database instance DI as input. The problem with the earlier minimizer was that if it does not

get the populated result on the first half of the table, it implicitly assumes that the result will

be in the second half, which was true for the queries belonging to the EQC class. In the case

14

of the Intersection query, the minimum tuples required from a table T to produce a populated

result can lie across both the table halves. So explicitly, we need to check for the second half’s

result if the table’s first half fails to produce the populated result.

Algorithm 1: Extended DB Minimizer
Data: TE, QE and DI

Result: Dmin

foreach table T in TE do
while |T | > 1 do

Divide T into two halves TU and TL

T TU

if E(Dmut

I
) 6= � then

Drop TL

else
T TL

if E(Dmut

I
) 6= � then

Drop TU

else
Divide TU into two halves TU1 and TU2

Divide TL into two halves TL1 and TL2

T TUi TLj ; // i, j 2 {1, 2}
if 9 (i, j) s.t. E(Dmut

I
) 6= � then

Drop TU and TL

if |T | = 2 then
break

else
Partition Table

end
end

end
if |T | = 1 then

break
end

end
end

The Extended DB Minimizer works in the following manner to produce the Dmin: It picks

a table T from TE, and divides it into roughly two halves (i.e., {TU, TL}). Next, it runs the

E on the first half, and if the output result is populated, it retains the first half; otherwise,

it runs E on the second half. If the output result on the second half is populated, it retains

the second half; otherwise, performs binary halving on both the halves of table such that, it

divides them into further two halves (i.e., {TU1, TU2} for TU and {TL1, TL2} for T L). Then,

15

checks the populated result on all the possible four combinations (i.e., {TU1 TL1}, {TU1 TL2},
{TU2 TL1} and {TU2 TL2}) as T . If the QH contains only one Intersection operator, in that

case, the maximum cardinality of a table in Dmin will be 2. Therefore, each of these tuples is

guaranteed to lie among one of the possible four combinations. The minimizer algorithm will

pick a combination that produces the populated result and reduce the table T to that selected

combination.

Algorithm 2: Partition Table
Data: T
if |T |  2(k + 1) then

foreach row r in T do
Delete r from T

if E(Dmut

I
) = � then

Restore r into T

end
end
break

else
Divide T into 2(k + 1) parts
foreach part p in T do

Delete p from T

if E(Dmut

I
) = � then

Restore p into T

end
end

end

The above approach will work for the QH containing at most one Intersection operator,

but if the QH contains more than one Intersection operator, then all the possible combinations

may fail to produce the populated result. In that case, the minimizer algorithm will call the

Partition Table algorithm that will reduce the size of the table T to half in the worst case.

This algorithm assumes that there will be at most k Intersection operator in the QH. Based on

this assumption, the algorithm divides the table T into 2(k + 1) parts and iteratively checks

the requirement of each part in order to get the populated output. If the output result is still

populated while discarding any part, discard it; otherwise, it retains that part.

Time Complexity

Let T i, T i+1,Tm be the set of tables present in TEU and T j, T j+1,T n in TEL. ⌧m denotes

|T i| ⇤ |T i+1| ⇤ ⇤ |Tm| (i.e., the product of table sizes) and ⌧n denotes |T j| ⇤ |T j+1| ⇤ ⇤ |T n|

16

where |T | is the cardinality of table T .

We have used ⌧ (i.e., ⌧m + ⌧n) to denote the time taken by the application to operate

on the original database instance DI on which it produces the result RI. Consider the case

when the hidden query QH contains at most one Intersection operator. In the worst case of the

algorithm, the table T will be present in both QU and QL (i.e., TEU and TEL are the same), and

the algorithm needs to execute the E at most six times in order to reduce the size of the table

T to its half (i.e., (⌧m/2 + ⌧n/2). Therefore, the time complexity of the algorithm in the worst

case will be 6*(⌧/2 + ⌧/4 +...+1) i.e., O(⌧).

Consider the case when the QH contains more than one Intersection operator, in this case

the minimizer need to execute the executable E for at most 2k times in a single iteration, which

guarantees to reduce the size of table T to its half in the worst case. Hence, the time complexity

of the Partition Table algorithm in the worst case will be 2k*(⌧ + ⌧/2 + ⌧/4 +....1) i.e., O(k⌧

).

Therefore, the overall time complexity of the Extended DB Minimizer algorithm will be

O(k⌧).

5.2 Join Extractor

This module will extract all the equi-join predicates present in the QH, and map these extracted

predicates to their respective sub-queries. It starts by taking the schema graph SG as input,

which would be an induced subgraph on the original schema graph of the database. In the SG,

vertices are the key columns in the TE, whereas each edge denotes the join linkage between a

pair of key attributes. This algorithm will use the existing Join Predicate Extractor module of

the UNMASQUE to extract the set of equi-join predicates present in the QH [3]. However, it will

not extract any information about mapping these predicates to their respective sub-queries. In

the case of an Intersection query, the same equi-join predicate may present across the di↵erent

sub-queries. Therefore, to overcome this problem, we will find the mapping information of each

tuples, present across the tables whose attributes are the part of equi-join predicate. We will

get this information by mutating the attributes of equi-join predicates on a tuple basis.

For each pair of attributes (i.e., (ax, ay)) present in the extracted join predicates, we will

check the cardinality of their respective table (i.e., (tx, ty))and based on that we will mutate

the values. These are the possible combinations of tuples present across (tx, ty):

Case 1: tx and ty has only one row

In this case, both the rows (i.e., (ri
x
, r

j

y
)) are getting joined with each other. This case is

automatically handled by the Join Predicate Extractor module.

17

Algorithm 3: Join Extractor
Data: Dmin and SG

JGE Join Predicate Extractor C � count 0
foreach (ax, ay) in JGE do

if |tx| > |ty| ; // similary for |tx| < |ty|
then

foreach row r
i

x
in tx ; // i 2 (0, 1)

do
Mutate r

i

x
on ax

if E(Dmut

min
) = � then

C C [(ri
x
, rj

y
) ; // j = 0

count count + 1
end
restore tx

end
if count = 2 then

Replicate r
j

y
in ty as rj+1

y

For any value of i 2 (0, 1)
Mutate r

j+1

y
on ay and r

i

x
on ax by v

Replace (ri
x
, rj

y
) in C by (ri

x
, rj+1

y
)

end
else if |tx| = |ty| and |tx| = 2 then

foreach row r
i

x
in tx do

foreach row r
j

y
in ty do

if ax = ay in (ri
x
, rj

y
) then

Mutate ax and ay to a value v

if E(Dmut

min
) 6= � then

C C [(ri
x
, rj

y
)

end
Restore tx and ty

end
end

end
end

end
foreach (ax, ay) in JGE do

if |tx| = |ty| and |tx| = 1 then
C C [(ri

x
, rj

y
)

end
end

18

Case 2: Both tx and ty have two rows

In this case, we compare the pair of attributes present in the equi-join predicates on a tuple

basis. If the values are the same, we mutate their values simultaneously to a new value v and

run the E; if the output result is populated, it means they are getting joined with each other.

We will restore the values of the tuples.

Case 3: tx has two rows while ty has only one row (vice-versa)

We will mutate the join attribute of the table that has two rows. In this case, tx has two rows,

so that we will mutate its attribute ax on a tuple basis. For each tuple r
i

x
, we will mutate ax

and check the output result of E; if it is empty, it means r
i

x
is getting joined by r

j

y
. We will

restore the tuple value.

On attribute (ax, ay), if both the rows in tx are getting joined by the row in table ty, then

we will replicate the tuple present in ty. After replication, we will change the attribute ay with

a value v on the replicated tuple and will also change ax for any one tuple in the tx by the same

value. It results in the formation of two connected components from the one component where

each component works as D1 for the sub-queries present in the QH. With the help of connected

components, we will map all the extracted join predicates to their respective sub-queries.

Time Complexity

Let E be the set of edges in the schema graph SG and C
key denotes the set of key columns

in TE. The time complexity of the Join Predicate Extractor module to extract the equi-join

predicate will be O(E ⇤ |Ckey|2) discussed in [3]. Consider the number of distinct equi-join

predicates present in the hidden Intersection query as n. For each extracted equi-join predicate,

this algorithm mutates the key-column and executes the E on mutated Dmin which will take

constant time. So, the overall time complexity of this algorithm will be O(n+ E ⇤ |Ckey|2).

5.3 Filter Extractor

This module will use the existing Filter Predicate Extractor module of UNMASQUE [3]. It

will take the extracted list of connected component as input where each component represents

in which vertices represents the tuples and edge represents the connection between the tuples.

So, we will extract predicates on each component and map them accordingly to their respective

sub-queries.

5.4 Projection Extractor

This module will extract all the attributes in the Select clause of sub-queries present in QH. It

takes a refined filter list RFL as input consists of all the Filter predicates having ‘=’ operator.

19

It also requires the information about the maximum cardinality of the tables present in Dmin,

to find the number of Select clause present in QH. We have shown the Projection Extractor

algorithm for one Intersection operator i.e., the maximum cardinality of the tables will be two.

Algorithm 4: Projection Extractor
Data: RFL, C
Result: y = x

n

PL �

output E(Dmin)
foreach elt in output do

L �

foreach p in RFL do
if p.val = elt then

L L [p

end
end
foreach p1, p2 in L do

Choose a di↵erent value for p1, p2’s attribute
if E(Dmut

min
) 6= � and v 2 output then

PL PL [(p1.att, p2.att)
break

end
Restore p1, p2’s attribute

end
end

To identify all the attributes in the Select clause of QH, the following elementary procedure

is applied: For each attributes in the populated result ofDmin, it extracts all the predicates from

RFL whose value is same as attribute’s value and stores them in an empty list L. It picks two

predicates at a time from list L, and change the values of both predicate’s attribute to a value

v in their respective component. Next, it runs the executable E and checks the output result;

if it is populated and v is present in the output, then it adds the selected predicates’ attribute

to the projection list of their respective component; otherwise, choose another pair and repeat

the process. At last, it will return the Projection List PL containing all the attributes present

in the Select clause and we can map these predicates using the connected components.

Time Complexity

Let us assume that the number of attributes present in the output of the hidden query is c,

and the number of predicates present in the RFL is n. So for each output column, we need to

once iterate the RFL. Therefore, it will be of O(cn).

20

In the worst case, the size of list L will be O(n), when all the predicates have the same

value. So we need to perform
�
N

2

�
operations to find the correct pairs of predicates present

in the Select clause of QH, and we will do this operation for each of the columns present in

the output. So, it will be O(cn2). Therefore, the overall time complexity of the Projection

Extractor algorithm will be O(cn2).

21

Chapter 6

Experiments

The proposed intersection extractor is implemented in Python 3.6 and integrated with the ex-

isting UNMASQUE codebase. We have broadened the extractable domain of Hidden Query

Extraction. Our experiments are carried out on a vanilla PostgreSQL 11 database platform

(Intel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux) with default primary-key

indices. We have reported the extraction overhead to unmask the hidden queries containing

the intersection operator. To conduct a better evaluation, we need complexity in queries that

TPC-H and TPC-DS benchmarks provide. These complex queries are derived from the TPC-H

and TPC-DS benchmarks so that all of our assumptions hold.

All these derived benchmark queries are listed in the appendix. The total end-to-end time

taken to extract each of the seven queries on a 1 GB and 10 GB initial instance (with a pop-

ulated result) is shown in Figure 6.1a and 6.1b. The first three queries are derived from the

TPC-H benchmark, and the other four are derived from the TPC-DS benchmark. In addition,

the breakup of the Intersection extractor module and the Minimization time is also shown in

the figure.

We have done the manual verification of all the output extracted queries. The extraction

times are practical for o✏ine analysis environments. When we drilled down into the performance

profile, intersection extraction time was independent of the initial databaseDI size. This module

operates with a miniscule database, so the extraction overhead is less. By the definition of Dmin,

the Intersection extractor module time for both 1GB and 10GB database instances will similar.

Our extraction process is database scale independent.

We are internally sampling the database tables before running Extended DB Minimizer.

Sampling is a non-deterministic process where sometimes few tables are left unsampled. If a

22

(a) Extraction Time Comparison on 1GB (b) Extraction Time Comparison on 10GB

Figure 6.1: Comparison of Minimization Time vs Extraction Time

table left unsampled, then the minimizer goes for the full copy of the table in order to minimze

the database. Sampling is the reason for the variable nature of Minimization time. As a case in

point, Query 7 on a 1GB database instance has the second largest Minimization time, whereas

Query 3 on a 10GB database instance has the second largest Minimization time.

23

Chapter 7

Conclusion and Future Work

In this work, we have extracted the hidden query QH containing the Intersection operator, which

will extend the scope of the existing HQE tool (i.e., UNMASQUE). Earlier, the UNMASQUE

could only handle the Union among the set operators. We have also extended the working of

Database Minimizer such that it will produce Dk instead of D1 in the case of the Intersection

query. The extraction process of the Intersection query is independent of the database sizes

as the detection of the Intersection query is confirmed only after the Extended DB Minimizer

module.

We have extracted the Intersection query only in the case of the SPJ clause as they are

widely used, and in the future, we will try to extend its scope for the GAOL clause. We will

also try to relax our assumption for the extraction of the Intersection query.

24

Bibliography

[1] TPC-DS. www.tpc.org/tpcds/, . 1

[2] TPC-H. www.tpc.org/tpch/, . 1

[3] K. Khurana and J. Haritsa. Opaque query extraction. technical report. https://dsl.

cds.iisc.ac.in/publications/report/TR/TR-2021-02.pdf, 2021. Indian Institute of

Science. 1, 5, 14, 17, 19

[4] K. Khurana and J. Haritsa. Shedding Light on Opaque Application Queries. Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, Xi’an, China, June 2021. 1, 3, 4

25

www.tpc.org/tpcds/
www.tpc.org/tpch/
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-02.pdf
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-02.pdf

Appendix

Hidden Query QH

Query 1

select c mktsegment as segment

from customer,nation

where c acctbal < 3000 and c nationkey = n nationkey and n name = ‘BRAZIL’

intersect

select c mktsegment

from customer,nation,orders

where c acctbal between 1000 and 5000 and c nationkey=n nationkey and c custkey = o custkey

and n name = ‘ARGENTINA’;

Query 2

select o orderstatus, o totalprice

from customer,orders

where c custkey = o custkey and o orderdate < date ‘1995-03-10’

intersect

select o orderstatus, o totalprice

from lineitem, orders

where o orderkey = l orderkey and o orderdate > date ‘1995-03-10’ and l shipmode = ‘AIR’;

Query 3

select p container,p retailprice,ps availqty

from part,supplier,partsupp

where p partkey = ps partkey and s suppkey = ps suppkey and p brand=‘Brand45’

intersect

select p container,p retailprice,ps availqty

from part,supplier,partsupp

where p partkey = ps partkey and s suppkey=ps suppkey and p brand=‘Brand15’ and p size

26

> 10;

Query 4

select cs quantity,cs wholesale cost

from catalog sales,customer demographics

where cs bill cdemo sk = cd demo sk and cs sales price <50 and cd education status = ‘Col-

lege’

intersect

select cs quantity,cs wholesale cost

from catalog sales,customer

where cs bill customer sk = c customer sk and cs sales price between 70 and 150;

Query 5

select c first name,c last name

from customer, customer address

where c current addr sk = ca address sk and c birth year < 1950 and c birth country = ‘ICE-

LAND’

intersect

select c first name,c last name

from customer, customer demographics

where c current cdemo sk = cd demo sk and c birth year between 1956 and 1996 and cd education status

= ‘College’;

Query 6

select c first name, ca country

from customer address,customer,date dim

where ca address sk = c current addr sk and d date sk = c first sales date sk and c birth country

= ‘AUSTRALIA’

intersect

select c last name,ca country

from customer address, customer,date dim

where ca address sk = c current addr sk and d date sk = c first sales date sk and c birth country

= ‘HUNGARY’;

Query 7

select cs quantity, cs wholesale cost, d day name, c first name

from catalog sales, customer, date dim

where cs bill customer sk = c customer sk and d date sk = c first sales date sk and cs sales price

< 50

27

intersect

select cs quantity, cs wholesale cost, d day name, c first name

from catalog sales, customer, date dim

where cs bill customer sk = c customer sk and d date sk = c first sales date sk and cs sales price

between 70 and 150 and d year between 1998 AND 1998 + 2;

Extracted Query QE

Query 1

Select c mktsegment as segment

From customer, nation

Where n nationkey = c nationkey and c acctbal  2999.0 and n name = ‘BRAZIL’

Intersect

Select c mktsegment

From customer, nation, orders

Where n nationkey = c nationkey and c custkey = o custkey and c acctbal between ‘1000.0’

and ‘5000.0’ and n name = ‘ARGENTINA’;

Query 2

Select o orderstatus, o totalprice

From customer, orders

Where c custkey = o custkey and o orderdate  ‘1995-03-09’

Intersect

Select o orderstatus, o totalprice

From lineitem, orders

Where o orderkey = l orderkey and l shipmode = ‘AIR’ and o orderdate � ‘1995-03-11’ ;

Query 3

Select p retailprice, ps availqty, p container

From part, partsupp, supplier

Where p partkey = ps partkey and s suppkey = ps suppkey and p brand = ‘Brand15’ and

p size � 11

Intersect

Select p retailprice, ps availqty, p container

From part, partsupp, supplier

Where p partkey = ps partkey and s suppkey = ps suppkey and p brand = ‘Brand45’;

Query 4

Select cs wholesale cost, cs quantity

28

From catalog sales, customer demographics

Where cd demo sk = cs bill cdemo sk and cs sales price  49.0 and cd education status =

‘College’

Intersect

Select cs wholesale cost, cs quantity

From catalog sales, customer

Where c customer sk = cs bill customer sk and cs sales price between ‘70.0’ and ‘150.0’;

Query 5

Select c last name, c first name

From customer, customer address

Where c current addr sk = ca address sk and c birth year  1949 and c birth country = ‘ICE-

LAND’

Intersect

Select c last name, c first name

From customer, customer demographics

Where c current cdemo sk = cd demo sk and c birth year between ‘1956’ and ‘1996’ and cd education status

= ‘College’;

Query 6

Select ca country, c last name

From customer, customer address, date dim

Where c current addr sk = ca address sk and c first sales date sk = d date sk and c birth country

= ‘HUNGARY’

Intersect

Select ca country, c first name

From customer, customer address, date dim

Where c current addr sk = ca address sk and c first sales date sk = d date sk and c birth country

= ‘AUSTRALIA’;

Query 7

select cs quantity,cs wholesale cost,d day name, c first name

from catalog sales, customer, date dim

where cs bill customer sk = c customer sk and d date sk = c first sales date sk and cs sales price

 49.0

Intersect

select cs quantity, cs wholesale cost, d day name, c first name

from catalog sales, customer, date dim

29

where cs bill customer sk = c customer sk and d date sk = c first sales date sk and d year be-

tween ‘1998’ and ‘2000’ and cs sales price between ‘70.0’ and ‘150.0’;

30

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 UNMASQUE
	2.1 UNMASQUE modules
	2.1.1 From Clause Extractor
	2.1.2 Database Minimizer
	2.1.3 Filter Predicates Extractor
	2.1.4 Join Predicate Extractor
	2.1.5 Projected Attribute Extractor

	2.2 Challenges

	3 Problem Framework
	4 Solution Overview
	5 Unmasking Intersection
	5.1 Extended DB Minimizer
	5.2 Join Extractor
	5.3 Filter Extractor
	5.4 Projection Extractor

	6 Experiments
	7 Conclusion and Future Work
	Bibliography
	Appendix

