
Extracting Hidden Algebraic Predicates

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Aman Sachan

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2022

Declaration of Originality

I, Aman Sachan, with SR No. 04-04-00-10-42-20-1-18094 hereby declare that the material

presented in the thesis titled

Extracting Hidden Algebraic Predicates

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2020-22.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: June 2022 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

© Aman Sachan

June, 2022

All rights reserved

DEDICATED TO

My Family and Friends

for their love and support

Acknowledgements

I am deeply grateful to Prof. Jayant R. Haritsa for his unmatched guidance, enthusiasm and

supervision. He was always been a source of inspiration for me. I have been extremely lucky

to work with him.

I am thankful to Anupam Sanghi for his assistance and guidance. It had been a great

experience to work with him. My sincere thanks goes to my fellow lab mates and seniors

especially Kapil Khurana, Abhinav Jaiswal, Mukul Sharma and Sumang Garg for all the help

and suggestions. Also I thank my friends who made my stay at IISc pleasant, and for all the

fun we had together.

Finally, I am indebted with gratitude to my parents and brother for their love and inspiration

that no amount of thanks can suffice. This project would not have been possible without their

constant support and motivation.

i

Abstract

Queries in database applications can be hidden due to encryption or dense imperative code,

making the query challenging to reveal. The Hidden Query Extraction (HQE) problem was

first defined in [4], and to address this problem, they have created a tool called UNMASQUE

(Unified Non-invasive MAchine for Sql QUery Extraction). The diverse use-cases for this

problem range from resurrecting legacy code to query rewriting. UNMASQUE non-invasively

extracts the hidden SQL queries in database systems using an active-learning approach. It’s a

lightweight procedure that is application and platform independent.

At this time, UNMASQUE cannot extract various SQL constructs like Algebraic Predicates.

Algebraic Predicates are the predicates of type ⟨column1 operator column2⟩ where operator ∈
{=, <,≤, >,≥}, and column1 and column2 can be of the same table (i.e., intra-table predicates),

as well as of different tables (i.e., inter-table predicates that consist of Equi-Joins, Non-Equi

Joins). In this work, we have expanded the extractable domain of UNMASQUE by successfully

extracting the queries containing Algebraic Predicates.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 2

1.2 Technical Challenges . 2

1.3 Contribution . 3

2 Prerequisites 5

2.1 Database Mimimizer . 5

2.2 Where Clause Extractor . 5

2.2.1 Join Predicate Extractor . 5

2.2.2 Filter Predicate Extractor . 6

3 Problem Framework 8

4 Solution Overview 9

5 Where Clause Extractor 13

5.1 Active Predicate Extractor . 13

5.1.1 Equality Predicates . 15

5.1.2 Inequality Predicates . 16

iii

CONTENTS

5.2 Dormant Predicate Extractor . 18

6 Experiments 20

6.1 Extraction Time wrt DB Size . 20

6.2 Equi-Join Extraction . 21

6.3 Extraction Time wrt Modules . 22

6.4 Overhead Analysis . 22

7 Conclusion and Future Work 24

References 25

Appendix 26

iv

List of Figures

1.1 UNMASQUE Architecture . 2

1.2 Exemplar Query . 2

4.1 Updated UNMASQUE Architecture . 9

4.2 Reduced Database, D1 . 9

4.3 Graph, G . 10

4.4 G after screening . 11

4.5 G with Active Predicates . 11

4.6 Possible Dormant Predicate . 12

4.7 Final Graph, G . 12

6.1 Extraction Time Comparison . 21

6.2 Equi-Join Extraction Time Comparison . 21

6.3 Module-wise Time Comparison . 22

6.4 Overhead Analysis . 23

v

List of Tables

2.1 Filter Predicate Cases . 6

3.1 Notations . 8

vi

Chapter 1

Introduction

The new query reverse-engineering problem of unmasking hidden SQL queries termed HQE

(Hidden Query Extraction) was recently introduced in [4]. A ground-truth query is provided

here but in a hidden form that is hard to access. For example, the original query may be

explicitly hidden in a black-box application executable. Moreover, encryption or obfuscation

may have been incorporated to further protect the application logic. An alternative scenario

is that the application is visible but effectively opaque because it is comprised of hard-to-

comprehend SQL (such as those arising from machine-generated object relational mappings), or

poorly documented imperative code that is not easily decipherable. Such “hidden executable”

situations could also arise in the context of legacy code, where the source has been lost or

misplaced over time, or when third-party proprietary tools are part of the workflow, or if the

software has been inherited from external developers. More formally, the HQE problem is:

Given a black-box application A containing a hidden query QH (in either SQL format or its

imperative equivalent), and a database instance DI on which A produces a populated result RI ,

unmask QH to reveal the original query (in SQL format). That is, we intend to find the precise

QH such that ∀i, QH(Di) = Ri.

UNMASQUE (Unified Non-invasive MAchine for Sql QUery Extraction) is a platform-

independent hidden query extractor used to address HQE Problem. UNMASQUE operates in a

sequential pipeline manner shown in Figure 1.1. It employs a judicious combination of database

mutation and synthetic database generation to extract a basal set of queries containing the

essential SPJGAOL (Select, Project, Join, Group By, Aggregate, Order By, Limit) clauses.

More specifically, single-block equi-join conjunctive queries expressible in the form:

Select (PE, AE) From TE Where JE ∧ FE

Group By GE Order By O′
E Limit lE

1

Figure 1.1: UNMASQUE Architecture

1.1 Motivation

Algebraic Predicates are of the form ⟨column1 operator column2⟩ where operator ∈ {=, <,≤
, >,≥}, and column1 and column2 can be of the same table (i.e., intra-table predicates), as well

as of different tables (i.e., inter-table predicates that consist of Equi-Joins, Non-Equi Joins).

Algebraic Predicates are commonly and widely used. Also, it is evident from the various

enterprise-class benchmarks like TPC-H [3] and TPC-DS [2]. In the TPC-H benchmark, 20

out of 22 queries have Algebraic Predicates, whereas around 15% of them have intra-table

predicates. One of them is shown in Figure 1.2:

Figure 1.2: Exemplar Query

1.2 Technical Challenges

UNMASQUE treats a column as having an upper bound (UB) and a lower bound (LB), and

both of them must be concrete. In other words, each column is treated as having an Arithmetic

Predicates, i.e., column op value where op ∈ {=, <,≤, >,≥, between} for numeric columns and

2

op ∈ {=, like} for textual columns. As the exemplar query contains algebraic predicates, it will

produce a wrong result or fail in between due to the generation of incorrect filter predicates.

In contrast to this, two major problems need to be handled:

• Variable Bounds: In the case of algebraic predicates, as the value of the columns varies,

the bounds also vary, i.e., for different database instances, we will be getting different

bounds. For example, Column1 < Column2 exists, where the value for Column1 and

Column2 turns out to be V alue1 and V alue2, respectively. As Column1 < Column2,

V alue1 can’t be greater or equal to V alue2. But when the V alue2 changes, the range of

V alue1 also changes, i.e., the bounds of Column1 change with the change in the value of

Column2.

• Multiplicity of Bounds: Also, more than one predicate in the hidden query QH per column

leads to multiple lower and upper bounds, where the bounds are variable. For example,

Column1 < Column2 and Column1 < Column3 exist, where the value for Column1,

Column2 and Column3 turns out to be V alue1, V alue2 and V alue3, respectively. As

Column1 < Column2 and Column1 < Column3, V alue1 can’t be greater or equal to

V alue2 and V alue3, i.e., V alue1 can’t be greater or equal to whichever is minimum

among V alue2 and V alue3. So, here V alue2 and V alue3 will act as two different bounds

on Column1.

1.3 Contribution

This work successfully extracted the queries containing the Algebraic Predicates that covers a

variety of constructs like intra-table predicates and inter-table predicates which further consists

of Equi-Joins, and Non-Equi Joins between any pair of columns. The key design principles

that help attain the desired objective are by considering the column’s value, manipulating their

values, and observing any changes in the bound of other columns – these principles are discussed

in detail in Chapter 4 and 5. We have evaluated the implemented module’s behavior on a suite

of complex decision-support queries. The performance results of these experiments, conducted

on a vanilla PostgreSQL [1] platform, indicate that module precisely identifies the Algebraic

Predicates in our workloads in a timely manner. Also, there will be negligible overhead in the

case of queries without algebraic predicates and obtain better results in the case of equi-join

extraction between key columns.

Organization The remainder of this report is organized as follows: In Chapter 2, we have

described the background of UNMASQUE, which is required to explain further work. The

3

problem framework is discussed in Chapter 3. Further, the key design principles of our work

are highlighted in Chapter 4, and then described in detail in Chapter 5. The experimental

framework and performance results are reported in Chapter 6. Finally, our conclusions and

future research avenues are summarized in Chapter 7.

4

Chapter 2

Prerequisites

In this chapter, we will only be discussing the modules required to explain the further work, i.e.,

Database Minimizer and Where Clause Extractor (consists of Equi-Join and Filter Predicates

Extractor) of the UNMASQUE.

2.1 Database Mimimizer

DI is likely to be huge for enterprise database applications, and therefore repeatedly executing

E on this extensive database during the extraction process may take an impractically long time.

To tackle this issue, they minimize the database such that each table in TE contains only a

single row. To identify a D1, they use an iterative-reduction process, i.e., pick a table t from

TE containing more than one row and divide it roughly into two halves. Run E on the first

half, and if the result is populated, retain only this first half. Otherwise, retain only the second

half, and eventually, all the tables in TE have been reduced to a single row by this process.

2.2 Where Clause Extractor

It consists of two sub-modules: (i) Join Predicate Extractor and (ii) Filter Predicate Extractor.

Join Predicate Extractor finds all the inner equi-joins between key columns, and Filter Predicate

Extractor finds the Arithmetic Predicates on non-key columns. It is explained in more detail

in the further sections.

2.2.1 Join Predicate Extractor

To extract the key-based equi-join predicates, they start with SG, the original schema graph of

the database comprised of all semantically valid key-connecting edges. From SG, they create

an (undirected) induced subgraph whose vertices are the key columns in TE, and edges are the

potential join linkages between these columns. Then, using the transitive property of inner

5

equi-joins, this subgraph is converted through transitive closure into a collection of cliques.

Finally, each clique is converted to a cycle graph, hereafter referred to as a cycle, by retaining

one of the elementary n-length cycles (n = number of nodes in the clique). Note that in this

case, even the trivial elementary graph with n = 2 (a pair of nodes and an edge between them)

is also considered to be a cycle. The complete collection of cycles is referred to as the candidate

join-graph. After that, they will remove a pair of edges to make it disconnected and run the

executable. If it produces a populated result, they will discard the join condition corresponding

to the removed edge, and two new cycles will be created (one from each of the disconnected

components); otherwise, at least one edge will be a viable candidate for equi-join. They negate

the values corresponding to those columns and verify them. Repeat the process till no more

edges can be removed.

2.2.2 Filter Predicate Extractor

They will assume that all non-key columns in CA are potential candidates for the filter predicates

in QH . In here, we have described the process for integer columns but can extend the same

logic for other data types. Let [imin, imax] be the value range of column A’s integer domain,

and assume a range predicate l ≤ A ≤ r, where l and r need to be identified. Note that all the

comparison operators (=, <,>,≤,≥, between) can be represented in this generic format – for

example, A < 25 can be written as imin ≤ A ≤ 24. To check for a filter predicate on column A,

they first create a D1
mut instance by replacing the value of A with imin in D1, then run E and

get the result – call it Rimin
. They get another result – call it Rimax – by applying the same

process with imax. Now, the existence of a filter predicate is determined based on one of the

four disjoint cases shown in Table 2.1.

Table 2.1: Filter Predicate Cases

Case |Rimin
| = ϕ |Rimax| = ϕ Predicate Type Action Required

1 False False imin ≤ A ≤ imax No Predicate

2 True False l ≤ A ≤ imax Find l

3 False True imin ≤ A ≤ r Find r

4 True True l ≤ A ≤ r Find l and r

If the match is with Case 2 (resp. 3), they use a binary-search-based approach over (imin, a]

(resp. [a, imax)) to identify the specific value of l (resp. r), where a is the value of column A

that is present in D1. Finally, Case 4 is a combination of Cases 2 and 3 and can be handled

similarly. They apply the above procedure for each of the non-key columns in CA. Since the

value of only one column (say t.A) is changed at a time, it ensures that any change in the result

6

is solely due to the change in t.A. This enumerative method ensures that arithmetic predicates

are correctly identified for each non-key numeric database column.

7

Chapter 3

Problem Framework

In this chapter, we summarize the basic problem statement, and the underlying assumptions

of our solution.

Statement: The hidden query QH contains Algebraic Predicates, unmask QH to reveal

the original query such that ∀i, QH(Di) = Ri.

Assumptions: We can handle a substantial class of queries termed as Extractable Query

Class (EQC+). These are the following assumptions for EQC+:

• Filter predicates are of the type ⟨Column op X⟩ where X can be a column or value

and op ∈ {=, <,≤, >,≥, between} for numeric columns, and op ∈ {=, like} for textual

columns.

In addition to this, we are retaining the assumptions from [4] required for other modules.

Table 3.1: Notations

Symbol Meaning

E Application Executable

QH Hidden Query

QE Extracted Query

TE Set of tables in QE

CA Set of columns in TE

CH Set of columns that are part of Join and Filter Predicates in QH

DI Initial Database Instance

D1 Database with one row in TE

Dmut Mutated database

JE Set of Join predicates

FE Set of Filter predicates

8

Chapter 4

Solution Overview

We will discuss the extraction process of hidden queries containing Algebraic Predicates, i.e.,

the predicates of type column op column where op ∈ {=, <,≤, >,≥} for numeric columns

and op is = for textual columns. At the same time, the Arithmetic Predicates (i.e., column

op value where op ∈ {=, <,≤, >,≥, between} for numeric columns and op ∈ {=, like} for

textual columns) can also be a part of the hidden query. Furthermore, we will be discussing

for {=,≤,≥} and can extend the same logic for {<,>}. The architecture is shown in Figure 4.1.

Figure 4.1: Updated UNMASQUE Architecture

Let’s consider the tweaked TPC-H query mentioned in Chapter 1. Here we will discuss

the ‘Where Clause’ extraction, and the rest of the clauses will be handled by the original

UNMASQUE discussed in [4] and [5]. Till Where Clause Extraction: From Clause Extractor

will give all the tables present in the hidden query, i.e., Orders and Lineitem, and the Database

Minimizer will reduce DI to D1 (shown in Figure 4.2).

(a) Lineitem table (b) Orders Table

Figure 4.2: Reduced Database, D1

9

Initially, we will assume that all columns (CA) are potential candidates for the filter predi-

cates in QH (including the key-columns) and make a graph G in which each vertex represents

a column from CA. The graph G for the running example is shown in Figure 4.3.

Figure 4.3: Graph, G

To find whether the column is a part of any filter predicates, we will use the UNMASQUE’s

Filter Predicate Extractor. It will provide concrete bounds for all such columns that are part of

the Where Clause in QH , but the bounds will depend on D1. We will distinguish the predicates

present in QH in the following types: (i) If there is a predicate col ≤ col′ with col has an upper

bound (i.e., col ≤ val) and col′ has a lower bound (i.e., col′ ≥ val′) such that the value of col

in D1 is less than val′ and the value of col′ in D1 is greater than val. Hence, the predicate

col ≤ col′ will show no effect on the result and bounds while doing a single mutation, and such

predicates are termed Dormant Predicates. (ii) All the remaining ones will be termed Active

Predicates. One point to note here is that predicate classification is based on D1. For different

D1, some of the active predicates may become dormant, and some of the dormant predicates

may become active. Nevertheless, the definition for classification will remain intact in terms of

D1.

In the running example, l extendedprice ≤ o totalprice is a Dormant Predicates, whereas

all other comes under Active Predicates. Firstly, we will do the screening (i.e., removing all

the columns that don’t have any filter predicates) by picking a column and try to find the UB

and LB using the similar approach as discussed in Chapter 2.2.2. If for both imin and imax it

produces a populated result signifying that there is no presence of predicate on that column

and will remove the corresponding vertex from the graph. In our case, the bounds came out

to be “o orderkey = 10 and l orderkey = 10 and l shipdate ≤ 1994-02-05 and l commitdate

between 1993-09-10 and 1994-08-03 and l receiptdate between 1994-02-05 and 1995-01-01 and

l extendedprice ≤ 70000 and o totalprice ≥ 60000”. Now, we will find all the Active Predicates

and then jump to Dormant Predicates. To find Active Predicates, we will find all such columns

whose value in D1 is same as the bound i.e., draw a dashed edge from A to B if A’s upper

10

bound is same as B’s value and draw a dashed edge from B to A if A’s lower bound is same as

B’s value. The graph after screening and updation is shown in Figure 4.4.

Figure 4.4: G after screening

There can be two types of edges possible: (i) double arrow-headed and (ii) single arrow-

headed. Double arrow-headed edge represents a possible candidate for equality algebraic pred-

icate, and to identify such predicates, we will change both column values in D1 and run the

executable. The equality holds between those columns if mutated D1, i.e., D1
mut produces a

populated result. If yes, merge both nodes; otherwise, remove the dashed edges. In our case,

it turns out to be l orderkey = o orderkey. Hence, we will merge the nodes for l orderkey

and o orderkey. For single arrow-headed, we will validate them by manipulating the column’s

value and suppose the predicate (i.e., the cause of the edge) also reflects the changes. In that

case, we will make that edge solid, signifying this relation or algebraic predicate is present in

the hidden query QH .

When we make an edge solid, we recursively find the bounds for the new column and assign

them the extreme value. After that, come back again to the original column and then find the

next lower and upper bound and repeat the process. In our case, when we find the next bound

for l receiptdate, we will recursively assign the columns as imin. Assigning l shipdate with imin

will produce a populated result. Same for l commitdate, but when we assign l receiptdate, it

will generate an empty result means there are some other bounds also present on l receiptdate.

We will conduct a binary search over (imin, 1994-08-03] to find the predicate l receiptdate ≥
1994-01-01. Now, the updated graph will look as shown in Figure 4.5.

Figure 4.5: G with Active Predicates

11

To find all Dormant Predicates, we will pick a vertex from a connected component in G

and assign all its predecessor a minimum value in the topological order. At the same time, all

other columns are maintained at the maximum possible value. While choosing the component

containing o totalprice, and assigning o totalprice as 60000 leads to an empty result because

l extendedprice’s value will be 70000.

Figure 4.6: Possible Dormant Predicate

During the evaluation of o totalprice’s lower bound, it turns out to be same as l extendedprice’s

value. Hence, we will add a dashed edge between o totalprice and l extendedprice and validate

it by manipulating the l extendedprice’s value. The final graph for the hidden query QH is

shown in Figure 4.7.

Figure 4.7: Final Graph, G

After the Where Clause extraction, the Projected Attribute Extractor and Aggregation Ex-

tractor will identify the Select Clause. The Group By and Order By clauses will be determined

by the Group By Clause Extractor and Order By Clause Extractor, respectively. Now, we will

discuss the extraction process in more detail in further chapters.

12

Chapter 5

Where Clause Extractor

Before jumping to the extraction of the predicates, there are some important points to remem-

ber: (i) Concrete bounds on a column refer to the arithmetic predicates present in the hidden

query. Also, there can be at most one UB and one LB. If more than one concrete UB exists,

then the minimum among them will be the concrete UB, and the rest will be redundant. Sim-

ilarly, we can say for concrete lower bound. (ii) Suppose some predicate is of the form Column

= Value, and that column is also used for some other algebraic predicate. In that case, we can

replace the column with a value (i.e., RHS of the predicate Column = Value) without changing

the semantic meaning. We are going to treat such algebraic predicates as arithmetic predicates.

As we can recall from Chapter 4, there are two types of predicates. This chapter will discuss

the procedure used to identify various predicates.

Lemma 1: For the EQC+, there always exists a D1.

Proof. Existence of D1 was proved in [5], and the same can be used for EQC+.

5.1 Active Predicate Extractor

To find the bounds for each column, we will follow the process described in Chapter 2.2.2. This

algorithm is similar to the Filter Predicate Extractor of UNMASQUE [4]. The key difference

is that they use it on the non-key columns, whereas we have extended it to key and non-key

columns. Also, they are using it to identify the concrete filter predicates while we are using it

to determine the bounds on the column. We will remove all such vertices for which no bounds

are defined, and the remaining vertices correspond to a set of columns CE.

13

Time Complexity: Let r denote the range of the column. We require two table up-

dates and two calls to the executable to determine one of the four cases in Figure 2.1, an O(1)

operation. If the column has a constraint, we require log r table updates and corresponding exe-

cutable calls. Thus, the total time complexity of computing the bounds for a column is O(log r).

Lemma 2: For a query in EQC+, CE will always be same as CH .

Proof. To prove this, we first need to prove: (i) c ∈ CH iff ∀t1, t2 such that R1∧R2 = false,

where t1 and t2 are the single row database, Ri is E(ti) ̸= ϕ, t1.c = imin, and t2.c = imax; (ii)

c ∈ CE iff ∀t1, t2 such that R1 ∧R2 = false, where t1 and t2 are the single row database, Ri is

E(ti) ̸= ϕ, t1.c = imin, and t2.c = imax.

For (i), let’s assume c /∈ CH , but R1 ∧ R2 = false. As c /∈ CH , c is unconstrained and can

accept all values in the domain (i.e., imin ≤ c ≤ imax). So, at least one t in the domain will

have the c’s value as imin (and imax), which generates a populated result and vice-versa.

For (ii), let’s assume c /∈ CE, but R1 ∧ R2 = false means D1 is producing a populated result,

but while checking filter predicates for c, both |Rimin| and |Rimax| turns out to be ϕ. Both are

true, so ∃t1, t2 for which R1 ∧R2 = true and vice-versa. From this, we can conclude for EQC+

that CE = CH .

Now, we will identify all active predicates present in QH based on D1. More precisely, ac-

tive predicates are: Given D1, the predicate C ≤ X is active if X is concrete or X is variable

s.t. (i) C’s concrete UB doesn’t exist, or (ii) X’s concrete LB doesn’t exist, or (iii) Both C’s

concrete UB (i.e., C ≤ vc) and X’s concrete LB (i.e., X ≥ vx) exist, then either vc > D1.X or

vx < D1.C satisfy and the same goes for the predicate C ≥ X in reverse order. Also, the predi-

cates of type C = X, where X can be column or value comes under the class of active predicates.

Lemma 3: If a column is a part of some algebraic predicate of the form column op col-

umn, where op in {=, <,≤, >,≥} then the bounds will be dependent on D1.

Proof. Let’s consider an algebraic predicate ⟨c1 op c2⟩, where op ∈ {=,≤,≥}. To prove

the lemma, we will cover all the possible cases: (i) For c1 = c2, both columns should have the

same value in D1 (say val), and while finding the bounds on c1 (and c2), it will arise the Case

4 (shown in Table 2.1). We have to find both l and r in this case, and due to c1 = c2, it will

give both l and r as val; (ii) For c1 ≤ c2, while identifying the bounds for c1 (and c2), it will

lead to Case 3 (and Case 2). It will produce c1 ≤ val2 (and c2 ≥ val1), where val2 (and val1)

is the value of c2 (and c1) in D1 because c1’s value can not exceed c2’s value. So, if the value

fluctuates, the filter predicates will also change accordingly. Similarly, we can show for c1 ≥ c2.

14

5.1.1 Equality Predicates

Till now, we have computed the bounds for a column, and if the column’s lower and upper

bound turn out to be same (say val), then we will check all such columns whose lower and

upper bounds are same and are equal to val (i.e., double arrow-headed dashed edge discussed

in Chapter 4). We will consider all possible combinations and try to find an equality relation

between them, if any exist, by manipulating the value with some other common value and

finally merging all the vertices holding an equality relationship. In Algorithm 1, from line 4-11

we have explained the identification of a chain of at most two columns (which means there will

be no transitive equality relation between any three columns) and can extend the same for the

chain of more than two.

Algorithm 1: Validator

Data: pred⟨col op val⟩, Set of bounds B
1 flag = 0
2 foreach col′ in CE do
3 if val = D1.col′ then
4 if op is ‘=’ then
5 Choose a value for both columns
6 if QH(D

1
mut ̸= ϕ) then

7 Merge col and col′

8 Add ⟨col = col′⟩ in FE

9 flag = 1

10 end

11 else
12 Choose a value for col′ within B

13 if Bnew ̸= B then
14 Add an edge between col and col′

15 Add ⟨col op col′⟩ in FE

16 flag = 1

17 end

18 end

19 end

20 end
21 if flag = 0 then
22 Add pred in FE

23 end

Correctness. Due to the presence of col1 = col2 = · · · in the hidden query QH , Lemma 2

15

guarantees that there must be a predicate (i.e., bounds) for col1, col2, and · · · . The lower and

upper bounds for all columns (i.e., col1, col2, and · · ·) will turn out to be the same, and the lower

bound will be equal to the upper bound signifying the equality predicate (i.e., column = value).

As all the columns have the same bound, the algorithm will consider all the possible combina-

tions. There will be two possibilities: (i) chosen combination is a proper subset of the columns

holding equality relation; (ii) chosen combination is a proper superset of the columns holding

equality relation. For (i), while choosing a different value for the columns will produce an empty

result due to the left out columns with unmatched values. For (ii), the case will never arise in

the first place because we will be checking the combination in increasing order of chain length.

So, it already identified the columns having a mutual equality relation.

5.1.2 Inequality Predicates

Now, we will discuss for the active predicates of type column op X where op ∈ {<,≤, >,≥} and
X can be a column or value. We will first validate whether the bound is concrete or variable.

The Validator (described in Algorithm 1, line 12-17) does it by manipulating the values (within

the bounds) one by one of all such columns whose value in D1 is equal to the bound. If the

bound varies, we will make an edge between them; otherwise, we will conclude that the bound

is concrete. If the bounds turn out to be variable (due to column col), we will iteratively find

the new bounds by assigning the col as min or max depending upon the nature of the bound

(if not able to assign, then first find the bounds for col). In order to find the bounds, we have

assigned the min (and max) for all the columns that form a connected component in graph G,

but some of the vertices may remain unexplored. So, we will pick a column and repeat the

process.

Correctness. Consider the active predicate of type C <= X (as defined):

(i) X is concrete, and it is the kth UB (i.e., UBk, in terms of D1): As there can be only one

concrete UB, we need to identify all k-1 variable UB. It is due to the C’s transitive relation or

direct relation signifying all identified k-1 columns have a value less than X in D1. In order to

obtain X, we need to assign all k-1 columns a value greater than X. It is done in the Do-While

loop of Algorithm 2. First, we have computed the UB (i.e., UB1) for C and validated whether it

is concrete or variable. If it is concrete, it’s done; otherwise, we will assign the obtained column

Ĉ as maximum and recursively do it for Ĉ and obtain UB2, and so on. Again come back to C

and find the next UBi. If i < k, again repeat the process; otherwise, we have reached UBk and

finally obtain X.

(ii) X is variable, and C’s concrete UB doesn’t exist: By default, C ≤ imax exists, but X is a

variable UB. It will restrict column C’s assignment at some point in time, and from (i), we can

16

Algorithm 2: Active Predicate Extractor

Data: D1

Make a graph G, from CA

FE = ϕ
foreach col in CA do

Find bounds for col
if col.UB = imax and col.LB = imin then

Remove col from G
else

do
Call Validator
if variable bounds then

Update G
Recursively, find the bounds for the connected column

end
Find next bound for col

while bounds doesn’t change;

end

end

say it will identify the predicate, C ≤ X.

(iii) X is variable, and X’s concrete LB doesn’t exist: We will identify the predicate while

processing for X in the reverse direction. By default, X ≥ imin exists, but C will be a variable

LB. It will restrict column X’s assignment at some point, and the same explanation from (i) in

the reverse direction will identify the predicate, C ≤ X.

(iv) X is variable, and both C’s concrete UB (i.e., C ≤ vc) and X’s concrete LB (i.e., X ≥ vx)

exist, then either vc > D1.X or vx < D1.C satisfy: For vc > D1.X exists, (i) will identify the

predicate and for vx < D1.C, (i) in reverse direction will identify the predicate.

More specifically, all algebraic predicates of type C1 ≥ C2 comes under the type C ≤ X where

C is C1 and X is C2, and the proof for the arithmetic predicate of type C ≥ v will follow same

as (i).

Time Complexity: The time consumed to create a graph will be O(|CA|), and after the

screening, there will be at most |CE| nodes present in the graph. If n predicates are present, we

require one table update and one call to the executable per predicate, leading to O(n) operation

of constant time. In contrast, for every operation, the Validator has to check every column in

the worst case. Hence, the total time complexity will be O(n ∗ |CE|).

17

5.2 Dormant Predicate Extractor

There can be Dormant Predicates, as discussed in Chapter 4, and it arises due to the overlap-

ping bounds of two columns present in different component. In contrast, one column decides a

variable bound on the other column but has a value greater than the concrete upper bound of

the other column and vice-versa. More formally, Given D1, the predicate C1 ≤ C2 is dormant if

both C1’s concrete UB (i.e., C1 ≤ v1) and C2’s concrete LB (i.e., C2 ≥ v2) exist s.t. v1 > D1.C2

and v2 < D1.C1 satisfy.

To address this problem, we will convert the dormant predicate into active predicate by

picking a pair of connected components, assign the maximum possible value for all the columns

in one component. Now, we can call Algorithm 2 to find such predicates. In this approach,

for n components we have to check for
(
n
2

)
combinations. So, for efficiency, we can assign the

maximum for all the columns of the remaining component. It finds the relation between multiple

components and reduces the number of iterations to n. Also, in place of calling Algorithm 2,

we will assign the minimum possible value to each predecessor of the chosen column in the

topological order. Why should we assign minimum in topological order? As the graph was

built on the less than relationship, we can’t assign a column with the minimum possible value

without assigning the minimum value to all the columns which follow the less than relationship

with that column.

Algorithm 3: Dormant Predicate Extractor

Data: Set of bounds B, Graph G
CC←− All connected components in G
foreach comp in CC do

Assign all columns of {CC− comp} as maximum value compliant with B

Queue Q←− topological sort of comp
foreach col in Q do

val←− Find minimum value for col
if val not compliant with B then

Call Validator
Update B, G,CC, and Q

end

end
Restore D1

end

Lemma 4: G will be an acyclic graph.

Proof. Let’s assume ∃FE, for which the G is cyclic. It means that the relationship between

18

some of the columns will be of the form Ci ≤ Cj ≤ · · · ≤ Ck ≤ Ci, which is semantically

equivalent to Ci = Cj = · · · = Ck. We will identify it in Chapter 5.1, and for Ci, Cj, · · · , Ck,

there will be a single node in graph G. In other words, a cycle will collapse to a single node.

Correctness. If v1 ≤ v2, then the predicate C1 ≤ C2 is redundant; otherwise, while com-

puting for C2, we make all the columns as concrete or default upper bound except C2 and its

predecessors. It will violate the condition V2 > D1.C1 and makes C1 ≤ C2 an active predicate.

Time Complexity: As there are |CE| number of nodes, the time required to find all

the connected components will be O(|CE|). In the worst case, there will be |CE| components

present, and for each column we have to update every other column’s value. Hence, the time

complexity for the algorithm will be O(|CE|2).

19

Chapter 6

Experiments

The new modules were tested against various queries to verify the correctness and see how

much overhead was incurred due to the additions. We ran all the experiments on PostgreSQL

hosted on an Intel Xeon 3.2 GHz CPU, 32GB RAM, Linux equipped machine. Experiments

were performed on slightly tweaked TPC-H benchmark queries such that they lie under EQC+,

and in some cases, Algebraic Predicates were explicitly introduced.

As UNMASQUE extracts the hidden ground truth, it is independent of the original database

as long as assumptions are met. As TPC-H provides complexity in queries, it will be a viable

option for better evaluation. Additionally, the TPC-H queries test the performance of new

modules as part of the UNMASQUE system, rather than just checking the performance of

standalone modules. UNMASQUE’s original codebase was used as a black-box, other than the

change in Where Clause Extractor. The algorithms were implemented in Python 3.6 and have

been integrated with the UNMASQUE codebase. We have manually verified all the extracted

queries. All the queries used for experiments are listed in the Appendix. The experiments1 are

performed on the TPC-H database of sizes 1, 10, and 100 GB (i.e., SF1, SF10, and SF100).

6.1 Extraction Time wrt DB Size

We have analyzed the extraction time for various queries with different database sizes. Mini-

mization time is directly affected by the database size, so we are considering the post-minimization

time. The implemented modules work on D1 and are independent of the original database in-

stance. So, the extraction time should not depend on the database’s size, and the performed

experiment (shown in Figure 6.1) also reflects that.

1Extraction time is considered after the execution of the Database Minimizer module.

20

Figure 6.1: Extraction Time Comparison

6.2 Equi-Join Extraction

We have removed the Join Predicate Extractor module used to identify inner Equi-Joins between

key columns and identifying all the Joins using modified Where Clause Extractor module. But

if we already know that there will be only inner Equi-Join between key columns in the hidden

query, in that case, which one will be better to use. UNMASQUE’s Equi-Join extraction works

on schema graph and result cardinality, whereas in our case, Equi-Join works on the resulting

cardinality and content. So, we have created the queries with different numbers of Equi-Joins

Figure 6.2: Equi-Join Extraction Time Comparison

21

based on TPC-H database.

The extraction time for the updated UNMASQUE has significant improvements. Also, we

can use this approach to find intra-table equality predicates and inter-table equality predicates

(i.e., Equi-Joins) between any pair of columns. So, we can continue with this approach in the

original UMNASQUE without adding any overhead.

6.3 Extraction Time wrt Modules

For this experiment, we have analyzed the time consumption for both the modules that comes

under Where Clause Extractor i.e., Active Predicate Extractor and Dormant Predicate Extrac-

tor.

Figure 6.3: Module-wise Time Comparison

Active Predicate Extractor is consuming most of the time during the Where Clause Ex-

traction, which is expected because there will be two Active Predicates for a single Dormant

Predicate. Hence, the number of Active Predicates will be more. Also, in order to extract

dormant predicates, we are converting them to active predicates.

6.4 Overhead Analysis

We have discussed the queries containing algebraic predicates, but what overhead we will be

getting if the hidden queries lie under the original UNMASQUE’s extractable domain. As we

are finding the bounds for each columns which is same as original UNMASQUE, but we will be

22

doing an extra check of viable candidates for Algebraic Predicates (i.e., variable bound). Here,

no column turned out to be a legit contender leading to the termination of the process.

Figure 6.4: Overhead Analysis

There will be negligible overhead and can be seen from the experiments.

23

Chapter 7

Conclusion and Future Work

The updated UNMASQUE can extract the queries containing Algebraic Predicates, including

the inner Equi-Joins and Non-Equi Joins between any pair of columns. The key concept used

by the original UNMASQUE for the Filter Predicate extraction is based on result cardinality.

In contrast, the updated one has extended this by analyzing the result data. This work can be

used as a fundamental building block to extract multi-column predicates, more complex UDF

predicates in the Where Clause, etc.

Some operators can not be extracted by UNMASQUE yet. One possible direction for future

work would be to develop new ideas to extract the Outer Joins, Nested Correlation, etc.

24

References

[1] PostgreSQL. https://www.postgresql.org/. 3

[2] TPC-DS. www.tpc.org/tpcds/. 2

[3] TPC-H. www.tpc.org/tpch/. 2

[4] K. Khurana and J. Haritsa. Shedding Light on Opaque Application Queries. Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, Xi’an, China, June 2021. ii, 1, 8, 9, 13

[5] K. Khurana and J. Haritsa. Opaque Query Extraction. Technical Report. Indian Insti-

tute of Science, March 2021. https://dsl.cds.iisc.ac.in/publications/report/TR/

TR-2021-02_updated.pdf. 9, 13

25

https://www.postgresql.org/
www.tpc.org/tpcds/
www.tpc.org/tpch/
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-02_updated.pdf
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-02_updated.pdf

Appendix

Queries with Algebraic Predicates

Q1 :

Select l shipmode, count(*) as count

From orders, lineitem

Where o orderkey = l orderkey and l commitdate< l receiptdate and l shipdate< l commitdate

and l receiptdate >= ‘1994-01-01’ and l receiptdate < ‘1995-01-01’ and l extendedprice ≤
o totalprice and l extendedprice ≤ 70000 and o totalprice > 60000

Group By l shipmode

Order By l shipmode

Q2 :

Select o orderpriority, count(*) as order count

From orders, lineitem

Where l orderkey = o orderkey and o orderdate >= ‘1993-07-01’ and o orderdate < ‘1993-10-

01’ and l commitdate < l receiptdate

Group By o orderpriority

Order By o orderpriority

Q3 :

Select l orderkey, l linenumber

From orders, lineitem, partsupp

Where ps partkey = l partkey and ps suppkey = l suppkey and o orderkey = l orderkey and

l shipdate >= o orderdate and ps availqty <= l linenumber

Order By l orderkey

Limit 10

26

Q4 :

Select l shipmode

From lineitem, partsupp

Where ps partkey = l partkey and ps suppkey = l suppkey and ps availqty = l linenumber

Group By l shipmode

Order By l shipmode

Limit 5

Q5 :

Select l orderkey, l linenumber

From orders, lineitem, partsupp

Where o orderkey = l orderkey and ps partkey = l partkey and ps suppkey = l suppkey and

ps availqty = l linenumber and l shipdate >= o orderdate and o orderdate >= ‘1990-01-01’ and

l commitdate <= l receiptdate and l shipdate <= l commitdate and l receiptdate > ‘1994-01-

01’

Order By l orderkey

Limit 7

Q6 :

Select s name, count(*) as numwait

From supplier, lineitem, orders, nation

Where s suppkey = l suppkey and o orderkey = l orderkey and o orderstatus = ‘F’ and

l receiptdate >= l commitdate and s nationkey = n nationkey

Group By s name

Order By numwait desc

Limit 100

Equi-Join Queries

E1 :

Select *

From customer, orders

Where c custkey = o custkey

E2 :

Select *

27

From customer, orders, lineitem

Where c custkey = o custkey and o orderkey = l orderkey

E3 :

Select *

From customer, orders, lineitem, nation

Where c custkey = o custkey and o orderkey = l orderkey and n nationkey = c nationkey

E4 :

Select *

From customer, orders, lineitem, nation, part

Where c custkey = o custkey and o orderkey = l orderkey and n nationkey = c nationkey and

p partkey = l partkey

E5 :

Select *

From customer, orders, lineitem, nation, part, region

Where c custkey = o custkey and o orderkey = l orderkey and n nationkey = c nationkey and

p partkey = l partkey and r regionkey = n regionkey

E6 :

Select *

From customer, orders, lineitem, nation, part, region, partsupp

Where c custkey = o custkey and o orderkey = l orderkey and n nationkey = c nationkey and

p partkey = l partkey and r regionkey = n regionkey and p partkey = ps partkey

E7 :

Select *

From customer, orders, lineitem, nation, part, region, partsupp, supplier

Where c custkey = o custkey and o orderkey = l orderkey and n nationkey = c nationkey

and p partkey = l partkey and r regionkey = n regionkey and p partkey = ps partkey and

s suppkey = ps suppkey

28

Queries w/o Algebraic Predicates

O1 :

Select l returnflag, l linestatus, sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,

sum(l discount) as sum disc price, sum(l tax) as sum charge, avg(l quantity) as avg qty, avg(l extendedprice)

as avg price, avg(l discount) as avg disc, count(*) as count order

From lineitem

Where l shipdate <= date ‘1998-12-01’ - interval ‘71 days’

Group By l returnflag, l linestatus

Order By l returnflag, l linestatus

O2 :

Select s acctbal, s name, n name, p partkey, p mfgr, s address, s phone, s comment

From part, supplier, partsupp, nation, region

Where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

‘%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ‘MIDDLE

EAST’

Order By s acctbal desc, n name, s name, p partkey

Limit 100

O3 :

Select l orderkey, sum(l discount) as revenue, o orderdate, o shippriority

From customer, orders, lineitem

Where c mktsegment = ‘BUILDING’ and c custkey = o custkey and l orderkey = o orderkey

and o orderdate < ‘1995-03-15’ and l shipdate > ‘1995-03-15’

Group By l orderkey, o orderdate, o shippriority

Order By revenue desc, o orderdate, l orderkey

Limit 10

O4 :

Select o orderdate, o orderpriority, count(*) as order count

From orders

Where o orderdate >= date ‘1997-07-01’ and o orderdate < date ‘1997-07-01’ + interval ‘3’

month

Group By o orderdate, o orderpriority

29

Order By o orderpriority

Limit 10

O5 :

Select n name, sum(l extendedprice) as revenue

From customer, orders, lineitem, supplier, nation, region

Where c custkey = o custkey and l orderkey = o orderkey and l suppkey = s suppkey and

c nationkey = s nationkey and s nationkey = n nationkey and n regionkey = r regionkey and

r name = ‘MIDDLE EAST’ and o orderdate >= date ‘1994-01-01’ and o orderdate < date

‘1994-01-01’ + interval ‘1’ year

Group By n name

Order By revenue desc

Limit 100

O6 :

Select l shipmode, sum(l extendedprice) as revenue

From lineitem

Where l shipdate >= date ‘1994-01-01’ and l shipdate < date ‘1994-01-01’ + interval ‘1’ year

and l quantity < 24

Group By l shipmode

Limit 100

30

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Technical Challenges
	1.3 Contribution

	2 Prerequisites
	2.1 Database Mimimizer
	2.2 Where Clause Extractor
	2.2.1 Join Predicate Extractor
	2.2.2 Filter Predicate Extractor

	3 Problem Framework
	4 Solution Overview
	5 Where Clause Extractor
	5.1 Active Predicate Extractor
	5.1.1 Equality Predicates
	5.1.2 Inequality Predicates

	5.2 Dormant Predicate Extractor

	6 Experiments
	6.1 Extraction Time wrt DB Size
	6.2 Equi-Join Extraction
	6.3 Extraction Time wrt Modules
	6.4 Overhead Analysis

	7 Conclusion and Future Work
	References
	Appendix

