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Abstract

Keyword searching (KWS) is a widely accepted mechanism for querying in Informa-
tion Retrieval (IR) systems and Internet search engines on the Web. In recent years,
the problem of KWS in relational database systems is considered as one of the major
research problems in database community. Various solutions are proposed for making
whole or part of KWS processing efficient. These wide ranges of solutions touched all the
engineering issues like testing of proposed KWS techniques, finding parameters which
affect the relevance of output, their impact on quality of output, benefit of integrating
KWS systems at various levels of Relational world etc. In this report, we have proposed
a new trie based keyword index which stores term (keyword) related information such
as schematic location of term in the database, frequency of term at cell level granularity
(where a cell means data stored in particular <row, column>) etc. This keyword index
is used to speed-up whole KWS processing. Previous KWS system stores term related
information in inverted indexes which are either main memory data structures and used
at the application level, or as relational tables [1]. In both the cases, DBMS engine is
not aware of keyword index. So we have proposed implementing keyword index inside
RDBMS, to benefit various stages of KWS and for efficient access of relations involved
in KWS processing. We have compared KWS system using our trie based keyword index
with DBLabrador KWS system [1], on end to end runtime performance basis. Experi-

mental results shows better performance of proposed system compare to DBLabrador [1].
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Chapter 1

Introduction

Keyword searching (KWS) in relational databases is a widely studied problem in last
decade. It aims to provide an easy interface to RDBMS, which does not require the
knowledge of schema information of the underlying database. For a given keyword query
(set of terms given by the user to search), KWS interface tries to generate and execute
suitable SQL query and gives resulting tuples back to the user. Various solutions are
proposed for making whole or part of KWS processing efficient. These wide ranges of
solutions touched all the engineering issues like testing of proposed KWS techniques,
finding parameters which affect the relevance of output, their impact on quality of out-
put, benefit of integrating KWS systems at various levels of Relational world etc.

[11] has compared state-of-the-art KWS systems which reveal the issues like lack of
scalability and performance in these systems. Even many techniques cannot scale to
moderately-sized datasets that contain roughly a million tuples. Also KWS systems
which are scalable are not able to perform KWS in timely manner. As relational database
store very large amount of information, KWS in such large database require efficient and
faster way to construct and execute SQL query corresponding to given keyword query.
Generally, for KWS in a relational database, an inverted index is needed which stores
mapping of database terms to its schematic location in the database. We will refer to this
inverted index in the report as keyword index. Previous KWS systems [1, 3, 5, 8] have

proposed different types of inverted index structures to store term related information
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but these are either main memory data structures and used at the application level, or
as relational tables. In both the cases, DBMS engine is not aware of keyword index. So
we have proposed implementing keyword index inside RDBMS, to benefit various stages
of KWS and for efficient access of relations involved in KWS processing. In particular,
we have proposed a new trie based keyword index which stores term (keyword) related
information such as schematic location of term in the database, frequency of term at cell
level granularity etc. This keyword index is used to speed-up whole KWS processing.

Trie [15] is supposed to be an effective main memory data structure for look up operation
on string data. We have used trie for storing all distinct terms in the database. We have
implemented trie as a disk based data structure using SP-GiST (Space Partitioned Gen-
eralized Search Tree) [2] framework of PostgreSQL which provide a general framework
for implementing the class of space partitioning trees like trie, k-D tree, quadtree etc.

with inbuilt common functionalities and optimizations.

1.1 Keyword Search in Relational Databases

The success of KWS stems from what it does not require - namely, a specialized query
language or knowledge of the underlying structure of the data. But for KWS in relational
databases, the user requires writing SQL query and schema of the underlying data, even
to pose simple query. So an easy to use KWS interface to RDBMS is provided which
does not require SQL and schema information.

Let us consider a sample Bibliography database (Table 1.1 and 1.2) having relational
tables Paper(id, title, con_id), and Conference(id, name, year).

Suppose if we want information about recent work on *Keyword Search’ in relational
database published in "SIGMOD’ conference, with SQL query language interface, we
need to construct SQL query like Figure 1.1 and corresponding answer published would
be like Table 1.3. But usage of KWS interface requires only to type 'Keyword Search
SIGMOD’ on text box provided for searching and answers are published like in Table
1.3.
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id | title con_id
P1 | Keyword Search over Relational Databases: A Metadata Approach C2
P2 | Optimizing Index for Taxonomy Keyword Search C1
P3 | Scalable Top-K Spatial Keyword Search C4
P4 | Keymantic: Semantic Keyword based Searching in Data Integration Systems C3

Table 1.1: Sample Paper Relation
id name | year
C1 | SIGMOD | 2012
C2 | SIGMOD | 2011
C3 VLDB 2010
C4 | EDBT | 2013
Table 1.2: Sample Conference Relation
SELECT x
FROM  Paper, Conference
WHERE Paper.con_id = Conference.id AND
Paper.title LIKE % Keyword Search% AND
Conference.name LIKE %SIGMOD%
Figure 1.1: Example SQL query
id | title con_id name year
P1 | Keyword Search over Relational Databases: C2 SIGMOD | 2012
A Metadata Approach
P2 | Optimizing Index for Taxonomy Keyword Search C1 SIGMOD | 2011

Table 1.3: Result for SQL query

There is a subtle difference in providing KWS interface to web documents and to

RDBMS. In web documents, an answer for a keyword query has clear boundary, i.e. a

document. In RDBMS world, because of normalization, information is split into multiple
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relational tables. For a given keyword query, KWS interface tries to match the terms
with the attributes in the underlying database schema, thus producing a set of candidate
SQL queries. As the number of potential candidate queries might be high, a ranking
model is used to calculate a score value that expresses the likelihood of each candidate
SQL query corresponding to the original keyword query. Only the highest scored SQL
query is executed by DBMS engine. This SQL query can potentially retrieve large sets of
candidate results where a candidate result is obtained by joining related relational tuples
which, as a whole, contain all the keyword terms. KWS interface ranks the query results
by using another ranking model that evaluates the likelihood of a query result satisfying
the original keyword query. Then KWS interface returns only top-k (for some fixed
constant k) highest scored query results to the user. Whole process is also summarized

in Figure 1.2.

[ Keyword Query ] | Search |
@ keyword query
Keyword || Schema User
Indexes Graph -
T )
keywords
@ Ranked Structured
queries =
Structured Queryl
Structured Query?2 /
@ SQL Query Answer Tuples
¥ @ Itis answer tuple 1

Itis answer tuple 2

DBMS Y|l Itisanswer tuple 3
Top-k

answertuples

Figure 1.2: KWS Processing



Chapter 1. Introduction )

1.2 Database Models for KWS

For KWS in relational databases, two database models are considered prominently in
the literature.

Schema graph based KWS models uses schema graph of the database for infor-
mation about relationship between set of relational tables. The relationship between
relational tables could be due to primary key - foreign key or by user(DBA) defined
relationships.

Data graph based KWS models uses data graph of the published database, which
represents relationships between published relational tuples (nodes), and use it for gen-
erating answers for keyword queries.

We have not considered data graph based KWS model because no system in this cate-
gory shows either better and high performance compare to schema based system or is free
from various non-realistic limitations (memory limitation, bad performance evaluation,

does not generalizes to real dataset etc) [11].

1.3 DBLabrador

In this report we explore the DBLabrador [1] system and inverted indexes used for
KWS in DBLabrador. DBLabrador follows schema graph based approach for KWS
in relational databases. The entire KWS processing performed by DBLabrador is done
through indexes which are stored as relations and series of SQL queries. Still DBLabrador
does not provide the required execution time performance which is required for keyword
search systems. Hence we propose implementing the keyword indexes inside RDBMS.
This disk resident keyword index not only preserves the scalability of the KWS system

w.r.to large database sizes but also speed-up the KWS processing.
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1.4 Contributions

We have designed and implemented a trie based keyword index inside PostgreSQL to
speed-up whole KWS processing. Previous work did not look into implementation of
keyword index inside the database server. It is the first work which implements the
keyword index inside the database server and thus providing a useful index for performing
keyword search.

Experiments were conducted to measure usage of proposed keyword index and comparing
this new system with DBLabrador system on various representative real datasets and
query workload. Experiments reveal new keyword index speed up the KWS process and

provide benefits at different steps of KWS.

1.5 Organization

The rest of the report is organized as follows: In Chapter 2, first we formulate our
problem of designing and using inbuilt keyword index in KWS processing, then we discuss
proposed trie based design of keyword index. Chapter 3 discusses implementation of trie
based keyword index using SP-GiST framework. Then Chapter 4 covers current and
past related work. In Chapter 5, we discuss experimental setup used for comparing our
system with DBLabrador [1] and results obtained. And Chapter 6 concludes the paper

with some future directions to work on.



Chapter 2

Proposed Design of Keyword Index

2.1 Need of Keyword Index

Given a database instance, schema graph and set of attributes of database to be pub-
lished, keyword indexes are required to store schematic location and frequency infor-
mation of terms present in these attributes. Now for a given keyword query K@ =
{ki1, ko, ..., k,} where k;, i=1 to n, is a term given by the user, these keyword indexes

are required to benefit various stages of KWS processing which is as follows:

e For each term k; € K@, identify the set of attributes containing k; (Let this set be
denoted by a;).

e A structured query is a form of query where each keyword term is associated

with an attribute of the database.

e Generate all possible candidate structured queries by performing Cartesian product

of a;, i=1 to n.
e Each structured query is checked for validity using schema graph of the database.

e Relevance score for each candidate structured query is calculated using Bayesian
network model [3] which uses term’s column granularity frequency information at

database instance level.
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e Structured query with highest score is chosen for SQL construction. FROM clause
of SQL query is constructed by making natural join of relations involved in chosen
structured query (let it be {ry,rq,...}). For example, SQL query for structured
query < ky:ay, koas, ..., kya, > is

SELECT x

FROM r; natural join 7y ...

WHERE a; LIKE ki AND ay LIKE ko
...AND a, LIKFE k,

e Relevance score for each result tuple of selected query is calculated using Bayesian
network model [3] which uses column granularity frequency information at query

result set level.

KWS processing could be benefited by keyword index in initial stage for identifying
attributes which contain keyword terms, as keyword index stores schematic location
(table, column and row identifier) information of the terms. Next stage where keyword
index is utilized is ranking of candidate structured queries, as keyword index stores term’s
column granularity frequency information. Finally keyword index can benefit execution
of chosen structured query, as it provides direct access to tuples containing keyword
terms.

Query optimizer chooses some execution plan for SQL query submitted for selected
candidate structured query. In previous KWS approaches, keyword indexes are explicitly
specified and/or used in the SQL query for efficient execution. But we want to make
query optimizer aware of keyword indexes so that this keyword index access path is also

considered for structured query.

2.2 Proposed Design

We have proposed a trie based keyword index for storing string term and term’s infor-

mation. A trie [15] is a tree in which the branching at any level is determined by only a
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portion of the string term (i.e. character). Table 2.1 show a sample course relation and

Figure 2.1 shows trie based keyword index for some terms in course relation.

Course_no Course_name
1 Database Management System
2 Data Mining
3 Operating System
4 Spatial Databases

Table 2.1: Sample Course Relation

U Data Node

Table id Column_id Row_id Cell frequency

Figure 2.1: Trie Based Keyword Index

The trie contains two types of nodes; index nodes and data nodes. Index nodes
are internal nodes which is used for branching, while data nodes are used for storing
auxiliary information corresponding to string represented by root to leaf nodes. In the
Figure 2.1, index nodes are represented by circles, while data nodes are represented
by rectangles. All characters in the term are assumed to be one of the 26 letters of

the English alphabet. A blank is used to terminate a term. At level 1, all terms are
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partitioned into 27 disjoint classes depending on their first character. Thus, Link(T, i)
points to a subtrie containing all terms beginning with the i** character (T is the root
of the trie). On the j™ level the branching is determined by the j* character. When
a subtrie contains only one character, it is replaced by a node of type data. This node
contains the list of 4-tuple information corresponding to term represented by root to
leaf: <table_id, column_id, row_id, cell frequency>. Here (table_id, column_ id, row_id)
represents schematic location (or cell_id) of the term in the database and cell_frequency
is the frequency of term at cell level granularity.

We has used trie for storing all distinct terms in the database. Trie is supposed to be
an effective main memory data structure for look up operation on string data. In a trie,
worst case time complexity of lookup/insert/delete operation for a string S of length [ is
O(l). Also, during lookup, simple operations such as array indexing using a character,
are used which are fast on real machines. Tries are more space efficient when they contain
a large number of short keys, since nodes are shared between keys with common initial
subsequences.

Trie is a unbalanced tree structure and can be slower in some cases than hash table
for looking up data, especially if the data is directly accessed on a hard disk drive or
some other secondary storage device where the random-access time is high compared
to main memory. Also for each term it stores auxiliary information which could be
large in size, causing more skew in the tree structure. So, a crucial issue for database
systems, in using trie, could be that they are not optimized for 1/0O. But for overcoming
these limitations we have implemented trie as a disk based data structure using SP-GiST
(Space Partitioned Generalized Search Tree) [2] framework of PostgreSQL which provide

node clustering algorithm that achieves minimum height and hence minimum I/O access.

2.3 Keyword Index Construction

For constructing trie based keyword index for a given database (and set of attributes to

be published), we first scan database to be published, once. This involves scanning each
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string attribute value(cell) in the published database, splitting string into terms, storing
cell-id, distinct terms and corresponding frequency in a relation named:

DB _String Terms(table_id integer, column_id integer, row_id integer, term text, fre-
quency integer).

Then we create keyword index using our proposed index design on term attribute of
DB_String_Terms relation. This relation, or in other words, this keyword index is used
as a global inverted index for structured queries generation, their ranking, and efficient

execution of highest ranked structured query.



Chapter 3

Implementation of Trie based

Keyword Index

We have used PostgreSQL 9.2 for implementing our index structure. Our trie based
keyword index is a unbalanced structure as opposed to traditionally used balanced index
structures such as B-tree, R-tree and its variants. One of the major hurdles in implement-
ing such a nontraditional index inside a database engine is the implementation overhead
associated with realizing and integrating this index inside the engine. Hard wiring the
implementation of a fully functional index structure with the appropriate concurrency
and recovery mechanisms into the database engine is a non-trivial process. We have im-
plemented trie based keyword index using a general index framework, SP-GiST (Space

Partitioned Generalized Search Tree) [2] provided by the PostgreSQL 9.2.

3.1 SP-GiST

SP-GiST supports the class of space-partitioning trees, e.g. tries, quadtrees and k-D
trees. The quadtree uses recursive decomposition of space into quadrants and used for
indexing point data, rectangles, and polygonal data. While k-D trees are useful for
answering range queries about a set of points in the k-dimensional space. Tries are

effective for look up operation on string data. We have used trie for storing all distinct

12
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terms in the database.

SP-GiST provides a set of internal methods that are common for all space-partitioning
trees, e.g. the insertion, deletion, and updating algorithms. SP-GiST also provides
concurrency control and recovery techniques and I/O access optimization for all space-
partitioning trees in a general way.

SP-GiST has to support two distinct types of nodes: index and data nodes. Index nodes
(non-leaf nodes) hold the various space partitions at each level. Each entry in an index
node is a root of a subtree that holds all the entries that lie in this partition. The space
partitions are disjoint. Besides having a slot for each space partition, the index node
contains an extra blank slot to point to data nodes attached to the partition represented
by this node. On the other hand, data nodes (leaf nodes) hold the key data and other
pointer information to physical data records. We can think of data nodes as Buckets of
data entries.

The SP-GiST core requires that inner and leaf nodes fit on a single index page, and also
the list of leaf tuples reached from a single inner node, all be stored on the same index

page. Restricting such lists to not cross pages reduces seeks.

3.2 SP-GiST Parameters and Methods

To handle the differences among the various SP-GiST based indexes, SP-GiST provides

a set of interface parameters and a set of external method interfaces.

3.2.1 Interface Parameters

e PathShrink: This parameter specifies how the index tree can shrink at leaf level
and internal level. It is useful in limiting the number of times the space is recursively
decomposed in response to data insertion. PathShrink takes one of three possible
values: NeverShrik, LeafShrink and TreeShrink. LeafShrink implies no index node
will have single leaf node while in case of TreeShrink internal nodes are merged

together to eliminate all single child internal nodes.
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NodeShrink: A Boolean parameter that specifies whether the empty partitions

should be kept in the index tree or not.

e NumberofSpacePartitions: This parameter specifies the number of disjoint par-

titions produced at each decomposition.
e NodePredicate: This parameter specifies the predicate type at the index nodes.
e KeyType: This parameter specifies the data type stored at the leaf nodes.

e BucketSize: This parameter gives the maximum number of data items a data

node can hold.

For example, to instantiate our trie based structure we have set these parameters as

follows:

e PathShrink = LeafShrink

NodeShrink = False

NumberOfSpacePartitions = 26

NodePredicate = letter or Blank

KeyType = String

BucketSize = 1 (i.e. only one string’s related information is stored in a data node)

3.2.2 External Methods

The SP-GiST external methods include the method PickSplit() to specify how the space
is decomposed and how the data items are distributed over the new partitions (Fig-
ure 3.1).

Here P is a set of BucketSize+1 entries that cannot fit in a node. PickSplit() defines a
way of splitting the entries into a number of partitions equal to NumberOfSpacePartitions

and returns a Boolean value indicating whether further partitioning should take place or
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PickSplit(EntrySet P, Level level)

1. Partition the data strings in P according to the

character values at position level

2. If any data string has length < level,

insert data string in Partition blank

3. If any of the partitions is still over-full
return True;
else

return False;

Figure 3.1: PickSplit method for partitioning

not. The parameter level is used in the splitting criterion because splitting will depend
on the current decomposition level of the tree. For example, in a trie of English words,
at level i, splitting will be according to the ¥ character of each word in the over-full
node. PickSplit() will return the entries of the split nodes in the output parameter
splitnodes, which is an array of buckets, where each bucket contains the elements that
should be inserted in the corresponding child node. The predicates of the children are
also returned in splitpredicates. PickSplit() is invoked by the internal method Insert()
when a node-split is needed.

Another external method is the Consistent() which specifies how to navigate through

the index tree (Figure 3.2).

Consistent(Entry F, QueryPredicate ¢, Level level)

1. If (q.level == E.letter) OR (E.letter == BLANK AND level > length(q))
return True;

else

return False;

Figure 3.2: Consistent method for trie navigation
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Let E: (p, ptr) be an entry in an SP-GiST node, where p is a node predicate or a leaf
data key and ptr is a pointer. When p is a node predicate, ptr points to the child node
corresponding to its predicate. When p is a leaf data key, ptr points to the data record
associated with this key. Consistent() is invoked by the internal methods Insert() and
Search() to guide the tree navigation.

The various SP-GiST index structures have different sets of operators to work on. For

the trie index structure, we define the operator =, to support the equality queries (Fig-

ure 3.3).

CREATE OPERATOR = CREATE OPERATOR CLASS
leftarg = VARCHAR, SP_GiST Trie
rightarg = VARCHAR, FOR TYPE VARCHAR
procedure = trieword_equal, USING SP_GiST
commutator = =, AS OPERATOR 1 =,
restrict = eqsel FUNCTION 1 trie_consistent,

FUNCTION 2 trie_picksplit

Figure 3.3: Operator and Operator class for trie

3.3 Node Clustering in SP-GiST

SP-GiST provides different node clustering methods which can be used according to
type and nature of the operations to be performed on the constructed index. We have
used SP-GiST’s default node clustering algorithm [6] that achieves minimum height and
hence minimum I/0 access. Other clustering alternatives are Fill-Factor clustering which
mainly focuses on space utilization of index structure, Deep clustering which chooses the
longest linked subtree from the collection of nodes to be stored together in the same
page and Breadth clustering which chooses the maximum number of siblings of the same

parent to be stored together in the same page.
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Literature Survey

Goldman et al. [5] had first recognized the usefulness of a keyword search system for
databases, but significant research in this area did not commence for several years after
these early publications. Interestingly, these proposed systems coincide with early formal
attempts to integrate Database and IR technologies.

[1] has used data graph based KWS model, in which distinct root semantic answer model
is considered and an alternative keyword index, Node-Node index (instead of Node-
Keyword index [7]) has introduced, to solve issues related to storage space of keyword
index but query search time needs to be compromised with less storage requirement.
BANKS [8], BANKS II [9], BLINKS [10] are the earlier data graph based models.
DBXplorer [12] and Discover [13] are among the first Schema graph Based systems pro-
posed in this category. DBXplorer [12] used a symbol table for mapping terms to tuples
and explores various design alternatives of this inverted index. Discover [13] has used
a greedy algorithm to prioritize candidate networks (which are equivalent of Structure
Query) which give fewest results. Both [12] and [13] has considered no. of join in selected
candidate network for ranking results.

In terms of KWS processing, we have followed Labrador’s approach [3]. For a keyword
query, Labrador generates ranked candidate structured queries, using column granularity

term frequency hash map. User can choose one of the preferred structured queries, for

17
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which Labrador generates appropriate SQL query. Labrador queries RDBMS with gener-
ated SQL query and obtains answers for the keyword query. Finally it ranks the answers
produced and outputs to user. But Labrador uses main memory data structures (e.g.
column granularity term frequency hash map), for various intermediate calculations and
KWS processing, and RDBMS is used as data repository only. So DBLabrador [1] have
been proposed which is functionally similar to Labrador, and uses RDBMS to perform
all computations. DBLabrador keep cell-granularity term frequency information along
with column-level term frequency information and does extra computation to material-
ize weight of each term in cell-granularity level. Advantages of using RDBMS back-end
technologies are, it can handle large databases and KWS indexes are persistent now.
Although these keyword indexes (stored as relation table) are present in RDBMS, they
are not a part of execution plan of structured queries, i.e. these keyword indexes are
very efficient access path for relations used in a structured query, but this fact would not
be utilized implicitly by RDBMS.

One important processing step of KWS in relational databases is the ranking of search
results which is obtained after joining relations in selected structured query (Top-k Query
execution). This Top-k query execution depends on result set dependant ranking func-
tion i.e. ranking function uses frequency of terms at result set level and not at original
database instance level [3]. Final score of a result (tuple) is aggregated from multiple
scores of each constituent tuples, but the final score is not monotonic with respect to
any of its subcomponents. Several efficient query execution algorithms optimized for
returning Top-k relevant results are presented in [4]. But existing work on top-k query
optimization cannot be immediately applied as they all rely on the monotonicity of the
score aggregation function.

Coffman [11] addresses the challenges inherent in transitioning relational keyword search
techniques from the computer science community to practical systems that can be de-
ployed against existing data repositories. It also presents an extensive benchmark specif-
ically designed to evaluate relational keyword search techniques via published datasets,

query workloads, and relevance assessments.
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Experiments

In this section, we compare KWS system using our trie based keyword index and
DBLabrador [1] KWS system, on end to end runtime performance basis i.e. time elapsed

between submission of keyword query and ranked result tuples are generated.

5.1 Experimental Setup

All experiments are conducted in PostgreSQL 9.2 on Intel(R) Core(TM) i3-2310M CPU
2.10GHz, 3GB Main memory, Ubuntu 12.04 operating system.

5.1.1 Datasets

We have used following representative datasets (Table 5.1). Among these 10DBLP and
100DBLP are the scaled version of the DBLP dataset. We have replicated the tu-
ples in DBLP dataset by the scale factor 10 and 100 for generating this scaled version
datasets. These scaled version datasets are used for testing scalability of the index.
These datasets covered different dimensions of real world scenarios hence considered as

benchmark datasets for testing KWS systems [11] in current literature.

e DBLP : Digital Bibliography & Library Project (DBLP) is one of the popular
dataset used in previous KWS systems. This dataset contains paper titles, their au-

thors and other bibliographic information on major computer science publications
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Dataset  Size(MB) Relations Text attributes Tuples
DBLP 688 25 7357TK
10DBLP 6890 25 735M
100DBLP 68920 25 7357TM
Wikipedia 950 121 206K
Mondial 9 70 17K

Table 5.1: Datasets

extracted from the DBLP repository (Table 5.2). Schema graph of the published

database is shown in Figure 5.1.

e Wikipedia :

InProceedings e Proceedings [« InProcAuthors
\
Articles [e Article Authors [e Authors
InCollections > Books [« Book Authors

Figure 5.1: DBLP schema graph

This includes more than 5500 articles chosen for the 2008 - 2009

Wikipedia Schools DVD, a general purpose encyclopedia, which contains content

roughly equal to a traditional 20 volume encyclopedia.

e Mondial : The Mondial dataset [14] comprises geographical and demographic
information from the CIA World Factbook, the International Atlas, the TERRA

database, and other web sources.

Among these datasets we have given details (relations, schema graph etc.) about one of

the dataset i.e. DBLP (Table 5.2).
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Relation Size(MB) Tuples # Distinct Terms
Proceedings(id, key, title, year) 4.3 17,982 30,558
InProceedings(id, key, prockey, title, year) 206 1,112,035 1,353,575
InProcAuthors(inProcld, name) 187 3,155,373 291,477
Articles(id, key, title, journal, year) 154 826,026 1,022,410
ArticleAuthors(articleld, name) 125 2,101,494 260,209
Books(id, key, editor, publisher, year) 1.16 9,286 19,634
BookAuthors(bookld, name) 0.86 13,415 9,404
InCollections(id, key,bookKey, title, year) 4.5 22,582 34,034

Table 5.2: DBLP Dataset

5.1.2 Keyword Queries

We have considered 50 keyword queries for each dataset. No. of query terms varies from
1 to 4. We have shown here some representative keyword queries used in experiments
in Table 5.7, 5.6, 5.3 for different datasets which reflects runtime performance of all

considered queries.

5.1.3 PostgreSQL parameters

We have set Postgres parameters shared_buffers and work_memory according to size
of dataset and size of keyword index. These parameters are kept lower than size of
keyword index so that usage of this disk resident index can be evaluated. For Mondial
dataset which is of smaller size (9MB), keyword index is of size 1.5MB and we have set
shared_buffers = 128KB and work_.mem = 512KB. For DBLP and Wikipedia datasets
keyword index sizes are SMB and 33MB respectively, so we have used shared_buffers and
work_mem as 2MB for these datasets. For scaled versions of DBLP dataset, 10DBLP
and 100DBLP keyword index sizes are 82MB and 886MB respectively and we have used

shared_buffers and work_mem as 2MB.



Chapter 5. Experiments 22

5.2 Experimental Results

In all considered keyword queries, we found our approach has performed better than
DBLabrador approach (Figure 5.6, 5.5, 5.2) for all datasets. One reason behind this
improvement is trie based keyword index save processing such as aggregate and group
by operation by pre-calculating and storing various information for each term in the
database.

Also for testing scalability of the index usage, we have experimented with the larger
datasets(10DBLP, 100DBLP), which although not changes the trie index’s internal struc-
ture but scales the leaf levels. In these cases also, our trie based index performs better
than DBLabrador(Figure 5.3, 5.4). Note that total time for these datasets are in min-
utes.

From experimental results(Figure 5.6, 5.5, 5.2), its clear that our trie based system got
more benefit and improvement in total time, when more no. of joins are involved.
Although we got high total time values in the experiments if we look at absolute scale,
but this is obtained under restricted memory limits, i.e. working memory is set to very
small fraction of trie index size. As this working memory is increased, total time per-
formance improves for both the system, but relative nature of results we have got is not
changed much. Further if working memory is set to a value such that this trie based
keyword index can be fit into it completely while KWS processing, then its performance
and benefits gained are much more.

For Wikipedia and Mondial datasets, result set cardinalities are not much but this also
represents a real world scenario where few result tuples are to be retrieved. Specifically
Mondial datasets size is very small and most of the information stored in it are geo-
graphical facts and hence database information is not redundant and we have not got

similar benefit in case of more no. of joins are involved.
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no. | Keyword #result | #relations
Query tuples involved
1 | network model 856 1
2 | computer science 766 1
3 | oliver generalized optimization 1532 2
4 | approximation algorithm 1344 2
5 | cooperative game theory 1192 2
6 | eigenvalue calculation 266 3
7 | classification data mining 1688 3
8 | probability dimitri 764 3
9 | multidimensional histogram usage 35 4
10 | simulation software update 62 4

Table 5.3: Keyword Queries for DBLP Dataset

80

W DBLabrador(sec)
70 E

[0 Trie-Based(sec)

50

40

30 -

Total Time (sec)

20 -~

10

i1 2 3 <4 5 & F & 9 10
Keyword Query

Figure 5.2: Comparing Total running time (DBLP)
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no. | Keyword #result | #relations
Query tuples involved
1 | network model 8560 1
2 | computer science 7660 1
3 | oliver generalized optimization 152K 2
4 | approximation algorithm 129K 2
5 | cooperative game theory 115K 2
6 | eigenvalue calculation 560K 3
7 | classification data mining 16M 3
8 | probability dimitri 760K 3
9 | multidimensional histogram usage 36K 4
10 | simulation software update 60K 4

Table 5.4: Keyword Queries for 10DBLP Dataset

14
12 O DBLabrador_
w [ Trie-Based
+= 10
=
é 8
Q
E 6
=
E 4~
o
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.l N ¢
0 1 T T T

1 2 3 4 5 6 7 8 9 10
Keyword Query

Figure 5.3: Comparing Total running time (10DBLP)
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no. | Keyword #result | #relations
Query tuples involved
1 | network model 85K 1
2 | computer science 76K 1
3 | oliver generalized optimization 15M 2
4 | approximation algorithm 13M 2
5 | cooperative game theory 11M 2
6 | eigenvalue calculation 56M 3
7 | classification data mining 168M 3
8 | probability dimitri T6M 3
9 | multidimensional histogram usage 3M 4
10 | simulation software update 6M 4
Table 5.5: Keyword Queries for 100DBLP Dataset
140
m DBLabrador
120 1
sy [ Trie-Based
8 100
=
=
£ 80
Y
E 60
E
S 40
L2
20 -
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Keyword Query

Figure 5.4: Comparing Total running time (100DBLP)
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no. | Keyword #result | #relations
Query tuples involved
1 | microscope 1 1
2 | malwa madhya pradesh 1 1
3 | tianjin china district beijing 1 3
4 | european hawfinch 1 3
5 | separation of powers 1 1
6 | zelda series 1 1
7 | irrational number 13 3
8 | mona lisa artist 8 3
9 | page AlleborgoBot 13 3
10 | international development world bank 1 3

Table 5.6: Keyword Queries for Wikipedia Dataset
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Figure 5.5: Comparing Total running time (Wikipedia)
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no. | Keyword #result | #relations
Query tuples involved
1 | thialand 1 1
2 | alexandria 1 1
3 | arabian sea 1 1
4 | world labor 1 1
5 | cameroon economy 1 2
6 | poland language 1 2
7 | marshall islands grenadines organization 9 5
8 | guyana sierra leone 31 )
9 | mauritius india 35 5
10 | egypt nile 5 4

Table 5.7: Keyword Queries for Mondial Dataset

s
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- mDBlabrador(sec)
D Trie-Based(sec)
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Keyword Query
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Figure 5.6: Comparing Total running time (Mondial)



Chapter 6

Conclusions

We have considered the problem of designing and implementing keyword index inside
RDBMS for speeding up KWS in RDBMS. We have proposed a trie based keyword
index for storing string term and term’s information. Using SP-GiST framework of
PostgreSQL, this trie based index is realized and used for KWS, for various representative
datasets and query workload. Experiments are performed to consider different real world
scenarios, scalability of the index usage etc. By using trie based keyword index for KWS
in RDBMS, we get better performance compared to DBLabrador [1] in all the cases.
Also our trie based system got more benefit and improvement in total time, when more
no. of joins are involved.

In the future, we tune keyword index for more benefits on various parameters like, top-k
ranking of result tuples, memory utilization and node clustering etc. Also we try to do

cost modelling of the proposed index structure.
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