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Abstract

Keyword searching (KWS) is a widely accepted mechanism for querying in Informa-

tion Retrieval (IR) systems and Internet search engines on the Web. In recent years,

the problem of KWS in relational database systems is considered as one of the major

research problems in database community. Various solutions are proposed for making

whole or part of KWS processing efficient. These wide ranges of solutions touched all the

engineering issues like testing of proposed KWS techniques, finding parameters which

affect the relevance of output, their impact on quality of output, benefit of integrating

KWS systems at various levels of Relational world etc. In this report, we have proposed

a new trie based keyword index which stores term (keyword) related information such

as schematic location of term in the database, frequency of term at cell level granularity

(where a cell means data stored in particular <row, column>) etc. This keyword index

is used to speed-up whole KWS processing. Previous KWS system stores term related

information in inverted indexes which are either main memory data structures and used

at the application level, or as relational tables [1]. In both the cases, DBMS engine is

not aware of keyword index. So we have proposed implementing keyword index inside

RDBMS, to benefit various stages of KWS and for efficient access of relations involved

in KWS processing. We have compared KWS system using our trie based keyword index

with DBLabrador KWS system [1], on end to end runtime performance basis. Experi-

mental results shows better performance of proposed system compare to DBLabrador [1].
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Chapter 1

Introduction

Keyword searching (KWS) in relational databases is a widely studied problem in last

decade. It aims to provide an easy interface to RDBMS, which does not require the

knowledge of schema information of the underlying database. For a given keyword query

(set of terms given by the user to search), KWS interface tries to generate and execute

suitable SQL query and gives resulting tuples back to the user. Various solutions are

proposed for making whole or part of KWS processing efficient. These wide ranges of

solutions touched all the engineering issues like testing of proposed KWS techniques,

finding parameters which affect the relevance of output, their impact on quality of out-

put, benefit of integrating KWS systems at various levels of Relational world etc.

[11] has compared state-of-the-art KWS systems which reveal the issues like lack of

scalability and performance in these systems. Even many techniques cannot scale to

moderately-sized datasets that contain roughly a million tuples. Also KWS systems

which are scalable are not able to perform KWS in timely manner. As relational database

store very large amount of information, KWS in such large database require efficient and

faster way to construct and execute SQL query corresponding to given keyword query.

Generally, for KWS in a relational database, an inverted index is needed which stores

mapping of database terms to its schematic location in the database. We will refer to this

inverted index in the report as keyword index. Previous KWS systems [1, 3, 5, 8] have

proposed different types of inverted index structures to store term related information

1



Chapter 1. Introduction 2

but these are either main memory data structures and used at the application level, or

as relational tables. In both the cases, DBMS engine is not aware of keyword index. So

we have proposed implementing keyword index inside RDBMS, to benefit various stages

of KWS and for efficient access of relations involved in KWS processing. In particular,

we have proposed a new trie based keyword index which stores term (keyword) related

information such as schematic location of term in the database, frequency of term at cell

level granularity etc. This keyword index is used to speed-up whole KWS processing.

Trie [15] is supposed to be an effective main memory data structure for look up operation

on string data. We have used trie for storing all distinct terms in the database. We have

implemented trie as a disk based data structure using SP-GiST (Space Partitioned Gen-

eralized Search Tree) [2] framework of PostgreSQL which provide a general framework

for implementing the class of space partitioning trees like trie, k-D tree, quadtree etc.

with inbuilt common functionalities and optimizations.

1.1 Keyword Search in Relational Databases

The success of KWS stems from what it does not require - namely, a specialized query

language or knowledge of the underlying structure of the data. But for KWS in relational

databases, the user requires writing SQL query and schema of the underlying data, even

to pose simple query. So an easy to use KWS interface to RDBMS is provided which

does not require SQL and schema information.

Let us consider a sample Bibliography database (Table 1.1 and 1.2) having relational

tables Paper(id, title, con id), and Conference(id, name, year).

Suppose if we want information about recent work on ’Keyword Search’ in relational

database published in ’SIGMOD ’ conference, with SQL query language interface, we

need to construct SQL query like Figure 1.1 and corresponding answer published would

be like Table 1.3. But usage of KWS interface requires only to type ’Keyword Search

SIGMOD ’ on text box provided for searching and answers are published like in Table

1.3.
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id title con id

P1 Keyword Search over Relational Databases: A Metadata Approach C2

P2 Optimizing Index for Taxonomy Keyword Search C1

P3 Scalable Top-K Spatial Keyword Search C4

P4 Keymantic: Semantic Keyword based Searching in Data Integration Systems C3

Table 1.1: Sample Paper Relation

id name year

C1 SIGMOD 2012

C2 SIGMOD 2011

C3 VLDB 2010

C4 EDBT 2013

Table 1.2: Sample Conference Relation

SELECT ∗

FROM Paper, Conference

WHERE Paper.con id = Conference.id AND

Paper.title LIKE %Keyword Search% AND

Conference.name LIKE %SIGMOD%

Figure 1.1: Example SQL query

id title con id name year

P1 Keyword Search over Relational Databases: C2 SIGMOD 2012

A Metadata Approach

P2 Optimizing Index for Taxonomy Keyword Search C1 SIGMOD 2011

Table 1.3: Result for SQL query

There is a subtle difference in providing KWS interface to web documents and to

RDBMS. In web documents, an answer for a keyword query has clear boundary, i.e. a

document. In RDBMS world, because of normalization, information is split into multiple
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relational tables. For a given keyword query, KWS interface tries to match the terms

with the attributes in the underlying database schema, thus producing a set of candidate

SQL queries. As the number of potential candidate queries might be high, a ranking

model is used to calculate a score value that expresses the likelihood of each candidate

SQL query corresponding to the original keyword query. Only the highest scored SQL

query is executed by DBMS engine. This SQL query can potentially retrieve large sets of

candidate results where a candidate result is obtained by joining related relational tuples

which, as a whole, contain all the keyword terms. KWS interface ranks the query results

by using another ranking model that evaluates the likelihood of a query result satisfying

the original keyword query. Then KWS interface returns only top-k (for some fixed

constant k) highest scored query results to the user. Whole process is also summarized

in Figure 1.2.

Figure 1.2: KWS Processing
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1.2 Database Models for KWS

For KWS in relational databases, two database models are considered prominently in

the literature.

Schema graph based KWS models uses schema graph of the database for infor-

mation about relationship between set of relational tables. The relationship between

relational tables could be due to primary key - foreign key or by user(DBA) defined

relationships.

Data graph based KWS models uses data graph of the published database, which

represents relationships between published relational tuples (nodes), and use it for gen-

erating answers for keyword queries.

We have not considered data graph based KWS model because no system in this cate-

gory shows either better and high performance compare to schema based system or is free

from various non-realistic limitations (memory limitation, bad performance evaluation,

does not generalizes to real dataset etc) [11].

1.3 DBLabrador

In this report we explore the DBLabrador [1] system and inverted indexes used for

KWS in DBLabrador. DBLabrador follows schema graph based approach for KWS

in relational databases. The entire KWS processing performed by DBLabrador is done

through indexes which are stored as relations and series of SQL queries. Still DBLabrador

does not provide the required execution time performance which is required for keyword

search systems. Hence we propose implementing the keyword indexes inside RDBMS.

This disk resident keyword index not only preserves the scalability of the KWS system

w.r.to large database sizes but also speed-up the KWS processing.
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1.4 Contributions

We have designed and implemented a trie based keyword index inside PostgreSQL to

speed-up whole KWS processing. Previous work did not look into implementation of

keyword index inside the database server. It is the first work which implements the

keyword index inside the database server and thus providing a useful index for performing

keyword search.

Experiments were conducted to measure usage of proposed keyword index and comparing

this new system with DBLabrador system on various representative real datasets and

query workload. Experiments reveal new keyword index speed up the KWS process and

provide benefits at different steps of KWS.

1.5 Organization

The rest of the report is organized as follows: In Chapter 2, first we formulate our

problem of designing and using inbuilt keyword index in KWS processing, then we discuss

proposed trie based design of keyword index. Chapter 3 discusses implementation of trie

based keyword index using SP-GiST framework. Then Chapter 4 covers current and

past related work. In Chapter 5, we discuss experimental setup used for comparing our

system with DBLabrador [1] and results obtained. And Chapter 6 concludes the paper

with some future directions to work on.



Chapter 2

Proposed Design of Keyword Index

2.1 Need of Keyword Index

Given a database instance, schema graph and set of attributes of database to be pub-

lished, keyword indexes are required to store schematic location and frequency infor-

mation of terms present in these attributes. Now for a given keyword query KQ =

{k1, k2, . . . , kn} where ki, i=1 to n, is a term given by the user, these keyword indexes

are required to benefit various stages of KWS processing which is as follows:

• For each term ki ∈ KQ, identify the set of attributes containing ki (Let this set be

denoted by ai).

• A structured query is a form of query where each keyword term is associated

with an attribute of the database.

• Generate all possible candidate structured queries by performing Cartesian product

of ai, i=1 to n.

• Each structured query is checked for validity using schema graph of the database.

• Relevance score for each candidate structured query is calculated using Bayesian

network model [3] which uses term’s column granularity frequency information at

database instance level.

7
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• Structured query with highest score is chosen for SQL construction. FROM clause

of SQL query is constructed by making natural join of relations involved in chosen

structured query (let it be {r1, r2, . . .}). For example, SQL query for structured

query < k1:a1, k2:a2, . . . , kn:an > is

SELECT ∗

FROM r1 natural join r2 . . .

WHERE a1 LIKE k1 AND a2 LIKE k2

. . . AND an LIKE kn

• Relevance score for each result tuple of selected query is calculated using Bayesian

network model [3] which uses column granularity frequency information at query

result set level.

KWS processing could be benefited by keyword index in initial stage for identifying

attributes which contain keyword terms, as keyword index stores schematic location

(table, column and row identifier) information of the terms. Next stage where keyword

index is utilized is ranking of candidate structured queries, as keyword index stores term’s

column granularity frequency information. Finally keyword index can benefit execution

of chosen structured query, as it provides direct access to tuples containing keyword

terms.

Query optimizer chooses some execution plan for SQL query submitted for selected

candidate structured query. In previous KWS approaches, keyword indexes are explicitly

specified and/or used in the SQL query for efficient execution. But we want to make

query optimizer aware of keyword indexes so that this keyword index access path is also

considered for structured query.

2.2 Proposed Design

We have proposed a trie based keyword index for storing string term and term’s infor-

mation. A trie [15] is a tree in which the branching at any level is determined by only a
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portion of the string term (i.e. character). Table 2.1 show a sample course relation and

Figure 2.1 shows trie based keyword index for some terms in course relation.

Course no Course name

1 Database Management System

2 Data Mining

3 Operating System

4 Spatial Databases

Table 2.1: Sample Course Relation

Figure 2.1: Trie Based Keyword Index

The trie contains two types of nodes; index nodes and data nodes. Index nodes

are internal nodes which is used for branching, while data nodes are used for storing

auxiliary information corresponding to string represented by root to leaf nodes. In the

Figure 2.1, index nodes are represented by circles, while data nodes are represented

by rectangles. All characters in the term are assumed to be one of the 26 letters of

the English alphabet. A blank is used to terminate a term. At level 1, all terms are
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partitioned into 27 disjoint classes depending on their first character. Thus, Link(T, i)

points to a subtrie containing all terms beginning with the ith character (T is the root

of the trie). On the jth level the branching is determined by the jth character. When

a subtrie contains only one character, it is replaced by a node of type data. This node

contains the list of 4-tuple information corresponding to term represented by root to

leaf: <table id, column id, row id, cell frequency>. Here (table id, column id, row id)

represents schematic location (or cell id) of the term in the database and cell frequency

is the frequency of term at cell level granularity.

We has used trie for storing all distinct terms in the database. Trie is supposed to be

an effective main memory data structure for look up operation on string data. In a trie,

worst case time complexity of lookup/insert/delete operation for a string S of length l is

O(l). Also, during lookup, simple operations such as array indexing using a character,

are used which are fast on real machines. Tries are more space efficient when they contain

a large number of short keys, since nodes are shared between keys with common initial

subsequences.

Trie is a unbalanced tree structure and can be slower in some cases than hash table

for looking up data, especially if the data is directly accessed on a hard disk drive or

some other secondary storage device where the random-access time is high compared

to main memory. Also for each term it stores auxiliary information which could be

large in size, causing more skew in the tree structure. So, a crucial issue for database

systems, in using trie, could be that they are not optimized for I/O. But for overcoming

these limitations we have implemented trie as a disk based data structure using SP-GiST

(Space Partitioned Generalized Search Tree) [2] framework of PostgreSQL which provide

node clustering algorithm that achieves minimum height and hence minimum I/O access.

2.3 Keyword Index Construction

For constructing trie based keyword index for a given database (and set of attributes to

be published), we first scan database to be published, once. This involves scanning each
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string attribute value(cell) in the published database, splitting string into terms, storing

cell-id, distinct terms and corresponding frequency in a relation named:

DB String Terms(table id integer, column id integer, row id integer, term text, fre-

quency integer).

Then we create keyword index using our proposed index design on term attribute of

DB String Terms relation. This relation, or in other words, this keyword index is used

as a global inverted index for structured queries generation, their ranking, and efficient

execution of highest ranked structured query.



Chapter 3

Implementation of Trie based

Keyword Index

We have used PostgreSQL 9.2 for implementing our index structure. Our trie based

keyword index is a unbalanced structure as opposed to traditionally used balanced index

structures such as B-tree, R-tree and its variants. One of the major hurdles in implement-

ing such a nontraditional index inside a database engine is the implementation overhead

associated with realizing and integrating this index inside the engine. Hard wiring the

implementation of a fully functional index structure with the appropriate concurrency

and recovery mechanisms into the database engine is a non-trivial process. We have im-

plemented trie based keyword index using a general index framework, SP-GiST (Space

Partitioned Generalized Search Tree) [2] provided by the PostgreSQL 9.2.

3.1 SP-GiST

SP-GiST supports the class of space-partitioning trees, e.g. tries, quadtrees and k-D

trees. The quadtree uses recursive decomposition of space into quadrants and used for

indexing point data, rectangles, and polygonal data. While k-D trees are useful for

answering range queries about a set of points in the k-dimensional space. Tries are

effective for look up operation on string data. We have used trie for storing all distinct

12
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terms in the database.

SP-GiST provides a set of internal methods that are common for all space-partitioning

trees, e.g. the insertion, deletion, and updating algorithms. SP-GiST also provides

concurrency control and recovery techniques and I/O access optimization for all space-

partitioning trees in a general way.

SP-GiST has to support two distinct types of nodes: index and data nodes. Index nodes

(non-leaf nodes) hold the various space partitions at each level. Each entry in an index

node is a root of a subtree that holds all the entries that lie in this partition. The space

partitions are disjoint. Besides having a slot for each space partition, the index node

contains an extra blank slot to point to data nodes attached to the partition represented

by this node. On the other hand, data nodes (leaf nodes) hold the key data and other

pointer information to physical data records. We can think of data nodes as Buckets of

data entries.

The SP-GiST core requires that inner and leaf nodes fit on a single index page, and also

the list of leaf tuples reached from a single inner node, all be stored on the same index

page. Restricting such lists to not cross pages reduces seeks.

3.2 SP-GiST Parameters and Methods

To handle the differences among the various SP-GiST based indexes, SP-GiST provides

a set of interface parameters and a set of external method interfaces.

3.2.1 Interface Parameters

• PathShrink: This parameter specifies how the index tree can shrink at leaf level

and internal level. It is useful in limiting the number of times the space is recursively

decomposed in response to data insertion. PathShrink takes one of three possible

values: NeverShrik, LeafShrink and TreeShrink. LeafShrink implies no index node

will have single leaf node while in case of TreeShrink internal nodes are merged

together to eliminate all single child internal nodes.
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• NodeShrink: A Boolean parameter that specifies whether the empty partitions

should be kept in the index tree or not.

• NumberofSpacePartitions: This parameter specifies the number of disjoint par-

titions produced at each decomposition.

• NodePredicate: This parameter specifies the predicate type at the index nodes.

• KeyType: This parameter specifies the data type stored at the leaf nodes.

• BucketSize: This parameter gives the maximum number of data items a data

node can hold.

For example, to instantiate our trie based structure we have set these parameters as

follows:

• PathShrink = LeafShrink

• NodeShrink = False

• NumberOfSpacePartitions = 26

• NodePredicate = letter or Blank

• KeyType = String

• BucketSize = 1 (i.e. only one string’s related information is stored in a data node)

3.2.2 External Methods

The SP-GiST external methods include the method PickSplit() to specify how the space

is decomposed and how the data items are distributed over the new partitions (Fig-

ure 3.1).

Here P is a set of BucketSize+1 entries that cannot fit in a node. PickSplit() defines a

way of splitting the entries into a number of partitions equal to NumberOfSpacePartitions

and returns a Boolean value indicating whether further partitioning should take place or
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PickSplit(EntrySet P , Level level)

1. Partition the data strings in P according to the

character values at position level

2. If any data string has length < level,

insert data string in Partition blank

3. If any of the partitions is still over-full

return True;

else

return False;

Figure 3.1: PickSplit method for partitioning

not. The parameter level is used in the splitting criterion because splitting will depend

on the current decomposition level of the tree. For example, in a trie of English words,

at level i, splitting will be according to the ith character of each word in the over-full

node. PickSplit() will return the entries of the split nodes in the output parameter

splitnodes, which is an array of buckets, where each bucket contains the elements that

should be inserted in the corresponding child node. The predicates of the children are

also returned in splitpredicates. PickSplit() is invoked by the internal method Insert()

when a node-split is needed.

Another external method is the Consistent() which specifies how to navigate through

the index tree (Figure 3.2).

Consistent(Entry E, QueryPredicate q, Level level)

1. If (q.level == E.letter) OR (E.letter == BLANK AND level > length(q))

return True;

else

return False;

Figure 3.2: Consistent method for trie navigation
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Let E: (p, ptr) be an entry in an SP-GiST node, where p is a node predicate or a leaf

data key and ptr is a pointer. When p is a node predicate, ptr points to the child node

corresponding to its predicate. When p is a leaf data key, ptr points to the data record

associated with this key. Consistent() is invoked by the internal methods Insert() and

Search() to guide the tree navigation.

The various SP-GiST index structures have different sets of operators to work on. For

the trie index structure, we define the operator =, to support the equality queries (Fig-

ure 3.3).

CREATE OPERATOR =

leftarg = VARCHAR,

rightarg = VARCHAR,

procedure = trieword equal,

commutator = =,

restrict = eqsel

CREATE OPERATOR CLASS

SP GiST Trie

FOR TYPE VARCHAR

USING SP GiST

AS OPERATOR 1 =,

FUNCTION 1 trie consistent,

FUNCTION 2 trie picksplit

Figure 3.3: Operator and Operator class for trie

3.3 Node Clustering in SP-GiST

SP-GiST provides different node clustering methods which can be used according to

type and nature of the operations to be performed on the constructed index. We have

used SP-GiST’s default node clustering algorithm [6] that achieves minimum height and

hence minimum I/O access. Other clustering alternatives are Fill-Factor clustering which

mainly focuses on space utilization of index structure, Deep clustering which chooses the

longest linked subtree from the collection of nodes to be stored together in the same

page and Breadth clustering which chooses the maximum number of siblings of the same

parent to be stored together in the same page.



Chapter 4

Literature Survey

Goldman et al. [5] had first recognized the usefulness of a keyword search system for

databases, but significant research in this area did not commence for several years after

these early publications. Interestingly, these proposed systems coincide with early formal

attempts to integrate Database and IR technologies.

[1] has used data graph based KWS model, in which distinct root semantic answer model

is considered and an alternative keyword index, Node-Node index (instead of Node-

Keyword index [7]) has introduced, to solve issues related to storage space of keyword

index but query search time needs to be compromised with less storage requirement.

BANKS [8], BANKS II [9], BLINKS [10] are the earlier data graph based models.

DBXplorer [12] and Discover [13] are among the first Schema graph Based systems pro-

posed in this category. DBXplorer [12] used a symbol table for mapping terms to tuples

and explores various design alternatives of this inverted index. Discover [13] has used

a greedy algorithm to prioritize candidate networks (which are equivalent of Structure

Query) which give fewest results. Both [12] and [13] has considered no. of join in selected

candidate network for ranking results.

In terms of KWS processing, we have followed Labrador’s approach [3]. For a keyword

query, Labrador generates ranked candidate structured queries, using column granularity

term frequency hash map. User can choose one of the preferred structured queries, for

17
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which Labrador generates appropriate SQL query. Labrador queries RDBMS with gener-

ated SQL query and obtains answers for the keyword query. Finally it ranks the answers

produced and outputs to user. But Labrador uses main memory data structures (e.g.

column granularity term frequency hash map), for various intermediate calculations and

KWS processing, and RDBMS is used as data repository only. So DBLabrador [1] have

been proposed which is functionally similar to Labrador, and uses RDBMS to perform

all computations. DBLabrador keep cell-granularity term frequency information along

with column-level term frequency information and does extra computation to material-

ize weight of each term in cell-granularity level. Advantages of using RDBMS back-end

technologies are, it can handle large databases and KWS indexes are persistent now.

Although these keyword indexes (stored as relation table) are present in RDBMS, they

are not a part of execution plan of structured queries, i.e. these keyword indexes are

very efficient access path for relations used in a structured query, but this fact would not

be utilized implicitly by RDBMS.

One important processing step of KWS in relational databases is the ranking of search

results which is obtained after joining relations in selected structured query (Top-k Query

execution). This Top-k query execution depends on result set dependant ranking func-

tion i.e. ranking function uses frequency of terms at result set level and not at original

database instance level [3]. Final score of a result (tuple) is aggregated from multiple

scores of each constituent tuples, but the final score is not monotonic with respect to

any of its subcomponents. Several efficient query execution algorithms optimized for

returning Top-k relevant results are presented in [4]. But existing work on top-k query

optimization cannot be immediately applied as they all rely on the monotonicity of the

score aggregation function.

Coffman [11] addresses the challenges inherent in transitioning relational keyword search

techniques from the computer science community to practical systems that can be de-

ployed against existing data repositories. It also presents an extensive benchmark specif-

ically designed to evaluate relational keyword search techniques via published datasets,

query workloads, and relevance assessments.



Chapter 5

Experiments

In this section, we compare KWS system using our trie based keyword index and

DBLabrador [1] KWS system, on end to end runtime performance basis i.e. time elapsed

between submission of keyword query and ranked result tuples are generated.

5.1 Experimental Setup

All experiments are conducted in PostgreSQL 9.2 on Intel(R) Core(TM) i3-2310M CPU

2.10GHz, 3GB Main memory, Ubuntu 12.04 operating system.

5.1.1 Datasets

We have used following representative datasets (Table 5.1). Among these 10DBLP and

100DBLP are the scaled version of the DBLP dataset. We have replicated the tu-

ples in DBLP dataset by the scale factor 10 and 100 for generating this scaled version

datasets. These scaled version datasets are used for testing scalability of the index.

These datasets covered different dimensions of real world scenarios hence considered as

benchmark datasets for testing KWS systems [11] in current literature.

• DBLP : Digital Bibliography & Library Project (DBLP) is one of the popular

dataset used in previous KWS systems. This dataset contains paper titles, their au-

thors and other bibliographic information on major computer science publications
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Dataset Size(MB) Relations Text attributes Tuples

DBLP 688 9 25 7357K

10DBLP 6890 9 25 735M

100DBLP 68920 9 25 7357M

Wikipedia 550 42 121 206K

Mondial 9 28 70 17K

Table 5.1: Datasets

extracted from the DBLP repository (Table 5.2). Schema graph of the published

database is shown in Figure 5.1.

Figure 5.1: DBLP schema graph

• Wikipedia : This includes more than 5500 articles chosen for the 2008 - 2009

Wikipedia Schools DVD, a general purpose encyclopedia, which contains content

roughly equal to a traditional 20 volume encyclopedia.

• Mondial : The Mondial dataset [14] comprises geographical and demographic

information from the CIA World Factbook, the International Atlas, the TERRA

database, and other web sources.

Among these datasets we have given details (relations, schema graph etc.) about one of

the dataset i.e. DBLP (Table 5.2).
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Relation Size(MB) Tuples # Distinct Terms

Proceedings(id, key, title, year) 4.3 17,982 30,558

InProceedings(id, key, prockey, title, year) 206 1,112,035 1,353,575

InProcAuthors(inProcId, name) 187 3,155,373 291,477

Articles(id, key, title, journal, year) 154 826,026 1,022,410

ArticleAuthors(articleId, name) 125 2,101,494 260,209

Books(id, key, editor, publisher, year) 1.16 9,286 19,634

BookAuthors(bookId, name) 0.86 13,415 9,404

InCollections(id, key,bookKey, title, year) 4.5 22,582 34,034

Table 5.2: DBLP Dataset

5.1.2 Keyword Queries

We have considered 50 keyword queries for each dataset. No. of query terms varies from

1 to 4. We have shown here some representative keyword queries used in experiments

in Table 5.7, 5.6, 5.3 for different datasets which reflects runtime performance of all

considered queries.

5.1.3 PostgreSQL parameters

We have set Postgres parameters shared buffers and work memory according to size

of dataset and size of keyword index. These parameters are kept lower than size of

keyword index so that usage of this disk resident index can be evaluated. For Mondial

dataset which is of smaller size (9MB), keyword index is of size 1.5MB and we have set

shared buffers = 128KB and work mem = 512KB. For DBLP and Wikipedia datasets

keyword index sizes are 8MB and 33MB respectively, so we have used shared buffers and

work mem as 2MB for these datasets. For scaled versions of DBLP dataset, 10DBLP

and 100DBLP keyword index sizes are 82MB and 886MB respectively and we have used

shared buffers and work mem as 2MB.



Chapter 5. Experiments 22

5.2 Experimental Results

In all considered keyword queries, we found our approach has performed better than

DBLabrador approach (Figure 5.6, 5.5, 5.2) for all datasets. One reason behind this

improvement is trie based keyword index save processing such as aggregate and group

by operation by pre-calculating and storing various information for each term in the

database.

Also for testing scalability of the index usage, we have experimented with the larger

datasets(10DBLP, 100DBLP), which although not changes the trie index’s internal struc-

ture but scales the leaf levels. In these cases also, our trie based index performs better

than DBLabrador(Figure 5.3, 5.4). Note that total time for these datasets are in min-

utes.

From experimental results(Figure 5.6, 5.5, 5.2), its clear that our trie based system got

more benefit and improvement in total time, when more no. of joins are involved.

Although we got high total time values in the experiments if we look at absolute scale,

but this is obtained under restricted memory limits, i.e. working memory is set to very

small fraction of trie index size. As this working memory is increased, total time per-

formance improves for both the system, but relative nature of results we have got is not

changed much. Further if working memory is set to a value such that this trie based

keyword index can be fit into it completely while KWS processing, then its performance

and benefits gained are much more.

For Wikipedia and Mondial datasets, result set cardinalities are not much but this also

represents a real world scenario where few result tuples are to be retrieved. Specifically

Mondial datasets size is very small and most of the information stored in it are geo-

graphical facts and hence database information is not redundant and we have not got

similar benefit in case of more no. of joins are involved.
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no. Keyword #result #relations

Query tuples involved

1 network model 856 1

2 computer science 766 1

3 oliver generalized optimization 1532 2

4 approximation algorithm 1344 2

5 cooperative game theory 1192 2

6 eigenvalue calculation 566 3

7 classification data mining 1688 3

8 probability dimitri 764 3

9 multidimensional histogram usage 35 4

10 simulation software update 62 4

Table 5.3: Keyword Queries for DBLP Dataset

Figure 5.2: Comparing Total running time (DBLP)
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no. Keyword #result #relations

Query tuples involved

1 network model 8560 1

2 computer science 7660 1

3 oliver generalized optimization 152K 2

4 approximation algorithm 129K 2

5 cooperative game theory 115K 2

6 eigenvalue calculation 560K 3

7 classification data mining 16M 3

8 probability dimitri 760K 3

9 multidimensional histogram usage 36K 4

10 simulation software update 60K 4

Table 5.4: Keyword Queries for 10DBLP Dataset

Figure 5.3: Comparing Total running time (10DBLP)
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no. Keyword #result #relations

Query tuples involved

1 network model 85K 1

2 computer science 76K 1

3 oliver generalized optimization 15M 2

4 approximation algorithm 13M 2

5 cooperative game theory 11M 2

6 eigenvalue calculation 56M 3

7 classification data mining 168M 3

8 probability dimitri 76M 3

9 multidimensional histogram usage 3M 4

10 simulation software update 6M 4

Table 5.5: Keyword Queries for 100DBLP Dataset

Figure 5.4: Comparing Total running time (100DBLP)
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no. Keyword #result #relations

Query tuples involved

1 microscope 1 1

2 malwa madhya pradesh 1 1

3 tianjin china district beijing 1 3

4 european hawfinch 1 3

5 separation of powers 1 1

6 zelda series 1 1

7 irrational number 13 3

8 mona lisa artist 8 3

9 page AlleborgoBot 13 3

10 international development world bank 1 3

Table 5.6: Keyword Queries for Wikipedia Dataset

Figure 5.5: Comparing Total running time (Wikipedia)
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no. Keyword #result #relations

Query tuples involved

1 thialand 1 1

2 alexandria 1 1

3 arabian sea 1 1

4 world labor 1 1

5 cameroon economy 1 2

6 poland language 1 2

7 marshall islands grenadines organization 9 5

8 guyana sierra leone 31 5

9 mauritius india 35 5

10 egypt nile 5 4

Table 5.7: Keyword Queries for Mondial Dataset

Figure 5.6: Comparing Total running time (Mondial)



Chapter 6

Conclusions

We have considered the problem of designing and implementing keyword index inside

RDBMS for speeding up KWS in RDBMS. We have proposed a trie based keyword

index for storing string term and term’s information. Using SP-GiST framework of

PostgreSQL, this trie based index is realized and used for KWS, for various representative

datasets and query workload. Experiments are performed to consider different real world

scenarios, scalability of the index usage etc. By using trie based keyword index for KWS

in RDBMS, we get better performance compared to DBLabrador [1] in all the cases.

Also our trie based system got more benefit and improvement in total time, when more

no. of joins are involved.

In the future, we tune keyword index for more benefits on various parameters like, top-k

ranking of result tuples, memory utilization and node clustering etc. Also we try to do

cost modelling of the proposed index structure.
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