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Abstract

Suffix tree is the most extensively studied index structure for longer strings (e.g. genomic strings). On the other

hand, DAWGs and CDAWGs are index structures which were developed almost a decade after the suffix trees

and support almost all the applications of suffix trees. But these could not get attention of research community

much because of its size for DAWG and slow construction procedure for CDAWG. Recently a linear time online

direct construction algorithm has been suggested for CDAWG which gives an opportunity to explore the structure.

Another index structure Spine, recently been proposed, shown to be better than suffix trees.

In the present work, we do an comparative analysis of both Spine and CDAWG for various genomic strings.

Implementation of CDAWG is done and algorithmic claims are verified. A comprehensive set of experiments

are performed to evaluate performance of both Spine and CDAWG. Results show that in in-memory environments,

CDAWG searches are about 2 to 3 times faster than that of Spine, though memory usage of Spine are approximately

40% less than that of CDAWG. Efficient extension of these indexes has been implemented for larger alphabet. The

results reveal the generality of these two structures. Finally, indexing has been integrated with BLAST, the popular

genomic alignment tool, to study its effectiveness over the heuristic based approximate search.
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Chapter 1

INTRODUCTION

String indexing is always considered as one of the favorite topics in research community due to wide

variety of its applications. One such example can be computational biology, where large DNA sequences

are considered as nothing but long strings over alphabet Z a,c,g,t [ and they are object of linguistic and

statistic analysis. As normal string comparison methods do not scale well with such long strings, need

of string indexes arises.

Historically, string indexing begins with suffix trie [17], which holds all the suffixes of the data

string. Suffix trees which can be obtained by merging unary nodes of a suffix trie to its parent node, were

suggested as an improvement over suffix tries and as the linear time and space construction algorithms

were devised for suffix trees, suffix trees became the most extensively used structure in the present

context.

While suffix trees are result of vertical compaction of the suffix tries, yet another structure namely

Directed Acyclic Word Graph(DAWG) [2], though not as popular as suffix trees, was introduced later

which can be obtained by minimizing the suffix trie. Further, as an improvement over DAWG, Compact

Directed Acyclic Word Graph(CDAWG) was presented in [3] which can be obtained from the DAWG

in a similar manner as suffix tree can be obtained from suffix trie. Recently, Spine, which is a complete

horizontal compaction of a suffix trie has been suggested in [12]. Spine is structure wise much more

closer to DAWGs.

In parallel to above mentioned works, other approaches like the one used in BLAST [15], the popular

genomic alignment tool, were also in progress. This approach does not use any index and is a heuristic

search method that seeks words of length W that score at least T when aligned with the query and scored

with a substitution matrix. Words in the database that score T or greater are extended in both directions

in an attempt to find a local optimal.( See [15] for details). As the approach being heuristic based,

BLAST can miss few matches. These matches can be interesting in some cases, especially if the aligned

sequences are highly different. This motivates us to analyze the performance of BLAST integrated with

an index.

1



Although few linear time and space construction algorithm are suggested for direct construction of

CDAWG, but its performance was not analyzed to the best of our knowledge. In the present work we

evaluate the performance of CDAWGs through a comprehensive set of experiments, both in terms of

time and space and compare it with latest index structure “Spine”.

In addition to that both indexes have been extended to support English text over an alphabet size of

26 and statistical properties have been verified to be same as that of genomic sequences.

1.1 Contributions

The main contributions of the present work can be summarised as follows:

1. The Ukkonen’s algorithm based CDAWG construction algorithm [8] has been implemented for the

first time and the fact are verified experimentally as well.

2. A few optimizations are suggested for CDAWG to improve its memory usage.

3. We profile the performance of both Spine and CDAWG over various genetic strings for both in-

memory and disk based scenarios. Various features and limitations of both the structures are

examined.

4. Performance for larger alphabets ( \+]�\_^a` b ) has also been analyzed.

5. Indexes have been integrated with BLAST and performance of BLAST with and without Spine

index has been observed.

1.2 Outline of the report

The remainder of this report is organized as follows : Related work is overviewed in Chapter 2. Chapter 3

describes the Spine index structure. CDAWG is explained in Chapter 4. The details of implementation

are discussed in Chapter 5. Experimental results are analyzed in Chapter 6. Extension for English text is

presented in Chapter 7. Details of integration of Spine with BLAST are given in Chapter 8. Finally we

conclude in Chapter 9.
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Chapter 2

RELATED WORK

The horizontal compaction of string indexes is one of the topics which is not discussed much in the

literature. Historically, Blumer et al. [2] introduced Directed Acyclic Word Graph with a linear time

construction. But the restriction with the structure was its size which is around 35 bytes per character for

genomic strings. In a subsequent paper Blumer et al. [3] came up with a compacted version of DAWG,

namely CDAWG which can also be seen as minimization of Suffix Tree. They also describe a linear time

algorithm to obtain it from corresponding DAWG. This reduced the cost of indexing from 35 bytes to

around 21 bytes per character of genomic strings. Still, as the construction algorithm requires a DAWG

to construct a CDAWG, hence the initial phase requires same amount of memory as of DAWG construct

and hence compactness of CDAWGs could not be utilized because of the limitation of construction

algorithm.

The first linear direct construction of CDAWG was presented by Crochemore et al. in [4]. The

algorithm was based on the McCreight’s algorithm for suffix tree construction. It saves about half the

space required for ordinary DAWGs or Suffix Tree. Also, as it reduces the number of nodes (about cd less)

and edges (about ec times less), it reduces the search and construction times as well. The only limitation

of the algorithm was that it was not an online algorithm and requires to know the string to be indexed

before hand. This limitation was overcome by Inenaga et al. [8] when they provided an online linear

construction algorithm for direct construction of CDAWGs. This algorithm was based on Ukkonen’s

algorithm for suffix tree construction.

Full horizontal compression was achieved by Spine which was suggested by Neelapala et al. [12].

The structure has some remarkable properties which includes online direct and linear construction al-

gorithm. It also supports a simple buffering strategy to improve the performance when disk comes into

picture. None of the above mentioned structures talk about disk at all.

In contrast to horizontal compression, a lot of work has been done on vertical compression of the

trie i.e. suffix trees. There are basically two classes of approaches, first where people tried to reduce the

size of suffix trees while other class comprises of approaches which changed the structure to improve its

3



performance. Kurtz [9] reduced the size of suffix tree to 12.5 bytes per character but the structure was

slower with respect to construction and search times due to increased number of edge traversal. Another

significant attempt to reduce the size of the suffix tree was Lazy Suffix Tree [5] which further lower down

the memory requirements to 8.5 bytes per character, but structure does not have suffix links, hence lacks

in functionality.

Suffix arrays [10], which are not suffix trie based, are supposed to be smallest index structure with

approximately 6 bytes per character. Although suffix arrays can be constructed in linear time, the search

time for suffix array becomes fhgi\+jlk4mQnpo2\Qq�r#s�t�gi\ u�\+v�v .
For disk based construction of suffix trees, Hunt et al. [7] proposed an phase wise construction

algorithm but have a quadratic running time and provides no suffix links.

Other than improving over the structures and suggesting new structures, there is another approach to

improve performance of string indexes by adjusting the systems to support the index. One such attempt is

presented in [1] by Srikanta et al. They suggest a new simple and static buffering policy, namely Top-Q,

to improve the disk based construction of suffix trees, without affecting the suffix tree structure.

4



Chapter 3

SPINE

Parts of this chapter are mostly based on [12]. Spine is one of the recently proposed string index struc-

ture [12]. To the best of our knowledge, it is the only horizontally compacted trie index structure. Al-

though CDAWG comes very close to Spine, still it is minimization of suffix tree or vertically compacted

version of DAWG, see Figure 4.2.

The most important property of Spine is the compaction it can achieve which is the extreme of

horizontal compaction i.e. a single linear structure. The linearity of the structure and one to one cor-

respondence of nodes to characters in sequence make it distinct from other index structures. Again,

linearity results in simple static buffering policy which is a key to improve performance on disk.

3.1 Spine index structure

The central component of SPINE is the “backbone” of nodes connected by forward (or downstream)

directed edges called “vertebras”, as shown in Figure 3.1. Each vertebra corresponds to a character in

the input data string, and this character is used to provide a character label (CL) for the vertebra. The

vertebras appear in the same order as the associated characters in the input string.

While the backbone forms one source of forward connectivity between the nodes, there are additional

downstream edges that connect nodes across the backbone. These edges are called “ribs” (full lines in

Figure 3.1) and “extribs” (dotted lines in Figure 3.1). Similar to vertebras, each rib is labeled with a

character label (CL), corresponding to the character that it represents in the associated suffix. The set

of forward edges collectively represent all possible suffixes of the data string, and are used during the

search process.

The backward (or upstream) edges, called “links” (dashed lines in Figure 3.1) are created and used

during the SPINE construction process. They provide the ability to process suffixes on a set basis.

5
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Figure 3.1: Spine structure for aaccacaaca

3.2 Avoiding False Positives

As mentioned earlier, the Spine index represents the complete horizontal compaction of all the suffixes

in the corresponding trie. An implication of merging of all the matching paths into a single path is that

all paths that were there in the original trie continue to be represented in SPINE, and therefore there

is no possibility of false negatives. However, false positives, that is, invalid substrings, may arise. For

instance, in Figure 3.1, a path for accaa appears to exist in the SPINE index even though it is not a

substring of the data string.

To avoid such false positives, we take recourse to a numeric labeling strategy for the edges during

the construction process. Specifically, each rib and extrib is assigned an integer label, called Pathlength

Threshold (PT). The extribs have an additional integer label called Parent Rib Threshold (PRT). In order

to be able to assign the correct PT values to the ribs/extribs, each link is assigned an integer label called

Longest Early-Terminating suffix Length (LEL). For example, in Figure 3.1, the rib from Node 3 has a

PT of 1, the extrib from Node 5 to Node 7 has a PRT of 1 and PT of 2, while the link from Node 8 to

Node 2 has an LEL of 2.

These labels, which are assigned during the index construction process as explained later, determine
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when forward edges can be traversed during the subsequent search process. Specifically, a rib/extrib

can be traversed only if the length of the path traversed so far (i.e. from the root node till that point) is

less than or equal to the PT of the rib/extrib. So, for example, the accaa path will not be permitted in

Figure 3.1. This is because when we traverse the path from the root for acca, after we reach Node 5, the

rib for a violates the constraint because it has a PT of 2, which is less than the current pathlength of 4.

Thus, accaa is not a valid substring of the given data string.

Overall, a search path in a SPINE index is a valid path if and only if all the ribs/extribs in the traversed

path satisfy the PT constraints.

3.3 Notation and Terminology

In the remainder of this section, we describe the components of SPINE in detail. Our discussion assumes

that the data string which is being indexed is composed of w characters. For ease of presentation, we

use the notation shown in Table 3.1. While the table entries are mostly self-explanatory, the termination

concept requires elucidation: A suffix x y+z is said to terminate at node { ({}|�~ ) if there is a valid traversal

path from the root node to node { whose string of character labels match the suffix. A suffix x y�z whose

termination node is strictly less than ~ is said to be an early-terminating suffix, otherwise it is called

end-terminating.

To make the above notation clear, consider Node 5 in Figure 3.1, for which ��� = aacca, x�� c = ca,� r�r���k4� � = Z aacca, acca, cca, ca, a [ , ���&���5k�� � = Z aacca, acca, cca, ca [ , ����n r#o���k�� � = Z a [ .

Notation Meaning� y Node i
��y String on backbone from root to

� y
x y�z Suffix of � y of length �� r�r��5k��7y Set of all suffixes of �2y� r�r��5k��7y�g���v Set of suffixes of �2y of length | k
�:�&����k4�7y Set of suffixes in

� r#r���k4�py
terminating at

� y
�:�&����k4� y g���v Set of suffixes of ���&�1��k�� y

of length | k
����n r#o��5k��7y Set of suffixes in

� r#r���k4�py
not terminating at

� y� ~����2g � y v�� � � �
LEL of the link of

� y� ~����2g � y�v����=m
x
� Destination node of link of
� y� ~��pg � y v����=m
x
�Qg��Qv Destination node of rib at
� y

for character �� ~��pg � y�v����,��g��Hv PT of rib at
� y for character �

Table 3.1: Notation
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3.4 Vertebra Backbone

During construction, the backbone is initially created with a single node, called the root node, and for

each character in the data string, a new node is added sequentially using a vertebra edge labeled with the

corresponding character. The node that is currently at the bottom of the backbone is referred to as the tail

node,
����� y¡  . Each node has an integer identifier which is set equal to the length of the backbone string

above that node. With this naming convention, the root node has identifier ¢ , the first node has identifier£
and so on until the tail node of the entire index which will have identifier w .

3.5 Links

Links are meant to record, at each node, the information about its early-terminating suffixes, namely,

�:�Pn rSo���k4�7y .
Specifically, only the longest early-terminating suffix (hereafter referred to as LET-suffix) is explic-

itly kept track of since, by definition, all shorter suffixes are also early-terminating suffixes and they

would themselves have been linked up earlier. For example, in Figure 3.1, there is a link from
� � to

�
e

to represent a, the LET-suffix. If a node has no early-terminating suffixes (i.e. �:�&����k4�1y�^ � r�r���k��7y ),
then its link points to the root node,

�/¤
, which can be interpreted as representing the null suffix.

� d in

Figure 3.1 is an example of this scenario. Finally, as a special case, the root node has no link edge since

it is the starting node.

Link Labels

The LEL label of a link is the length of the LET suffix which it represents. Intuitively, if we have a link

from
� y to

� z with a LEL ’ � ’, then it means x y¡¥ ^¦x z�¥ . More formally,
� r�r���k4�py can be defined as

follows:� r#r���k4�7y2^a���&���5k��7y�§=�:�Pn rSo���k4�7y and

�:�Pn r#o���k4�7y4^ � r�r���k��Qz_g���v
where �h^ � ~����2g � y�v�� � � �

and ��^ � ~¨���2g � y�v����=m
x
� .

3.6 Ribs

When the SPINE index that has been built for ��y is extended by one more character from the data string,

all the suffixes of �2y need to be extended by this additional character, � ��� y©  . For the end-terminating

suffixes, the newly added node on the backbone,
�/��� y¡  , automatically records this extension through its

vertebra edge. For the early-terminating suffixes, however, the extension must be explicitly recorded and

this is achieved through the addition of rib edges. Specifically, the link chain from
� y is traversed and if

8



a rib/vertebra does not already exist for � ��� y¡  at any node, say
� z , in the link chain, a new rib is created

from that node to
����� y¡  .

The traversal of the link chain terminates if either the root node is reached, or a node having an

outgoing edge labeled with � ��� y©  is reached. The first stopping condition is obvious since no further

traversal is possible, while the other condition reflects the fact that the suffix in question has already

been previously extended. And there is no need to explicitly handle the remaining smaller suffixes as

they would also have been extended automatically.

Rib Labels

When a new rib is created at
� z , its CL is set to � ��� y¡  and its Pathlength Threshold (PT) is set to the length

of the longest suffix of �2y terminating at that node, which is given by the LEL of the last traversed suffix

link. Intuitively, the rib PT represents the length of the longest prefix that can be traversed from the root

before the rib is traversed. This is because the rib was created to extend the suffix of that length. This

means that, as mentioned earlier, a rib at
� z can be traversed during the SPINE search process only if

the length of the current traversal path is | PT of this rib.

3.7 ExtRibs

As mentioned above, the link-chain traversal terminates for rib addition if the current node already has

a matching rib (i.e. with CL = � ��� y¡  ). However, the following situation may now arise: The PT of the

pre-existing rib may be less than the LEL of the link used to reach this node, which means that this rib is

not valid to represent the extension of the associated early-terminating suffix. To address this issue, the

solution that immediately comes to mind is to update the rib’s PT to be equal to the LEL value. However,

this is not correct since it may permit illegal paths resulting in false positives. An alternative approach

has been taken for extending the rib itself through edges called extribs (extension ribs). For example, in

Figure 3.1, the extrib (dotted line) from
� � to

��ª
is an extension of the “parent” rib connecting

� d to� � .
At a given node, there may be multiple extribs, each corresponding to a different parent rib that

terminates at this node. From an implementation perspective, this is problematic since it makes the node

size to be variable. Therefore, the alternative approach of maintaining the extribs in a chained fashion

has been proposed. That is, the first extrib in the chain is located at the destination node of the rib which

failed the pathlength threshold test, and the second extrib is located at the destination node of the first

extrib, and so on. This ensures that at any node there is at most only one extrib. So, whenever an extrib

is need to be created, instead of creating it from the destination of the parent rib, traversal to the node at

the end of the extrib chain is done, and then a new extrib is created from this node to the tail node. All

the extribs created for a rib are its children.

9



ExtRib Labels

Each extrib has an associated Pathlength Threshold (PT), which is the length of the longest suffix that it

is extending, as well as a PRT, which is the PT value of the parent rib. The reason for including the PRT

value is to be able to uniquely identify the extrib. Note that a character label is not required for an extrib

as it is implicitly represented by the CL of the incoming rib or extrib at its source node. And hence, a

complete extrib chain represents a single character. In Figure 3.1, an example chain is the extrib from� � to
� ª

, and then from
� ª

to
�
e
¤
.
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Chapter 4

COMPACT DIRECTED ACYCLIC WORD

GRAPHS

The first ever linear-sized graph to represent the sub-words of a word, called Directed Acyclic Word

Graphs was presented in [2]. When terminal states are added to DAWG, it becomes the minimum au-

tomaton accepting suffixes of a word.

Later, in [3], Blumer et al. presented Compact Directed Acyclic Word Graphs which was a space

efficient version of DAWG and can be obtained by deleting all the nodes of out degree one and cor-

responding edges. They also presented a linear time algorithm to obtain CDAWG from corresponding

DAWG.

Directed Acyclic Word Graph [4]: A suffix automaton of a word u , denoted as � �l«<¬ g#u2v , is the

minimal deterministic automaton (not necessarily complete) that accepts �g#u2v , the (finite) set of suffixes

of u .

Before defining CDAWG, let us define syntactic congruence relation. The syntactic congruence

associated with �g#u2v is denoted by ®�¯1°²±
³ and is defined, for u�´�k�´�µ·¶}])¸ , by:

k=® ¯�°¹±
³ µ/º/»¼k�½ e �g#u4v¾^¿µ�½ e �g#u2v
That is, k and µ occur as prefixes of the same suffixes of s. In other words, the occurrences of k and

µ must end at same position in the string. Hence, if k and µ occur in the string, one must be a suffix

of other. We call classes of factors the congruence classes of the relation ®/¯�°¹±
³ . The longest word of

a class of factor is called the representative of the class. States of DAWG(x) are exactly the classes of

the relation ® ¯1°¹±
³ . The class of all strings which are not substrings of u is called degenerate class. The

longest string in a non-degenerate class of factors is the representative of the class.

Compact Directed Acyclic Word Graph [4]: The Compacted Directed Acyclic Word Graph of a word

u , denoted by À,� �l«<¬ g#u2v , is the compaction of � �l«<¬ g#u2v obtained by keeping only states that are

either terminal states or strict classes of factors according to ® ¯1°²±
³ , and by labeling transitions accord-

ingly.
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4.1 CDAWG Index Structure

The point to mention about the CDAWG is its simple structure. CDAWG structure comprises of nodes

along with its forward edges and suffix link. Figure 4.1 shows an example graph for À,� �,«Á¬ �Â��Ã�Ã���Ã��Â��Ã��
.

The solid arrows represent forward edges and broken arrows are the suffix links. Each forward edge has

a multi letter transition associated with it. No two edge label can begin with the same letter on a single

node. Each node in CDAWG structure represents a strict class of factors. Each state has at least two or

at most \+]�\ outgoing edges (which is obvious from definition). All the states other than Initial and Final

have suffix links(Section 4.1.2).

4.1.1 Forward Edges

Forward edges are main traversal path during search. Each state can have as much as \+]�\ outgoing edges

and as low as two edges. There is no limit on the number of incoming edges. Each edge is defined as a

transition g¹{�´ÂÄ9´iÅ v where { is the source state, Å is the target state and Ä is the associated label. Every

path formed by forward edges is a valid path. The string obtained by concatenation of the labels of edges

from root node to any state (or at any intermediate point on an edge) will be a factor of the indexed

sequence. Also, every factor of the indexed sequence u has a matching path in À,� �l«<¬ ± . In other

words, each and every factor of u , and factors of u only, form paths in À,� �l«<¬ ± .

4.1.2 Suffix Links

Definition: Let { be a node of the À,� �l«<¬ g#u2v , different from the initial or final node. Let Æ be the

representative of the class associated with { . The Suffix Link of { , denoted by ��k4��g¹{4v , is the node Å
whose representative Ç is the longest suffix of Æ whose path does not end at { .

If Ç is empty then ��k���g¹{4v is the initial node. Suffix links are not defined for initial and final nodes.

Although the definition of suffix link does not guarantee that every node in the graph has a suffix link,

we have following property:

Any node created during phase i+1 will have a suffix link from it by the end of phase. Here phase is

phase in construction procedure discussed later in Section 4.5.

4.2 Size Bounds

Number of states: Given uA¶È] ¸ , if \ u5\&^É¢ , then ���R����m
x�g#u4v�^ £
; if \ u5\�^ £

, then ���R����m
x�g#u4v�^É` ;

otherwise \ u5\�Ê�` , and `Ë|A�����P��m
x�g#u4v?|Ì\ u�\Qq £
.

Maximum number of states results in a situation when u is of the form of ��Í ± Í , where �Î¶V] and

minimum occurs when we have u is composed of pair wise different letters. ( See [4] for proof)
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Figure 4.1: CDAWG for aaccacaaca

Number of edges: Given uÏ¶Ð])¸ , if \ u5\�^Á¢ , then �:�_t�m
x�g#u4vN^Á¢ ; if \ u�\�^ £
, then �:�_t�m
x�g#u4vÑ^ £

;

otherwise \ u5\�Ê�` , and ���R�P�Rm�xPg#u2v?|�`�\ u5\ ÒÐ` .

Maximum number of edges results in a situation when u is of the form of � Í ± Í ½ e � , where �@´Â�,¶Ó] . (

See [4] for proof)

4.3 Construction of CDAWG

Compact Directed Acyclic Word Graph for a string u can be constructed in both indirect and direct way.

Actually À,� �l«<¬ g#u2v can be seen as minimization of suffix tree of u or compaction of � �,«<¬ g#u4v
as shown in Figure 4.2. Here. we would like to differentiate between minimization and compaction.

Though both results in reduction of number of states in the automaton, compaction does not change the

basic structure of the automaton and it just merges unary child nodes to its parents. Compaction is just

a space efficient representation of an automaton. On the other hand, minimization is a process which

changes the structure itself to achieve the minimum number of states so that the language accepted by

the automaton should not get changed. How we can construct À�� �,«<¬ g#u4v from suffix tree of u is given

in [6] while obtaining it from � �l«<¬ g#u2v is discussed in [4].
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Figure 4.2: Relationships between string indexes

A couple of direct construction algorithms are proposed in [4] and [8]. Former is based on Mc-

Creight’s algorithm for the construction of suffix tree [11], while the latter is based on Ukkonen’s algo-

rithm [13]. The run times of both the algorithms are linear with respect to input string length. In the

following text we follow the second approach because of its online nature i.e. it processes the characters

of input string from left to right one by one, with no need to know the entire string before hand.

4.4 Horizontal Compaction in CDAWG

Though there is no explicit horizontal compaction procedure in CDAWG, it inherits the horizontal com-

paction from the original DAWG. The horizontal compaction in DAWG is a result of minimization

process. For example, in case of suffix trees, once a path gets separated from other, it never meets it

again. Hence, tree keeps on growing in width as well. On the other hand, in case of DAWG, if prefixes

of a suffix do not lie in the same equivalance class of syntactic congruence relation ( ®h¯1°²±
³ ), then those

prefixes are represented by two different nodes, but the suffix itself is represented by a single node.

4.5 Description of Construction Algorithm

This section is based on discussion given in [8].

The algorithm is based on Ukkonen’s Algorithm for construction of suffix trees [13]. Given an alphabet

] , let x-^Ôx e ´Âx c ´Q�¡�¡´ÂxHÕ be a string on ] . The algorithm is divided in � phases similar to Ukkonen’s

algorithm, building at each phase ~ the implicit À,� �l«<¬×Ö y for each prefix xPØ £ �¡�+~�Ù of x . The implicit

À,� �l«<¬ÚÖ y�Û e for xPØ £ �¡�+~�q £ Ù is constructed starting from À,� �l«<¬ÜÖ y . Each phase ~�q £
is divided

in ~�q £
extensions, one for each of the ~�q £

suffixes of xPØ £ �¡�+~�q £ Ù . In extension � of phase ~&q £
, the

algorithm finds the end of the path from the initial node labeled with substring xPØ �_�¡�+~�Ù , and extends it by

adding character x�y�Û e to the path, unless it is already there. Therefore in phase ~�q £
, substring x�Ø ~i�¡�+~�q £ Ù

is first put on the graph , followed by x�Ø+`��¡�+~�q £ Ù�´Âx�Ø+Ý��¡�+~�q £ Ù , and so on. Extension ~�q £
of phase ~&q £

adds the single character x7y�Û e after the initial node. The initial graph
Ö
e has one initial node Þ and one
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final node ß , connected by ��� edge labeled by character x e . The algorithm can be sketched as follows:

1. Construct graph G.

2. for ~Ó^ £ �Rs%�àÒ £
do

3. for �<^ £ �Rs%~�q £
do

4. Find the end of the path from Þ labeled xPØ �_�¡�+~�Ù
5. Add character x�y�Û e if needed

6. done
7. done

At extension � of phase ~�q £
, once the end of the path xPØ �_�¡�+~�Ù has been located, the À,� �l«<¬

can be

updated according to three different rules:

1. In the current graph, the path x�Ø � �¡�+~�Ù ends at ß . To update the graph, character x�y�Û e is appended to

the label of the edge entering ß .

2. The path corresponding to x�Ø � �¡�+~�Ù does not continue with x y�Û e , but continues with at least one

character � . If the path ends at a node { , we create a new edge g¹{�´Âx_y�Û e ´iß�v . Otherwise, we create a

new node Å at the end of the path, splitting the edge in two at the point where the path ends. Then,

we create a new edge g�Å�´Âx�y�Û e ´iß�v .
3. Some path at the end of xPØ �_�¡�+~�Ù continues with xpy�Û e . In this case, substring x�Ø � �¡�+~&q £ Ù is already in

the current graph: No need to do anything (hence the implicit À�� �,«<¬
).

These rules, however, do not guarantee that at the end of the phase we correctly constructed a

À,� �l«<¬
. In fact, the algorithm must also check whether a substring strictly congruent to another

one has been encountered, or, conversely, whether a substring has to be removed from a strict class of

factors, so that at the end of phase ~�q £
paths ending at the same node correspond to strict classes of

factors of xPØ ~i�¡�+~�q £ Ù , and vice versa. In the following discussion, let us see hoe the algorithm has been

modified. A detailed algorithm in form of pseudo code, is given in the appendix A.

4.5.1 Detecting Strictly Congruent Factors

Two substring Ä and Æ belong to the same class À iff they are prefixes of the same suffixes, and there

are at least two characters �U´Â�È¶×] such that Ä��@´@Ä��
´UÆ��U´UÆ�� are factors of x . Moreover, Ä must be a

suffix of Æ or vice versa. Let us assume without the loss of generality that Äa^X�áÆ , with �a¶A] . We

also assume that Ä and Æ have occurred just once, that substring Ä�� and Æ�� have been put in the graph

in some previous phase (in two consecutive extensions), and in the current extension e have to insert

Ä�� . The path spelling Ä ends in the middle of an edge, and the next character on the edge is � . A new
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node { is created at the end of the path, as well a new edge g¹{�´Â�
´iß�v . At the following extension, we

have to locate Æ in the graph. If Æ has occurred only once (together with Ä ), it now belongs to the same

strict class of factors, and we end in the middle of a non-solid edge that continues with � . In this case,

we redirect the edge to { , labeling it with the part of the label that was contained in the path of Æ (see

Figure 4.3. Since there can be more than two consecutive substrings to be assigned to the same class, it

is possible that we again end along non-solid edges in the following extensions. In such case, we redirect

the non-solid edges to { as well , until we reach an extension where we end at a node or along a solid

edge. Otherwise, if Æ had previously occurred also by itself, either the path corresponding to Æ ends at a

node ( Æ has been followed by characters different from � ), or the edge we end on is solid ( Æ has been

followed only by � ). In the former case, if there is not an edge labeled � leaving the node we create a new

edge labeled � to the final node. In the latter case, we create a new node and connect it to final node with

an edge labeled � . Then there may be again non-solid edges that have to be redirected to newly created

node.
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Figure 4.3: Redirecting an edge

4.5.2 Splitting a Strict Class of Factors

Conversely, a substring that has been assigned to a strict class of factors has to be removed from the class

if it does not occur as a suffix of the representative when a new character x y¡Û e is added to the string. Let

Ä and Æ , ÄÈ^â�áÆ , be the two substrings assigned to the same class in the example of previous section.

Now suppose that in phase ~4q £
we have to insert Æ in the graph. In this case, x�y¡Û e is the last character

of Æ , and we find it at the end of the edge entering node { , that is non-solid, since Æ is not representative

of the class. Now we have two cases: xpy�Û e was found at the end of an edge that entered node { also at

the previous extension, or we ended up somewhere else. In the former case, we had also inserted Ä at the

previous extension of the same phase, therefore Æ still belongs to the same class. In the latter case, we

have detected an occurrence of Æ not preceded by Ä , that is , not as a suffix of Ä , and we have to remove

it from the class. To reflect this in the graph, we clone the node { into a new node Å , and redirect the

non-solid edge to Å keeping the same label. The redirected edge becomes solid ( See Figure 4.4. If also
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Figure 4.4: Cloning of a state : State 2 is created as clone of state 1

some suffixes of Æ had been previously assigned to the same class as Æ , in the following extensions we

will again find x y�Û e at the end of a non-solid edge entering { . These edges are redirected to Å . It can be

proved that it suffices to check only the last edge on each path to ensure that a class has to be split. No

cloning takes place if the character is found at the end of an edge entering the final node.

The observations made in the previous two sections (4.5.1 and 4.5.2) can be implemented in the

algorithm by modifying rules 2 and 3 accordingly. Also, it is a point to mention that both redirection of

edge to newly created node and node cloning can take place during the same phase.

4.5.3 Using Suffix Links

Naively, locating the end of x�Ø � �¡�+~�Ù in the extension � of phase ~�q £
would take f/g#~UÒh��v time by walking

from the initial node and matching the characters of xPØ �_�¡�+~�Ù along the edges of the graph. This would lead

to an overall g�f/g#� d v time complexity for the construction of the whole graph. We can reduce it as done

in Ukkonen’s algorithm for suffix tree construction [13] by using the suffix links which were introduced

in Section 4.1.2.

Let us suppose that the algorithm has completed extension � of phase ~4q £
. Suffix links are used to

speed up the search for the remaining suffixes of xPØ �_�¡�+~�Ù . Starting from the end of x�Ø � �¡�+~�Ù in the graph, we

walk backwards along the path corresponding to x�Ø � �¡�+~�Ù up to either the initial node or a node { that has

suffix link. This requires traversing at most one edge1. Let Ç be the concatenation of the edge labels of

the path from { to xPØ �_�¡�+~�Ù . If { is not initial node, we move to node xHk4��g¹{4v and follow from it the path

spelling Ç . Otherwise, we search for xPØ ��q £ �¡�+~�Ù starting from Þ . Finally we append x�y�Û e according to one

of extension rules, redirecting an edge or cloning a node if needed.

A path spelling Ç starting from x
k���g¹{4v always exists, since all the suffixes of x�Ø � �¡�+~�Ù are already in

1During any phase, the only node of the graph other than initial and final without a suffix link is the last created one
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the graph. Thus, to find the path spelling Ç we just match the first characters on the edges encountered.

To obtain a linear algorithm, we need two more tricks :

1. When during any extension Rule 3 is applied, that is, a given substring x�Ø � �¡�+~�q £ Ù is already on

the graph, then the same will apply to all further extensions, since all other suffixes of x�Ø � �¡�+~�q £ Ù
are already in the graph as well. Therefore, once Rule 3 applied (and no node has to be cloned

or edges redirected), we can stop and move to next phase, since all the strings to be inserted are

already in the graph and no adjustment is needed for the classes.

2. If a new edge is created entering the final node during extension � of any phase ~ , then Rule 1

will always apply at extension � in any successive phase. That is, new characters will always be

appended at the end of the last edge in the path associated with xPØ �_�¡�+~�Ù , that will enter the final

node. Thus when new edge is created entering the final node with label xPØ �_�¡�+~�q £ Ù , we label it

with integers ã and m�g¡�}|Vãä|V~2q £ v , where m denotes the current phase, that is, the current end

position in the string. If we implement m with a global variable and set it to ~5q £
at beginning

of each phase ~2q £
, we perform implicitly all the extensions to open edges (edges ending at final

node).
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Chapter 5

IMPLEMENTATION DETAILS

For the experimental purposes, we developed a prototype version of CDAWG. Implementation is based

on as discussed in [4]. CDAWG is basically a compact form of automaton. Transition matrices and

adjacency lists are two classical approaches for implementation of automata. The former gives direct

access to each and every transition but the memory space requirement is f/g�x
���P�Rm�xPg#u2v%å�\+]�\+v . On the

other hand, latter stores only existing transitions but requires a g�f/g�r�s�t�gi\+]�\+v�v time to access them using

standard search techniques. So, this suggests that for a small alphabet such as genomic strings where

transition matrices are not sparse enough, transition matrix based implementation is a better choice. Here,

in the following discussion, for the ease of presentation we assume genomic strings are being indexed

and hence, we will use a transition matrix based implementation.

Now, we describe exact state and edge structures. We have an alphabet of size four, hence transition

matrix will contain four transitions per state. For each outgoing transition, we need a target state which

can be encoded using a four byte integer. For a DAWG this much information is enough as each of the

transition is just a single character transition. But in case of CDAWG, we also have to keep information

about the multi letter property of each transition. Now, as we already discussed, each state of CDAWG

Field Name size Count total size
EDGE
isSolid 0.128 1 0.128
length 4 1 4
target 4 1 4
STATE
endpos 4 1 4
slink 4 1 4
EDGE 8.128 4 32.5

Table 5.1: Node Structure Components
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represents strict class of factors w.r.t. ®�æ± relation, which means all the labels of incoming transitions of

a state end at same position in indexed string. Hence, we store a value (named as mH�&�Q{@s x�g�x7v ) with every

state. Also, in addition to it, each edge has a length field with it. Now, using these two information, label

of a transition can be determined. Each edge also contain one boolean field which show whether the edge

is a solid one or not. Each state also has to keep a suffix link pointer which is necessary to implement

a linear time construction algorithm. This can be done using a four byte integer. Table 5.1 shows final

layout of the structures. We can see that the final state size is 40.5 bytes.
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Chapter 6

EXPERIMENTAL ANALYSIS

A comprehensive set of experiments were conducted to evaluate performance of both CDAWG and

Spine. The code for Spine was taken from the authors of [12] and CDAWG was implemented as dis-

cussed in Chapter 5 using the algorithm discussed in Chapter 4. Our experiments were conducted on

the following genomes.

ECO : E.coli bacterial genome of length 3.5 million characters;

CEL : C.Elegans earthworm genome of length 15.5 million characters;

HC21 : Human chromosome 21 genome of length 28.5 million characters;

HC19 : Human chromosome 19 genome of length 57.5 million characters.

All the experiments were conducted on a Pentium-IV 2.0 GHz PC with 1GB RAM and running Red

Hat Linux 8.0 operating system. The performance metrics which comprise not only time but memory

space requirement also, are as follows.

Index Construction Time: 1 This is the overall time taken to build the complete index for a string.

Index Search Times: This refers to the time taken to perform the search operation of both prefix search

and multiple matches search.

Memory requirement: This is the total memory requirement of the index structure at time of construc-

tion as well as search operation.

1All time numbers in all the experiments are taken as wall clock time.
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CDAWG
Dataset #Chars #Nodes #Edges
Ecoli 3514912 1904844 5076291

Celegans 15077376 7737091 20476457
HC21 28508160 14724580 38878073

SPINE
Ecoli 3514912 3514912 3718858

Celegans 15077376 15077376 14484179
HC21 28508160 28508160 27164335

Table 6.1: Number of nodes and edges in CDAWG and Spine

6.1 Structural Properties

Before looking into the performance of the two structures, lets have a look at the structural details of

the two. Table 6.1 shows the number of nodes and edges presented for various sequences for both the

structures. As already discussed, the number of nodes in Spine structure is always equal to the number

of characters present in the indexed sequence. But for CDAWG, the number of nodes is almost equal to

half of the length of the index sequence. On the other hand, number of edges in CDAWG is almost 1.5

times of the sequence length and almost equal to sequence length in case of Spine.

Locality of accesses

One interesting property to observe is the locality of the access pattern for any index. Though the forward

edges are uniformly distributed in both the structures, the targets of backward edges (Links in Spine and

Suffix links in CDAWG) are highly clustered. Exact distribution of targets of backward edges is shown

in Figure 6.1. This observation is important for deciding the buffer replacement policy for the index.

6.2 In-Memory Analysis

Construction Time

The performance of Spine and CDAWG with respect to index construction time is shown in Figure 6.2.

First thing which attracts the attention is the missing bar for À�� �,«<¬Ëç�è
e¨é , which is due to the fact that

we could not build the CDAWG index for HC19 within practical time limits with the resources used for

experiments. But if the resources are enough, as in other cases, we can see that CDAWG construction

time is about two third of that of Spine. The reason for the faster construction CDAWG is the faster

search rate of CDAWG which is discussed next.

Another point to note is the construction rate of indexes which is about 1.7 sec/MB for Spine and
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Figure 6.2: Construction time in memory

23



about 1.3 Sec/MB for CDAWG. Also important point is that construction rate is almost constant within

experimental limit which is an experimental confirmation to the fact that both indexes follow a linear time

construction algorithm. Also the build rate suggest that with sufficient resources, in-memory construction

of human genome will take about
£ ec hours.

Indexed Seq. Query Spine CDAWG Avg mLen
ECO CEL 8.25 2.41 10.80
ECO HC21 8.19 2.41 10.58
CEL ECO 9.36 3.00 11.43
CEL HC21 9.84 3.18 12.07

HC21 CEL 10.37 3.52 12.57
HC21 HC19 11.35 6.61 16.31
HC19 HC21 13.75 – 15.67

Table 6.2: Average search times(Microseconds) for single prefix search

Search time

Table 6.2 show average search times for single prefix searches averaged over 10000 queries, uniformly

chosen from the query string. From Table 6.2, we can see clearly that CDAWG is about 3 times faster in

case of single prefix search. The reason seems to be the extra rib/extrib traversals in Spine search process,

while in case of CDAWG the traveled path length is always equal to match length. For confirming the

same, we looked at the extra rib/extrib traversals with respect to different match-length results for one

of the sequence ECO with CEL as query string. The result is shown in Figure 6.3. We can see from

the figure that there are almost equal number of extra traversals with respect to match length. It means

the same amount of extra comparison operations, because comparison with the vertebra edge has to be

performed always. To make it more clear lets see following example.

Example 6.2.1 Lets consider Figure 3.1 and Figure 4.1 which show Spine and CDAWG indexes for

aaccacaaca resp. Now, lets take a query ���8�P��� . When we start traversal in Spine, after following

vertebra edge for � from root, we follow rib for � at it has a �,�X^ £
and we reach node 3. Now the

�l� of the rib labeled � is 1 and current traveled length is 2, hence we can not follow the rib, instead

the extrib of the same should be followed. The child extrib has �l�ê^ê` , which means a valid traversal.

Hence, after �P�8� we reach node 7. After it we follow the vertebra edge labeled � and after that we stop

as no valid path is present and report it as maximum match with match length of 4. Hence total number

of comparisons is 8 out of which 3 are due to rib/extrib traversal.

On the other hand, in case of CDAWG, path followed is node I, followed by node 3, node 5, node 8

and we stop as soon as we find a mismatch on the edge from node 8 to node F. So in this case, number of

comparisons is 5 which is one more than match length.
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Figure 6.3: Average number of extra rib/extrib traversals in Spine with indexed sequence as ECO

Indexed Seq. Query Seq. Spine CDAWG
ECO CEL 18.65 10.81
ECO HC21 35.85 21.91
CEL ECO 46.95 30.27
CEL HC21 36.90 24.30
HC19 HC21 29.87 –

Table 6.3: Average search times(Sec) for multiple matches search

As said earlier, CDAWG is almost 3 times faster than Spine for a single prefix search and But the

ratio is not same in case of multiple searches. Table 6.3 shows multiple search times for various data

and query sequence. Here we can verify the fact that CDAWG is about 1.5 times faster only. The reason

lies in the fact that Spine processes a smaller number of suffixes which is possible due to smart link

management strategy.

Memory usage

Lets now move on to see how much cost we are paying in terms of memory resources while using these

index structures. Figure 6.4 shows the bytes consumed for indexing one character of indexed string. Here

we can see that Spine clearly beats CDAWG and shows its utility in the fixed budget scenario. While

the consumption in Spine for each single character is about 12 bytes, CDAWG consumes as much as

21 bytes per character. This clearly indicates that Spine can index approximately 40% longer strings as

compared to CDAWG given a particular amount of memory.
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Figure 6.4: Memory Usage (Bytes per character)

6.3 On-Disk performance
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Figure 6.5: Index Construction Time on Disk

We will now move to on-disk performance analysis of Spine and CDAWG. The disk based imple-

mentation was done without any disk optimization. It means each of the write to the index structure goes

directly to the disk2.

Construction times of both the structures for varying size of indexed sequences are shown in Fig-

ure 6.5. We can clearly see that Spine is almost 1.5 times faster than CDAWG. The advantage of smaller

2This is done through opening the index file with O SYNC option which makes each write to the file result in a disk write.
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node size of Spine become significant in this scenario as it reduces the disk seek time. On further in-

vestigation, we found that the number of write operations performed by Spine is much less than that of

CDAWG. This shows that the number of changes made in Spine structure on addition of a new character

is smaller than that of CDAWG. As disk write operation is more costly than any other operation (e.g.

comparison), this offsets the advantage of CDAWG of having less number of comparison operations.

The numbers of write operations for both structures are shown in Figure 6.6.
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Figure 6.6: Number of Disk Write operation during index construction

Searching times3 for both the disk indexes are shown in Table 6.4. Experiments are done exactly

in the same manner as in case of in-memory environment. We can see that search times for both the

indexes are almost equal. Here, we can see the performance of Spine is better than that of in-memory

environment. This improvement is expected because of smaller node size in case of Spine. But the

improvement is not as much as in case of construction time on disk. The reason for poor performance

of CDAWG was higher numbers of disk writes which are absent in case of search operations. Here,

CDAWG takes the advantage of fewer comparisons (and hence fewer disk reads) which offsets the longer

seek time.

6.4 Node Size Optimizations for CDAWG

Now we suggest a couple of optimizations on the basis of observations during experimentation. The

optimizations are similar as suggested in ?? for reducing node size.

3Only first 1M characters of HC21 are considered here
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Indexed Seq. Query Spine CDAWG Avg mLen
ECO CEL 21.41 19.71 10.80
ECO HC21 21.13 18.62 10.57
HC21 ECO 19.95 17.42 10.03
CEL ECO 25.14 22.17 11.43

Table 6.4: Average search times(Microseconds) for single prefix search on Disk

6.4.1 Small Edge Length

This is one of the simplest observation that all the edges other than open edges have length less than

or equal to 25000 with all the datasets, and hence it can be represented by a short integer. For open

edges, we need not to store target node for an open edge, hence the target field can be used as length

field for open edges. Maximum edge lengths for various datasets are shown in Table 6.5. This simple

optimization results in saving of 8 bytes per state and hence approximately 4 bytes per character.

6.4.2 Sparse edge distribution
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Figure 6.7: Edge Distribution

Sequence Max Edge Len
ECO 1772
CEL 8126

HC21 21831

Table 6.5: Maximum Edge Length

28



The Figure 6.7 shows graph of the number of nodes with the number of outgoing edges. We can see

that almost 50% of nodes are having just two edges and only about 25% of nodes have all the four edges.

This observation suggests a multi-table node structure similar to Spine, though simpler in this case.
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Chapter 7

EXTENSION FOR ENGLISH TEXT

After doing experiments with genomic sequences ( with \+]:\�^Ìë ), we also extended both the structures

for the English text ( with \+]�\�^ì` b ) to analyze the performance of these index structure with larger

alphabets as well. These structures are extended as follows.

7.1 Spine

In the Spine implementation for genomic strings, the entire structure has been partitioned into five ta-

bles. This was done to utilize very sparse rib distribution for reducing space requirements of the struc-

ture(see [12] for details). The final node lay out in such case is shown in Figure 7.1. In figure LT denotes

Link Table, RT denotes rib table, LD is Link Destination, RD is rib destination, PT is Parent threshold

value and finally PRT is the PRT value for the extrib.
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RD RD
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PRT

PRT

PRT

PRTRT4

Figure 7.1: Final Node Layout for Genomic Sequences

LT LD

RT

LEL RPTR

PRTPTRD PT RD

Figure 7.2: Final Node Layout for Text Sequences

When the alphabet size is not fixed , this node layout is not acceptable because of its static nature.
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Alternatively we can implement it using single table only and dynamically allocating ribentry whenever

required. Figure 7.3 shows the distribution of ribs for three text datasets with \+]�\�^Ì` b . From the figure

it is clear that only 20 to 30% of nodes have ribs associated with them, i.e. size overhead is not very

large. Hence final node lay out comprises of one rib table with each of the entry as a ribentry and one

link table with each of the entry as node entry. These structures are shown in Figure 7.2. RPTR is a

pointer to RibEntry which is stored in RT. Other symbols are same as before.
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Figure 7.3: Rib Distribution

7.2 CDAWG

As discussed earlier, CDAWG for genomic strings has been implemented using transition matrix. The

transition matrix based implementation is good for genomic strings as alphabet size is smaller in such

cases, and as a result size of node is same as that of adjacency list based implementation. But, in case of

larger alphabet result will be too much wastage of memory. Memory requirement can be made minimal

using adjacency list based implementation, but the search queries will become slower.

Before deciding the final layout, lets see the distribution of outgoing edges from a state (Figure 7.4).

We can see that around 50% of the nodes have two outgoing edges. We can use this observation to

reduce the size of the node. The first two edges of a node are stored with the node itself. Each edge can

be identified by its label. So we lose the advantage of transition matrix. But if a node has more than two

edges then the edges are stored in a separate table and node has a pointer to it. Each entry of this table

will consist of \+]:\ edges, hence we can directly index to a particular edge instead of searching it through

it’s label. As clear from graph, this will require only 50% of nodes to have a entry in table.
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Indexed Seq. Spine CDAWG
1M Random 1.1 1.3
5M Random 6.3 7.7

Story 0.9 0.7

Table 7.1: Average Construction times(Seconds)

7.3 Performance

For analyzing the performance of the two indexes for text, we generate two random sequences of size

1M and 5M characters resp. Other than these two sequences, we use one real English story of size

approximately 1M characters. The construction times and search times for these sequences are shown

in Table 7.1 and Table 7.2. The trends are very similar to what were obtained in case of in-memory

environment for genomic sequences.

Indexed Seq. Query Spine CDAWG Avg mLen
Story 1M Rnd 4.1 0.6 2.67

5M Rnd Story 3.78 0.34 0.76
5M Rnd 1M Rnd 4.20 2.22 6.45

Table 7.2: Average search times(Microseconds) for single prefix search
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Chapter 8

INTEGRATION WITH BLAST

BLAST(Basic Local Alignment Search Tool) [15] is a popular tool for doing the local alignment of

nucleotides and proteins. The functionality of BLAST can be divided in two parts, finding exact matches

and then extending these matches to maximize the scoring function. The BLAST algorithm can be

summarized as follows1:

The BLAST algorithm is a heuristic search method that seeks words of length W that score at least T

when aligned with the query and scored with a substitution matrix. Words in the database that score T or

greater are extended in both directions in an attempt to find a locally optimal ungapped alignment or HSP

(high scoring pair) with a score of at least S or an E value lower than the specified threshold. HSPs that

meet these criteria will be reported by BLAST, provided they do not exceed the cutoff value specified for

number of descriptions and/or alignments to report.

In an abstract view, BLAST algorithm can be seen as shown in Figure 8.1. During first phase,

BLAST does not use any index to find out the initial matches and takes an heuristic approach instead,

which affects the quality of answer. If the value of W is higher (e.g. 11 for nucleotides) the performance

of BLAST is satisfactory in terms of time, but the quality of result is not. It may miss few interesting

matches. The loss becomes significant if the aligned sequences are highly different or if smaller matches

are also of biological significance. [14] shows retrieval effectiveness of BLAST with W=11 as 93%,

which can be improved by reducing the value of W. But when the value of W is on the smaller side

(e.g. less 10 for nucleotides), the time taken by BLAST increases very rapidly. a string index structure

can be integrated with the BLAST to improve the running time as performance of an index does not get

affected by the match length significantly. We integrated both the index structures with BLAST. Details

are discussed in the following section.

1As given at [16]
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Figure 8.1: Pictorial representation of BLAST algorithm

8.1 Implementation details

The BLAST code has been taken from the NCBI repository. The code which deals with the initial

matching process contains around 11000 lines of code (namely, blast.c file). We integrated Spine and

CDAWG through a common interface. The index is called from the ncbimain() function and the all

match positions of length greater than W are stored. Now, we have to use these seeds in the next phase

of BLAST. BLAST code does not have a clearly divided two phases so extreme care has to be taken so

that we should disturb the execution of second phase. BLAST uses the function BlastNtWordFinder()

given in blast.c, just before second phase of algorithm to find the initial matches and provide them as

input to second phase. Now, at this point, we have to use the previously stored seeds and convert them

to the format which is compatible to second phase. As said earlier that the boundary between phase one

and second is not clear e.g. BlastNtWordFinder() is invoked for each of the 5M chunks, but we provide

seeds for the entire sequence at once, hence it should be appropriately handled.

8.1.1 Experimental Analysis

Total running times of BLAST with and without index are shown in Figure 8.2 for various initial seed

length(W). We are showing result for two datasets. First one as Vibrio cholerae chromosome as input

data sequence, which is approximately 1MBP2 in size. The query taken was a 5KBP prefix of C.Elegans

earthworm genome. Second one has E.Coli bacterial genome of 3.5 MBP as data sequence and Vibrio

cholerae chromosome as query.

For the default value of W (i.e. 11) there is no significant improvement but as the seed length W

decreases, performance improvements become more and more significant. This trend can be explained

as follows. When the value of W is small, due to heuristic search method, BLAST reports a longer match

multiple time as multiple small matches of length W starting at different places in the same longer match.

2MBP : Million BasePairs
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(a) (b)

Figure 8.2: Running times of BLAST and BLAST+SPINE Index(Seconds) for (a) Vibrio cholerae chro-
mosome as data sequence and 5K prefix of C.Elegans as Query (b) E.Coli as data sequence and Vibrio
cholerae chromosome as Query

This results in both longer search time and multiple extensions. All the extensions returns same result

and then are of no use. But in case of index being present, only the longest possible matches are reported

which reduces the number of extensions in second phase of execution. Again, search time for index is

not sensitive to parameter W and hence, it reduces execution time of first phase as well.
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Chapter 9

CONCLUSION

In the presented work, we mainly focused on comparison of Spine index with CDAWG, extension and

evaluation of spine for larger alphabet and integration of Spine and CDAWG with BLAST. After doing

a course of experiments with Spine and CDAWG, we conclude:

1. In in-memory environments, CDAWG was observed to be approximately 3 times faster than Spine

for longest matching prefix search queries. Also, for all pair multiple search queries CDAWG is

faster but by a factor of 1.5 this time.

2. Spine is much more memory friendly as compared to CDAWG and shows that it can index approx-

imately 40% longer strings than that of CDAWG.

3. On disk, Spine takes advantage over CDAWG because of its smaller node size, and hence provides

a 1.5 times faster index construction. But for search queries on disk, both the structures perform

almost equally.

4. Both structures show high locality of references as most of the link’s (suffix link’s in CDAWG)

targets are clustered in the top part of the index.

5. Performance of both the structures for text alphabet ( \+]�\2^×` b ) also remains same which shows

the scalability in terms of alphabet size also.

6. The integration of indexes with BLAST shows that run time performance of BLAST can be im-

proved for smaller seed value as well to achieve high quality of results.

In short, we can say if enough resources are available then its better to use CDAWG but if there are

constraints on resources, Spine is a better option.
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Appendix A

Online Linear Construction Algorithm for
CDAWG

This algorithm has been taken from [8].

Algorithm

function Build CDAWG(x$)

Given alphabet ]Î^Au5Ø©Ò £ Ù�´�u�Ø©Ò)`�Ù�´Q�¡�¡´�u5Ø©Òí=Ù
/* $ is the end-marker appearing nowhere in u . */

1 create nodes x�s7kUn �Qm , x
~���� , and î ;

2 ï¨ð@ñ���ò¹^ £ �Rs�íVó�ð
. create a new edge g�î�ô�gRÒ���ôHÒ9��v�ô�x�s�k@n �8m7v�ô
3 ��k���g�x�s7kUn �Qm�võò¹^öî�ô
4 r�mQ�4t���ã�g�x�s7kUn �Qm�v=ò¹^÷¢1ôUr�mQ�4t���ã�g�î�v=ò¹^øÒ £ ô
5 mäò¹^÷¢1ôUr�mQ�4t���ã�g�x
~�����vùò¹^¦m ô
6 g�x_´U��v=ò¹^úg�x�s�k@n �8m_´ £ v�ô�~õò¹^û¢1ô
7 ñ�ü�ý¾ü�þ�ÿ
8 ~9ò¹^¿~�q £ ô@mÐò¹^ ~iô /* e is a global variable. */

9 g�x�´@��vùò¹^ k�{@���P�RmPg�x_´�g���´�~�v�v�ô
10 ��� ÿ ����� Ø ~�Ù�^
	Pô

function update(s; (k; p)): pair of node and integers;

/* (s; (k; p - 1)) is the canonical reference pair for the active point. */
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1 �-ò¹^ � Ø {UÙ�ôUspr#��n�ò¹^ �2~¨r�ô
2 �� ��� ü4g#�&s7���QãUm
�Q� mH�&� {@s7~��2�Qg�x_ô�g���ô {ùÒ £ v�ôi�Hv�ó�ð
3

� ïÑ�a| {õÒ £ ÿ���ü � /* implicit case. */

4
� ïlx��N^÷mHuU��mQ��x
~¨s7�9g�x_ô
g���ô�{ £ v�v�ÿ���ü �

5 n m
�_~�n_m
��� mH� t1m�g�x�ô�g���ô {õÒ £ v�ô�n�v�ô
6 g�x_ôU��vùò¹^÷�á�P�&s7�2~���mPg���k���g�xpv�ô�g���ô {ùÒ £ v�v�ô
7 �_ð � ÿ � ��� üUô
8 ü ��� ü
9 x��%ò¹^÷mHuU��mQ��x
~¨s7�9g�x_ô�g���ô {ùÒ £ v�v�ô
10 n ò¹^Ôxi{@r#~�� mH�_t�m�g�x�ô�g���ô_{õÒ £ v�v�ô
11 ü ��� ü /* explicit case. */

12 n ò¹^÷x_ô
13 create edge g#n1ô�g¹{�ô@m7v�ô@x
~�����v�ô
14

� ïÑspr#��n��^ �2~¨r7ÿ���ü � xHk4��g�spr#��n�võò¹^ n1ô
15 s7r���n ò¹^÷n1ô
16 g�x_ôU��vùò¹^Ô�8���&s7�2~���mPg�xHk4��g�x7v�ô�g���ô�{hÒ £ v�v�ô
17

� ïÑs7r���n��^û�2~¨r#ÿ���ü � xHk4��g�s7r���n_võò¹^Ôx_ô
18 ñ7üPÿ � ñ � x�m�{@��n �P�Rm �&sp�PmPg�x_ô�g���ô {4v�v�ô

function extension(s; (k; p)): node;

/* (s; (k; p)) is a canonical reference pair. */

1
� ïN���}{�ÿ���ü � ñ7ü�ÿ � ñ � x_ô /* explicit case. */

2 find the
� Ø+�PÙ@ÒÏmH� t1m:g�x�ô�g�����ô {��¡v�ôUx��¡v from x ;

3 ñ�üPÿ � ñ � x � ;

function redirect edge(s; (k; p); r);

1 let g�x�ô�g���ô { � v�ô�x � v be the
� Ø+�PÙ -edge from x ;

2 replace the edge by edge g�x�ô�g�����ôU����q}{õÒÐ��v�ô�n�v ;

function split edge(s; (k; p)): node;

1 let g�x�ô�g�����ô {��¡v�ôUx��¡v be the
� Ø+�PÙ -edge from x ;

2 create node n ;

3 replace the edge by g�x_ô�g�� � ô@� � q {õÒÐ��v�ô�n�v and g#n1ô�g�� � q {ùÒÐ�:q £ ô { � v�ô@x � v ;
4 r�mQ�4t���ã�g#n�v9ò¹^Îr�mH�4t��Rã�g�x7v + g¹{õÒÐ��q £ v ;
5 ñ�üPÿ � ñ � n1ô
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function separate node(s; (k; p)): pair of node and integer;

1 g�x � ô@� � v¾ò¹^��8�P�&s7�2~���m�g�x�ô�g���ô�{4v�v�ô
2

� ïN���%|â{�ÿ���ü � ñ7üPÿ � ñ � g�x��SôU��� v�ô /* implicit case. */

3 /* explicit case. */

4
� ïr�mH�4t���ã�g�x � v = r�mQ�4t���ã�g�xpv + g¹{=Òä�:q £ v&ÿ���ü � ñ�üPÿ � ñ � g�x � ô@� � v ;

5 create node n � as a duplication of x�� with the out-going edges;

6 ��k���g#n � v9ò¹^È��k4��g�x � v ; �5k���g�x � v¾ò¹^�n � ô
7 r�mQ�4t���ã�g#n � v¾ò¹^�r�mH�4t��Rã�g�x7v + g¹{ùÒä�:q £ v�ô
8 ñ�ü�ý¾ü�þ�ÿ
9 replace the

� Ø+�PÙ -edge from x to x � by edge g�x�ô�g���ô_{4v�ô�n � v ;
10 g�x_ôU��v9ò¹^��á�P�&s7�2~���mPg���k���g�xpv�ô�g���ô_{hÒ £ v�v�ô
11 ��� ÿ ��� g�x���ôU��� v!�^��8���&s7�2~���mPg�x_ô�g���ô {4v�v�ô
12 ñ7üPÿ � ñ � g#n � ô {�q £ v�ô
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