
Efficient Identification of Robust Plans
and Efficient Generation of Plan Diagrams

A Project Report

Submitted in partial fulfilment of the

requirements for the Degree of

Master of Engineering

in

Computer Science and Engineering

by

Anshuman Dutt

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

JUNE 2010

To my Parents, whose dedication to my success and continued support,

I shall always remember

Acknowledgements

I would like to thank my advisor Prof. Jayant Haritsa, for providing invaluable guidance and encour-

agement throughout my project work. He has been a constant source of inspiration for me throughout

my stay at IISc campus.

I would also thank current and former members of DSL for helping me through technical discussions

and share some memorable moments with me.

i

Abstract

Predicate selectivity estimates are subject to considerable run-time variation relative to their compile-

time estimates, often leading to poor plan choices that cause inflated response times. To address this

problem, “Robust Plans” were introduced in [7] i.e. plans that are relatively less sensitive to such

selectivity errors. In [7], robust plan were identified through anorexic reduction of plan diagrams using

SEER algorithm. EXPAND algorithm, later suggested in [1], is a intrusive way to identify Robust Plans,

that substitutes, whenever possible, the optimizer’s solely cost-conscious choice with an alternative

choice, robust against the selectivity errors. The primary contribution of this work is a new version of

EXPAND, improved on both algorithmic and implementation aspects, that brings down the time and

memory overheads.

We also present a more user-friendly way of invoking the EXPAND algorithm, implemented inside

the query optimizer, by providing it as an API feature.

Another orthogonal contribution of our work is implementation of three new features in the API

of a public domain query optimizer i.e. “Foreign Plan Costing” (FPC), “Plan Rank List” (PRL) and

“Pilot-passing” (PILOT). These features facilitate efficient generation of plan diagrams through two

independent and alternative techniques i.e. Pilot-Passing (using PILOT) and PlanFill (using FPC and

PRL). The effectiveness of these techniques is already proven in [13] through offline implementation of

respective features. We also implemented these independent techniques in Picasso [18], as optional ways

of generating plan diagrams.

In addition to PlanFill algorithm, the FPC feature also facilitates identification of robust plans in

any plan diagram using the SEER algorithm [7].

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Efficient Identification of Robust Plans . 1

1.1.1 Background . 1
1.1.2 Identification of Robust Plans . 2
1.1.3 Challenges . 2
1.1.4 Our Contributions . 2

1.2 Efficient Generation of Plan Diagrams . 4
1.2.1 Background . 4
1.2.2 Generation of Plan Diagrams . 4
1.2.3 Challenges . 4
1.2.4 Solution Approach . 5
1.2.5 Our Contributions . 5

2 Identification of Robust Plans through EXPAND 6
2.1 Introduction . 6
2.2 Terms & Notations . 6
2.3 Plan Expansion . 7

2.3.1 Leaves and Internal Nodes . 7
2.3.2 Root Node . 9

2.4 Plan Selection . 9
2.5 Handling Interesting Orders . 10

3 Problem Identification 11
3.1 Problem Definition . 11
3.2 Analysis of Overheads . 11

4 Our Contributions to EXPAND 13
4.1 Terms & Notations . 13
4.2 Restricted Plan Expansion . 13

4.2.1 Motivation . 14
4.2.2 Challenges . 14
4.2.3 Solution . 15
4.2.4 Implementation . 16

4.3 Efficient Computation of Foreign Costs . 16
4.3.1 Inheritance of Foreign Costs . 16
4.3.2 Challenges . 16
4.3.3 Solution . 17
4.3.4 Implementation . 17

iii

CONTENTS iv

4.4 Improved C-S-B Skyline Check . 17
4.4.1 Early Rejection in Skyline Check . 18
4.4.2 Relaxed Skyline Check . 18
4.4.3 Motivation . 18
4.4.4 Implementation . 18
4.4.5 Possible Side-effect . 19

4.5 Use of CC-SEER . 20
4.6 Specifying Necessary Parameters . 21

4.6.1 Challenges . 21
4.6.2 Solution . 21

4.7 Application Interface . 22

5 Support for SEER Algorithm 23
5.1 Foreign Plan Costing-Process . 23
5.2 Application Interface . 23

6 Efficient Generation of Plan Diagrams 25
6.1 Pilot-Based Diagram Generation . 25

6.1.1 Challenges . 26
6.1.2 Our Contribution . 26

6.2 PlanFill Algorithm . 27
6.2.1 Changes in PostgreSQL Optimizer . 27
6.2.2 Changes in Picasso . 28

7 Experimental Section 29
7.1 Performance Metrics . 29
7.2 Differences from Study in EXPAND . 30
7.3 Notations . 30
7.4 Impact on Performance . 30
7.5 Improvement in Time Overheads . 31
7.6 Improvement in Memory Overheads . 32

8 Conclusions and Future Work 33

Bibliography 34

List of Tables

3.1 Distribution of Time Overheads (in ms): EXPAND . 11

4.1 Impact of Restricted Plan Expansion . 14
4.2 Effectiveness of Inheritance of Foreign Costs . 17
4.3 Effectiveness of Improvements in C-S-B skyline check . 19

7.1 Plan-Stability, safety and Plan-Diagram cardinality performance 31
7.2 Improvement in Time Overheads . 31
7.3 Improvement in Peak Memory Consumption . 32

v

List of Figures

1.1 Example Query Template and Plan Diagram (QT8) 3

2.1 NodeExpand with Example . 7

6.1 Pilot Based Diagram Generation . 26

vi

Chapter 1

Introduction

Modern query optimizers choose their execution plans primarily on a cost-minimization basis i.e. using

the classical System R [11] strategy. The development of Picasso [18] stimulated the analysis of the

working of query optimizers and hence created many possibilities of improvement in query optimizers.

In this work we are focusing on two independent ways of improving query optimizers. In this chapter,

we will briefly introduce the need and importance of both aspects and our contribution to improve

query optimizer in respective aspects. First we will introduce the primary contribution of our work i.e.

efficient identification of robust plans, in section 1. Then we will discuss the additional and orthogonal

contribution i.e. efficient generation of plan diagrams in section 2.

1.1 Efficient Identification of Robust Plans

1.1.1 Background

Selectivity estimates of predicates on the base relations are critical inputs to query optimizers in modeling

costs of query execution plans. However it is common knowledge that, in practice, these estimates are

often significantly in error with respect to the actual values encountered during query execution. Such

errors arise due to a variety of reasons [14] including outdated statistics, attribute-value-independence

(AVI) assumptions and coarse summaries. An adverse fallout of these errors is that they often lead to

poor plan choices resulting in inflated query execution times.

Robust Plans To address this problem, an obvious approach is to improve the quality of the statistical

meta-data, for which several techniques have been presented in the literature ranging from improved

summary structures [2] to feedback-based adjustments [14, 5] to on-the-fly reoptimization of queries

[3, 8, 9]. A complementary and conceptually different approach suggested in [1, 7] is to identify robust

1

Chapter 1. Introduction 2

plans that are relatively less sensitive to such selectivity errors. In a nutshell, to aim for resistance,

rather than cure, by identifying plans that provide comparatively good performance over large regions

of the selectivity space. Such plan choices are especially important for industrial workloads where global

stability is as much a concern as local optimality.

Specifically, the goal is to identify plans that are (a) guaranteed to be near-optimal in the absence

of errors and (b) likely to be comparatively stable in the presence of errors located across the entire

selectivity space.

Foreign Plan Costing Originally, given a query instance, query optimizers finds a plan that has

optimal cost for the selectivity constants given in the query. In some situations it is useful to find the

cost of this plan for a different set of selectivity constants i.e. costing of given plan at some foreign

location in the selectivity space. This process can be termed as “Foreign Plan Costing” abbreviated as

FPC.

1.1.2 Identification of Robust Plans

There are two alternative ways to identify robust plans that are entirely different in their approach i.e

1. SEER algorithm 2. EXPAND algorithm.

SEER algorithm identifies robust plans for the whole selectivity space by first generating the plan

diagram and then reducing the plan diagram. This approach is non-intrusive i.e. it treats query optimizer

as a black box.

On the other hand, EXPAND algorithm gives a alternative robust plan, if possible, for given a

query instance. EXPAND is an intrusive approach that require changes in optimizer’s DP-routine. EX-

PAND [1] is based on judiciously expanding the candidate set of plan choices that are retained during

the core dynamic-programming exercise based on both cost and robustness criteria rather than only cost.

1.1.3 Challenges

The SEER algorithm requires FPC feature to be present in the API of query optimizer. And the EX-

PAND algorithm faced the challenge of keeping the overheads, due to plan expansion, reasonably low

while maintaining the plan-stability and safety performance.

1.1.4 Our Contributions

We provide a generic FPC feature, crucial for the SEER algorithm, at the API level of the optimizer.

It means, now we can find the cost of the optimal plan for the given query at user-specified remote

Chapter 1. Introduction 3

location in the user-specified selectivity space.

EXPAND algorithm, being an intrusive technique, require changes to the plan enumeration process of

the query optimizer. We present here a more efficient version of EXPAND algorithm has been improved

on both algorithmic aspects like a better plan enumeration process, inheritance of foreign costs, improved

C-S-B skyline check and implementation aspects like a user-friendly interface for requesting a robust

plan rather than the optimal plan.

(a) Query Template

(b) Plan Diagram

Figure 1.1: Example Query Template and Plan Diagram (QT8)

Chapter 1. Introduction 4

1.2 Efficient Generation of Plan Diagrams

1.2.1 Background

Assuming that the database engine and system configurations are not changing, a query optimizer’s

execution plan choices are primarily a function of the selectivities of the base relations in the query. The

concept of a “plan diagram” was introduced in [10] as a color-coded pictorial enumeration of the plan

choices of the optimizer for a parameterized query template over the relational selectivity space. For

example, consider QT8, the parameterized 2D query template shown in Figure 1.1(a), based on Query

8 of the TPC-H benchmark. The associated plan diagram for QT8, on a popular commercial database

engine, is shown in Figure 1.1(b).

Since their introduction in [10], plan diagrams have proved to be a powerful metaphor for the analysis

and redesign of industrial-strength database query optimizers.

1.2.2 Generation of Plan Diagrams

The generation and analysis of optimizer diagrams has been facilitated by the Picasso optimizer visual-

ization tool [18]. Given a multi-dimensional SQL query template like QT8 shown in Figure 1.1(a) and a

choice of database engine, the Picasso tool produces the associated plan diagram in the following way:

For a d-dimensional query template and a plot resolution of r, total rd queries are generated, with ap-

propriate constants based on their associated selectivities. Then each of these queries are submitted to

the query optimizer to be “explained” to obtain their optimal plans. Then a different color is associated

with each unique plan and all query points are colored with their associated plan colors. Finally, the

rest of the diagram is colored by painting the region around each point with the color corresponding to

its plan to produce the complete plan diagram.

1.2.3 Challenges

The above exhaustive approach is acceptable for smaller diagrams which have either low-dimension

(1D and 2D) query templates or coarse resolutions (upto 100 points per dimension) or both. However,

it becomes impractically expensive for higher dimensions and fine-grained resolutions due to the mul-

tiplicative growth in overheads. For example, a 2D plan diagram with a resolution of 1000 on each

selectivity dimension, or a 3D plan diagram with a resolution of 100 on each dimension, both require

invoking the optimizer a million times. Even with a conservative estimate of about half-second per

optimization, the total time required to produce the picture is close to a week! Therefore, although

optimizer diagrams have proved to be very useful, their high-dimension and/or fine-resolution versions

pose serious computational challenges.

Chapter 1. Introduction 5

1.2.4 Solution Approach

[13] suggests two alternative ways to reduce the computational overheads in the plan diagram generation

process. One is to generate an approximation to the original diagram and other is to generate perfect

diagrams with lower overheads. Here we will concentrate on the perfect diagram generation techniques

since they need support of special features in the query optimizer for their working. Let us first take a

quick look at the special features.

1. Plan Rank List: Originally, given a query instance, the query optimizer returns just the cost-

optimal plan for the query. The “Plan Rank List” feature, as the name implies, is the ability of the

query optimizer to return some extra plans alongwith the cost-optimal plan, ranked on the basis of their

cost i.e. the TOP-k plans where ’k’ is specified by the user. It will be referred in further discussion with

the abbreviation PRL.

2. Foreign Plan Costing:This feature is already described in the section 1.

3. Pilot-passing:This features enables user to specify an upper bound on the cost of plans to be

considered by the query optimizer to find the optimal plan.

The first technique for perfect diagram generation is the “Pilot-passing technique”, which requires

modifications to dynamic programming based optimization process. It speeds up an individual optimiza-

tion to bring down the overall diagram generation overhead. The other technique for perfect diagram

generation is PlanFill algorithm, which needs significant amount of changes in optimizer and uses fea-

tures like PRL and FPC to generate plan diagrams while optimizing only a small subset of points in

the selectivity space.

1.2.5 Our Contributions

The effectiveness of these techniques is already proven in [13]. The results were based on offline appli-

cation of these techniques. We made the features FPC and PRL easily usable in optimizer at API level

and also modified Picasso to support the efficient generation of plan diagrams using Pilot Passing and

PlanFill algorithms. Although the PlanFill algorithm in [13] used only TOP-2 plans, the implementa-

tion of PRL is generalized in the sense that user can ask for TOP-K plans rather than just TOP-2 plans.

Similarly, the changes in Picasso are generic to facilitate a possible extension of PlanFill algorithm to

use k-best plans rather than just second-best plan.

Chapter 2

Identification of Robust Plans

through EXPAND

This chapter describes in detail the original EXPAND algorithm and then all the proposed improvements

with a few important points about implementation.

2.1 Introduction

In the classical DP procedure[11], only the cheapest sub-plan identified at each lattice node is forwarded

to the upper levels. And at the root node, the cheapest plan is returned as the optimizer’s choice. This

has been modified in the EXPAND family of algorithms. EXPAND is based on judiciously expanding

the candidate set of sub-plan choices that are retained during the core dynamic-programming exercise,

based on both cost and robustness criteria. Now, we present the generic process followed in our EXPAND

family of algorithms. There are two aspects to the algorithms: First, a procedure for expanding the

set of sub-plans retained in the optimization exercise, and second, a selection strategy to pick a stable

replacement from among the retained sub-plans. The details can be found in [1]. For all the further

discussions in the report, out of the family of EXPAND algorithms, we will focus only on the NodeExpand,

as it was the algorithm suggested by [1].

2.2 Terms & Notations

For ease of understanding, we will use the term “train’ to refer to the expanded array of sub-plans

that are propagated from one node to another, with the “engine’ being the cost-optimal sub-plan (i.e.

the one that DP would normally have chosen) and the “wagon’s’ the additional sub-plans, as shown in

6

Chapter 2. Identification of Robust Plans through EXPAND 7

(a) Plan Train (b) Example

Figure 2.1: NodeExpand with Example

Figure 2.1(a). The notation X is used to indicate a generic node in the DP lattice.

The engine is denoted by pe, while pw is generically used to denote the wagons (the lower-case p

indicates a sub-plan as opposed to complete plans which are identified with P).

Query locations in the selectivity space are denoted by qi. Specifically, qe is used to denote the local

query instance and qa is used to denote query instance at any foreign location in the selectivity space.

2.3 Plan Expansion

NodeExpand is based on judiciously expanding the candidate set of sub-plan choices that are retained

during the core dynamic-programming exercise, based on both cost and robustness criteria. That is,

instead of merely forwarding the cheapest sub-plan from each node in the DP lattice, a train of sub-plans

is sent, with the cheapest being the engine, and viable alternative choices being the wagons. The final

plan selection is made at the root of the DP lattice from amongst the set of complete plans available at

this terminal node, subject to user-specified cost and stability criteria.

2.3.1 Leaves and Internal Nodes

Given a query instance qe, at each error-sensitive leaf (i.e. base relation) or internal node x in the

corresponding DP lattice, the following four-stage retention procedure is used on the set of candidate

wagons generated by the standard exhaustive plan enumeration process.

1. Local Cost Check: In this first step, all wagons whose cost is more than (1 + λx
l) of the engine

pe are eliminated from consideration. Here, λx
l is an algorithmic cost-bounding parameter that can, in

principle, be set independently of λl, the user’s local-optimality constraint (which is always applied at

Chapter 2. Identification of Robust Plans through EXPAND 8

the final root node, as explained later).

2. Global Safety Check: In the next step, the LiteSEER heuristic [7] is applied on all the (remaining)

wagons, relative to pe. LiteSEER is based on the “safety function”

f(qa) = c(pw, qa)− (1 + λx
g)c(pe, qa) (2.1)

which captures the difference between the costs of pw and a λx
g -inflated version of pe at location qa. If

f(qa) ≤ 0 throughout the selectivity space S, we are guaranteed that, were the cheapest sub-plan to

be (eventually) replaced by the candidate sub-plan, the adverse impact (if any) of this replacement is

bounded by λx
g and is, in this sense, safe.

Verifying the safety check is possible by exhaustively invoking the FPC function at all locations in

S. However, the overheads are unviably large since the cumulative effort is proportional to the product

of the number of sub-plans at the node and the number of points in S. Typical values of this product

are in excess of a million, making an exhaustive approach impractical.

To address this efficiency issue, the LiteSEER heuristic simply evaluates whether all the corners are

safe, that is,

∀ qa ∈ Corners(S), f(qa) ≤ 0 (2.2)

The intuition here is that if a replacement is known to be safe at the corners of the selectivity space,

then it is also highly likely to be safe throughout the interior region (the reasons for this expectation are

discussed in detail in [7]).

Note that λx
g is also an algorithmic parameter that can be set independently of λg (which is always

applied at the final root node, as explained later). As a practical matter, we would expect the choice to

be such that λx
g ≥ λx

l .

3. Global Benefit Check: While the safety check ensures that there is no material harm, it does

not really address the issue of whether there is any benefit to be expected if pe were to be (eventually)

replaced by a given wagon pw. To assess this aspect, we compute the benefit index of a wagon relative

to its engine as

ξ(pw, pe) =
c(pe, qa)
c(pw, qa)

qa ∈ Corners(S) (2.3)

That is, a CornerAvg heuristic is used wherein a comparison of the arithmetic mean of the costs

at the corners of selectivity space S is used as an indicator of the potential assistance that will be

provided throughout selectivity space S. Benefit indices greater than 1 are taken to indicate beneficial

replacements whereas lower values imply superfluous replacements. Accordingly, only wagons that have

ξ > 1 are retained and the remainder are eliminated.

Chapter 2. Identification of Robust Plans through EXPAND 9

4. Cost-Safety-Benefit Skyline Check: After the above three checks it is possible that there

may be some wagons that are “dominated” – that is, their local cost is higher, their corner costs are

individually higher, and their expected global benefit is lower – as compared to some other wagon in

the candidate set. Specifically, consider a pair of wagons, pw1 and pw2, with pw1 dominating pw2 at

the current node. As these wagons move up the DP lattice, their costs and benefit indices come closer

together, since only additive constants are incorporated at each level – that is, the “cost-coupling” and

the “benefit-coupling” between a pair of wagons becomes stronger with increasing levels. However, and

this is the key point, the domination property continues to hold, even until the root of the lattice, since

the same constants are added to both wagons.

Given the above, it is sufficient to simply use a skyline set [4] of the wagons based on local cost,

global safety and global benefit considerations. Specifically, for 2D error spaces, the skyline is comprised

of five dimensions – the local cost and the four remote corner costs (the benefit dimension, when defined

with the CornerAvg heuristic, becomes redundant since it is implied from the corner dimensions).

A formal proof that the above skyline-based wagon selection technique is equivalent to having re-

tained the entire set of wagons is given in [1].

When the multi-stage pruning procedure completes, the surviving wagons are bundled together with

the pe engine, and this train is then propagated to the higher levels of the DP lattice.

2.3.2 Root Node

When the final root node of the DP lattice is reached, all the above-mentioned pruning checks (Cost,

Safety, Benefit, Skyline) are again made, with the only difference being that both λx
l and λx

g are now

mandatorily set equal to the user’s requirements, λl and λg, respectively. On the other hand, the choice

of the benefit threshold, δg(δg ≥ 1), which determines what minimum benefit is worth replacing for,

is a design issue. Using a lower value and thereby going ahead with some of the stability-superfluous

replacements may help to achieve anorexic plan diagrams [6], which is a potent objective in query

optimizer construction.

2.4 Plan Selection

At the end of the expansion process, a set of complete plans are available at the root node. There are

two possible scenarios:

1. The only plan remaining is the standard cost-optimal plan Poe, in which case this plan is output

as the final selection; or

2. In addition to the cost-optimal plan, there are a set of candidate replacement plans available that

Chapter 2. Identification of Robust Plans through EXPAND 10

are all expected to be more robust than Poe (i.e. their ξ > δg). To make the final plan choice from

among this set, our current strategy is to simply use a MaxBenefit heuristic – that is, select the

plan with the highest Benefit Index.1

An example of the whole process is shown in Figure 2.1(b).

2.5 Handling Interesting Orders

To make the algorithmic description complete, we must add that each node does not have just one train

but a parallel array of sub-trains, one for each interesting-order. For the sake of uniformity, we treat

the plans with no-order to be a part of generic result order called NO ORDER.

Plan Enumeration at node X involves exhaustively combining all sub-trains of A with all sub-trains

of B. Subsequently, the result order of each plan-combination is determined and thus assigned to the

corresponding sub-train for the node X.

Moreover, plan retention process is done independently for each sub-train of the node as described

for a single train.

1In the unlikely event of ties, they can be broken by choosing the plan with the least local cost from this set.

Chapter 3

Problem Identification

3.1 Problem Definition

The NodeExpand algorithm need to generate and process much more sub-plans than the normal DP-

routine so that final plan is not just the minimum cost plan but also better according to robustness

criteria. Hence, the NodeExpand algorithm may need much more time and memory than the normal DP-

routine. So, the problem is to explore, find and establish solution techniques to improve the NodeExpand

algorithm to achieve the best balance between plan stability performance and overheads (time as well

as memory) for a given query and user-specified cost and safety thresholds.

3.2 Analysis of Overheads

As explained earlier, the obvious reason for the higher time and memory overheads of NodeExpand as

compared to the original DP-process, is the generation and processing of much more sub-plans at each

error-sensitive node (a node which includes an error-sensitive relation). To take a closer look at the

distribution of the time overheads, we performed profiling of the query optimization process using the

EXPAND algorithm whose results are summarized in the table 3.1

So, we can experimentally conclude that the main sources of time overheads are plan expansion,

FPC cost computations and C-S-B skyline check. The memory overheads, on the other hand, are direct

Step QT10 3DQT8 AI3DQT8

Plan Expansion 1.4 24.5 60.4
Foreign Costing 2.1 240.3 669.9
First 3 checks 0.12 16.7 47.8
C-S-B Skyline 0.02 724.5 4326.5

Table 3.1: Distribution of Time Overheads (in ms): EXPAND

11

Chapter 3. Problem Identification 12

consequence of, need to store more sub-plans at each error-sensitive node and store their foreign costs.

Moreover, the number of sub-plans surviving the plan-restriction process indirectly affects the memory

overheads, as more survivors at current node implies more plan-expansion at nodes at the higher level.

Chapter 4

Our Contributions to EXPAND

In this chapter, we present improvements to the EXPAND algorithm. Specifically, we have focused on

the possible reasons for high overheads as shown experimentally in the table 3.1, and each proposed

change in the algorithm attacks one of those reasons to bring down the overall overheads of the algorithm.

4.1 Terms & Notations

Here we use, an extended set of notations in which, we provide more detail about each plan in the

notation itself. We shall use these notations to make the text concise and easier understanding of the

concept.

Specifically, the engine, for node X, with order oi is denoted by eoi

X , while woi

X is generically used to

denote the wagons for node X with order oi. Unordered engine and wagons for node X are denoted by

eno
X and wno

X respectively. A generic sub-plan, engine or wagon, for node X can be denoted by poi

X (the

lower-case e, w and p indicates a sub-plan as opposed to complete plans which are identified with E, W

and P).

Moreover, we use the term pok

X (pA,pB,jointype) for the candidate-subplan of order ok for node X,

formed by joining pA and pB , and the way of joining used is jointype.

4.2 Restricted Plan Expansion

Plan Expansion is the first step of the EXPAND algorithm and is observed to be one of the major reasons

of time and memory overheads. It is necessary to do plan expansion, because we need to consider extra

wagons at each node other than the engine, to find out a more robust and safe choice. Moreover, we need

to consider all such possible choices at all internal nodes, since we cannot predict which of them will

be most robust at the top-most i.e. Root node. The creation and costing of one wagon is not a costly

13

Chapter 4. Our Contributions to EXPAND 14

Plans QT10 3DQT8 AI3DQT8

Pruned LCC1 138 900 9060
Pruned LCC2 83 641 2488
Pruned LCC3 103 1315 4849

Accepted 93 982 2024

Table 4.1: Impact of Restricted Plan Expansion

operation in itself, but the exhaustive enumeration all possible wagons i.e. combining all subtrains of A

with all subtrains of B is a quite costly task. We need some way to restrict the plan enumeration process

so that we can avoid creation and costing of some wagons, if possible. Moreover, we can reject some

more wagons just after their creation so that plan restriction (which include more reasons of overheads)

need to applied on lesser number of wagons.

4.2.1 Motivation

The main idea is to apply Local-cost check dynamically during plan enumeration, to avoid the creation

of some wagons and then rejection of some more wagons just after their creation and costing. The

effectiveness of the idea is well supported by the experiments summarized in Table 4.1, which shows the

pruning ability of each of the following ideas.

The creation of any wagon poi

X can be avoided if we know, in advance, that it will have (1 + λlx)

times more cost than the corresponding order engine eoi

X . For this to happen, there are two possibilities,

stated as follows:

1. the pok

X (woi

A ,woj

B ,jointype), can be avoided (from generation process), if the pok

X (eoi

A ,eoj

B ,jointype) is

known to be (1 + λlx) times more costly than engine eok

X . It means, a wagon-wagon combination

can’t pass the local cost check if the corresponding engine-engine combination has failed the local

cost check. This type of pruning is being referred as LCC1.

2. at least one of the sub-plans pA or pB , that will form poi

X after combination, is (1 + λlx) times more

costly engine eoi

X . This can happen in case that eoi

X was generated from some other combination

of A and B i.e. some other join order. This type of pruning is being referred as LCC2.

Similarly, a wagon poi

X which after creation, is found to have (1 + λlx) times more cost than the

corresponding order engine eoi

X , can be rejected instantaneously.This type of pruning is being referred

as LCC3.

4.2.2 Challenges

The idea explained above is not straightforward to use. First of all, we need to know the engine

for each train of node X, i.e. eoi

X . Moreover, we need to know, for each wagon-wagon combination

Chapter 4. Our Contributions to EXPAND 15

pok

X (woi

A , woj

B ,jointype), that whether the corresponding engine-engine combination pok

X (eoi

A , eoj

B ,jointype)

has passed the local cost check or not.

4.2.3 Solution

The identification of engine for each sub-train is also done by the normal DP-routine. So, we can use

the normal DP-routine to first identify all engines for the node and then perform plan enumeration that

is restricted using above specified three possibilities. Hence, for each node, restricted plan enumeration

is done in two passes. In the first pass, normal DP-routine is followed, in which all engines for subnode

A i.e. eoi

A are combined with all engines for subnode B, eoi

B , in all possible ways. For each such sub-plan

combination pAB , the resulting interesting order oi is determined and poi

AB is added to the plan-train-i

of node X, only if it is cheaper than some already existing poi

X , otherwise, it is discarded. In this way,

only engines for each plan-train, eoi

X , are remembered for the node x.

In the second pass, for each combination of eoi

A and e
oj

B , with a specific jointype, first it is deter-

mined whether it passes the local cost check or not. (the process is explained in section 4.3.4 to avoid

restatement of a similar idea) If this combination passes the local cost check, only then woi

A and w
oj

B

combinations are created, using the specific jointype, otherwise we skip the remainder of train-i (subnode

A) and train-j (subnode B), for this jointype.

The concept that lies behind this approach is that - all sub-plans in any train produce same amount

of data with same interesting order. Hence, cost of joining any pair of sub-plans from two trains of

subnodes (train-i for A and train-j for B) must be same, for a specific jointype i.e. cost(woi

A , woj

B ,jointype)

= cost(eoi

A , eoj

B ,jointype) Now, out of all such combinations, the sub-plan formed by the pair of engines

will have minimum total cost.

As explained earlier, we can also avoid creation of poi

AB if at least one of the sub-plans i.e. pA or pB ,

is (1 + λlx) times more costly than engine eoi

X . But, since it is not possible to tell the result order of

pAB without its creation, so this idea seems unusable in theory. We have found a practical way around

this, instead of comparing with the engine of same interesting-order, we can compare the cost of pA and

pB with cost of engine that is costliest among all engines i.e. max(eoi

X) for all oi. It is obvious that, if

any of pA or pB has cost (1 + λlx) times more than that of the max(eoi

X), then the cost of resulting pAB

will surely be more than (1 + λlx) times the cost of engine eX with same interesting-order.

It is important to note that, if the engine-i,engine-j sub-plan combination passes the local cost check,

even then some of the wagon-i, wagon-j sub-plan combinations may fail this check. But, such cases can

not be determined unless we create and cost that sub-plan combination. For each such wagon poi

X we

check whether it has (1 + λlx) times more cost than the corresponding order engine eoi

X . If yes, it is

rejected otherwise passed to the next step of the algorithm.

Chapter 4. Our Contributions to EXPAND 16

4.2.4 Implementation

To implement this solution approach, we need to store, in each sub-plan, an extra variable which can

be used to differentiate a engine from a wagon. The variable can be set accordingly after all wagons are

added to the plan-train. We also need an extra variable in each sub-plan, which can help us to identify

its interesting-order i.e. train number. Both of these can be done in one scan of the plan-train, in which

engine is identified and the order of each wagon is saved in the wagon.

4.3 Efficient Computation of Foreign Costs

After the restricted plan enumeration and early local cost pruning at any node, we have a list of plan-

trains, one for each interesting-order. Now, to apply later checks for further pruning of wagons, we need

to determine, for each wagon as well as engine, foreign costs at all corners of the selectivity-space. As

explained earlier, it takes considerable time to cost each sub-plan at each corner. So, we have found a

way to efficiently compute the foreign costs. The efficiency is achieved in two ways. Firstly, the number

of wagons for which foreign costs are computed is reduced by computing foreign costs only for local

cost check survivors. Secondly, foreign costs are not computed for each wagon, but rather inherited,

whenever possible, as explained below.

4.3.1 Inheritance of Foreign Costs

We can avoid computing foreign costs for some sub-plans and actually inherit them from already com-

puted foreign costs of some specific sub-plans. The inheritance of costs is already suggested in EXPAND,

we just implemented the idea restated below.

When two plan-trains arrive and are combined at a node, the costs of combining the engines of the

two trains in a particular method is exactly the same cost as that of combining any other pair from

the two trains. This is because the engines and wagons in any train all represent the same input data.

There, any wagon-wagon combination can inherit cost of joining from the corresponding engine-engine

combination. Inheritance of foreign costs can help to great extent in reducing total time overheads, as

the proportion of time spent on it is quite large, as shown in Table 4.1. The effectiveness of the idea is

quite clear from results in Table 4.2, that gives a comparison of number wagons for which foreign costs

are computed/inherited.

4.3.2 Challenges

The idea of inheritance says that we can reuse the costs of joining two engines, for a specific jointype, i.e.

pok

X (eoi

A , eoj

B ,jointype) to evaluate the costs of joining any two wagons of the same respective interesting-

order i.e. pok

X (woi

A , woj

B ,jointype) But, the challenge lies in identifying pok

X (eoi

A , eoj

B ,jointype), out of all

Chapter 4. Our Contributions to EXPAND 17

Num. of Wagons QT10 3DQT8 AI3DQT8

Computed FCs 72 880 698
Inherited FCs 21 1347 1814

Table 4.2: Effectiveness of Inheritance of Foreign Costs

already generated sub-plans pok

X .

This is not at all a trivial task as it requires tracing the train with interesting order ok to find

wagons with same ’jointype’. Then, for each such match, check whether the respective sub-plans are of

interesting orders oi and oj . Given that comparing the interesting order for a pair of plans is itself a

costly operation the whole process is a costly way of identifying pok

X (eoi

A , eoj

B ,jointype).

4.3.3 Solution

The inheritance of foreign costs is achieved by joining two subnodes A and B (to give node X) for

a specified jointype at a time and during this process the result of local cost check and join cost for

each pair engines is remembered in separate 2D arrays indexed by (i,j) denoting ’ith’ & ’jth’ trains for

subnodes A and B respectively. To use the join costs for any pair of wagons from train-i and train-j

respectively, the correct pair of join costs is found by accessing the 2D array at index (i,j). This process

is repeated for different ways of joining for the same subnodes A and B. And then, the whole process is

repeated for all other valid subnodes in place of A and B, respectively, which can join to give node X.

In a similar fashion, the result of local cost check is used, as explained in section 4.2.3, to decide

whether to consider wagon-wagon combination for this pair of engines.

4.3.4 Implementation

To implement the above described solution, we need an extra variable in each sub-plan which is used

to store the information which can be used to identify, to which plan-train the sub-plan belongs to.

Remember, this is also being used restricting the plan-enumeration, but there we needed to use the

interesting order of the resulting subplan to perform local-cost check, whereas in this case, we are using

the interesting-orders of sub-plans pA and pB to inherit the join-cost.

4.4 Improved C-S-B Skyline Check

The C-S-B skyline check compares each pair of wagons surviving the local cost, global safety and global

benefit checks to find whether one of them is dominating the other one. Now, since the number of such

comparisons is proportional to square of the number of wagons in the plan-train. Moreover, it applied

in the same way to wagons of each plan-train of different interesting order. It can be a major source

of time overheads, as found in experiments, especially for the nodes at higher levels in the DP-lattice.

Chapter 4. Our Contributions to EXPAND 18

The improvement in C-S-B skyline check is achieved in two ways. Firstly, the number of comparisons is

decreased by using the full power of the concept of domination. Secondly, the definition of domination

is relaxed a little bit to allow more wagons to be dominated and hence less wagons to be forwarded to

the next level. Table 4.3 gives a comparison of the original and the improved CSB skyline to show the

effectiveness of the idea.

4.4.1 Early Rejection in Skyline Check

The aim of CSB-skyline check is to discard redundant wagons out of whole set of competing wagons

that passed the global benefit check. It does so by doing pairwise comparison between each pair of

wagons. Finally, all the dominated wagons are discarded and all the dominant wagons are forwarded

to the next level. After each comparison between p1 and p2, either one of them dominates or they are

found unrelated i.e. no one dominates. A wagon is dominant iff it is not dominated by any other wagon

(of the same train ofcourse). The key observation here is that since we forward only dominant wagons

to the next level. So, as soon as we find that a wagon is dominated by some other wagon, it is certain

that it can not be dominant. So, all the remaining comparisons for the dominated wagon are a wasted

effort and hence can be avoided. This improvement may cause a large number of reduction in passes in

a potential nested loop. Hence, this helps in significant saving in terms of time. It is important to note

that more the number of competing wagons, more proportion of overheads are reduced.

4.4.2 Relaxed Skyline Check

4.4.3 Motivation

At any node where plan expansion is performed, we observed that, for each plan-train, among the

wagons that survived the 4-stage pruning mechanism, there were many wagons that have, their local

and corner costs, numerically very close to respective costs of other wagons. The idea is, small differences

in estimated costs can be neglected and only one out of such wagons can be used to represent all of

them.

4.4.4 Implementation

The above idea is implemented, by modifying the cost-safety-benefit-skyline check. This check is done

by comparing each pair of wagons to see whether one of them dominates other.

Earlier C-S-B skyline check can be stated as follow-

A wagon pw1 dominates another wagon pw2 , if the local cost of pw1 is less than local cost of pw2 ,

corner costs of pw1 are individually less than that of pw2 and the expected global benefit of pw1 is more

than that of pw2 (implied by the corner-costs comparisons). It can stated mathematically as follow:

Chapter 4. Our Contributions to EXPAND 19

of comparisons QT10 3DQT8 AI3DQT8

Original 26 1957232 13012950
Early Rejection 22 80682 3271167

Early Rejection & Relaxed Comparisons 16 2342 3652

Table 4.3: Effectiveness of Improvements in C-S-B skyline check

c(pw1 ,qe) - c(pw2 ,qe) ≤ 0

c(pw1 ,qa) - c(pw2 ,qa) ≤ 0 qa ∈ Corners(S)

After the comparison, either the dominated wagon is pruned, otherwise the pair is said to be “un-

related” and the comparison does not have any effect. Thus, concept of domination was based on strict

comparison of costs.

For implementing the Relaxed-Skyline, for any pair of wagons, at first, strict-comparison check is

tried as described above. If the strict comparison declares them are un-related, then, the comparison

of wagons are relaxed i.e. for each cost comparison, instead of strict comparison, it is checked whether

the larger cost lies within a small predefined eqv range with respect to the smaller cost. If it happens

for each and every cost comparison, for the given pair of wagons, the compared wagons are considered

to be skyline-equivalent. After determining skyline-equivalence between a pair of wagons, the wagon

with better global benefit index is retained as dominant. The Relaxed-skyline comparison can be stated

mathematically as follow:

| c(pw1 ,qe) - c(pw2 ,qe) | ≤ eq range

| c(pw1 ,qa) - c(pw2 ,qa) | ≤ eq range qa ∈ Corners(S)

ξ (pw1 ,pe) ≥ ξ (pw2 ,pe)

The idea is, small differences in estimated costs can be neglected. Any other criteria could be used

to decide the dominance, our choice is simply based on maximum potential robustness, indicated by the

Global benefit index.

4.4.5 Possible Side-effect

We need to make sure that, relaxing the comparison of wagons in the skyline check, does not have

side-effect that are unacceptable.

One possible side-effect may be incorrect transitive domination of wagons. Since, the skyline-

dominance (with strict comparisons) is transitive, i.e. if p1 dominates p2 and p2 dominates p3, then p1

also dominates p3, the risk of incorrect transitive domination was not there in EXPAND skyline check.

Chapter 4. Our Contributions to EXPAND 20

But this property does not hold for Relaxed-skyline, as skyline-equivalence itself is not a transitive

relation. Hence we have taken care that as soon as a wagon is declared dominated/dominant, it cannot

dominate/dominated by any other wagon. So that, there is no transitive domination at all.

One other possible side-effect could be the loss of anorexia in the corresponding plan diagrams, as

different representative could be chosen out of same set of wagons at the root node, for nearby query

points in the selectivity space. This will not happen for our choice of representative, since Global

Benefit Index, is a global phenomenon. So, if the set of competing plans is same then we will choose

same representative always. We have verified in the experimental study that anorexia of plan diagrams

is maintained.

4.5 Use of CC-SEER

In EXPAND [1], it is suggested that the global safety guarantee in the algorithm can be achieved with a

high cost of computational overheads, both in terms of time and memory. This is so, because CC-SEER

algorithm[12] needs foreign cost of each wagon at more number of corners i.e. 4n as compared to 2n

for LiteSEER, where ’n’ is the number of error-sensitive relations in the query template. The space

overheads are also more because the wagons need to carry more costs to the higher levels.

If we compare the properties of LiteSEER and CC-SEER, no doubt that CC-SEER gives us safety

guarantee which LiteSEER does not give. But, there is one more important feature where LiteSEER

and CC-SEER differ. That is, LiteSEER suffers from false positives but no false negatives, whereas CC-

SEER suffers from false negatives but no false positives. The implication of this difference is explained

below.

LiteSEER suffers from false positives means that, it can wrongly predict some actually unsafe wagons

to be safe and thus allows more wagons to pass the global safety check. At lower levels of DP-routine,

it can cause more overheads and at the root level it can allow a wagon to be robust choice plan, which

is not actually safe according to the user specified safety constraint.

CC-SEER suffers from false negatives means that, it can wrongly predict a safe wagon to be unsafe.

This can cause a wagon to be wrongly rejected by global safety check. While this is a nice property

for the Root node, where safety guarantee is the primary aim. In case of lower level nodes, this can

cause a potentially robust wagon to be wrongly rejected at lower node itself. Although it gives us safety

guarantee even at sub-plan level, but costs high overheads.

Hence, the best way is to use LiteSEER for all the nodes at lower levels to ensure no robust choice

wagon is wrongly rejected and use CC-SEER at the root node to ensure the global safety of final plan.

In this way, we can achieve global safety guarantee with only a little extra overhead of calculating and

storing extra corner costs only at the Root-node. Note that, we are sacrificing safety guarantee at

Chapter 4. Our Contributions to EXPAND 21

sub-plan level in this process.

4.6 Specifying Necessary Parameters

To find a robust plan, using EXPAND algorithm, we need to specify which of the relations in the query

are error-sensitive, the minimum and maximum selectivity constants for each of the error-sensitive

relations, which define the selectivity space and the local and global cost threshold values λl and λg.

4.6.1 Challenges

The challenge that lie in specifying error-sensitive relations is that, outside the query optimizer, any

relation in the query is identified by relation-name and if necessary, an additional alias. On the other

hand, the query optimizer assigns as dynamic relation-ID to each relation and use them to identify

relations in the whole optimization process. This mapping from relation name to the relation-ID is

specific to each query and hence it is not trivial to specify error sensitive relations.

The other issue is how to specify the minimum and maximum selectivity constants for each of the

error-sensitive relations. Note that, user can supply only selectivities for corners, which is a generic way

of specifying corners of selectivity space for any dimension and any query. The corresponding constants

will depend on the error-sensitive relation and the restricting condition used on that relation in the

current query, hence must be decided internally by the optimizer for the current query.

4.6.2 Solution

The issue of specifying error-sensitive relations is solved by modifying the mapping routine (relation

name to dynamic relation-ID) of the query optimizer to remember the relation-IDs corresponding to

the names of error-sensitive relations specified by the user. One more issue may happen, if the query

has two relations with the same name and only one of them is specified to be error-sensitive. In such

a situation, the user need to specify the correct alias nd the aliases used with the two relations in the

query are used to identify the correct error-sensitive relation.

The other challenge was to find the proper constants for the corners of selectivity space given the

selectivity values set by the user. But, to do the reverse mapping i.e. selectivity to constant, the idea

used is based on the approach used by Picasso [18] to generate constants for a given query location.

The only difference is that Picasso could read histogram information easily by querying appropriate

views provided by the database-engine, whereas our implementation being inside query optimizer itself

could not fire similar queries. Instead the histogram information is accessed using specially provided

functions in the query optimizer code.

Chapter 4. Our Contributions to EXPAND 22

4.7 Application Interface

To get a robust choice of plan for any query, we need to first set the selectivities to be used as the

corners of the selectivity space. These can be set by using -

‘‘SET minCornerSelectivity = c1’’ and

‘‘SET maxCornerSelectivity = c2’’.

Then, to get a robust plan for a query QUERY, we use a optional argument in the explain query i.e.

EXPLAIN

ROBUSTPLAN(λl,λg,R1, R2,..)

QUERY

where λl, λg are user-specific values to be used as local and global cost threshold, and each Ri is the

name of a relation which is to be considered as error-sensitive, to define the selectivity space.

Chapter 5

Support for SEER Algorithm

For any database-engine to support the offline identification of robust plans for a query template,

through the application of SEER algorithm to the corresponding plan diagram, the database-engine

need to support the costing of any POSP plan at some remote location in the selectivity space. The

concept behind costing a plan at given remote location explained below.

5.1 Foreign Plan Costing-Process

A plan tree is costed by optimizer in a bottom-up procedure. A leaf node, which corresponds to a base

relation is costed according to the estimated number of rows (cardinality), that can participate in the

query from that relation. Any intermediate node is costed depending on the estimated number of rows

of its children (or child in case of a unary node). Therefore, the cost of a plan tree is primarily governed

by the cardinality estimates of the base relations.

Therefore our strategy for costing a plan P at a foreign query location qf is as follows:

1. Get the base relation selectivities associated with the query qf as supplied by the user.

2. In the plan tree of P, visit the appropriate leaf nodes and inject the constants corresponding to the

new selectivities into those nodes, by modifying the associated restriction clauses.

3. Cost this modified plan tree through the usual costing process of optimizer.

5.2 Application Interface

To get the optimal plan of the specified query costed at some remote location, we need to specify the

the error-sensitive relations and the selectivity constants for remote location as follows:

EXPLAIN REMOTE FPC (R1,R2,...) (C1,C2,...) QUERY

23

Chapter 5. Support for SEER Algorithm 24

where each Ri is the name of an error-sensitive relation and Ci is the remote location constant for

the corresponding relation.

Chapter 6

Efficient Generation of Plan

Diagrams

In this chapter, we present two independent ways to efficiently generate the plan diagrams. The two

techniques serves the same purpose of efficient prefect diagram generation but are quite different in their

approach and alternative to each other i.e. the techniques cannot be used in compliment to each other.

6.1 Pilot-Based Diagram Generation

“Pilot-Based Diagram Generation” is one of the techniques to efficiently generate Plan-Diagrams. The

basic idea is to try to reduce the plan space considered during the optimization process, and therefore

this technique needs a few modifications to the DP based optimization process. It helps in reducing the

overheads in plan diagram generation by speeding up an individual optimization process and thereby

collectively reduce the diagram generation overhead. The technique relies on the Plan Cost Monotonicity

assumption about the optimizer, as explained below.

The technique is predicated on the fact that, as we move up the DP lattice, only additive constants

are applied to the sub-plans and therefore cost of a particular sub-plan is always increasing (with level)

in the optimization process. If we have an upper-bound on the cost of the final plan at the root of

DP lattice, said to be PILOT-COST, we can safely prune all the candidate sub-plans that have costs

higher than the pilot-cost. This should speedup the optimization process, as we will have early pruning

of some of the candidates and thus can avoid creation of many paths at later levels. The efficiency of

Pilot-Passing technique relies heavily on obtaining an a pilot-cost which is very close to the optimal

plan’s cost.

While, for an isolated optimization, it is very hard to achieve a pilot-cost close enough to optimal

25

Chapter 6. Efficient Generation of Plan Diagrams 26

(a) Pilot Region (b) Pilot Selection

Figure 6.1: Pilot Based Diagram Generation

plan’s cost (almost as hard as the actual optimization), but it can obtained very cheaply during optimizer

diagram generation, on the basis of Plan Cost Monotonicity assumption of the optimizer. For the current

point, the minimum cost out of all points in the first quadrant is the PILOT-COST.

Depending on this fact, the Pilot-Passing based diagram generation works in the following way:

“Start generating the plan diagram from top-right corner in reverse row-major order. During the

optimization of any point, we check if there is any previously optimized point present in the first

quadrant. If such a point is found, its cost is sent to the optimizer as the pilot-cost. We stop when all

the points are optimized.”

6.1.1 Challenges

To be able to use the above technique for efficient generation of plan-diagrams, the first challenge is to

select an appropriate PILOT-COST and other is to be able to pass, the selected pilot-cost with the

next query, to the query optimizer, so that it can be used for pruning of candidate sub-plans. Earlier,

the effectiveness of the technique was proved through an offline implementation [13].

6.1.2 Our Contribution

The online implementation of the technique need changes in Picasso and the database-engine as explained

below:

Pilot Selection The Pilot-Selection is to be carried out in Picasso as follows: Specifically, from the

first quadrant of qe, we choose the point which is at distance of 1 from qe along each dimension (At border

cases we consider only the valid dimensions). Figure 6.1(b)) shows several examples of query points

(blue dots) and their corresponding pilots (green dots) in a 2D selectivity space with resolution of 5

Chapter 6. Efficient Generation of Plan Diagrams 27

along each dimension. Note that the top-right point (red dot) does not have a pilot and its optimization

has to be carried out normally.

Pilot-Passing Interface The Pilot-Cost can be sent to the query optimizer along with the query as

follows:

EXPLAIN PILOT(‘‘pilot-cost’’) QUERY

this pilot-cost is then used inside the optimizer to prune all the candidate subpaths with cost more

than pilot-cost.

6.2 PlanFill Algorithm

The PlanFill algorithm is an inference based algorithm which needs the PRL and FPC features incorpo-

rated in the database optimizer. Specifically, it assumes that on each invocation, the optimizer returns k

best plans. PlanFill achieves speedup by reducing total number of optimizations, carried out to produce

the plan diagram. Also, this technique is the most intrusive in nature and significantly modify the

normal course of DP. The details of the algorithm are given in the report [13].

6.2.1 Changes in PostgreSQL Optimizer

Generating Plan Rank List Finding the list of k-best plans is not as straightforward as to select

the k-best plans at the root node. It can be elaborated easily for an example to find the second best

plan as follows:

Suppose, the root node is ABC that can be made by joining (A)(BC) or (AB)(C). And, let us assume

that, the cheapest plan is the one which is found by joining A with BC using a specific way (for instance

Hash Join), then second best plan can either be the second best plan to join A with BC, in some other

way or the best plan to join (AB) with (C).

Root node will have the best plan to join (AB) with (C). But, since in DP-process, we store only

cheapest-way of generating each node, the second best way of joining (A) with (BC) is not even found

since we had only cheapest sub-plan for (A) and cheapest sub-plan for (BC). Hence, the second best

plan at the root node, may or may not be the actual second best plan for the query.

We now propose the strategy of generating top-k best plans by augmenting the standard DP proce-

dure.

“At each node, keep k-plans for each interesting order rather than keeping only the cheapest plan.

Enumerating the plans in DP process in this way, will make sure that the final root node will have true

k-best plans.”

Chapter 6. Efficient Generation of Plan Diagrams 28

Application Interface for TOP-K plans To get Top-k plans for any query, we have added an

optional argument to the explain statement, as shown below:

EXPLAIN TOP(‘‘k’’) QUERY

The output will contain k-plans one after another separated by NEXT PLAN as separator.

Foreign Plan Costing The changes done in the optimizer and the application interface for Foreign

Plan Costing are already described in section 5.1.

6.2.2 Changes in Picasso

The Picasso needs significant change in its plan-generation process to follow the PlanFill algorithm for

efficient generation of plan-diagrams.

The changes can be described briefly as follows: The plan diagram process need to have nested loop

traversal of the selctivity space for the PlanFill algorithm.

Starting from the origin of the selectivity space in row-major order, for any query point qo which is

not already optimized or filled, do the following:

1. find top-k plans and remember them

2. try to fill plan (from remembered top-k plans) for any unoptimized/unfilled point qf in the first

quadrant of the current point, using FPC feature and the concept of PlanFill (described in [13])

Note that, the PlanFill algorithm used in [13] used only top-2 plans, the implementation described

here is a generalized version i.e. for top-k plans.

Chapter 7

Experimental Section

The experimental study here is only for the improvements done in the EXPAND algorithm, since other

contributions are for the techniques whose impact on efficiency and effectiveness has already been studied

and proven in [7] and [13].

All the modifications to the EXPAND algorithm described in the chapter 4 are implemented in Post-

greSQL 8.3.6 [15] operating on a Sun Ultra 24 workstation with 3 GHz processor, 8 GB of main memory,

1.2 TB of hard disk, and running Ubuntu Linux 9.10. The user-specified cost-increase thresholds in all

our experiments are λl, λg = 20 percent, a practical value as per our discussions with industrial develop-

ment teams, and also a value found sufficient to provide anorexic plan diagrams in popular commercial

optimizers.

To assess performance over the entire selectivity space, we took recourse to parametrized query

templates – for example, by treating the constants associated with O.totalprice and L.extendedprice in

QT10 as parameters. These templates are all based on queries appearing in the TPC-H and TPC-DS

benchmarks [16, 17], and cover both 2D and 3D selectivity spaces. They feature a variety of advanced

SQL constructs including groupings, orderings, nested queries, aggregates etc., and the optimization

process involves handling complexities such as interesting orders and stemmed operator trees. The

TPC-H database contains uniformly distributed data of size 1GB and TPC-DS that of 100GB.

7.1 Performance Metrics

The performance metrics that are important to characterize and measure the performance of NodeExpand

are:

29

Chapter 7. Experimental Section 30

1. Plan Stability: The overall effect of plan replacements on stability is measured through the Ag-

gSERF,MinSERF and MaxSERF statistics. Further, we track REP%, the percentage of locations

where the optimizer’s original choice is replaced, and Help%, the percentage of error instances for

which replacements were able to reduce the performance gap by a substantial margin, specifically,

more than two-thirds. Lastly, we also quantify the percentage of query locations where MinSERF

goes below −λg as Harm%.

2. Plan Diagram Cardinality: This metric tallies the number of unique plans present in the plan

diagram, with cardinalities that are less than or around ten considered as anorexic diagrams [10, 6].

3. Computational Overheads: This metric computes the overheads incurred, with regard to both

time and space, by NodeExpand or its variant, relative to those incurred by the standard DP

procedure.

7.2 Differences from Study in EXPAND

It is also important to specify some differences from the earlier experimental study. For any query

template, the peak overheads, over the selectivity space, are specified and not averaged over the specially

chosen uniformly distributed set of points. Moreover, query point locations closer to extremes of the

selectivity space are also taken into account while studying the overheads. It was important since

the overheads increases dramatically for some QTs as we move towards the selectivity axes. The cost

bounding parameters were set to very high values for the leaf nodes to allow all possible scan choices to

participate in the process.

7.3 Notations

In the subsequent discussion, we use QTx to denote a query template based on Query x of the TPC-H

benchmark. A prefix DS indicates that the query template belongs to TPC-DS benchmark. By default,

the query template is 2D and evaluated on a PK physical design. An additional prefix of 3D indicates

that the query template is three-dimensional, while AI signifies an AllIndex physical design.

For brevity, we have denoted the original implementation of NodeExpand by NE-orig, and the new

implementation by NE++.

7.4 Impact on Performance

It is quite important to verify that the changes does not adversely affect the performance metrics like

Plan stability, safety and plan diagram cardinality. These metrics are insensitive to inheritance of

Chapter 7. Experimental Section 31

Query NE-orig NE++
Temp- REP Agg Max Help Min Harm Plans REP Agg Max Help Min Harm Plans
late % SERF SERF % SERF % % SERF SERF % SERF %

QT5 85 0.54 1 55 0 0 3 85 0.54 1 55 0 0 3
QT8 84 0.11 1 3 0 0 3 84 0.12 1 3 0 0 3
QT10 98 0.21 1 20 -0.24 0.01 3 98 0.22 1 20 -0.24 0.01 3
AIQT5 99 0.37 1 38 0 0 7 99 0.36 1 38 0 0 7
3DQT8 69 0.18 1 18 -2.30 0.01 3 69 0.18 1 18 -2.30 0.01 3
3DQT10 99 0.39 1 71 -0.78 2.15 5 99 0.38 1 71 -0.78 2.15 5
AI3DQT8 98 0.19 1 21 -2.80 4.30 14 98 0.19 1 21 -2.80 4.30 14
AI3DQT10 99 0.13 1 19 -4.20 0.54 26 99 0.12 1 19 -4.20 0.54 26
DSQT18 58 0.48 1 49 0 0 2 58 0.48 1 49 0 0 2

Table 7.1: Plan-Stability, safety and Plan-Diagram cardinality performance

foreign costs but could be affected by the restricting the plan expansion and relaxing the CSB-skyline

check. Hence, all the required experiments were also conducted to ensure that the changes to the basic

algorithm does not cause any noticeable change in these performance metrics, as show in Table 7.1.

7.5 Improvement in Time Overheads

The improvement in time overheads is a combined effect of the restricted plan expansion, inheritance

of foreign costs, smarter CSB-skyline check and the Relaxed-Skyline heuristic. The impact of restricted

plan expansion and inheritance of costs is already discussed. The smarter CSB-skyline ensures that the

CSB-skyline check completes in minimum number of wagon comparisons for a given set of competing

wagons. The Relaxed-Skyline heuristic helps by reducing the number of surviving wagons and thereby

decreasing the number of sub-plans generated at the next level. Table 7.2 below shows the comparison

between time overheads of earlier implementation(NE-orig) with newer implementation with all the

suggested improvements(NE++).

Query Optimization Time (ms)
Template DP NE-orig NE++

QT5 5.4 50.1 44.2
QT8 6.0 6166.9 44.1
QT10 1.5 8.4 5.7

AIQT5 6.8 91.1 59.3
3DQT8 6.0 15133.4 69.9
3DQT10 1.5 8.5 6.2

AI3DQT8 7.0 5152.3 98.8
AI3DQT10 1.9 10.9 10.5
DSQT18 5.0 2788.9 93.3

Table 7.2: Improvement in Time Overheads

Chapter 7. Experimental Section 32

Query Memory Overhead (MB)
Template DP NE-orig NE++

QT5 2.0 12.9 7.3
QT8 2.0 49.2 8.7
QT10 1.6 3.6 2.8

AIQT5 2.7 44.4 11.1
3DQT8 2.0 119.5 11.5
3DQT10 1.6 3.8 2.8

AI3DQT8 2.8 183.5 14.1
AI3DQT10 1.7 21.2 3.7
DSQT18 2.0 53.86 14.2

Table 7.3: Improvement in Peak Memory Consumption

7.6 Improvement in Memory Overheads

The improvement achieved in memory overheads is a combined effect of the restricted plan expansion

and Relaxed-Skyline heuristic As explained earlier, the memory overheads are due to memory needed

to store sub-plans at each level, that pass the CSB-skyline check and the fact that each plan carry extra

foreign corner costs. Relaxed-skyline heuristic helps by reducing both sub-plans stored and sub-plans

generated at next level, as explained earlier. In Table 7.3, we compare the memory overheads for earlier

implementation (NE-orig) with newer implementation with all the suggested improvements(NE++).

Chapter 8

Conclusions and Future Work

In this work, we identified and exploited the scope of improvements in the NodeExpand algorithm.

The improvements varied from, simply more efficient coding of already existing concepts and exploiting

their full power to major changes in the algorithm, that avoid all possibilities of high time and memory

overheads. We came up with the idea of restricted plan-expansion and Relaxed-Skyline, all of which

together brought down the overheads significantly and implemented the already existing concept of

inheritance of costs. As a orthogonal part of the work, we added three new features in the API of the

query optimizer which were already proved to be useful for efficient generation of plan diagrams.

In future, we can try to find some intelligent and automatic way of defining the cost & safety

thresholds (for internal nodes) that gives best deal of performance against acceptable overheads. We

can also perform experiments with more query templates from benchmarks like TPC-DS. Moreover,

we have just concentrated on the overheads study of EXPAND [1], in future, we can also try to improve

the NodeExpand algorithm with respect to other performance metrics like Plan Stability with adversely

affecting Plan safety and plan diagram cardinality.

33

Bibliography

[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal, J. Haritsa, “Stability conscious query

optimization”, Tech. Report. TR-2009-01, DSL/SERC, Indian Inst. of Science, July-2009,

http://dsl.serc.iisc.ernet.in/publications/report/

TR/TR-2009-01.pdf

[2] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms: Building Histograms without Looking

at Data”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1999.

[3] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”, Proc. of ACM Sigmod Intl. Conf.

on Management of Data, June 2005.

[4] S. Borzsonyi, D. Kossmann and K. Stocker, “The Skyline Operator”, Proc. of 17th IEEE Intl. Conf.

on Data Engineering (ICDE), April 2001.

[5] S. Chaudhuri, V. Narasayya and R. Ramamurthy, “A Pay-As-You-Go Framework for Query Exe-

cution Feedback”, Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[6] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”, Proc. of

33rd Intl. Conf. on Very Large Data Bases (VLDB), September 2007.

[7] Harish D., P. Darera and J. Haritsa, “Robust Plans through Plan Diagram Reduction”, Proc. of

34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[8] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution

Plans”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1998.

[9] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cilimdzic, “Robust Query

Processing through Progressive Optimization”, Proc. of ACM SIGMOD Intl. Conf. on Management

of Data, June 2004.

[10] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”, Proc. of 31st

Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

34

BIBLIOGRAPHY 35

[11] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Selection in a

Relational Database System”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June

1979.

[12] H. Shrimal, “Characterizing Plan Diagram Reduction Quality and Efficiency”, Master’s Thesis,

Indian Inst. of Science, June 2009.

http://dsl.serc.iisc.ernet.in/publications/thesis/

harsh.pdf

[13] S. Bhaumik, “Efficient Generation of Query Optimizer Diagrams”, Master’s Thesis, Indian Inst. of

Science, June 2009. http://dsl.serc.iisc.ernet.in/publications/thesis/

sourjya.pdf

[14] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB2’s LEarning Optimizer”, Proc. of

27th VLDB Intl. Conf. on Very Large Data Bases (VLDB), September 2001.

[15] http://www.postgresql.org/docs/8.3/static/release-8-3-6.html

[16] http://www.tpc.org/tpch

[17] http://www.tpc.org/tpcds

[18] http://dsl.serc.iisc.ernet.in/projects/PICASSO/

picasso.html

Index

Abstract, 5

Front matter, 4

I.I.Sc. logo, 4

Index, 8

Line spacing, 6

page headings, 9

Preface Section, 4

Title page, 3

36

