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Abstract

Over the last four decades, relational database systems, with their mathematical basis in first-
order logic, have provided a congenial and efficient environment to handle enterprise data during
its entire life cycle of generation, storage, maintenance and processing. An organic reason for
their pervasive popularity is intrinsic support for declarative user queries, wherein the user only
specifies the end objectives, and the system takes on the responsibility of identifying the most
efficient means, called “plans”, to achieve these objectives.

A crucial input to generating efficient query execution plans are the compile-time estimates
of the data volumes that are output by the operators implementing the algebraic predicates
present in the query. These volume estimates are typically computed using the “selectivities” of
the predicates. Unfortunately, a pervasive problem encountered in practice is that these selec-
tivities often differ significantly from the values actually encountered during query execution,
leading to poor plan choices and grossly inflated response times.

The database research community has spent considerable efforts to address the above chal-
lenge, which is of immediate relevance to currently operational systems. The proposed tech-
niques include: (a) Improving estimation accuracy through novel statistical models, sampling
and execution-feedback mechanisms; (b) Identifying execution plans that are relatively robust
to such errors; and (c¢) Dynamically changing plans at run-time if estimation errors are detected
during the execution of the originally chosen plan. While this rich body of literature features

several innovative formulations, the prior techniques all suffer from a systemic limitation — the
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Abstract

inability to provide any guarantees on the execution performance.

In this thesis, we materially address this long-standing open problem by developing a rad-
ically different query processing strategy that lends itself to attractive guarantees on run-time
performance. Specifically, in our approach, the compile-time estimation process is completely
eschewed for error-prone selectivities. Instead, from the set of optimal plans in the query’s
selectivity error space, a limited subset called the “plan bouquet”, is selected such that at least
one of the bouquet plans is 2-optimal at each location in the space. Then, at run time, an
exploratory sequence of cost-budgeted executions from the plan bouquet is carried out, eventu-
ally finding a plan that executes to completion within its assigned budget. The duration and
switching of these executions is controlled by a graded progression of isosurfaces projected onto
the optimal performance profile. We prove that this construction provides viable guarantees
on the worst-case performance relative to an oracular system that magically possesses accurate
apriori knowledge of all selectivities. Moreover, it ensures repeatable execution strategies across
different invocations of a query, an extremely desirable feature in industrial settings.

Our second contribution is a suite of techniques that substantively improve on the perfor-
mance guarantees offered by the basic bouquet algorithm. First, we present an algorithm that
skips carefully chosen executions from the basic plan bouquet sequence, leveraging the observa-
tion that an expensive execution may provide better coverage as compared to a series of cheaper
siblings, thereby reducing the aggregate exploratory overheads. Next, we explore randomized
variants with regard to both the sequence of plan executions and the constitution of the plan
bouquet, and show that the resulting guarantees are markedly superior, in expectation, to the
corresponding worst case values.

From a deployment perspective, the above techniques are appealing since they are com-
pletely “black-box”, that is, non-invasive with regard to the database engine, implementable
using only API features that are commonly available in modern systems. As a proof of concept,

the bouquet approach has been fully prototyped in QUEST, a Java-based tool that provides
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Abstract

a visual and interactive demonstration of the bouquet identification and execution phases. In
similar spirit, we propose an efficient isosurface identification algorithm that avoids exploration
of large portions of the error space and drastically reduces the effort involved in bouquet con-
struction.

The plan bouquet approach is ideally suited for “canned” query environments, where the
computational investments in bouquet identification are amortized over multiple query invoca-
tions. The final contribution of this thesis is extending the advantage of compile-time subop-
timality guarantees to ad hoc query environments where the overheads of the off-line bouquet
identification may turn out to be impractical. Specifically, we propose a completely revamped
bouquet algorithm that constructs the cost-budgeted execution sequence in an “on-the-fly”
manner. This is achieved through a “white-box” interaction style with the engine, whereby
the plan output cardinalities exposed by the engine are used to compute lower bounds on the
error-prone selectivities during plan executions. For this algorithm, the suboptimality guaran-
tees are in the form of a low order polynomial of the number of error-prone selectivities in the
query.

The plan bouquet approach has been empirically evaluated on both PostgreSQL and a
commercial engine ComOpt, over the TPC-H and TPC-DS benchmark environments. Our
experimental results indicate that it delivers orders of magnitude improvements in the worst-
case behavior, without impairing the average-case performance, as compared to the native
optimizers of these systems. In absolute terms, the worst case suboptimality is upper bounded
by 20 across the suite of queries, and the average performance is empirically found to be within
a factor of 4 wrt the optimal. Even with the on-the-fly bouquet algorithm, the guarantees are
found to be within a factor of 3 as compared to those achievable in the corresponding canned
query environment.

Overall, the plan bouquet approach provides novel performance guarantees that open up

exciting possibilities for robust query processing.
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Chapter 1

Introduction

It has been more than four decades since the relational model [31] of data representation enabled
a significant step forward in database query processing by removing the dependence between
application programs and underlying data representation. As a result, modern database systems
provide a declarative query interface, typically in the form of SQL, that allow the user to specify
what information from the database is needed without having to specify how to retrieve it from
the data and compute query results. In Figure 1.1, we show an example SQL query EQ over

TPC-H schema that enumerates the orders for cheap parts.

SELECT *

FROM part, lineitem, orders

WHERE p_partkey = |_partkey and
o_orderkey = |_orderkey and
p_retailprice < 1000

Figure 1.1: Example SQL Query (EQ)

To support efficient data access in these systems, the task of identifying the most time-
efficient procedural equivalent of the input query, termed as ‘execution plan’, is performed by a
module called the query optimizer. Soon after the proposal of relational model, System R [82]
developed cost-based query optimization wherein alternative execution plans are compared on

the basis of their cost, i.e. expected time to complete execution, and the minimum cost choice

1



among them is picked for execution. Since then, cost-based query optimization has served as a
template for query optimizer design.

An execution plan (or just plan) is a sequence of relational operators that produce the query
result by evaluating the predicates specified in the query. For instance, a sample plan for query
EQ is shown in Figure 1.2 where the predicates in the query are evaluated using relational scan
and binary join operators with different algorithmic choices, e.g. Index Scan and Sort-Merge
Join, respectively. The total time taken by a plan to complete query execution depends on the
selectivity of the query predicates, i.e. fraction (or percentage) of data tuples satisfying the

predicate, and the physical implementation of the operators.

[ o_orderkey=I_orderkey |

E jSort-Merge Join

/N

Sequential [ p_partkey=I_partkey]|
Scan N
1 Nested-Loop Join
Orders \
[ p_retailprice<1000 | Index Scan
Sequential
Scan -
1 Lineitem
Part

Figure 1.2: Sample Execution Plan for EQ

To compare across various execution choices, query optimizers employ two abstract models:
(1) operator output selectivity (normalized cardinality) estimation model, and (2) operator
execution cost estimation model. Clearly, the ability of a cost-based optimizer to identify the
ideal execution plan is dependent on the quality of these models. Specifically, the quality

of selectivity estimation model is a function of its ability to capture the distributions and



correlations present in the data, while that of cost model depends on how well it captures the
behavior of the underlying hardware and physical implementations of the operators.

While there has been a plethora of research proposals to improve the quality of these models,
query optimization has largely remained a “black art”, as highlighted by the following com-

ments from the leading academic and industry experts:

Prof. David Dewitt (Univ. of Wisconsin Madison, Microsoft Jim Gray Lab) [86]: Query
optimizers do a terrible job of producing reliable, good plans (for complex queries) without a lot

of hand tuning.

Dr. Surajit Chaudhuri (Microsoft Research) [75]: Almost all of us who have worked on
query optimization find the current state of the art unsatisfactory with known big gaps in the

technology.

Dr. Guy Lohman (IBM Research) [62]: With such errors (in cardinality estimation), the
wonder isn’t “Why did the optimizer pick a bad plan?” Rather, the wonder is “Why would the

optimizer ever pick a decent plan?”

In this thesis, motivated by the above comments on this long standing issue, we present a
radically new approach to database query processing that lends itself to attractive guarantees on
run-time execution performance, regardless of the actual selectivities. Based on this approach,
we propose techniques that provide performance guarantees orders of magnitude better than the
worst-case performance of native engines, for both canned as well as ad hoc query environments.
Moreover, these techniques can be deployed in a non-invasive manner with regard to the existing

database engine.



1.1 Cost-based Query Optimization

With the aim of identifying the ideal execution plan, cost-based query optimizers estimate a host
of selectivities corresponding to the predicates in the query. For example, for simple SPJ' query
EQ, the optimizer estimates the selectivities of a selection predicate (p_retailprice < 1000)
and two join predicates (part X lineitem, orders X lineitem). The selectivities are estimated
using statistical metadata (histograms, distinct counts, etc), and assumptions like attribute
value independence, join containment assumption, etc [25]. These selectivity estimates serve
as primary inputs to a cost model that compares various execution plan choices to determine
the cost-optimal execution plan. The chosen execution plan, which is a tree of unary and
binary relational algebra operators (select, project, join, etc) instantiated with physical operator
algorithms, is then fed to the query executor module. Finally, the executor module follows the
operator sequence to interact with the underlying data source and produce the query result
tuples. These steps of query processing in relational databases are visualized in Figure 1.3.

RDBMS ENGINE

M) query

results
O NL > Executor >

?

P L
Q selectivity
uery timation
A= IS
OptImIZer (p_retailprice<1000,
p_partkey = |_partkey,
T o_orderkey=|_orderkey)
select * from
part P, lineitem L, orders O
where
p_partkey = |_partkey and
o_orderkey = |_orderkey and

p retailprice < 1000

Figure 1.3: Traditional RDBMS architecture

'An SPJ query essentially represents a single SQL SELECT-FROM-WHERE block with no grouping or
aggregation or subqueries. Further, an SPJ query with only conjunctive predicates in the WHERE block is
called a conjunctive SQL query.



The cost-based query optimizers, pioneered by System R [82] and refined extensively by later
research, deliver satisfactory performance whenever the queries are simple, modeling assump-
tions are valid, and the meta-data information is fresh and sufficient for selectivity estimation
of predicates. But with the growth in query complexity, the challenge of identifying the op-
timal execution plan has increased manifold [51]. Also, the ‘suboptimality’ due to mistaken
plan choice, i.e. the performance ratio wrt to the ideal plan choice, increase with the growth
in data scale and skew. The current situation is that for complex OLAP queries over large
databases, the selectivity estimates are often significantly in error with respect to the actual
values subsequently encountered during query execution, leading to grossly inflated execution
times. Also, it is widely accepted that the suboptimality impact of selectivity estimation errors
is significantly larger as compared to that of the cost modeling errors [62, 58, 87].

In this thesis, we first study individual impact of selectivitity estimation errors by assuming
the cost model to be perfect —that is, we use only optimizer costs in the evaluations. While this
assumption is certainly not valid in practice, improving the cost model quality is, in principle,
an orthogonal problem to that of selectivity estimation. Later, at the end of the thesis in
Chapter 11, we revisit this assumption and analyze the impact of having an erroneous cost

model on the results of this thesis.

1.2 Selectivity Estimation Errors

Selectivity estimation errors, which can even be in orders of magnitude in real database en-
vironments [65, 62], arise due to a variety of well-documented reasons [84, 62, 85], including
outdated statistics, coarse summaries, attribute-value independence (AVI) assumptions, com-
plex user-defined predicates, and error propagation in the query execution operator tree [51].
Moreover, in environments such as ETL workflows, the statistics may actually be unavailable
due to data source constraints, forcing the optimizer to resort to “magic numbers” for the values

(e.g. 1/10 for equality selections [82]).



To analyze the impact of estimation errors, consider a restricted 1D version of the query EQ
wherein only the selection predicate p_retailprice < 1000 is assumed to be error-prone. Here,
we find that the plan choices of the query optimizer change as a function of the selectivity of
the predicate p_retailprice < 1000. Specifically, through repeated invocations of the optimizer
with increasing selectivity value for the selection predicate!, we identify “parametric optimal
set of plans” (POSP) and their optimality ranges across the entire selectivity range of the
predicate, i.e. plans P1 through P5, whose structures and optimality ranges are shown in
Figure 1.4. Further, each plan is annotated with the selectivity range over which it is optimal
— for instance, plan P3 is optimal in the (1.0%, 7.5%)] interval. (In Figure 1.4, P = Part, L. =

Lineitem, O = Orders, NL = Nested Loops Join, MJ = Sort Merge Join, and HJ = Hash Join).

NL M) M) H\ H\
/N /\  /\ / /

NL O o NL O HJ /HJ\ o) /HJ\ P
VANV ANVAVANEVAN
P1(0,0.3] P2(0.3,1.0] P3(1.0,7.5] P4(7.5,63.0] P5(63.0,100.0]

Figure 1.4: POSP plans on p_retailprice dimension

Next, observing the cost behavior of these plans (in Figure 1.5), it is found that if the actual
selectivity is close to 90% but underestimated to be in the range (0,0.3%] by the optimizer,
then EQ is executed using plan P1 resulting in 20 times sub-optimal performance. On the other
hand, if the actual selectivity is around 0.1% and overestimated to be 90%, then the performance
suboptimality is close to two orders of magnitude. Even for the simple base predicate in EQ),
such errors can actually happen due to staleness of the statistical information for a highly
skewed data distribution. Even if the statistics were fresh, the selectivity estimation module
of most engines would easily make similar large errors if the predicate happen to be written as
log,o(p-retailprice) < 3.

A considerable body of literature exists on proposals to tackle the issue of erroneous selec-

! This is achieved by leveraging ‘selectivity injection’ API, as described later in Chapter 8.
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tivity estimation. For instance, techniques for improving the statistical quality of the meta-
data include improved summary structures [7, 69], sampling [61, 74], feedback-based adjust-
ments [84, 7], and on-the-fly re-optimization of queries [52, 12, 72]. A complementary approach
is to identify robust plans that are relatively less sensitive to estimation errors [29, 10, 12, 47, 21].
While these prior techniques provide novel and innovative formulations, they are limited in their
scope and performance, as explained in detail in Chapter 2 — a primary drawback being lack of

performance guarantees.

1.3 Plan Bouquet Approach

In this thesis, we investigate a conceptually new approach to database query processing, wherein
the compile-time estimation process is completely eschewed for error-prone selectivities. In-
stead, these selectivities are systematically discovered at run-time through a calibrated sequence
of cost-budgeted plan executions. That is, we attempt to side-step the selectivity estimation
problem, rather than address it head-on, by adopting a “seeing is believing” perspective on

these values.

1D Example We introduce the new approach through the restricted 1D version of the EQ
example query, as discussed earlier. The process starts with repeated invocations of the opti-
mizer to identify the “parametric optimal set of plans” (POSP) that cover the entire selectivity
range of the predicate. A sample outcome of this process is already shown in Figure 1.4 and
the optimizer-computed costs of these POSP plans over the selectivity range are shown (on a
log-log scale) in Figure 1.5. In this figure, we define “POSP infimum curve” (PIC), as the
trajectory of the minimum cost choice from among the POSP plans — this curve represents the
ideal performance.

The next step, which is a distinctive feature of our approach, is to discretize the PIC by
projecting a graded progression of isocost (IC) steps onto the curve. For example, in Figure 1.5,

the dotted horizontal lines represent a geometric progression of isocost steps, IC1 through IC7,
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Figure 1.5: POSP performance (log-log scale)

with each step being double the preceding value. The intersection of each IC with the PIC
(indicated by M) provides an associated selectivity, along with the identity of the best POSP
plan for this selectivity. For example, in Figure 1.5, the intersection of IC5 with the PIC
corresponds to a selectivity of 0.65% with associated POSP plan P2. We term the subset of
POSP plans that are associated with the intersections as the “plan bouquet” for the given
query — in Figure 1.5, the bouquet consists of {P1, P2, P3, P5}.

The above exercise is carried out at query compilation time. Subsequently, at run-time,
the correct query selectivities are implicitly discovered through a exploratory sequence of cost-
budgeted executions of bouquet plans. Specifically, beginning with the cheapest cost step, we

iteratively execute the bouquet plan assigned to each step until either:

1. The partial execution overheads exceed the step’s cost value — in this case, we know that
the actual selectivity location lies beyond the current step, motivating a switch to the
next step in the sequence; or

2. The current plan completes execution within the budget — in this case, we know that the



actual selectivity location has been reached, and a plan that is at least 2-optimal wrt the

ideal choice, was used for the final execution.

Example To make the above process concrete, consider the case where the selectivity of
p_retailprice is 5%. Here, we begin by partially executing plan P1 until the execution overheads
reach IC1 (1.2E4 | 0.015%). Then, we extend our cost horizon to 1C2; and continue executing
P1 until the overheads reach IC2 (2.4E4| 0.03%), and so on until the overheads reach 1C4 (9.6E4
| 0.2%). At this juncture, there is a change of plan to P2 as we look ahead to IC5 (1.9E5 |
0.65%), and during this switching all the intermediate results (if any) produced thus far by
P1 are discarded. The new plan P2 is executed until the associated overhead limit (1.9E5) is
reached. The cost horizon is now extended to 1C6 (3.8E5 | 6.5%), in the process discarding P2’s
intermediate results and executing P3 instead. The execution in this case will complete before
the cost limit is reached since the actual location, 5%, is less than the selectivity limit of 1C6.
Viewed in toto, the net suboptimality turns out to be 1.78 since the exploratory overheads are
0.78 times the optimal cost, and the optimal plan itself was (coincidentally) employed for the

final execution.

Extension to Multiple Dimensions When the above 1D approach is generalized to a
multi-dimensional selectivity environment, the IC steps and the PIC curve become surfaces,
and their intersections represent selectivity surfaces on which multiple bouquet plans may be
present. For example, in the 2D case, the IC steps are horizontal planes cutting through a
hollow three-dimensional PIC surface, typically resulting in hyperbolic intersection contours
featuring a multitude of plans covering disjoint segments of the contours — an instance of this
scenario is shown in Figure 4.2.

Notwithstanding these changes, the basic mechanics of the bouquet algorithm remain vir-
tually identical. The primary difference is that we jump from one isosurface to the next only
after it is determined that mone of the bouquet plans present on the current isosurface can

completely execute the given query within the associated cost budget.



1.3.1 Performance Characteristics

At first glance, the plan bouquet approach, as described above, may appear to be utterly absurd
and self-defeating because: (a) At compile-time, considerable preprocessing may be required to
identify the POSP plan set and the associated PIC; and (b) At run-time, the overheads may
be hugely expensive since there are multiple plan executions for a single query — in the worst
scenario, as many plans as are present in the bouquet!

However, we will attempt to make the case in the remainder of this thesis, that it is indeed
possible, through careful design, to have plan bouquets efficiently provide robustness profiles that
are markedly superior to the native optimizer’s profile. Specifically, we define robustness to
be “the worst-case suboptimality in plan performance that can arise due to selectivity errors”,
denoted as MSO (maximum sub-optimality)*. With regard to this MSO metric, the bouquet
mechanism delivers substantial improvements over current optimizers. Moreover, it does so

while providing comparable or improved average-case performance.

1.2E+07 - == Native Optimizer (worst-case)
6.1E+06 {--—¢=BasicBouquet . gl ]
= 3.1E+06 A - -Bouquet(Enhanced) 7
B o1se+06 {0 S L e L
o
Eﬂ B S —— = L B 2 1C7
‘é’ 3.8E+05 o e 1C6
Q
E s o 1 R e 1C5
-
E T Ica
R e A, P I3
B 0 12
o IC1
6.0E+03 ! T T T T T T T T T T T T T
X X 8 R X K X B
4 N ¥ ® L o ¥ O O o B & o o o
o o © © = m ¥ M @ N ¥ @€ © N O
O o o o 6 8 ©o «€ N 1’1 o o oS M o
4 N ¥ © &

Selectivity of p_retailprice (log-scale)

Figure 1.6: Bouquet performance (log-log scale)

For instance, the runtime performance of the bouquet technique on EQ is profiled in Fig-

!Precise definition given in Chapter 3.
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ure 1.6 (dark blue curve). We observe that its performance is much closer to the PIC (dark
green) as compared to the worst case profile for the native optimizer (dark red), which is com-
prised of the supremum of the individual plan profiles. In fact, the MSO for the bouquet is
only 3.6 (at 6.5%), whereas the native optimizer suffers a suboptimality of around 100 when P5
(which is optimal for large selectivities) is mistakenly chosen to execute a query with a small
selectivity of 0.01%. The average suboptimality of the bouquet, computed over all possible
errors, is 2.4, somewhat worse than the 1.8 obtained with the native optimizer. However, when
the enhancements described later in this thesis are incorporated, the enhanced bouquet’s per-
formance (dashed blue) improves to 3.1 (worst case) and 1.7 (average case), thereby dominating

the native optimizer on both metrics.

1.4 Summary of Contributions

In a nutshell, this thesis presents the first-ever set of techniques in OLAP query processing that
provide guarantees on execution performance at query compilation time. The guarantees are in
the form of upper bounds on MSO independent of the actual selectivities of the query predicates.
They are achieved by substituting the selectivity estimation module with a selectivity discovery
framework for error-prone predicates. It is to be emphasized that the techniques are non-
imvasive with regard to the database engine and can be successfully implemented using only
API features (e.g. selectivity injection, abstract plan costing, etc.) that have already found
expression in modern industrial DB engines — as explained later in Chapter 8. The individual

contributions of the thesis are summarized below, on a chapter by chapter basis.

1.4.1 Chapter 4: MSO Bounds and Repeatability

The primary contribution of the thesis is the novel cost-budgeted execution sequence that is
constructed using the cost-based discretization of the PIC leading to guaranteed upper bounds
on MSO. For instance, we prove that the cost-doubling strategy used in the 1D example results

in an MSO upper-bound of 4 — this bound is inclusive of all exploratory overheads incurred by
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the partial executions, and is irrespective of the query’s actual selectivity. In fact, we can go
further to show that 4 is the best competitive factor achievable by any deterministic algorithm.
For the multi-dimensional case, the MSO bound becomes 4 times the bouquet cardinality (more
accurately, the plan cardinality of the densest isosurface).

Apart from improving robustness, there is another major benefit of the bouquet mechanism:
On a given database, the execution strategy for a particular query instance, i.e. the sequence
of plan executions, is repeatable across different invocations of the query instance — this is in
marked contrast to prior approaches wherein plan choices are influenced by the current state of
the database statistics and the query construction. Such stability of performance is especially
important for industrial applications, where considerable value is attributed to reproducible

performance characteristics [10].

1.4.2 Chapter 5: Randomized Bouquet Algorithm

In addition to the deterministic algorithm, we also explore randomization opportunities in the
plan bouquet approach. Specifically, we propose randomization of intra-surface plan sequence
and isosurface placement, such that the guarantees on maximum expected suboptimality are
markedly superior to their worst-case counterparts. In fact, we show that both randomizations

can also be used in tandem to achieve even better bounds on maximum ezpected suboptimality.

1.4.3 Chapter 6: Compile-time Enhancements to Improve MSO
Bounds

As discussed above, the MSO bound for any query with multiple error-prone predicates is a
function of the plan-densities of the isosurfaces in its selectivity error space. In fact, it was
empirically found that the plan densities for complex benchmark OLAP queries can be in the
range of hundreds. To handle these large values of isosurface plan-densities leading to high
absolute value of guarantees, we present a suite of compile-time enhancements to the basic

plan bouquet algorithm that result in materially improved suboptimality guarantees. In this
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direction, we first utilize the concept of plan-swallowing [46] to reduce the maximum isosurface
plan-density by reducing the set of optimal plans in the entire selectivity error space. Next,
we introduce the concept of execution-covering, where we utilize the observation that multiple
executions with smaller cost-budgets can be skipped, without any adverse impact on the MSO
guarantee, if their collective role can be played by a carefully identified execution with a larger

cost-budget.

1.4.4 Chapter 7: Efficient Bouquet Identification Mechanism

The bouquet construction requires to identify only isosurfaces with geometrically increasing
cost values. As a result, large sections of the selectivity error space do not directly contribute
to the bouquet construction. Based on this observation, we propose an algorithm that traces
only the locations along the isosurfaces and avoids the exploration of unnecessary portions of
the space. In principle, it is possible that the plan-swallowing enhancement does not remain as
effective as shown in [46] due to restricted knowledge of POSP. In this regard, we empirically
found that the benefits of plan-swallowing at intra-surface level continues to be comparable to

the benefits achieved with complete information about the selectivity error space.

1.4.5 Chapter 8: Plan Bouquet Architecture and Prototype Imple-
mentation

This is followed by the generic architecture of the bouquet approach and the details regarding
the required API features to support non-invasive implementation of the technique with regard
to the database engine. Specifically, there is a external ‘Bouquet Driver’ program that treats
the database engine as a black-box. At compile-time, it constructs an execution-sequence using
only calls to the query optimizer module and at run-time, it requires an executor module that
responds to any cost-budgeted execution by only notifying its completion-status. Finally we
discuss about QUEST, a Java-based prototype implementation of the bouquet technique that

provides a visual demonstration of bouquet identification as well as execution phase.
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1.4.6 Chapter 9: Empirical Evaluation

In order to empirically validate its utility, we have evaluated the bouquet approach on both
PostgreSQL and a popular commercial database ComOpt. Our experiments utilize a rich set
of complex decision support queries sourced from the TPC-H and TPC-DS benchmarks. The
query workload includes selectivity spaces with as many as five error-prone dimensions, thereby
capturing environments that are extremely challenging from a robustness perspective. Our
performance results indicate that the bouquet approach typically provides orders of magnitude
improvements, as compared to the optimizer’s native choices. As a case in point, for Query
19 of the TPC-DS benchmark with 5 error prone join selectivities, the MSO plummeted from
about 10° to just 10! The potency of the approach is also indicated by its providing an MSO
guarantee of less than 20 over our entire query workload, while the average suboptimality was
typically within a factor of 4 wrt the optimal.

What is even more gratifying is that the above performance profiles are conservative since
we assume that at every plan switch, all previous intermediate results are completely thrown
away — in practice, it is conceivable that some of these prior results could be retained and reused

in the execution of a future plan.

1.4.7 Chapter 10: MSO Bounds for Ad hoc Queries

In this chapter, we address those query scenarios where the compile-time bouquet construction
phase may not be practical, e.g. ad hoc query environment. Specifically, we show that the
compile-time guarantees of the bouquet technique can be extended to such environments as
well, by relaxing only the black-box interaction assumption to white-box engagement, i.e., the
engine also reports the output cardinality for individual cost-budgeted executions which is then
used to compute lower bounds on error-prone selectivities.

For this purpose, we propose a completely revamped algorithm that enables “on-the-fly”

construction of the cost-budgeted execution sequence and provides compile-time suboptimality
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guarantees in the form of a low order polynomial in the number of error-prone selectivities of
the query. With this algorithm, the MSO guarantees for our suite of queries are empirically

found to be within a factor of 3 wrt the guarantees achievable with the offline version.

1.5 Summary

In closing, we wish to highlight that from a deployment perspective, the bouquet technique is
intended to complementarily co-exist with the classical optimizer setup, and not to replace it. It
is left to the user or DBA to make the choice of which system to use for a specific query instance
— essential factors that are likely to influence this choice are discussed in Chapter 11. Here, we
also discuss the limitations of the bouquet approach and revisit some of the assumptions made
in the thesis with initial ideas in the direction of their relaxation.

Overall, the bouquet approach provides novel performance guarantees that open up new

possibilities for robust query processing.

1.6 Thesis Organization

The remainder of the thesis is organized as follows: We start with reviewing the related liter-
ature in Chapter 2 followed by a precise description of the robust query processing problem,
along with the underlying assumptions and notations in Chapter 3. Theoretical bounds on the
MSO provided by the bouquet technique are presented in Chapter 4 followed by randomized
variants in Chapter 5 with the corresponding bounds on maximum expected suboptimality.
Then, Chapter 6 discusses the compile-time enhancements that result in significantly stronger
MSO guarantees. Next, we describe an efficient mechanism to achieve pragmatic overheads
for bouquet identification in Chapter 7, followed by other implementation details of the plan
bouquet architecture and prototype in Chapter 8. Further, the experimental framework and
performance results for the black-box techniques are reported in Chapter 9. In the end, we

present the white-box technique to achieve performance guarantees for ad hoc queries in Chap-
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ter 10. Finally, we present ideas to relax the optional simplifying assumptions, critique the

bouquet technique in Chapter 11 and conclude in Chapter 12.
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Chapter 2

Related Work

In this chapter, we start with a brief discussion on the concept of robustness, in particular wrt
database query processing and possible reasons that cause lack of robustness followed by the
details regarding the focus area of this thesis, i.e. selectivity estimation errors. Next, we provide
a quick recap of the existing literature that handles the erroneous estimates in different ways.
Finally, while there are many possible ways of classifying the existing techniques, we put the
plan bouquet approach in perspective by using classification on the basis of: (a) performance

metric, (b) approach (reactive, proactive or non-traditional) and (c) execution style.

2.1 Robustness in Query Processing

While in generic context of data management, robustness includes redundancy, disaster pre-
paredness and recovery from physical disk failure, etc. Robust query processing, is specifically
about the performance predictability and the ability to avoid sudden disruptions in query exe-
cution performance [44]. The possible reasons for disruption in execution performance are:

e error(s) in estimated selectivities,

e changes in physical database design or available materialized views,

e changes in data source characteristics including partitioning or network disruption or

streaming characteristics, and
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e unstable execution environment due to changes in resource availability, fluctuating work-
loads or conflicts in concurrency control.

But, there have been a series of research studies, panels and seminars in the past decade

which argue that inspite of all the above proposals, database query processing and its robustness

is still an unsolved and highly relevant issue [41, 44, 58, 38, 43, 81, 69, 20, 25].

2.2 Problem Focus

Our focus in this work is primarily the performance disruptions due to errors in selectivity
calculations. It has been well accepted that the impact of these errors on execution perfor-
mance is significant enough to receive special attention — as pointed out by the following recent
statement from industry expert Dr. Guy Lohman [62]:

“The root of all evil, the Achilles Heel of query optimization, is the estimation of the size of
intermediate results, known as cardinalities. FEverything in cost estimation depends upon how
many rows will be processed, so the entire cost model is predicated upon the cardinality model.
In my experience, the cost model may introduce errors of at most 30% for a given cardinality,

but the cardinality model can quite easily introduce errors of many orders of magnitude!”

Query processing environment To clearly describe our focus we now describe the query
processing environment assumed in this thesis,
e static data source,
e physical design and available views are fixed and adaptive indexing is not in action,
e query execution cost is not affected by the run-time issues like resources availability etc.
Later in the thesis (Chapter 11), we analyze the impact of run-time conditions in terms

of maximum deviation from estimation cost/time.
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2.3 Survey of Existing Techniques

Histograms and other statistical structures Soon after the pioneering work of System-
R [82], it was realized that selectivities estimated based on the uniform distribution assumption
will mostly mislead the query optimizer due to the skew in data. Thus, to capture the data
distribution without requiring lot of space, [55, 76, 27] proposed use of histograms followed by
use of frequent values as complementary statistics [64] to handle extreme skew. These methods
work remarkably well for computing selectivities of single attribute predicates and are used
by most database systems till date in various forms. Recently, the research on histograms has
been revived by proposals of histograms that minimize ¢-error metric [69, 68| and heterogeneous
histograms [53], i.e., using different types buckets in the same histogram.

While histograms support reasonable selectivity estimates for single attribute predicates,
there are other challenging assumptions [28] that affect the process of plan comparison in
the query optimizer. Among these, the most critical assumption is that of attribute value
independence (AVI) which ignores attribute correlations and is responsible for huge errors in
selectivity estimates for multiple-attribute predicates and joins [51]. To capture such multi-
dimensional information, multi-dimensional histograms were proposed in [70] and developed
further by [78, 56, 33]. But such histograms were not well accepted in industry due to the
associated storage and maintenance overheads. These overheads can be controlled to some
extent by utilizing self-tuning histograms [7, 19, 60] which can be updated using the feedback
information from the queries. A survey of other developments in histogram techniques can be
found in [50].

Apart from histograms, other ways of summarizing data distributions include use of wavelet
transform [66, 39] and discrete cosine transform (DCT) [57] that are much better in terms
of space efficiency. Recently, there have been proposals to capture the data distribution in-

formation with probabilistic models [40], graph-based techniques [83], graphical models [85]
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and kernel density estimators [48]. All these innovative techniques have the ability to repre-
sent statistical information with very less space requirement but face creation and maintenance

challenges with increase in the number of attributes in the query predicates.

Random sampling Random sampling is another promising line of research that has been
explored as a complementary technique to that of histograms. It is used to reduce overheads
in creation and maintenance of histograms [70, 23] and to produce better estimates in difficult
scenarios, e.g., multiple predicate combinations, as it scales better than histograms with increase
in the number of attributes in the predicates. Also, it has been shown that with adaptive
sampling [61], the number of samples required for a given accuracy is independent of the data
scale. Although, given sufficient number of samples, it can produce more accurate estimates
than histograms but it requires frequent access to relations on the slow secondary storage and
hence does not satisfy the requirement of small query optimization time. Further for the case
of join estimates, while it has been shown that trivial random sampling may need prohibitively
large number of samples [22], there has been proposals to achieve practical solutions with the

help of extra frequency statistics or index [22, 88, 36, 74].

Inter-query feedback cache Another interesting research direction is where information
relevant to the queries is learned from the feedback received from the workload queries itself [26,
84] and utilized to improve estimates for future queries. While, such technique is inexpensive to
implement, it does not ensure significant help as learned information may not be relevant across
workload queries. Still, this direction has received significant attention and developed further
to learn statistics over query expressions [18, 17, 35] because of its ease of implementation and
lack of any side-effect. Recent proposals also presented proactive ways [24] of learning extra

information from query plans by introducing appropriate modifications in their structure.

Robust plans All the above proposals tried to improve the selectivity estimates for the query
predicates and choose the ideal execution plan using the estimates. One more approach has been

to expect the estimates to be erroneous and modify the plan selection process such that, the
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criteria is not cost-optimality for a given estimated selectivity but its sensitivity to estimation
errors or performance over a range of selectivities. The examples for such approaches include:
plan with least expected cost [30, 29], plan chosen using robust cardinality estimates [10], plan
that is resistant to unbounded estimation errors [47] and plan with minimum variance across
selectivity error space [21].

Another series of attempts tried to construct at optimization time, plan with specialized
operator, such that they are better equipped to handle the estimation errors at execution-
time, they include complex operators with ability to switch among them [32] and more recently

smooth operators [16, 42].

Re-optimization/Intra-query execution feedback The research directions summarized
above always commit to single plan during optimization time and use to during the entire
execution process, and hence they are limited in their capability to handle unknown scenarios at
execution time. To overcome this limitation, techniques were proposed to detect sub-optimality
during execution and going back to the optimizer with the additional information gathered
during the partial execution to pick another plan [52, 65, 12]. While these techniques certainly
perform better than initial plan choice but it is not always possible to detect sub-optimality
and it may require multiple iterations leading to increased total overheads.

There have also been attempts that use the execution feedback to reorder the operators in
the optimizer choice plan [59, 67] in the hope to achieve an ordering with lesser cost. As an
extreme version of such approaches, there have been attempts that forgo the concept of a plan
during a selectivity learning phase [8, 72, 6, 49] or decide to use different operators to execute
different portions of the data [9, 14, 77]. While these attempts have certainly proved to be
effective, but they require huge modifications to the executor module and they are also limited

in their ability to change join-order due to plan state management requirements.

Discussion Despite all the efforts to improve selectivity estimation module, query optimiz-

ers continue to use simplifying assumptions (AVI and value containment in joins) in difficult
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estimation scenarios for the sake of efficiency of query optimization. Due to this, the process
of deciding execution plan is usually associated with uncertainty wrt the selectivities and other
run-time conditions. It is well known that, such inherent uncertainty present in query process-
ing module, frequently cause its performance to be highly sub-optimal as well as unpredictable.

Overall, query processing has not been robust against selectivity estimation errors.

2.4 Performance Metric Based Classification

In recent seminar [44] different proposals were considered regarding a metric for robustness in
query processing, including: (1) coefficient of variation of execution times, (2) average relative
error in cardinality estimation across all physical operators of query or (3) geometric mean
of the output cardinality for different selectivities of the query. But a consensus could not
be reached, possibly because robustness is dependent upon complex interaction among many
factors. In this thesis, we focus only on the performance side and do not include the input
parameters in the metric. Specifically, we propose a set of sub-optimality based performance
metrics (details in Chapter 3) that include worst case and average case performance.

We emphasize that our goal of minimizing the worst case performance sub-optimality in
the presence of unbounded selectivity errors, does not coincide with any of the earlier works
in this area. Previously considered objectives in literature include: (a) improved performance
compared to the optimizer generated plan [12, 47, 52, 65, 72]; (b) improved average perfor-
mance and/or reduced variance [29, 21, 10]; (c¢) improved accuracy of selectivity estimation
structures [7]; (d) bounded impact of multiplicative estimation errors [69]; and (e) smooth
performance degradation [42, 16].

Further, the presence of compile-time guarantees on execution performance distinguishes

the plan bouquet approach from all the previous approaches.
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2.5 Approach Based Classification

While it is not completely fair to compare techniques with widely different objectives, we still
provide a brief review of the previous attempts to put the plan bouquet approach in perspec-
tive. As summarized in Figure 2.1, we classify the techniques on the basis of whether they
take traditional, reactive, proactive or non-traditional approach to counter the selectivity esti-
mation errors during their compile-time and/or run-time phase. Next, we discuss the common

characteristics for each of these approaches.
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Figure 2.1: Classification on the basis of approach to handle errors

Traditional approach:

e follows basic steps of System-R approach, i.e., (a) cost-based optimization to choose an

23



execution plan with standard relational operators, (b) the execution steps are followed
without any modification.

e performs optimally in the absence of selectivity estimation errors but can be arbitrarily
sub-optimal in the face of unbounded errors.

Reactive:

e uses information available due to execution-feedback of current or previous queries.

e performs optimally in the absence of estimation errors since the only overhead is possibly
a lightweight logic for learning from feedback at compile time and for error-detection at
run-time.

e usually improves over the execution performance in the presence of estimation errors
but is also suspectible to inconsistent selectivity inputs [80] during optimization (since
selectivities are a mix of estimates and run-time feedback values) and hence prone to
thrashing during execution [12].

Pro-active:

e consists of additional step(s) to prepare itself against the selectivity estimation errors and
for the same reason, its total overheads are more than optimal execution even in the
absence of estimation errors

e has more capability to handle estimation errors compared to reactive approaches but usu-
ally requires fresh modifications to the existing system e.g. Rio [12], Graphical models [85],
ete.

Non-traditional:

e nowhere similar to System-R approach, optimizer and executor usually work together or
cannot be even differentiated, since they favor adaptivity over optimality of execution.

e the performance characteristics are either similar to that of proactive approaches or not
comparable since there is no optimal execution plan similar to traditional approaches, but

these solution need maximum amount of modifications or even complete redesign of the
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database system, e.g. Eddies [9], NPRR [73], etc.

The approach of plan bouquet technique is proactive during compile-time (bouquet iden-
tification step) as well as run-time (preplanned switching of plans) to counter the possibility
of selectivity estimation errors. But the required implementation effort is low inspite of the
proactive approach since the necessary API features have already found expression in modern

database systems.

2.6 Execution-style Based Classification

The techniques can be further categorized, in terms of their execution style as (a) single plan
approaches, (b) plan-switching, (c¢) plan-morphing and (d) tuple-routing.

Among these, all the single plan approaches, surveyed in [45], can be used in complement
with the plan bouquet approach as improved estimates can reduce the number of error-prone
predicates in the query. Further, the techniques that are non-traditional (in one of the phases)
bring new advantages with them but also require huge implementation effort, hence they are
not comparable to approaches that can be implemented in existing systems. Finally, while the
plan-morphing and plan-switching techniques are already surveyed in [34, 11], we present them

in comparison to the bouquet technique.

Plan-switching approaches We start with the overview of the closely related techniques
which can be collectively termed as plan-switching approaches, as they involve run-time switch-
ing among complete query plans. At first glance, our bouquet approach, with its partial exe-
cution of multiple plans, may appear very similar to run-time re-optimization techniques such
as POP [65] and Rio [12]. However, there are key differences: Firstly, they start with the
optimizer’s estimate as the initial seed, and then conduct a full-scale re-optimization if the es-
timate are found to be significantly in error. In contrast, we always start from the origin of the
selectivity space, and directly choose plans from the bouquet for execution without invoking

the optimizer again. A beneficial and unique side-effect of this start-from-origin approach is
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that it assures repeatability of the query execution strategy.

Secondly, both POP and Rio are based on heuristics and do not provide any performance
bounds. In particular, POP may get stuck with a poor plan since its validity ranges are defined
using structure-equivalent plans only. Similarly, Rio’s sampling-based heuristics for monitoring
selectivities may not work well for join-selectivities and its definition of plan robustness on the
basis of performance at corners (principal diagonal) has not been justified.

Recently, a novel interleaved optimization and execution approach was proposed in [72]
wherein plan fragments are selectively executed, when recommended by an error propagation
framework, to guard against the fallout of estimation errors. The error framework leverages an
elegant histogram construction mechanism from [69] that minimizes the multiplicative error.
While this technique substantively reduces the execution overheads, it provides no guarantees

as it is largely based on heuristics.

Single plan approaches Techniques that use a single plan during the entire query execu-
tion [29, 10, 47, 69, 21] run into the basic infeasibility of a single plan to be near-optimal across
the entire selectivity space. The bouquet mechanism overcomes this problem by identifying a
small set of plans that collectively provide the near-optimality property. Further, it does not
require any prior knowledge of the query workload or the database contents.

Our technique may superficially look similar to PQO techniques, (e.g. PPQO [15]), since
a set of plans are identified before execution by exploring the selectivity space. The primary
difference is that these techniques are useful for saving on optimization time for query instances
with known parameters and selectivities. On the other hand, our goal is to regulate the worst

case performance impact when the computed selectivities are likely to be erroneous.

Plan-morphing approaches Further, the bouquet technique does not modify plan struc-
tures at run-time (modulo spilling directives). This is a major difference from “plan-morphing”
approaches, where the execution plan may be substantially modified at run-time using custom-

designed operators, e.g. chooseplan [32], switch [12], feedback [24], etc.
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One more direction that has received interest in recent years is to invent adaptive operators
for scan [16] and joins [42] in query plans. Although, they have been shown to be quite effective
in cases when the sub-optimality of the plan is a result of wrong operator decisions but not much
progress has been made for cases when the sub-optimality is caused due to wrong choice of join-
order itself. The primary motivation for these approaches is that the performance degradation
need to be smooth, i.e, avoid the basic issue of performance cliffs in plan-switching techniques.
However, in our case, the performance cliffs have been found to be quite infrequent as well as

dwarf.

Routing-based approaches On the other hand, the use of only one active plan (at a time)
to process the data makes the bouquet algorithm dissimilar from Routing-based approaches
wherein different data segments may be routed to different simultaneously active plans — for

example, plan per tuple [9] and plan per tuple group [77].

2.7 Summary

Overall, the plan bouquet technique brings performance guarantees due to its proactive ap-
proach but remains easy to deploy since the execution phase still uses traditional-plans. On the
other hand, the proactive approach makes it comparatively less suitable to the environments
where the estimation errors are known to be very small and the plan-switching based execution

style makes it unsuitable for latency-sensitive applications, as discussed later in Chapter 11.
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Chapter 3

Problem Framework, Notations and

Assumptions

In this chapter, we present our query model, robustness model, the associated performance

metrics, underlying assumptions and the notations used in the sequel.

3.1 Query Model

In our framework, each user query Q is associated with a set of selectivity predicates SP, a
subset of which are error-prone wrt their estimation. Next, we define a query space Q.S for Q
to be {Q, AK P, EPP}, where AK P is the set of predicates with accurately known selectivities,
and EFPP is comprised of the remaining predicates that are error-prone (i.e. AKP U EPP =
SP).

From the EPP, we construct an error-prone selectivity space, called ESS, wherein each
error-prone predicate maps to an independent [0, 1] selectivity dimension in the space. That is,
ESS is a [0, 1]” hypercube with D = |EPP|, where each D-dimensional point ¢(s1, sa,...,Sp)
represents a possible location of the query Q, as determined by its selectivities on each of these

dimensions.The assignment of an independent dimension to each E PP is in conformity with the
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selectivity independence assumption that is prevalent in modern query optimizer frameworks.
In the ESS defined as above, the cost of an execution plan P; at a query location ¢ in the
ESS is denoted by ¢(FP;, q). Also, we denote the query optimizer’s estimated location of Q in
the ESS by ¢., and the actual location at runtime by ¢,. The optimal plan at ¢., as determined
by the native optimizer, is denoted by P,,¢(¢.), and similarly the optimal plan at g, by Pop(¢a)-
Further, we assume that the query locations and the associated estimation errors range over

the entire ESS, that is, all (¢e,q,) error combinations are possible.

3.2 Robustness Model

Robustness can be defined in many different ways and there is no universally accepted metric [44]
— here, we use the notion of performance sub-optimality to characterize robustness.
With the above query model, the sub-optimality incurred due to using plan P, (g.) at

location ¢, is simply defined as the ratio:

c Popt(qe>7 qa)

SUbOpt(QEﬂqa> = C(anpt(qa) (qa))

Ve, da € ESS (3.1)

with SubOpt ranging over [1, oo). The worst-case SubOpt for a given ¢, is defined to be wrt
the ¢. that results in the maximum sub-optimality, that is, where selectivity inaccuracies have

the maximum adverse performance impact:

SubOptyorst(¢a) = max (SubOpt(ge,qa)) Vg € ESS (3.2)

qe€ESS

With the above, the global worst-case is simply defined as the (g., ¢,) combination that results

in the maximum value of SubOpt over the entire ESS, that is:

MSO = max (SubOptyorsi(qa)) (3.3)

g €ESS
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The above definitions are appropriate for the manner in which modern optimizers operate,
wherein selectivity estimates are made at compile-time, and a single plan is executed at run-
time. However, in the plan bouquet technique, neither of these characteristics is true — error-
prone selectivities are not estimated at compile-time, and multiple plans may be invoked at run-
time. Notwithstanding, we can still compute the corresponding statistics by: (a) substituting
¢e with a “don’t care” «; and (b) having the cost of the bouquet, denoted by ¢(B, ¢q,), include

the overheads incurred by the exploratory partial executions. That is,

c(B, qa)
SubOpt(*, q,) = Vg, € ESS 3.4
p ( q ) C(Popt(Qa>7 Qa) q ( )
and
MSO = qarrel%gs(SubOpt(*, qa)) (3.5)

Finally, the bouquet technique also furnishes a guarantee on its MSO performance, which is
denoted by MSOx.
Analogous to the above, the randomized variants of the bouquet algorithm are evaluated

for the maximum expected sub-optimality across ESS, defined as

MESO = max (E[SubOpt(*,q,)])

qa €ESS
and the guarantee on maximum expected sub-optimality is denoted by MESOx.

3.2.1 Ancillary Performance Metrics

In addition to the above primary metrics, we also evaluate the bouquet technique over a related
set of performance metrics. Specifically, if we assume that all query locations and error combi-
nations are equally likely, that is, the estimated query locations and the actual query locations

are uniformly and independently distributed over the entire ESS, the average sub-optimality
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over ESS is defined as:
> > SubOpt(qe, qa)

4e€ESS qu€ESS

ASO = (3.6)
> > 1
4.€ESS q.€ESS
And, the corresponding version for the bouquet technique is:
> SubOpt(*, qa)
ASO = “£8% (3.7)

> o1

qu€ESS

These definitions can easily be extended to the general case where the estimated and actual
locations have idiosyncratic probability distributions.

An important point to note is that even when the bouquet algorithm performs well on the
MSO and ASO metrics, it is possible that for some specific locations ¢, € ESS, its performance
is poorer than the worst performance of the native optimizer — that is, the bouquet is harmful
for the queries associated with these locations. This possibility is captured using the following

MaxHarm metric:

MEH — o (SU00pL(*,60)

_ :
2a€ESS " SubOptyorsi (qa) ) o

Note that MH values lie in the range (—1,MSO, —1], and harm occurs whenever MH is positive.

3.3 Notations

For notational convenience, we will hereafter represent the optimal cost and the bouquet cost
for a given location ¢ with c¢,,(¢) and cp(q), respectively. Inclusive of these, the common

notations used in the thesis are enumerated in Table 3.1 for quick reference.
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Notation Description
Q User query
ESS Error-prone Selectivity Space
D Number of ESS dimensions
q(s1, 82, .-+, SD) Query Location in ESS
Qe Optimizer estimated selectivity location in ESS
Qa ESS location corresponding to actual runtime selectivities
Pou(q) Optimal plan at location ¢
Copt (q) Cost of optimal plan at location ¢
c5(q) Cost incurred by plan bouquet for location ¢
c(P;,q) Cost of plan P; at location ¢
SubOptyorst(qa) Worst case native sub-optimality for location g,
SubOpt(*, q,) Sub-optimality of location ¢, for plan bouquet
MSO Worst case sub-optimality across ESS
ASO Average sub-optimality across ESS
MH Maximum harm across ESS
MSO, Compile-time guarantee on worst-case sub-optimality
MESO, Compile-time guarantee on maximum expected sub-optimality
ICy k" isosurface (isocost surface) in the ESS
cost(1Cy) Cost-budget corresponding to isosurface ICj

Table 3.1: Reference table for Notations

3.4 Assumptions

Plan Cost Functions

An assumption that fundamentally underlies the entire bouquet mechanism is that of Plan
Cost Monotonicity (PCM) — that is, the costs of the POSP plans increase monotonically with
increasing selectivity values.
processed by a plan, signified by larger selectivities, the cost of processing also increases. This
assumption has often been made in the literature [15, 21, 46], and generally holds for the plans
generated by current database systems on decision-support queries [81]. The only exception
that we have found is for queries featuring ezistential operators, where the POSP plans may
exhibit decreasing monotonicity with selectivity. Even in such scenarios, the basic bouquet

technique can be utilized by the simple expedient of plotting the ESS with (1 — s) instead of
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s on the selectivity axes. Thus, only queries having optimal cost surfaces with a maxima or
minima in the interior of the error space, are not amenable to our approach.
Apart from monotonicity, we also assume the cost functions to be continuous (smooth)

throughout the ESS, again a commonplace feature in practice.

Note: We wish to highlight here that the requirement for our techniques is monotonicity and

smoothness of the optimal cost profile. The existence of these properties on individual plan

costs is sufficient but not necessary for the optimal cost profile to be smooth and monotonic.
In addition to the above, we also make the following assumptions during most of the thesis

before relaxing them in Chapter 11.

1. Selectivity Independence We assume that the selectivities for the E'PP’s are indepen-
dent of each other allowing us to construct an ESS with a different dimension for each
of the EPP predicates. Later in Chapter 11, we show how the bouquet approach can
be extended to provide guarantees even when the independence between predicates is not

assumed.

2. Perfect Cost Model While the errors in cost modeling can also cause mistake in plan
choices and hence performance suboptimality but since it is an orthogonal issue, for
now we assume the cost model to be perfect. Intuitively, it means that the we assume
a functional mapping between the abstract optimizer cost values and wall clock-times.
Later in Chapter 11, we derive the impact of having an erroneus cost model on the

sub-optimality based performance of the proposed technique.

3. No known Selectivity Bounds During this thesis, we have assumed the native engines
can face arbitrarily large estimation errors and there are no lower /upper bounds available
on the actual selectivities of the error-prone predicates. If these values are available in
some cases, they can be used to further improve the performance of bouquet sequence as

shown in Chapter 11.
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Chapter 4

Robustness Bounds using Plan

Bouquet Approach

We begin our presentation of the plan bouquet approach by characterizing its MSO performance

bounds for the 1D scenario, and then extend the analysis to the general multi-dimensional case.

4.1 1D Selectivity Space

4.1.1 1D algorithm

By virtue of our assumptions on plan cost behavior, the PIC is a monotonically increasing and
continuous function throughout the ESS; its minimum and maximum costs are denoted by C,,;,
and C,,qz, respectively. As described in the Introduction, this PIC is discretized by projecting
a graded progression of cost steps onto the curve. Specifically, consider the case wherein the

steps are organized in a geometric progression with initial value a (a > 0) and common ratio r

. . . Om(ll’ . .
) = T ) 1, ). ms
(r > 1), such that the PIC is sliced with m = |log c + 1) cuts, ICy, ICs, ... IC,,, satisfying

mwn

the boundary conditions a/r < Cp, < cost(IC}) = a and cost(IC,,_1) < Chae = cost(ICy,),
as shown in Figure 4.1.

For 1 < k < m, denote the selectivity location where the k™ cost step (I/C}) intersects
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Figure 4.1: 1D selectivity space

the PIC by ¢, and the corresponding bouquet plan as Pj,. All the ¢, locations are unique, by
definition, due to the monotonicity and continuity features of the PIC. However, it is possible
that some of the Pj plans may be common to multiple intersection points (e.g. in Figure 1.5,
plan P1 was common to steps IC; through /C}). Finally, for mathematical convenience, assign
qo to be 0.

With this framework, the bouquet execution algorithm, outlined in Algorithm 1, operates
as follows in the most general case, where a different plan is associated with each step: We start
with plan P; and budget cost(IC}), progressively working our way up through the successive
bouquet plans P, Ps, ... until we reach the first plan P, that is able to fully execute the query

within its assigned budget cost(ICy). It is easy to see that the following lemma holds:

Lemma 4.1 [f q, resides in the range (qp—1,qx], 1 < k < m, then plan Py executes it to

completion in the bouquet algorithm.

Proof: We prove by contradiction: If g, was located in the region (gx,qry1], then Py could
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Algorithm 1: 1D Bouquet Algorithm

// for each cost step IC}
for k=1 tom do
start executing bouquet plan P
// perform cost-budgeted execution
while run_cost(Py) < cost(IC}) do
execute P
if Py, completes execution then
return query result
end

end
terminate P, and discard partial results
end

not have completed the query due to the PCM restriction. Conversely, if g, was located in
(Qr—2, qx—1], Px—1 itself would have successfully executed the query to completion. With similar
reasoning, we can prove the same for the remaining regions that are beyond g1 or before g;_».

|

4.1.2 Performance Analysis

Consider the generic case where g, lies in the range (g1, gx]. Based on Lemma 1, the associated

worst case cost of the bouquet execution algorithm is given by the following expression:

c(qa) = cost(ICY) + cost(ICy) + ... + cost(ICy)

o
cp(qa) =a+ar +ar® + ... +ar" ! = CL(T—1> (4.1)
r —
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The corresponding cost for an “oracle” algorithm that magically apriori knows the correct

location of ¢, is lower bounded by ar*~2, due to the PCM restriction. Therefore, we have

a(rt-1) 2 2~k 2

r r r
SubOpt (%, q,) < —— = — <
“ p(*q>_ark—2 r—1 r—1 r—1

(4.2)

Note that the final expression is independent of k, and hence of the specific location of q,.

Therefore, we can state for the entire selectivity space, that:

Theorem 4.1 Given a query Q with a 1D ESS, and the associated PIC discretized with a

geometric progression having common ratio r, the bouquet execution algorithm ensures that

7“2

r—1

MSO, =

Further, the choice of r can be optimized to minimize this value — the RHS reaches its minima

at r = 2, at which the value of MSOy is 4.

4.1.3 Optimality Analysis

The following theorem shows that the proposed 1D algorithm with » = 2 gives the best per-
formance achievable by any deterministic online algorithm — leading us to conclude that the

doubling-based discretization is the ideal solution.

Theorem 4.2 Given a universe of cost-budgeted executions of POSP plans, no deterministic

online algorithm can ensure MSOg lower than 4 in the 1D scenario.

Proof: We prove by contradiction, assuming there exists an optimal online robust algorithm,
R* with a MSOq of f, f < 4.

The proof is divided into two parts: First, we show that R* must be a monotonically
increasing sequence of plan execution costs, [a1,as, ..., a,]; and second, we demonstrate that
achieving an MSO of less than 4 requires the ratio of cumulative costs for consecutive steps in
the sequence to be strictly decreasing — however, this is fundamentally impossible and hence

the contradiction.
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(a) Assume that R* has cost sequence [ay, ..., a;, G, ..., an41] which is sorted in increasing
order except for the inversion caused by a; < a; .

Now, let us define a plan execution to be useful if its execution covers a hitherto uncovered
region of the selectivity space. With this definition, an execution of a; after a; is clearly useless
since no fresh selectivity ground is covered by this cheaper execution. A sample instance with
reference to Figure 5, is executing P, which covers the selectivity region (0, ¢2), after P3 which
covers the region (0, g3) — this does not add any value since the latter subsumes the former.

In summary, an out-of-order execution sequence cannot provide any improvement over an
ordered sequence, which is why a; can be safely discarded to give a completely sorted sequence
[ S P PR .

(b) For the sorted execution sequence R*  denote the cumulative cost at each step with
A; = Zgzl a;, and the ratio between the cumulative costs for consecutive steps as Y; = Ai—j.
Note that, by definition. A, > Aj;.

Now, since R* has MSO, of f, the sub-optimality caused by each and every step should be

at most f, that is,
Ajn

a;

< f Vje[l,m)

and therefore

A < faj = Aj < f(A; — AjL)
= YiA; < f(A;j— Aj)

After dividing both sides with A;, we get

1
ngf(l—yj_1>
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Through elementary algebra, it is known that Vz > 0, (1 — %) <

v < (4

Since f < 4, it implies that the sequence Y; is strictly decreasing with multiplicative factor < 1.

7. Therefore, we get

With repeated application of the same inequality, we obtain

j—1
s ()

For sufficiently large j, this results in
S/j <l= Aj+1 < Aj

which is a contradiction to our earlier observation that A;.; > A;.

4.2 Multi-dimensional Selectivity Space

We now move on to the general case of multi-dimensional selectivity error spaces. A sample
2D scenario is shown in Figure 4.2a, wherein the isosurfaces IC} are represented by contours
that represent a continuous sequence of selectivity locations (in contrast to the single location
in the 1D case). Further, multiple bouquet plans may be present on each individual contour,
as shown for IC}, wherein four plans, PF, Py, PX. PF, are the optimizer’s choices over disjoint
(x,y) selectivity ranges on the contour. Now, to decide whether g, lies below or beyond ICY%,
in principle every plan on the IC} contour has to be executed — only if none complete, do we
know that the actual location definitely lies beyond the contour.

This need for exhaustive execution is highlighted in Figure 4.2b, where for the four plans

lying on IC}, the regions in the selectivity space on which each of these plans is guaranteed
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Figure 4.2: 2D Selectivity Space: (a) Isocost Contours (b) Space coverage by plans on IC},

to complete within the budget cost(IC}) are enumerated (the contour superscripts are omitted
in the figure for visual clarity). Note that while several regions are “covered” by multiple
plans, each plan also has a region that it alone covers — the hashed regions in Figure 4.2b. For
queries located in such regions, only the execution of the associated unique plan would result
in confirming that the query is within the contour.

The basic bouquet algorithm for the generic multi-dimensional case is shown in Algorithm 2,

using the notation ny to represent the number of plans on isosurface 1Cj.

4.2.1 Performance Bounds

Given a query Q with g, located in the range (/Cy_1, [Cy], the worst-case total execution cost

for the multi-D bouquet algorithm is given by
k
c5(qa) = Z[nZ X cost(1C})] (4.3)

i=1

Using p to denote the number of plans on the densest isosurface, and upper-bounding the values
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Algorithm 2: Multi-dimensional Bouquet Algorithm

// for each isosurface IC}
for k=1 tom do
// for each plan on isosurface [Cj
for i =1 ton; do
start executing bouquet plan P}
// perform cost-budgeted execution
while run_cost(PF) < cost(IC},) do
execute PF
if P¥ completes execution then

(2
return query result

end
end
terminate PF and discard partial results
end
end

of the n; with p, we get the following performance guarantee:

cB(qa) < p X Zcost([@i) (4.4)

i=1
Now, following a similar derivation as for the 1D case, we arrive at the following theorem:

Theorem 4.3 Given a query Q with a multidimensional ESS, and the associated PIC dis-

cretized with a geometric progression having common ratio v and maximum isosurface plan
pr’

density p, the bouquet execution algorithm ensures that MSO, = T
r —

Setting 7 = 2 in this expression ensures that MSO, = 4p.

To the best of our knowledge, the above MSO bounds are the first such guarantees in the
literature. Further, from these formulations, we can trivially infer that the ancillary metrics,

ASO and MH, are bounded by MSO, and (MSO, — 1), respectively.
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Chapter 5

Bounds on Maximum Expected

Sub-optimality

In the previous chapter, we focused on deterministic guarantees for the worst-case sub-optimality
across query locations in the entire ESS. We now move on to exploring how randomization can
be introduced in the plan bouquet algorithm, leading to guarantees on the maximum expected
sub-optimality, i.e., MESO,. While our randomized algorithms work for arbitrary number of
dimensions, for ease of presentation, we restrict our discussion here to 2D ESS — hence, we will

use the term contour to represent the isosurfaces.

5.1 Randomized Intra-contour Plan Sequence

The basic plan bouquet algorithm executes n; plans on the k& contour, but does not impose
any order on these executions. In fact, the ordering of executions has no impact on the worst
case analysis, as every plan on the contour has a region that it alone covers, suggesting exactly
the same worst case performance for any execution order.

Notwithstanding the above, the sub-optimality for a particular query instance could vary

with the execution order of the contour plans. To analyze this, we split the bouquet overheads
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into two components: (a) the overheads suffered at the finishing contour; and (b) the overheads
accumulated from the earlier contours (denoted as Ts). While T remains the same for all
query instances that lie between a consecutive pair of contours, the former is dependent on
the execution order. Consider, for instance, the ¢, located as shown in Figure 5.1a. With
the default execution order, PF through PF, q, is completed by the terminal Pf execution,
resulting in overheads of T + 4 * cost(IC). On the other hand, the overheads would reduce to
Ty + cost(ICy) if Py was chosen as the first plan in the execution sequence (Figure 5.1b). The
implication here is that the expected suboptimalities can be improved by randomly choosing
plan execution orders on each contour. However, minimizing this expected value may result in

a weakening of the worst-case guarantee, and the tradeoff is quantified below.

sel-y sel-y

origin sel-x IC1 origin sel-x ICy 1
(a) worst case (b) best case

Figure 5.1: Worst-case and best-case (intra-contour) plan sequences for g,

We construct the following variant of the bouquet algorithm — for each contour ICj, the
execution sequence of the n, plans is a permutation chosen uniformly at random from all possible

permutations. For this variant, the performance guarantees are captured by the following result:

Lemma 5.1 The bouquet algorithm with randomized intra-contour plan sequence provides
2
MESO, = p (r i 7 + g) + g , while retaining MSOg = rpi .
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Proof: Assume that g, lies in the unique region corresponding to plan P¥ (i plan on k'
contour). Note that the randomization strategy only impacts the cost incurred due to the
finishing contour IC}, since any permutation on the previous contours will fail to complete ¢,.
Specifically, since the plan sequence is chosen uniformly at random from all possible permuta-
tions, g, will finish with 1,2, 3, ..., ny executions with equal probability of nik In other words,
it corresponds to a discrete uniform random variable X with n, support points, where X =1

represents the sequences that finish with ¢ executions.

With the above framework, the expected bouquet cost is given by
Elcp(qq)] = cost(ICy) + cost(1Cs) + ... + cost(ICy_1) + E[cost(1Cy)]
leading to

Eles(q2)] = (n1)a + (ng)ar + (n3)ar? + ... + (ng_1)ar* 2 + [nik(l % ar*' & 4y x ark—l)}

Elep(¢a)] = (n1)a + (no)ar + (ng)ar? + ... + (ng_1)ar* 2 + K”’f; 1) « ar’“l}

Overestimating every n; with p leads to

1
Elep(q)] < pla+ar +ar® + ... + ark_2) + {(%) X ark_l]

Dividing by ar*72, i.e., the minimum possible cost in (ICy_1, [Cy] gives
1 1 p+1
E[SubOpt(*,q,)] < p (m + s +...+r+ 1> + {(T) X r]
Finally, overestimating the finite geometric series with an infinite series provides
1 1 1
E[SubOpt(x,q.)] < p <1 + -+ +..0 terms) + {(%) X r}
roor
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resulting in

E[SubOpt(*, ¢2)] < p (T - 1) + (”Qi) r=p <T - -+ g) + g (5.1)

O
With the best possible random sequence, that requires only 1 execution for the finishing
contour, the suboptimality is p (Ti—l) -+ and for the worst case, where p executions are required
by the finishing contour, it is given by p (rﬁ—l) + pr. Clearly, the above analysis and the bound
on expected sub-optimality is independent of k.
Setting a common ratio of » = 2.4 minimizes MESO, to 2.9p + 1.2 — as a side effect, MSO,
marginally increases from 4p to 4.1p. Moreover, even if we wish to retain MSO, of 4p by setting

r = 2, then MESOy, is only mildly weakened to 3p 4+ 1. Essentially, this suggests that we can

simultaneously obtain excellent performance on both metrics.

5.2 Randomized Contour Placement

Observe that the worst case sub-optimality instances correspond to ¢,’s that lie just beyond
a contour (i.e. copt(qs) = cost(ICy_1) + €) since their execution finishes with a plan on the
next contour, which is r—optimal. On the other hand, ¢,’s that lie just below a contour (i.e.
Copt(qa) = cost(ICy)—e) complete their execution with an almost-optimal plan. Such differential
treatment of query instances based on their locations can be ameliorated by randomizing the
placement of the contours — this is illustrated in Figure 5.2 for the example location ¢q,. With the
original contour placement (Figure 5.2a), PF completes execution for ¢, expending cost(IC}),
whereas after slightly repositioning the contours (Figure 5.2b), ¢, is completed by PF with
cost(ICy) ~ w

To leverage the above, we construct a randomized variant, similar to that proposed in [63],
wherein the entire geometric sequence is shifted left by a random multiplicative factor X

where X is a uniform random variable € [0,1). That is, the cost associated with the first
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Figure 5.2: Worst-case and best-case contour placements for g,

a
contour is randomized between — and a, the later contours retaining the default r cost-ratio.
r

For this variant, the performance guarantees are captured by the following result:

Lemma 5.2 The bouquet algorithm with randomized contour placement provides MESO, =
2

pL , while retaining MSOg = ik
Inr r—1

Proof: For starters, assume that the contours are placed as per the deterministic bouquet

algorithm. Now, consider a ¢, that lies infinitesimally above IC}_; — its worst-case subopti-
2

mality is

T as per Theorem 4.3. However, when the entire geometric sequence is shifted
1

left by a random multiplicative factor —, where X is a uniform random variable € [0,1), this
r

suboptimality becomes a decreasing function of the amount of shift. Specifically, the expected

sub-optimality is

E[SubOpt(x,q,)] < E

1 2 _
[ e ()£
X—0 r—1 rinr Inr

(5.2)

1 pr2 B pr2
rX \r—1 =1

Caveat: An implicit assumption in the above analysis is that the value of p is not increased by
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the randomization (although the individual contour plan densities may have been altered due
to the changed contour locations).

Next we claim that, a similar analysis holds for an arbitrary ¢, lying between the original
deterministic contours IC_1 and IC%. The only difference is that instead of a continuously de-
creasing sub-optimality function of the shift, we get the following behavior: The sub-optimality
initially decreases as the ICj contour moves from its original position towards ¢,, reaching a
minimum when ¢, is present on the contour. Then, there is a sudden discontinuous increase in
sub-optimality when the contour crosses q,, because g, is now covered by a new contour that
is r times its optimal cost. As the shift continues, the new covering contour begins to move
closer to q,, again resulting in a decreasing function. In expectation, this behavior is the same
as that shown for the specific case above.

To put the above arguments mathematically, consider a generic location with optimal cost
cost(ICy_1) x r* with z € (0,1]. Here, the contour ICj comes closer to ¢, when X varies in
the range [0,1 — z) and suddenly covered by a r-optimal contour just after X = 1 — z, beyond
which the new contour moves closer to ¢q,. With this behavior, the expected sub-optimality for

this location is given by:

1—2z 1

1 1 pr? 1 1 pr’
E[SubOpt(*, q.)] < / (; X T’_X> <r— 1) dX + / (r XX T_X) (r— ] dX

X=0 X=1-z

1-2 1
2
pr 1 1
slswopta) < (L) | [ (=) axs [ (o) ix
X=0 X=1

Substituting Y1 =X +zand Yo = X 4+ 2 — 1,

E[SubOpt(*,qa)]<(rpi21) /1 (%) dv; + / (%) ne

Yi=z Yo=0
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sssontean < (£)[(2) () - (2) (2 2)]
E[SubOpt(+, ¢u)] < (fi) Kﬁ) (1 - %)} = £

Setting a common ratio of r = e ~ 2.72 minimizes MESO, to ~ 2.72p — as a side effect, MSO,
slightly increases to 4.3p. Moreover, even if we wish to retain the 4p MSO guarantee by setting
r = 2, then MESQy is only mildly weakened to 2.89p. Again, we observe simultaneous excellent

performance on both metrics.

5.3 Using the Randomization Strategies in Tandem

We now move on to deriving MESO, when both randomization strategies are applied to the
plan bouquet algorithm in tandem. Specifically, the contour placement randomization is applied
first, and then for each resulting contour, the execution order randomization is applied. For this
combined algorithm, the following theorem gives an upper bound on the worst-case expected

sub-optimality.

Theorem 5.1 Given a query Q on a multi-dimensional ESS, the bouquet execution algorithm

with contour placement randomization followed by intra-contour plan sequence randomization

(r+1)+(r—1) pr?
2Inr 2lnr r—1

provides MESOg = p , while retaining MSOg =

Proof: The intra-contour randomization performance for a given placement of contours
(Lemma 5.1), remains essentially the same for each instantiated value of the contour place-
ment random variable (Lemma 5.2). Hence, we use the law of iterated expectations to calculate
the expected sub-optimality for a given location ¢,, by leveraging Equation 5.1 across different

random contour placements:
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E[SubOpt(*,q.)] < E LLX [P (r . 1 g) i g”

E[SubOpt(*, )] < [P (r - 1t %) + g] B [riX]

—1
E[SubOpt(+ 4,)] < [p ( L g) ¥ g} « !

r(r+1lp r r—1
P P
E[SubOpt(x,q,)] < {20 - + 2} X T

1 —1 1 —1
E[SubOpt(*,q,)] < ;i;rp%— ! _ Do+ (r=1)

2Inr 2lnr

For r = 2, we obtain
13p + 1],—5 x 0.72 = [2.16p + 0.72|,—5

r+1

Further, this guarantee bound can be improved by minimizing the multiplier of p — the

nr
multiplier reaches its minimum value for » = 3.6, leading to

'\/IES()g = ‘18p + 1‘7“:3.6

5.4 Discussion

The above results are summarized in Table 5.1. It is noteworthy that using r = 2 retains MSO,
while minimizing MESQOg requires different cost-ratios for each variant.
With regard to implementation, the intra-contour plan sequence only requires a simple shuf-

fling algorithm — for instance, the standard Knuth’s shuffle [54]. On the other hand, random-
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Variant Cost-ratio(r) MESO, MSO,

No randomization 2 4p 4p

. 2 3p+1 4p
Randomized Plan Sequence 9.4 2.0p+1.2 41p

2 2.89p 4p

Randomized Contour Placement 24 2.74p 4.1p
2.72 2.72p 4.3p

2 2.16p + 0.72 4p

. 2.4 1.94p +0.8 4.1p
Randomized Plan Sequence & Contour Placement 979 1.86p + 0.86 | 4.3p
3.6 1.8p+1 4.98p

Table 5.1: Performance of randomized variants of the bouquet algorithm

izing the initial contour location is more complicated since in principle, for each new starting
cost, a complete rescan of the ESS is required to determine the fresh set of contours. However,
even if we restricted ourselves to merely two instances of contour placement, corresponding to
X =0and X = 0.5, we achieve an attractive combination of MESOg = 2.38p 41 and MSO, =

4.1p, for r = 2.4.
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Chapter 6

Compile-Time Enhancements to

Improve Robustness Bounds

The bouquet mechanism’s MSO, guarantee of 4 for the 1D case is shown to be inherently
strong in Section 4.1.1. However, the multi-dimensional bounds depend on p, the maximum
plan density across the isosurfaces, which can be quite high — for instance, in excess of 150 for
the 5D queries considered in our study. Therefore, to have a practically useful bound, we need
to ensure that the value of p is reduced as far as possible.

A potential approach to achieving reduction in the “effective” value of p is to somehow skip
some of the cost-budgeted executions from the original bouquet sequence. At first glance, such
removal of executions may appear contrary to the principle of exhaustive contour execution
described in Section 4.2. However, as we will show in the remainder of this section, it can
be achieved by ensuring that the roles of skipped executions are played by carefully identi-
fied alternative executions. Specifically, we present two compile-time enhancements here for

implementing such an execution skipping process.
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6.1 Plan Swallowing Enhancement

Our first technique leverages the notion of “anorexic reduction” [46] to directly reduce the
cardinality of the POSP itself. In this approach, POSP plans are allowed to “swallow” other
plans, that is, occupy their regions in the ESS, if the sub-optimality introduced due to these
swallowings can be bounded to a user-defined threshold, A. Through extensive experimentation,
it was shown in [46] that even for complex OLAP queries with high dimensional ESS, a A setting
of 20% was typically sufficient to bring the number of POSP plans down to “anorexic levels”,
that is, a small absolute number within or around 10.

When anorexic reduction is introduced into the plan bouquet setup, it immediately serves
to steeply reduce the effective value of p. However, there is also a downside — the constant
multiplication factor is increased by a factor (1 + A) due to the inflation in the cost budget.
Overall, the deterministic guarantee is altered from 4 ppogp to 4 (1 + A) panorexic -

Empirical evidence that this tradeoff is highly beneficial is shown in Table 6.1, which com-
pares for a variety of multi-dimensional error spaces, the bounds (using Equation 4.3) under
the original configuration and under anorexic reduction (A = 20%). As a particularly com-
pelling example, consider 5D_DS_Q19, a five-dimensional selectivity error space based on Q19
of TPC-DS — we observe here that MSO, plunges by more than an order of magnitude, going
down from 379 to 30.4.

6.2 Execution Covering Enhancement

We now move on to describing an independent and complementary enhancement that can
further reduce the effective p. It leverages the observation that even if a particular execution is
skipped, the selectivity region covered by this execution can still be covered using execution(s)
from later contours — of course, at a higher cost. Such skipping clearly implies increase in sub-

optimality for some individual query instances — however, from a holistic perspective, it serves
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Error Space | pposp | MSOg || panorexic | MSOg
3D_H_Q5 11 33 3 12.0
3D_H_Q7 13 34 3 9.6
4D_H_Q8 88 213 7 24.0
5D_H_Q7 111 | 342.5 9 37.2

3D_DS_Q15 7 23.5 3 12.0
3D_DS_Q96 6 22.5 3 13.0
ADDSQ7 | 29 | 83 4 17.8
4D_DS_Q26 25 76 5 19.8
4D_DS_Q91 94 240 9 35.3
5D_DS_Q19 159 379 8 30.4

Table 6.1: Effect of Anorexic Reduction [A = 20%] on Robustness Guarantees

to substantively reduce the effective p and thereby deliver much stronger MSO, guarantees.

sel-y

origin sel-x IC,

Figure 6.1: E; can complete all locations in R(Es3) with cost(/Cy) = 2 * cost(1C})

To formalize this enhancement, we represent the bouquet algorithm as a sequence of cost-
budgeted plan executions BS = {FE1, Ea, ..., Eirminal}, Where Eiepmina is the final execution
that can complete all locations in the ESS. Additionally, we use the function ¢(E;) to indicate
the identity of the executed plan, and w(E;) to represent the cost budget of the execution. So,
if E; corresponds to the execution of PF, then ¢(E;) = P; and w(E;) = cost(IC}).

Now, for each E;, denote with R(E;), the region of the ESS that E; is apriori known to
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certainly complete within its budget, i.e, all ¢ s.t. c¢(¢(FE;),q) < w(F;). To make this notion
concrete, visual representations of R(F3) and R(F;) are shown in Figure 6.1, highlighted with
purple horizontal lines and green slanted lines, respectively. In addition, the figure also shows
that E; can complete all query locations in R(FE3) within twice the cost budget of Fj.

For quick reference, the notations employed hereafter in this section are summarized in

Table 6.2.
Notation Description
> cover Execution ‘cover’ relation
BS Original bouquet execution Sequence
E; it" execution in the bouquet execution sequence
Ererminal Final execution in the execution sequence
o(E;) Identity of plan used in execution FE;
w(E;) Cost budget of execution FE;
R(E;) Region in ESS covered by " execution
SubOpt(E;) SubOpt corresponding to i execution
Cs Covering execution Sequence
CS*k Covering Sequence that covers the set of original executions from IC),
C'Sopt Set of Optimal Covering Sequence(s)
CSI Covering Sequence Identification Algorithm

Table 6.2: Reference table for Notations for Execution Covering

6.2.1 The Cover Relation

We define the ability of an execution to complete the ESS region of another execution as the
Cover Relation over the set of executions. Formally, an execution E; can cover execution Fj,
denoted as E; > coper Ej, if R(E;) 2 R(E;). The > o, relation imposes a partial order on the

set of executions, with Ejermina being the unique top element since R(Ejermina) = ESS.

Example An example 2D ESS is shown in Figure 6.2, featuring a total of 32 executions
spanning across 7 contours. The corresponding Hasse diagram for the cover relation on the set
of executions in the bouquet sequence is shown in Figure 6.3a, where elements of the partial
order become nodes, and non-transitive relations among the elements become edges. Further,

the weight of each node is given by the cost budget of the corresponding execution, i.e., w(E;).
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Figure 6.2: Example bouquet sequence

Since the weights are the same for all executions from a given contour, they are highlighted

only once for each contour in Figure 6.3a, e.g., 8C for nodes 16 to 22.

cost(IC))
32 64C
e//”///I\\\\\i
29 30 31 32C
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iéz::::;z:::;’:Z///;Z 22 8C
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Figure 6.3: (a) Hasse diagram (b) Execution cost and sub-optimality analysis

k
MSO;

11.1

18.1

24.12

24.25

20.5

Detailed sub-optimality analysis for the basic bouquet sequence Next, we show in

Figure 6.3b, the detailed analysis of the basic bouquet execution sequence wrt execution cost

and sub-optimality. Here, each node E; is labeled with the accumulated overheads until and
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including E;, i.e. Z;.:l w(E;). While the accumulated overheads are monotonically increasing,
the sub-optimality variation is not necessarily so, and is given by the following recurrence

formula:
SUbOpt(El_l) +r if W(Ez) = C«J(Ei_l)
SubOpt(E;_1)

SubOpt(E;) = — +r fw(E;) #w(Ei)
r ifi=1
With each new execution, the sub-optimality gets an additive term r due to the increase in
the accumulated execution cost. But whenever there is a contour change, the sub-optimality
first undergoes an improvement by a factor of r due to increase in the minimum optimal cost
covered by FE;, before facing the additive term r. Thus, the sub-optimality increases while
working our way through a contour, but may observe a dip when a contour jump happens.

Similarly, with M.S O;f defined as the maximum sub-optimality encountered in the region

between contours ICj_; and IC}, we find that M SO’; varies according to the recurrence:

k—1
M SO]; = rny + —2— with M SOS = 0 for mathematical convenience. It is noteworthy
r
k—1
that, M S O]g“ increases monotonically with contour index %k only if n; > Msgg is satisfied for

all k € (1,m]. Finally, in Figure 6.3b, these computed values are marked besides each contour

and the overall MSO, = 24.25 that occurs on the 4th contour, is highlighted in boldface.

6.2.2 Motivating Scenario: MSO, Reduction due to Execution Cov-
ering

Consider Figure 6.3a, where execution Fsg is capable of covering executions Fog, Fo; and
FEos. That is, if Fsg, Ea1, Eoy are skipped from the bouquet sequence, their associated regions
U2,,R(E;) can still be covered by execution Eog. Implementing this observation, as depicted
in Figure 6.4, the effective plan density of /C, reduces from 7 to 6 — since the cost budget

of Fsg is equivalent to 2 executions from ICy. Note that, this execution cover has no impact

on sub-optimality performance till Ej9, but causes a sub-optimality reduction for all the later
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executions and hence reduction in M SO’; for all the contours beyond ICy. Overall, MSO,
marginally reduces from 24.25 to 22.25.

As a general rule, implementing a particular execution covering does not harm MSOy if the
cover’s budget does not exceed the sum of the budgets of the replaced executions. That is,

Ecover =cover {Fe, - .., Ew} can be employed if w(Eepper) < w(Ee) + ... +w(Ew).

K
MSOY,

329C 10.3
201C 233C 265C 16.56
105C 121C 137C 153C 169C 89C 21.12
’ 65C  73C 2.25
""ég'c'"""éé'c'""'éz'c' """ 41C 2057

N
/fc 115/13(: 13
V>, 6

Figure 6.4: Using cover Eos — {Es, Ea1, Ea} improves MSO, from 24.25 to 22.25

6.2.3 Covering Sequences

Extending the above single execution cover example, we define a covering sequence (C'S) as an
execution sequence that contains a cover for each and every execution in the original sequence.
Since Fierminat cannot be covered by any other execution, it must be present in every candidate
covering sequence, implying a total of 218511 candidates. For each candidate C'S, MSO; can

be computed as

MSO(C'S) = max {m}

1<a<m | cost(IC, 1)
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where C'S* C (OS is the set of execution(s) that cover executions from IC) and Q(CS*) =

cost(I1Ch)
—  TE€

ZEiecsk w(E;) and m is the total number of contours. ' Also, cost(ICy) = Crpin =

Optimal Covering Sequence Among all the C'S candidates, the covering sequence(s) cor-
responding to the minimum value of MSO, are characterized as optimal covering sequences
(C'Sept). The CS,p sequences can be identified through a brute force evaluation of all can-
didates, but the complexity is exponential in the number of executions in the sequence, and
it is therefore impractical. As a viable alternative, we propose a greedy algorithm, termed as
Covering Sequence Identification (CSI), to find a CS with improved MSO,. Specifically, CSI
decomposes the original problem into contour-wise subproblems, each of which is modeled as a
red-blue domination problem. The subproblems are then solved efficiently using a greedy ap-
proach, and the contour-wise solution nodes are stitched together to form a covering sequence
(details in Chapter 7).

As a concrete outcome of the CSI algorithm, the solution CS for the running example is
shown in Figure 6.5a (the equivalent ESS coverage representation is shown in Figure 6.5b).
Note that the resulting MSOg has come down to only 14.5 as compared to 24.25 of the original
bouquet sequence.

With regard to the above CS solution, a few interesting sidelights emerge:

e In contrast to the original bouquet sequence, the executions are not necessarily contour-
ordered in a covering sequence. For instance, F3; from ICy is executed before executions

FEs3 and Eyy from IC5.
e The CS uses only 11 out of 32 executions in the original sequence.

e The effective contour plan densities decrease from [3,5,7,7,6,3,1] to [2,4,4,4,2,2,1].

Specifically for IC5, ES uses 7 executions from ICs, while C'S covers it employing C'S®

'If an execution is capable of acting as a cover for executions from different contours, then it is counted only
once for the lowest index contour, while calculating MSOj,.
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(a) Execution covering sequence (b) Modified space coverage

={F11,F15,F17,F21 }, which is equivalent to 4 executions (since it requires two executions,

Ey7 and By, from ICy. *

e An increase in execution cost (and hence sub-optimality) occurs only for the three re-

gions covered by E;(C — 2C), E4(5C — 6C) and Ey(17C° — 18C'). For most of the

remaining regions, the execution cost improves significantly, e.g., E15(41C — 10C') and

FE31(265C — 58C'). This observation suggests that along with significant reductions in

MSQy,, concurrent improvements in ASO and MH may also be expected.

The effectiveness of CSI is further corroborated by its performance on queries based on

the TPC-H and TPC-DS benchmarks — these results are summarized in Table 6.2.3. Overall,

the MSO, never exceeded 20 even for high-dimensional queries, including those with high

initial values of MSO,! As a particularly compelling example, for a five-dimensional error-space

5D_H_Q7, the covering sequence used only 10 executions (out of the original 34), and more

importantly brought MSOg down from 37.2 to only 15.

!The underlined executions, E1; and Ey5, are part of C'S? but their overheads are already counted in C'S2.
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Error MSO, # Executions MSO, # Executions
Space (Anorexic) | (Anorexic) (Anorexic+CSI) | (Anorexic+CSI)
3D_H Q5 12 8 8.4 4
3D_H_Q7 9.6 6 7.2 3
AD 1 Q8 24 18 15 7
5D H.Q7 37.2 34 15 10
3D_DS_Q15 12 16 9.2 9
3D_DS_Q96 13 10 8.8 7
4D_DS_Q7 17.8 14 9.1 7
4D _DS_Q26 19.8 23 8.1 8
4D DS_Q91 35.3 34 16 14
5D_DS_Q19 30.4 24 15 13

Table 6.3: Effect of Execution Covering on Robustness Guarantees

Computational Effort Overall, the worst case complexity for the CSI algorithm is O (mplog(mp))
against O(2™") of the brute force algorithm. Further, to be able to use this enhancement, it
is required to first construct the Hasse Diagram which involves establishing the cover relation
among all pairs of executions from consecutive contours. For this purpose, we have devised a
three step mechanism, where the proposed checks in the first two steps are computationally
very cheap as compared to the third step. To elaborate, we first identify true positives by
evaluating a simple necessary and sufficient criteria, then discard true negatives by evaluating
another cheap to evaluate necessary condition, and finally, if the previous two steps do not prove
conclusive, evaluate the computationally expensive sufficiency criteria. The complete details of
this procedure can be found in Chapter 7.

Finally, since the computational efforts required in both Hasse diagram construction and
covering sequence identification, depend on the number of executions in the sequence, it is

recommended to use CSI only after anorexic reduction has already been employed.
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Chapter 7

Efficient Identification of Plan Bouquet

Sequence

Given a user query Q, the first step is to identify the error-prone selectivity dimensions in the
query. For this, we can leverage the approach proposed in [52], wherein a set of uncertainty
modeling rules are outlined to classify selectivity errors into categories ranging from “no un-
certainty” to “very high uncertainty”. Alternatively, a log could be maintained of the errors
encountered by similar queries in the workload history. Finally, there is always the fallback
option of making all predicates where selectivities are evaluated, to be selectivity dimensions
for the query.

The chosen dimensions form the error-prone selectivity space(ESS). In general, each dimen-
sion ranges over the entire [0,1] selectivity range — however, due to schematic constraints, the
range may be reduced. For instance, the maximum legal value for a PK-FK join is the recip-

rocal of the PK relation’s row cardinality. The next step is to identify the isosurfaces in this

ESS.
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7.1 NEXUS: Algorithm for Identifying an Isosurface

The primary inputs to the bouquet identification phase are the isosurfaces (contours in 2D)
drawn on the ESS. Thus far, we had viewed each isosurface as a continuous region comprised of
selectivity locations having identical cost values for their optimal plans. As a practical matter,
however, we have to construct and process approximate discretized versions of these regions.

! res to approximate the

That is, we need to use a D-dimensional grid with finite resolution
ESS hypercube [0, 1].

With this discretized ESS, an isosurface for cost C' is constructed as a D-dimensional set of
contiguous grid locations ¢ such that ¢, (¢) lies in the interval [C, (1 + a)C], where cy(q) is
the cost of the optimal plan at location ¢, and « is a tolerance factor. Since the tolerance factor
could occasionally result in “thickening the surface” due to inter-surface locations also creeping
into the surface set, we additionally require that each point in the surface must have at least
one of its lower neighbors violating the above cost interval requirement. Finally, we assume
that the resolution of the ESS grid is sufficiently high such that we can always find contiguous
isocost locations even with small values of «, say 0.05.

A straightforward strategy to identify the isosurfaces from the ESS is to first explore the
discretized ESS in a exhaustive manner, and then identify the locations that are acceptable for
the required isocost values. But the overheads for such an approach would increase exponentially
with ESS dimensionality, and become impractical for typical OLAP queries. Moreover, the
exhaustive enumeration is an overkill for isosurface identification since: (a) we do not need
information about the internal regions that lie between the isosurfaces and take up the vast
majority of the space in ESS; and (b) we do not exploit the potential for overlapping the
identification of later isosurfaces with the ezxecution of the earlier isosurfaces, which could

provide a head-start in the bouquet execution process.

"'We use the term resolution to remain consistent with prior works [46, 47] that dealt with discretized
selectivity spaces.

62



Motivated by the above observations, we propose! in this section a focused approach for the
identification of isosurfaces. Specifically, it quickly identifies the locations corresponding to a
particular isosurface without wasting much effort on extraneous locations. For this purpose,
we leverage our basic assumptions of monotonicity and smoothness of plan costs — these imply
that in each dimension of the discretized ESS, the optimal costs are in increasing order and do
not change abruptly.

We begin by presenting the algorithm for a 2D ESS, followed by the extension to higher-

dimensional selectivity spaces. The notations used in this section are summarized in Table 7.1.

Notation Description
C Cost of isosurface
res Resolution of the ESS grid
« Cost tolerance factor in isosurface identification
Copt (q) Optimal cost at location ¢ in the ESS
L A generic isosurface location in the ESS
Lyt ESS locations in immediate neighborhood of L along dimension x
S Initial seed location for an isocost surface in the ESS

Table 7.1: Reference table for Notations for NEXUS algorithm

7.1.1 2D ESS

Given a location L with coordinates (z,y) in the discretized 2D ESS, we denote its three
immediate “lower” neighbors as follows: (z — 1,y) with L, ;; (z,y — 1) with L,_y; and (z —
1,y — 1) with L_;. With these notations, the location L(z,y) is included in the contour C'if it

satisfies the following conditions:
(a) C < cop(L) < (14 «)C and
(b) Copt(Lz—1) < C or copt(Ly—1) < C or copu(L_q) < C.

The first condition establishes the acceptable cost interval for L, while the second ensures that

at least one of L’s dominated neighbors is outside of the cost interval (to prevent “surface

IThis is joint work with C.Rajmohan [79)
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thickening”, as explained earlier). It is to be noted here that, in condition(b) the RHS value
cannot be more than C since otherwise L won’t satisfy condition (a) which is the primary
condition for contour acceptability.

With the above setting, the contour identification algorithm works in two phases:

1. Locating the Initial Seed: Here, the aim is to find the contour location that has the
maximum 'y’ coordinate, and use it as a seed location for the next phase of the algorithm.
This extreme point can only lie on either the left edge or the top edge of the ESS, i.e. (0,0)
to (0, res) or (0,res) to (res,res). To determine the correct edge, we simply cost these
three ESS corners, and determine which edge includes C' in its range of values. Once the
edge has been determined, the exact location S, to serve as the initial seed, is determined

using a binary search on that edge using the cost value C.

2. Neighborhood EXploration Using Seed (NEXUS): Since the seed has the maximum 'y’
location, for locating our next isocost point, we need to only consider the 3"¢ and 4
quadrants relative to the seed as origin. However, locations in the 3¢ quadrant are
already known to be unacceptable due to PCM. Therefore, the initial seed location S can
be used to recursively generate new seed locations solely in the 4" quadrant and thus

grow the contour.

For a given seed location S(z,y), we denote the location (z + 1,y) with S,;; and the
location (z,y — 1) with S,_;. By virtue of PCM, we know that c,p(Si+1) > copt(S)
and copt(Sy—1) < copt(S). We find from the query optimizer the optimal costs for these
candidate seed locations, and choose the new seed based on the following simple criterion:

If copt(Sy—1) < C, then set S = S,41 else S = 5,_1.

The end of this recursive routine is marked by the non-existence of both S;.; and 5,4

in the ESS grid.

A sample working of the above algorithm is visually demonstrated through a set of Figures.
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Figure 7.1: Finding seed location in 2D ESS

First, the identification of the initial seed S using 6 optimization calls is shown in Figure 7.1.
Then the recursive contour exploration in the 4th quadrant of S is shown in Figure 7.2 — here,
the optimized locations are marked with either a red colored triangle A or a green colored dot
e — the latter constitute the accepted contour locations, whereas the former indicates locations
that were explored but rejected. Finally, Figure 7.3 shows the contour exploration completing

when S hits the ESS boundary.

T\
N
sel-y
C
origin sel-x

Figure 7.2: Intermediate Contour Exploration in 2D ESS
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Figure 7.3: Completely Explored Contour in 2D ESS

Discussion It is noteworthy that #redA = #greene, i.e. the algorithm performs exactly
twice the number of optimizer calls as compared to the optimal algorithm that finds only
acceptable contour locations. This is because at any point during contour exploration, there
are exactly two candidates for the new seed — S,4; and S,_;, and one of them will definitely
be on the (accepted) contour. In fact, it is easy to see that since the decision is based solely
on Sy_1, the optimization call for S;.; should be invoked only if required, and thereby further

reduce the number of wasted optimization calls.

7.1.2 Extension to nD ESS

Next, we show that the neighborhood exploration approach for contour identification can be
easily extended to general multi-dimensional ESS. For this purpose, we start with the extended

algorithm for 3D ESS that systematically invokes different instances of the 2D algorithm.

Locating the Initial 3D Seed Here, the initial seed S is the isosurface location with the
maximum 2z coordinate. To find this point, it is first checked whether the seed lies on the edge
(0,0,0) to (0,0,7es), which implies that S = (0,0, 2) with z < res. If yes, the seed can be
determined by using a binary search on this edge — this corresponds to Case 1 in Figure 7.4.

If no, the initial seed is located using a procedure similar to 2D ESS for the XY-slice with
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z = res, which is visualized as Case 2 in Figure 7.5 and 7.6 - here, there are two possibilities:
S = (0,y,res) with y < res (Case 2a), or S = (x,res,res) with z < res (Case 2b).

sel-y

origin

",
‘\\\\\\\\~.::;:”””’,l sel-x

sel-z

(2b)

Figure 7.4: Example Contour Exploration in 3D ESS (Case 2b)

3D Isosurface Exploration We first explain the isosurface exploration phase for Case 2b.
To identify all isosurface locations with z = res, we use the 2D exploration algorithm for the
XY-slice with z = res, and grow the initial seed S as explained previously. For exploring
the locations with lower values of z, the initial seeds for each XY-slice are generated by 2D
exploration of the XZ-slice corresponding to y = res, using the initial seed S and candidate
locations S,y1 and S,_;.

Similarly in Case 1, the initial seeds for each lower value of z are generated by exploring
the YZ-slice corresponding to z = 0, starting with an initial seed S and candidate locations
Sy+1 and S,_;. Finally, the algorithm for Case 2a proceeds in two sub-phases where the first
sub-phase is similar to Case 1 until it finds a seed with y = res (shown as S’ in Case 2a of
Figure 7.5), and thereafter in the second phase it follows an algorithm similar to Case 2b of of

Figure 7.6).
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Figure 7.5: Example Contour Exploration in 3D ESS (Case 1)
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Figure 7.6: Example Contour Exploration in 3D ESS (Case 2a)

Generic nD Algorithm In D-dimensional space, the initial seed location is of the form
(0%,v,res’) where 0 < v < res and s +¢ = D — 1. Given such a seed, the dimension-pair
(dsi1,dsr14¢) 18 used to generate more seeds through the 2D algorithm, and for each such

seed, the D — 1 dimensional subproblem over the dimensions (dy,ds, ..., ds) is recursively
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solved. The recursion terminates with the completion of 2D exploration of the dimension-pair

(ds+17 ds+1+t)'

7.1.3 Impact on Bouquet Identification Overheads

Overall, NEXUS can be used to either: (a) enable an early-start for the bouquet execution phase
without invoking CSI; or, alternatively (b) reduce the total effort of identifying all isosurface
plans before using CSI (by ignoring the ESS regions that lie in between the isosurfaces). In
addition, this approach also makes isosurface exploration a highly parallelizable task since in
principle, a new thread can be created whenever a seed is generated for a lower dimensional

subspace.

7.2 Implementing Plan Swallowing

As discussed in Section 6.1, the natively high plan-density values for the isosurfaces in ESS can
be reduced by reducing the size of POSP itself, by utilizing the plan-swallowing enhancement.
While the enhancement is usually quite effective in terms of reduction in cardinality of POSP
set but is computationally intensive as it requires: (a) optimization call for each location in
ESS to compute POSP and (b) costing calls across the ESS for each plan in POSP to get its
behavior across space, to apply the enhancement using CostGreedy-FPC routine [47].

But in the bouquet approach, requirement is to minimize the maximum plan density across
the isosurfaces rather than finding the smallest set of plans for the entire ESS. For this reason, we
utilize the plan-swallowing enhancement separately for each of the isosurfaces. Further, while
it is best to use the entire POSP as the swallower set to get maximum reduction for individual
isosurfaces. We make use of another efficient variant, termed as intra-surface plan swallowing,
where the swallower set contains only the plans from the same isosurface. In principle, it is
possible that the intra-surface alternative fairs badly in terms of its ability to reduce the plan-
density of the isosurface. But, since it was emprically shown in [79] that the reduction quality

does not degrade noticeably, we use intra-surface variant of plan swallowing enhancement. An
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additional advantage with intra-surface processing is that it fits well with the parallel processing
capability of NEXUS, which means that the isosurfaces with reduced effective plan-density can

be produced independent of one another.

7.3 Implementing Execution Covering

7.3.1 Covering Sequence Identification Algorithm

Clearly, the basic bouquet algorithm provides a simple to implement solution where no skip-
ping of executions take place. On the other hand, the exhaustive algorithm enumerates all
candidate covering sequences, but incurs a computational effort that is exponential in the num-
ber of executions present in the bouquet sequence. To bridge this gulf, we describe here a
polynomial-time algorithm, CSI, that attempts to improve the MSO, of the bouquet sequence
with the following idea — “find covering executions for plans on the MSO causing contour and
its predecessors”.

For instance, the MSO, of 24.5 in the example of Figure 6.3b is caused at ICy due to
the aggregate impact of w(C'S?) through w(C'S*). This MSO, can be improved by finding the
covering sequences individually for the contours I'Cy through IC4. For this purpose, we describe
below a subroutine of CSI that finds the covering sequence for a contour IC} while trying to
minimize its effective plan density — employing this routine brings the MSO, in Figure 6.3b

down to 14.5 .

Figure 7.7: Adapting Red-Blue Weighted Domination for solving minimize(w(C'S*))
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Minimizing w(C'S*) The problem of minimizing w(C'S*) can be abstracted as an adaptation
of the Red Blue Weighted Dominating Set [37] problem - a sample adaption corresponding to
our running example is shown in Figure 7.7a.

Here, the blue set contains nodes from contour IC%. and the red set contains nodes from
the contours IC}, through ICy/, where cost(I1Cy) < |ICy| X cost(ICy). Apart from the covering
edges (solid brown) borrowed from the Hasse diagram (i.e., ICyy1 to ICy), it also includes
transitive edges (dotted green) for farther contours (ICy,2 onwards) and identity edges (solid
black) from red version to blue version of ICy nodes. Finally, the weight of any red node is
given by the corresponding value of w(E;).

With the above modeling, the problem of minimizing w(C'S*) is the same as finding the
minimum-weight subset of red nodes that can dominate all the nodes in the blue set. Now, since
red-blue weighted domination is known to be a NP-hard problem, and also equivalent to the
Minimum-weight Set-Cover problem [37], we have utilized an adaptation of the greedy weighted
set-cover algorithm to ensure efficiency — the greedy criterion is the minimum weight per newly
covered blue node. The pseudocode for the resulting subroutine is shown in Algorithm 3.

For the example formulation in Figure 7.7a, the weight per covered blue node for each of
the red nodes, is shown in Figure 7.7b. Here we find that E3; is the greedy red choice, and it
is the solution since there are no more blue nodes to be covered. The greedy subroutine has
run time complexity of Viuelog(V;eq), and approximation factor of log(Vi.) + 1. The covering

sequence obtained for IC); with this approach is shown in Figure 7.8.

The CSI Algorithm CSI begins by identifying the contour that causes the MSOg, denoted
1C}+, and then applies the minimization subroutine on contours /C; through ICj+ in sequence.
After this pass, it is possible that the “culprit” MSO, contour has now shifted to a new contour
ICyer > ICy+ — if so, another minimization pass is carried out for contours from ICjy« through
ICy+. Otherwise, the algorithm is concluded since MSO, cannot be improved further.

The motivation for processing contours in increasing cost order during each minimization
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Figure 7.8: Solution for minimize(w(CS*)) using red-blue domination

pass is that the covering nodes identified for contour IC} may also cover nodes from contours

ICyy1 and beyond, thereby reducing the number of uncovered nodes for higher contours.

Algorithm 3: Minimize w(CS*) Subroutine
Input: Vitwe = ]Ck7‘/red = ([Ok U...U IC’k/),w :BS — R
Output: V.,
// V. is the set of covering executions (subset of V,.)
chov = {} ;
// Viom is the set of executions covered by V., (subset of Vju.)
V:iom = {}7
// for each node v in V.4, dom(v) denotes the set of executions that it
can cover in Vi
while Vy,,,, C Vi do
Vsel = ¢ ;
f(vsel> = 00
for v € Vieq \ Veoy do
F(0) = oo
if f(vser) > f(v) then
Vsel = U;
end

end
‘/dom = Vdom U dom(vsel>;
‘/cov = V;:ov ) {Usel};

end
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7.3.2 Efficiently Constructing Hasse Diagram of Executions

In principle, the CSI routine needs to determine the cover relation among all pairs of executions
in BS. However, the explicit checking of these pairs can be reduced by leveraging the following

inference tests:

1. If both executions are from the same contour, reject the pair as a cover relation cannot

exist between them.

2. If one of the executions is Fierminar, then accept the pair since the cover exists, by definition

of Eterminal .

3. If the executions lie more than one contour apart, then explicit evaluation is required only

if a transitive cover relation is non-existent.

Even with the above pruning, the processing required for the remaining pairs may still turn
out to be computationally significant, since the explicit test for a pair (E;, E;) is equivalent
to establishing whether R(E;) is a subset of R(E;). We therefore present next an alternative

procedure to determine the cover relation F; = .., £;, which does not entail this subset check.

Cover Determination Procedure

Let L(E;) denote the contour locations for F;. We use M AX; to represent the ESS location
whose value on each dimension corresponds to the maximum selectivity coordinate on that

dimension across all contour locations of F;. That is,

sq¢(MAX;) = lélg?é;)sd(l) for 1<d<D

Similarly, we denote with MIN; the ESS location corresponding to the minimum selectivity
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coordinate for each dimension across all contour locations of F;. That is,

sq(MIN;) = lerg(ig‘) sq(l) for 1<d<D

To make these notions concrete, the M AX; and MIN; locations for the first 3 contours

of the example ESS are shown as red squares (M) and blue diamonds (4), respectively, in

Figure 7.9.
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Figure 7.9: M AX; and MIN; locations for executions on contours IC; to 1C5

To determine the cover existence between £; and Ej;, we first employ two heuristic checks
that may not be decisive in all cases, but are quite efficient to evaluate. Their efficiency stems
from their usage of simple product order' based checks among only M AX;’s and M IN;’s, which

are easily computable through a single scan of the L(F;) locations.

Product Check 1: The necessary and sufficient condition that MIN; >p.quee MAX; for

E; =cover Ej, helps to efficiently identify true positives. For example, it can quickly

'We use generalized version of the standard product order which is defined as: Given two pairs (a1,b1) and
(a2, b2) in A x B, one sets (a1, b1) =product (a2, b2) if and only if a1 > as and by > bs.
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determine that in Figure 7.9, the candidate execution pair (E;, E3) satisfies the cover

relation.

Product Check 2: The necessary condition that MAX; >=,0quee MAX; for E; =coper Ej
helps to quickly reject true negatives. For instance, (E5, F3) can be quickly rejected using

this criterion.

In the event that the above two checks are not conclusive, we employ a final check that is
decisive in all scenarios, but is comparatively expensive since it requires, for each location in

set L(E;), processing the entire set of locations in L(E}).

Product Check 3: The condition L(E;) > prodauct L(E};) is sufficient to decide whether E; > oper
E;. Here, L(E;) *prodquct L(E;) is satisfied if there exists a location I° € L(E;) for each

I" € L(E;), such that I* > poquet I

While certainly more expensive than Checks 1 and 2, note that Check 3 is expected to be
relatively more efficient than the direct region-subset check, since typically |L(E;)| < |R(E;)|.

To highlight the potency of the above evaluation procedure, consider for instance the neigh-
boring contours ICy and /(5 in Figure 7.9. Here, there are 35 execution pairs arising from
the contours, and among them, 6 pairs are identified as true positives (Check 1), 21 pairs are

rejected as true negatives (Check 2), leaving only 8 pairs for the final comparison (Check 3).
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Chapter 8

Plan Bouquet Architecture and

Prototype Implementation

8.1 Bouquet Architecture and Essential API Features

For a given Q with an ESS, the query execution workflow of the bouquet approach becomes
operational as shown in Figure 8.1. For this purpose, the database engine needs to support the
following functionalities: (1) selectivity injection; (2) abstract plan costing and execution; and
(3) cost-budgeted partial execution of plans. Next, we elaborate on the usage of each of these

features, followed by implementation details of the bouquet driver layer.

8.1.1 Selectivity Injection

For isosurface exploration using the algorithm described in Section 7.1, we need to be able
to systematically generate queries with the desired ESS selectivities. One option is to, for
each new location, suitably modify the query constants and the data distributions, but this
is clearly highly cumbersome and time-consuming. We have therefore taken an alternative
approach in our PostgreSQL implementation, wherein the optimizer is instrumented to directly

support injection of selectivity values in the cost model computations. Interestingly, some

76



BOUQUET DRIVER LAYER

N

COMPILE-TIME .
query analysis/ *

logging history *

error-prone

/Isosurface exploration/

anorexic‘ll+ CsSl

optimization/abstra
plan costing calls

Bouquet Identification

|

ct

(P, 1C)

' RUN-TIME

-

racking Executo
oﬂule Module

>
n
| ]

g

.

DBMS ENGINE

[Completion-status] [Plan,
K cost-budget]

.
M Le
v

Query
Optimizer

estimated

selectivities

selectivity injection
(error-prone dimensions)

(error-free
dimensions)

Executor )

?
Meta
Data ) Data

Figure 8.1: Architecture of Bouquet Mechanism

commercial optimizer APIs already support such selectivity injections to a limited extent (e.g.

IBM DB2 [4)).

8.1.2 Abstract Plan Costing and Execution

Once the isosurfaces have been explored, we need to reduce their plan densities using the
anorexic reduction technique, as explained in Section 6.1. This is achieved through the FPC
variant of the Cost Greedy algorithm [46], which requires an abstract plan costing feature for
estimating the cost of a plan outside its optimality region. This feature is already supported
by some commercial optimizers (e.g. [5]).

Further, during the bouquet execution phase, we need to be able to instruct the execution

engine to execute a particular bouquet plan. This feature also is currently provided by a few

commercial systems (e.g. [5]).
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8.1.3 Cost-budgeted Execution

The bouquet approach requires, in principle, only a simple “timer” that keeps track of elapsed
time, and terminates plan executions if they exceed their assigned cost budgets. No material
changes need to be made in the engine internals to support this feature. The premature
termination of plans can be achieved easily using the statement.cancel() functionality supported
by JDBC drivers. Note that although bouquet identification provides budgets in terms of
abstract optimizer cost units, they can be converted to equivalent time budgets through the

techniques proposed in [87].

8.1.4 Bouquet Driver Layer

As highlighted in Figure 8.1, we have an external program, the “Bouquet Driver”, which treats
the query optimizer and executor as black-boxes. First, it interacts with the query optimizer
module to determine the isosurfaces and the plan bouquet. Then it performs executions of
the bouquet plans using an execution client and a tracking client. The execution client selects
the plan to be executed next, while the tracking client keeps track of the time elapsed, and

terminates the execution if the allotted time budget is exhausted.

8.2 QUEST Prototype

This prototype implementation of the bouquet technique! helps an interested user to visually
observe the selectivity estimation problems that plague current database optimizers, and the
novel robustness characteristics that the bouquet technique brings to bear on these chronic
problems. A two-dimensional ESS query? based on Query 5 of the TPC-H benchmark, operating
on a fully indexed 1 GB standard TPC-H database hosted on the PostgreSQL engine, will be

used as a running example to explain these scenarios.

IThis is joint work with Sumit Neelam [71].
2With customer and lineitem as error-prone selectivity dimensions.
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8.2.1 Sub-optimality of Native Optimizer

The first screen highlights the estimation errors and its impact on plan choice and execution
performance for the input query. A sample instance of the corresponding QUEST interface is
shown in Figure 8.2, where the user can observe:

e An operator-level comparison between P, (q.) and P,,(q,) — in this instance, P,(qe)
features a series of Nested Loop joins while P,,(q,) opts for Hash Joins, and the join
orders are different.

e The locations of ¢, and ¢. in the ESS, and the large error gap between them — in this
instance, ¢,=(30.9%, 26.7%) while ¢, is underestimated to be (0.25%, 3.1%).

e The adverse performance impact due to the estimation error — in this instance, the sub-

optimality is around 17.

Database
@%ﬁ _ QUEST (QUery Execution without Selectivity esTimation)
Query Input Bougquet Identification Native Sub-optimality Bouquet Execution | Performance Comparision
|Get Native Plan“Execute Query with Native PlanJ {Show Optimal PlanJlExecute Query with Optimal Planl
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HashAggregate!
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. Bitmap Heap Scan * Seq Scan
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/ML\ * lineitem ILextendedprice._id Bitmap Heap Scan | *
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Figure 8.2: Sub-optimality of Native Optimizer



8.2.2 Bouquet Identification

Turning our attention to bouquet technique, we start with a description of the compile-time
phase i.e. bouquet identification, whose graphical display is shown in Figure 8.3. Here, the
left picture shows the three-dimensional PIC surface of the native optimizer, characterized by
a large number of POSP plans and a steep cost-profile over ESS. Since the bouquet’s MSO
guarantee is a direct function of the POSP cardinality, the dense cost diagram is subjected to
plan swallowing enhancement [46] in order to reduce the number of plans to a small number
without substantively affecting the query processing quality (cost-increase threshold \) of any
individual query in the selectivity space. On this reduced diagram the bouquet’s distinctive
feature of cost-based discretization using geometrically increasing isocost planes (common ratio
r) is applied — the combined effect of reduction (A) and discretization (r) is presented in the
second picture of Figure 8.3.

In the example, the original POSP diagram has 29 plans with a PIC covering the cost range
from 1.1E4 to 3.2E5. After plan swallowing enhancement®, the plan cardinality goes down to
6 plans. Finally, the PIC is divided using 5 isocost contours with r=2, and the POSP plan
cardinality distribution on these contours is (4, 4, 4, 3, 1).

Here, the user will be able to provides values of their choice for reduction parameter A and
discretization parameter r. For these values, the resulting MSO guarantee will be evaluated
and compared against the MSO guarantee with recommended values of the parameters (A =

20%,r = 2).

8.2.3 Bouquet Execution

The next step illustrates execution phase of the bouquet technique as calibrated sequence of
budgeted partial executions, starting with plans on the cheapest isocost contour, and then

systematically working its way through the contours until one of the plans executes the query

With reduction parameter A\ = 20%, as recommended in [46].
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to completion within its assigned budget. The dynamism of this iterative process is captured
in the interface shown in Figure 8.4, which is continually updated to show:

e The ESS region covered by each partial plan execution — subsequent to each such execu-
tion, the associated region is shadowed with the plan’s color.

e The execution order timeline of the plans, along with their tree structures — this allows
database analysts to carry out offline replays of the plan execution sequence.

e The contour budgets, which initially appear as white bars of geometrically increasing
height, and are then filled with blue after the corresponding partial executions (in the
figure, after 15 partial executions, plan P6 on Contour 5 completes the query within the
assigned budget).

e The sub-optimality of bouquet execution (for the sample query, it is around 3.7).

Here, controls are provided to enable pausing the bouquet operation after each partial
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execution so that the specific progress made through each such execution can be fully assimilated

before continuing to the next step.
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Figure 8.4: Bouquet Execution Interface

8.2.4 MSO Guarantees & Repeatability

The interface also provides the user with an opportunity to verify for themselves the MSO and
repeatability guarantees offered by the bouquet technique. Firstly, with regard to the MSO
guarantee, user can fill in any desired location of g, in the text box shown in Figure 8.4 (below
the isocost contours), and then invoke the bouquet algorithm on this query instance to confirm
that the sub-optimality incurred is within the apriori stated bound (for the sample query, this
MSO bound is less than 20, which is orders of magnitude lower than the empirically determined
MSO of 10* obtained with the native optimizer).

Secondly, with regard to repeatability, our goal is to show that, unlike the native optimizer,
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the bouquet execution sequence is only a function of ¢,, and not of g.. To this end, we can
radically alter, using the CODD metadata editing tool [31], the distribution histograms of the
attributes featured in the query, while keeping the underlying data unchanged. Subsequent to
the alteration, the bouquet algorithm can be re-executed and confirmed to behave identically

to its prior incarnation.
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Chapter 9

Empirical Evaluation

We now turn our attention towards profiling the performance of the bouquet approach on
a variety of complex OLAP queries, using the MSO, ASO and MH metrics enumerated in
Chapter 3. In addition, we also describe experiments that show: (a) spatial distribution of
robustness in the ESS; (b) low bouquet cardinalities; (c) low sensitivity of the MSO, to the A
reduction parameter; and (d) extension of the results to commercial databases. As specified in
Chapter 3, the entire evaluation is carried out using optimizer costs, while assuming that all
combinations of the actual and estimated query locations are possible in the ESS.

Before going into the evaluation details, we describe the experimental setup and the rationale
behind the choice of comparative techniques. This is followed by a brief discussion on the

compile-time overheads incurred by the bouquet algorithm.

9.1 Experimental Setup

Database Environment The test queries are chosen from the TPC-H and TPC-DS bench-
marks to cover a spectrum of join-graph geometries, including chain, star, branch, etc. with
the number of base relations ranging from 4 to 8. The number of error-prone selectivities range
from 3 to 5 in these queries, all corresponding to join-selectivity errors, for making challenging

multi-dimensional ESS spaces. We experiment with the TPC-H and TPC-DS databases at
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their default sizes of 1GB and 100GB, respectively. Finally, the physical schema has indexes on

max

all columns featuring in the queries, thereby maximizing the cost gradient and creating

min
“hard-nut” environments for achieving robustness.
The summary query workload specifications are given in Table 9.1 — the naming nomencla-
ture for the queries is xD_y_Qz, where x specifies the number of dimensions, y the benchmark

(H or DS), and z the query number in the benchmark. So, for example, 3D_H_Q5 indicates a

three-dimensional error selectivity space on Query 5 of the TPC-H benchmark.

Query Join-graph | C.. Query Join-graph | C,..
(# relations) Cooin (# relations) | Chuin

3D_H_Q5 chain(6) 16 | 3D_DS_Q96 star(4) 185
3D_H.Q7 chain(6) 5 4D_DS_Q7 star(5) 283
4D_H_Q8 branch(8) 28 | 4D_DS_Q26 star(5) 341
5D_H_Q7 chain(6) 50 || 4D_DS_Q91 branch(7) 149
3D_DS_Q15 chain(4) 668 || 5bD_DS_Q19 branch(6) 183

Table 9.1: Query workload specifications

System Environment For the most part, the database engine used in our experiments is
PostgreSQL 8.4 [3], equipped with the API features described in Section 8.1'. Specifically,
the first two features were introduced with minimal changes to the source code. On the other
hand, cost-budgeted execution is natively supported by invoking the following command at
the tracking client: “select pg_cancel_backend(process_id)”. The required process_id (of the
execution client) can be found in the view pg_stat_activity, which is maintained by the engine
itself.

The hardware platform is a vanilla Sun Ultra 24 workstation with 8 GB memory and 1.2

TB of hard disk.

Comparative Techniques In the remainder of this section, we compare the bouquet algo-

rithm (with anorexic parameter A = 20% and CSI enhancements) against the native PostgreSQL

L All the experiments have been repeated on PostgreSQL 9.4 as well with virtually no difference in the results.
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optimizer, and the SEER robust plan selection algorithm [47].

SEER uses a mathematical model of plan cost behavior in conjunction with anorexic re-
duction to provide replacement plans (P,(ge.) for ¢.) that, at all locations in the ESS, ei-
ther improve on the native optimizer’s performance, or are worse by at most the \ fac-
tor. It is important to note here that, in the SEER framework, the comparative yardstick
is P,pt(qe), the optimal plan at the estimated location, whereas in our work, the compari-
son is with P,(q.), the optimal plan at the actual location. Still, it has been shown in
[47] that in many cases ¢(Prep(ge), ¢a) <K c(Popi(ge), o), hence SEER is expected to per-
form better than the native optimizer on our sub-optimality based metrics. Finally, since
(Prep(ge), qa) < (L4+X) X c(Popt(e), ga) Yqo € ESS, we can infer that MH < A with SEER.

On the other hand, purely heuristic-based reoptimization techniques, such as POP [65] and
Rio [12], are not included in the evaluation suite. No doubt they can be very effective when
the estimation errors are small in magnitude and number. But when the errors are significant,
as is commonplace in practice [62], their performance on our metrics (MSO or MH) could be
arbitrarily poor. This is because of their inability to provide worst-case performance guarantees
— in fact, they are unable to do so with regard to both P, (¢.) and P,(q,), as explained in
detail in Appendix.

Further, the heuristics that POP and Rio employ are more appropriate for low-dimensional
spaces — for example, that near-optimality of a plan at the corners of the principal diagonal
of the error space, implies near-optimality in the interior of this space; or, that the selectivity
validity ranges found by comparing only with the class of structure-equivalent plans, provide
good approximations to the true ranges. Therefore, these techniques may not work well when
faced with large multi-dimensional estimation errors, which is the primary target of our work.

For ease of exposition, we will hereafter refer to the bouquet algorithm, the native optimizer,

and the SEER algorithm as BOU, NAT and SEER, respectively, in presenting the results.
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9.2 Compile-time Overheads

The computationally expensive aspect of BOU’s compile-time phase is the identification of the
plans on the isosurfaces of the ESS. For this task, we have proposed a new algorithm NEXUS,
as described in Section 7.1, that can selectively explore locations for a particular isosurface,
and ignore the remaining portion of the ESS. Currently, using only single-core processing, the
compile-time overheads for 3D, 4D and 5D queries with NEXUS are typically a few minutes,
a few hours, and several hours, respectively. Although the overheads continue to increase ex-
ponentially with the number of ESS dimensions, we wish to highlight that NEXUS is highly
parallelizable and can therefore exploit modern multi-core architectures to substantively ame-
liorate, in absolute terms, these overheads.

Further, as mentioned in Section 7.1, the plan bouquet execution can be overlapped with its
compilation — specifically, execution can be started as soon as the first plan on the first isosurface
is identified, and the identification of subsequent plans can be carried out concurrently with
the ongoing executions. Finally, note that the isosurface identification process is a one-time
exercise, and its overhead can be amortized by repeated invocations of the same query, which

often happens with “canned” form-based interfaces in the enterprise domain.

9.3 Empirical Worst-case Performance (MSO)

In Figure 9.1, the empirical MSO performance is profiled, on a log scale, for a set of 10 repre-
sentative queries submitted to NAT, SEER and BOU. The first point to note is that NAT is not
inherently robust — to the contrary, its MSO is huge, ranging from around 10? to 107. Secondly,
SEER also does not provide any material improvement on NAT — this may seem paradoxical
at first glance, but is only to be expected once we realize that not all the highly sub-optimal
(Ge, go) combinations in NAT were necessarily helped in the SEER framework. Finally, and in

marked contrast, BOU provides orders of magnitude improvements over NAT and SEER — as
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a case in point, for 5D_DS_Q19, BOU drives MSO down from 10° to around just 10. In fact,

even in absolute terms, it consistently provides an MSO of less than ten across all the queries.

MSO NAT = SEER BOU
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Figure 9.1: Empirical MSO Performance

9.4 Average-case Performance (ASO)

At first glance, it may be surmised that BOU’s dramatic improvement in worst-case behavior
is purchased through a corresponding deterioration of average-case performance. To quantita-
tively demonstrate that this is not so, we evaluate ASO for NAT, SEER and BOU in Figure 9.2,
again on a log scale. We see here that for some queries (e.g. 3D_DS_Q15), ASO of BOU is much
better than that of NAT, while for the remainder (e.g. 4D_H_Q8), the performance is compa-
rable. Even more gratifyingly, the ASO in absolute terms is typically less than 5 for BOU. On
the other hand, SEER’s performance is again similar to that of NAT — this is an outcome of
the high dimensionality of the ESS which makes it extremely difficult to find universally safe

replacements that are also substantively beneficial.

9.5 Spatial Distribution of Robustness

We now profile for a sample query, namely 5D_DS_Q19, the percentage of locations for which

BOU has a specific range of improvement over NAT. That is, the spatial distribution of enhanced
SUbOptworst <Qa>
SubOpt (%, qa)

robustness, . This statistic is shown in Figure 9.3, where we find that for the
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Figure 9.2: ASO Performance

vast majority of locations (close to 85%), BOU provides two or more orders of magnitude
improvement with respect to NAT. SEER, on the other hand, provides significant improvement
over NAT for specific (g, q,) combinations, but may not materially help the worst-case instance

for each q,. Therefore, we find that its robustness enhancement is less than 10 at all locations

in the ESS.
Locations (%) = SEER BOU
100
80
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i

NN NN Robustness
10°0-10? 10%-102 10%-10®* 10%-10* >10* Enhancement

Figure 9.3: Distribution of enhanced Robustness (5D_DS_Q19)

9.6 Adverse Impact of Bouquet (MH)

Thus far, we have presented the improvements due to BOU. However, as highlighted in Chap-
ter 3, there may be individual g, locations where BOU performs poorer than NAT’s worst-case,
i.e. SubOpt(x,q,) > SubOptyersi(qs). This aspect is quantified in Figure 9.4 where the max-
imum harm is shown (on a linear scale) for our query test suite. We observe that BOU may

be upto a factor of 2 worse than NAT. Moreover, SEER now steals a march over BOU since
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it guarantees that MH never exceeds A (= 0.2). However, the important point to note is that
the percentage of locations for which harm is incurred by BOU is less than 1% of the space.
Therefore, from an overall perspective, the likelihood of BOU adversely impacting performance
is rare. Further, even in these few cases the harm is limited (< MSO-1), especially when viewed

against the order of magnitude improvements achieved in the beneficial scenarios.
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Figure 9.4: MaxHarm performance

9.7 Plan Cardinalities

The plan cardinalities of NAT, SEER and BOU are shown on a log-scale in Figure 9.5. We
observe here that although the original POSP cardinality may be in the several tens or hundreds,
the number of plans in SEER is orders of magnitude lower, and those retained in BOU is even
smaller — only around 10 or fewer, even for the 5D queries. This is primarily due to the
initial anorexic reduction and the subsequent confinement to the isosurfaces. The important
implication of these statistics is that the bouquet size is, to the first degree of approximation,

effectively independent of the dimensionality and complexity of the error space.

9.8 Commercial Database Engine

All the results presented thus far were obtained on our instrumented PostgreSQL engine. We
now present sample evaluations on a popular commercial engine, hereafter referred to as COM.

Since COM’s API does not directly support injection of selectivities, we constructed queries
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3D_H_Q5b and 4D_H_Q8b wherein all error dimensions correspond to selection predicates on the
base relations — the selectivities on such dimensions can be indirectly set up through changing
only the constants in the query. The database and system environment remained identical to
that of the PostgreSQL experiments.

Focusing on the performance aspects, shown in Figure 9.6, we find that here also large
values of MSO and ASO are obtained for NAT and SEER. Further, BOU continues to provide
substantial improvements on these metrics with a small sized bouquet. Again, the robustness
enhancement is at least an order of magnitude for more than 90% of the query locations, without
incurring any harm at the remaining locations (MH < 0). These results imply that our earlier
observations are not artifacts of a specific engine.
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Figure 9.6: Commercial Engine Performance (log-scale)
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9.9 MSO, Sensitivity to A Setting

Until now, both BOU and SEER were evaluated empirically over different metrics, by setting
the reduction-parameter A to 20%, a value that had been found in [46] to routinely provide
anorexic reduction over a wide range of database environments. However, a legitimate question
remains as to whether the ideal choice of A requires query and/or data-specific tuning. To
assess this quantitatively, we show in Figure 9.7, the MSO, values as a function of A over the
(0,100) percent range for a spectrum of query templates. The observation here is that the MSO,
values drop steeply with the use of covering enhancement and improve even further when A is
increased to 10%, and subsequently are relatively flat in the (10,30) percent interval, suggesting

that our 20% choice for A is a safe bet in general.
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Figure 9.7: MSO, vs Reduction-parameter ()
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Chapter 10

MSO Bounds for Ad hoc Queries

As discussed in the previous chapters, the sub-optimality guarantees of the PB technique are
contingent on the compile-time bouquet identification phase, whose overheads grow exponen-
tially with the number of EPPs in the query. Such overheads are acceptable in canned query
environments due to the expected amortization over repeated invocations for different instances
of the template query. However, when we turn our attention to ad hoc queries, the preprocessing
effort required in the query compile-time phase may not be practical.

In this chapter, we present a revamped algorithm PBay to specifically address the provi-
sion of MSO guarantees for ad hoc queries. The differentiating factor compared to PB is the
interaction style with the executor module, which is relaxed from the black-box mode of PB to
a white-box engagement for PBay. To elaborate, at the end of each cost-budgeted execution,
the query executor not only provides its completion status (black-box) but also provides the
progress achieved by the execution in terms of the cardinality of the output which is then used
to compute lower bounds on the error-prone selectivities. The white-box interaction helps in
bounding the number of 1D executions required to cross an isosurface — specifically in terms
of the number of EPPs in the query. Gratifyingly, over similar workloads to those considered

in the previous chapters, MSO, values are typically within a factor of 3 as compared to the
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black-box bouquet technique.

Like PB, the PBay technique can be implemented in a completely non-invasive manner
wrt the database engine, if an API that supports output cardinality feedback at the end of
each cost-budgeted execution is available. The infrastructure to support this facility already
exists in almost every modern database systems in the form of cardinality tracking or monitoring
modules. In fact, similar infrastructure is the basis of a recent feature in Micosoft SQL Server [5],
termed as ‘Live Query Statistics’ [1].

To suit ad hoc queries, PBay constructs the execution sequence in an on-the-fly manner,
requiring only a few calls to the query optimizer before each cost-budgeted execution. For
this purpose, PBay incorporates two new modules: (1) cost-budgeted planning, to create a
1D execution having maximum selectivity learning potential for the given cost-budget and (2)
intermediate query injection, to attack 1D subproblems for a query with multiple EPPs. Again,
both these modules are straightforward to implement through API level interaction with the
database engine, as explained later in this chapter.

We first show that for any query with single error-prone predicate, PBay can construct an
‘on-the-fly” execution sequence identical to that of PB and hence retains MSO, of 4. Next,
we generalize the PBay technique for the multi-dimensional version of the problem by using a
decomposition approach, i.e., ‘solve the multi-dimensional problem by attacking its constituent
1D subproblems’. With this approach, we show that the maximum number of executions to cross
any isosurface is upper bounded by w where D is the number of error-prone selectivities,
leading to MSO guarantees that are a lower order polynomial in D. Note here that PBay does
not require to enumerate any isosurface, hence it are referred to as wvirtual isosurface and the

ESS is referred to as virtual ESS (vESS) during this chapter.
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10.1 PBAH for 1D vESS

The PBay technique for a 1D query constructs an execution sequence identical to that of PB, we

first give a recap of the PB technique, followed by the difference in their construction mechanism.

Summary of PB in 1D vESS Recall from Section 4.1.1 that the PB algorithm for 1D vESS
is a sequence of cost-budgeted executions { P, cost(IC1)},{ Py, cost(1Cs)}, ..., { P, cost(1C,,)}
where the cost budgets corresponding to ICy, ICs, ..., IC,, are geometrically distributed with
initial cost value a and common ratio r such that cost(IC,,) = Cpa and 2 < Chnin <
cost(IC}) = a. This sequence of cost-budgeted executions is constructed by first enumerating
the optimal performance curve across the entire 1D selectivity range, and then identifying
appropriate selectivity locations g1, ¢a, - - ., ¢m, on the optimal curve such that P, (gx)=P; and
Copt (@)= cost(IC},).

Here, the novel aspect of PBay technique is that the generic execution ICY is created without
enumerating the entire selectivity range: Assuming ¢, > qr_1, we first identify the selectivity
location g from the selectivity range (¢x—1, Gmes |, and then use it to create the cost-budgeted
execution for /Cy. According to Lemma 4.1, this execution completes the query if g, € (qx—1, gk
], in which case the remaining executions (for ICx,; onwards) are not required to be identified.
Otherwise if terminated, it implies that ¢, > ¢, and the same process can be repeated to

find gr.1. The task of finding the next selectivity location ¢, is fulfilled by a new module,

cost-budgeted planning (CBP), described next.

10.1.1 Cost-Budgeted Planning (CBP)

Here, we find a query location with known optimal cost from among the locations in a 1D

selectivity range and return the optimal plan choice for it. Let us denote the lower bound and

upper bound on selectivity with ¢, and ¢,,, having default values 0 and 1, respectively.
Specifically, the module takes the query Q and a cost value Cp as input, along with

selectivity bounds ¢, and g¢,, such that c.p(g,) < Cpick < Copt(¢uy). The aim is to identify an
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intermediate selectivity location, denoted with gpcr, such that g, < Gpick = Gu and Copt(Qpick) =
Chick, and then return the plan P,y (gpcr). This process is illustrated in Figure 10.1 using the
green curve to represent virtual optimal cost surface. As discussed in Chapter 3, the optimal
cost curve is smooth and monotonic which implies that: (1) there exists (ezactly) one location
with optimal cost C,er between ¢, and ¢.,, (2) @pick can be location using binary search. Hence,
cost-budgeted planning is implemented as a binary search between ¢, and ¢,, through repeated
calls to the query optimizer module. Once g, is identified, we return the plan choice Pyt (qpick)
to create a cost-budgeted execution Ej, with ¢(Ey) = Popt(gpicr) and cost-budget w(Ey) = Cpick-

optimal cost
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Figure 10.1: Cost-budgeted planning (CBP)

Alternative Implementation We can also use exponential search [13] whenever ¢, < q.,
and Copt(qn) < Copt(qus), since our requirement of Chicr = 2 X Copt(q,) implies that guicr is

expected to be much closer to ¢, than q,,.

Discussion The 1D algorithm for PBay using CBP is outlined in Algorithm 4. Overall, since
the execution sequence for any ¢, is identical to that of PB, we conclude that PBay retains

MSO; of 4.
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Algorithm 4: PBay (1D)

Gw =0
G =1
// for each cost step IC}
for k=1 tom do
// cost-budgeted planning: search ¢, in the range (q,,q., ] using
cost(IC)) and return optimal plan at g
P, = CBP(Q, qi, qus, cost(ICy))
start executing plan Py
// perform cost-budgeted execution
while run_cost(Py) < cost(IC}) do
execute P
if P, completes execution then
return query result
end

end
terminate P, and discard partial results
Gw = qr + €

end

10.1.2 Characteristic of 1D Executions

Selectivity Learning Potential (SLP) for a cost-budgeted execution For a query
with 1 EPP, the SLP of a cost-budgeted execution £ = (P, () is defined to be the mazimum
selectivity value that can be completely learned by the execution E and is denoted with ¢f.
The SLP of an execution is given by the selectivity value at the intersection between the cost
curve for the plan P and the cost step C. Figure 10.2 visually shows the SLP for executions
created for cost-budgets C'1 and C2 by using plans P1 and P2. Clearly, for cost-budgeted
C1, execution with plan P1 has more SLP than with P2, while for cost-budget C2, more SLP

corresponds to the execution that uses plan P2.

SLP of execution created using CBP Now, since CBP always chooses the plan from the
intersection of cost-step with virual optimal cost curve, i.e. ,the infimum of cost-curves across all

plans, the resulting execution has mazimum SLP for the given cost-budget. As an implication,
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the executions performed by the 1D bouquet algorithm satisfies the following characteristics:
e when an execution with cost-budget C' is terminated, it implies that optimal cost of
solving the 1D problem is lower bounded by C,
e the only completed execution solves the 1D problem by learning the actual selectivity for

d. With at most twice the optimal cost required for solving the 1D problem.

10.2 PBAH for 2D vESS

The PBan technique for 1D query was simply to find the plan on only the next cost step, rather
than enumerating the entire optimal curve. A straightforward extension of this approach for
a query with multiple EPPs would be to identify the next multi-dimensional isosurface and
process plans present on it. However, since the plan-density reduction enhancements require
to first enumerate the isosurface which is not feasible in ad hoc environment, this may lead
to large number of executions for the isosurface and hence impractically large MSO, values.
Instead, we take a decomposition approach where the multi-D problem is solved by attacking
its 1D subproblems.

We first explain the technique using EQ2, a 2D query on TPC-H schema, as shown in

Figure 10.6 which enumerates orders of cheap parts from suppliers with low account balances.
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For this query, the two EPPs correspond to P L and S > L.

select *
from
part P, lineitem L, supplier S, orders O
where
P.p_partkey = L.l _partkey and S.s_suppkey = L.l_suppkey and
O.o_orderkey = L.|_orderkey and
P.p_retailprice < 1000 and
S.s_acctbal < 95

Figure 10.3: Example TPC-H Query EQ2

p_retailprice < 1000

p«<—L——0

s_acctbal < 95 S

Figure 10.4: Join Graph for EQ2

10.2.1 Intermediate Queries

Given any SPJ query Q, it can be represented using a join-graph G with relations as vertices
and join-predicates as edges. Also, the composite relation formed by combining relations in G
corresponds to the final output relation of Q. For instance, Figure 10.4 shows the join graph
for EQ2, where each directed edge represents a K-FK join predicate (pointing to K-side) and
the composite relation PSLO corresponds to the output relation of EQ2. Further, a connected
subgraph of G corresponds to a potential intermediate relation in the execution plan for Q. The
number of intermediate relations for a given query depends on the number of base relations and
the structure of the join graph. For instance, a star query with n base relations has (2" — 2)
intermediate relations e.g. the 6 intermediate relations for the star query EQ2 with 4 base
relations are shown in Figure 10.5.

Now, for each intermediate relation S, we can construct an intermediate query by selecting

from Q the relations, base-predicates and join-predicates that correspond to subgraph S and
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Figure 10.5: Intermediate relations for the example query EQ2

denote it with Q°. For instance, query text corresponding to intermediate relation PLO, i.e.

QPLO is shown below:

select *

from
part P, lineitem L, orders O

where
P.p_partkey = L.|_partkey and O.o_orderkey = L.l_orderkey and
P.p_retailprice < 1000

Figure 10.6: Intermediate query for PLO

10.2.2 Decomposition into Subproblems

For each intermediate relation (as well as output relation), the output cardinality can be written
as a function of the base relation cardinalities and the join-predicate selectivities. For instance,
denoting the selectivity of P 1 L with x and that of S < L with y, and knowing the selectivity

for K-FK join O > L to be the cardinality expressions for the intermediate relations

1
lop
corresponding to EQ2 are shown in Figure 10.7. While the current example has only join
predicates only, the concepts are easily extendible to error-prone base predicates as well.

Now, the vESS dimensionality of any intermediate query (as well as the query itself) is

given by the number of unknowns in its cardinality expression. Clearly, the dimensionality for

these queries range from 0 to D and they can be partitioned on the basis of their unknowns.
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Figure 10.7: Intermediate relations and their cardinality expressions

The intermediate queries with known cardinalities are denoted with Q%! and are distinguished
using box filled with green color in Figure 10.7. Further, 1-dimensional queries are highlighted
with closed curves in Figure 10.7 and denoted with Q?} where p represents the selectivity

dimension(s). Thus, we have:
o Q%= {QOL)
. Qi = { QP QPLO
e QY = { Q5% QS0 )
e Qi) — [ QPSE, QPSIO )

Here, both Q{*} and Q¥} are 1D subproblems for the 2D example query. Clearly, the number
of 1-dimensional subproblems for a D-dimensional query is given by D, one corresponding to
each error-prone selectivity. The subproblem Q{*¥} is a 2D problem which will be converted

into 1D subproblem after one of the selectivity is completely learned.

10.2.3 Solving 1D Subproblems Using Repeated Invocations of CBP

The module CBP creates a sequence of executions with maximum SLP for a given 1D query.

But, in the case of 1D subproblem of a higher-dimensional problem, it has been shown above
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that each 1D subproblem may correspond to multiple intermediate queries, each of which has
its own optimal cost curve.

Here, the execution for dimension z is identified by using repeated invocations of CBP once
for each intermediate query in the 1D subproblem Q{*}, and choosing the one with maximum
SLP. This idea is visually highlighted through Figure 10.8 where the red dot corresponds to

larger selectivity as compared to the blue dot.

N

optimal cost

copt(qub )

Cpick

x(qlb) x(é'picl selectivity-x X(qub)'

Copt(q,)

Figure 10.8: Execution with maximum SLP using repeated invocations of CBP

One execution per 1D subproblem Since the above execution corresponds to maximum
learning potential for dimension x, any other execution created using a intermediate query in
Q{*} cannot improve upon the selectivity learning with the same cost-budget. Hence, gen-
eralized CBP ensures that only one execution is sufficient for a given 1D subproblem, i.e.

combination of a cost-budget and a query set Q{#}.

10.2.4 Implications of 1D Executions

Terminated execution If the execution for Q{*} with budget cost(ICy) is terminated, then
it means that any plan for Q that uses intermediate relations from the set Q1*} cannot complete

the query within budget cost(ICY).
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Completed execution If the execution for Q1*} completes within its budget cost(IC}), then
it implies that the actual selectivity x can be completely learned using the output cardinality
feedback from the execution. For example, if the completed execution using Q7*© returns 1000
tuples as output, then x can be computed by solving the corresponding cardinality equation
x|L| = 1000. As a side-effect of such complete learning, the 2D subproblem Q=¥ also gets

converted to a 1D problem and leads to the following reorganization of the intermediate queries:

° Q¢ — {QOL’ QPL’ QPLO }

e QW = {QSL7 QSLO, QPSL, QPSLO }

Intuitively, a terminated execution temporarily restricts the usage of intermediate relations
for the current virtual isosurface and hence reduces the space of plans that can complete Q
within budget cost(IC%). Note that all such dimensions are revived automatically once the
budget is increased. On the other hand, a completed execution permanently reduces the vari-

ability in the cardinalities of the intermediate relations.

10.2.5 Number of 1D Executions to Cross an Isosurface

Only terminated executions If the execution for Ql} is terminated, we move on to create
an execution for the other 1D subproblem Q™ with the same budget cost(ICy). If the second
execution also gets terminated, then we can say that ¢, (¢.) > cost(IC}), since it is not possible
to construct an execution plan for Q without using any intermediate node from Qi U Q).
As an instance from EQ2, the output relation PSLO for Q cannot be constructed using only
PSL and OL as intermediate relations. Overall, if all executions are terminated then there can
be at most 2 executions with same budget cost(IC}y), and it is also implied that the isosurface

is crossed, i.e., cost(q,) > cost(ICy).

With one completed execution In the other case when the execution for Q¥} is completed,

it leads to conversion of Q*¥} to Q{#}, therefore reviving the z dimension for the current
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isosurface. Since Q has now become a 1D problem, it requires only 1 execution per isosurface.
Hence, there will be at most 3 executions with cost(ICy) as budget — e.g., (1) terminated for
x, (2) completed for y, and (3) terminated/completed for = (converted from xy). If the last
execution is completed then the 2D problem is solved, otherwise it continues as a 1D problem

for the following isosurfaces.

10.3 PBay for Multi-D vESS

In general, the algorithm for multi-D vESS is to identify the set of intermediate queries for
each dimension and use them to find the execution with maximum SLP using repeated calls
to the CBP routine. These 1D executions either result in complete selectivity learning of the
dimension which result in reduced dimensionality of the vESS and also possible revival of other
dimensions. On the other hand, in case we find that executions for all the remaining dimensions
are terminated, we can increase the cost-budget and start performing executions for the next

isosurface. The pseudocode for PBay algorithm is shown in Figure 10.9.
10.3.1 Implications of 1D Executions

We first recall two crucial facts regarding our decomposition approach for multi-D vESS, i.e.,

1. Any 1D execution requires only one execution per cost-budget.

2. The number of 1D subproblems is exactly D.

Now, the importance of completed 1D executions is already evident from the fact that each
such execution has the ability to reduce the dimensionality of the original problem one by one,
finally reaching a 1D problem that requires only 1 execution per isosurface. Next, we present
the generic result that establishes the ability of terminated executions to make progress in

solving a D-dimensional problem.

Result 1 For a given query Q with multiple error-prone selectivities, if the execution created

using a 1D subproblem Q*} for budget cost(ICy) is terminated, then any plan for Q that uses
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PBan PseudoCode (multi-D)

qlb= (0’05 ctt O);

Qo = (1,1, ..., 1); //initialize the selectivity bounds
D. = {z1,%2,...,2p} //set of error-prone dimensions
k =1;

complete = false;

while(complete == false) { / /execution-loop until query completes
Restart:
for (z; in D.) { //for each error-prone dimension
Q% = findIntermediateQueries(xz;); //find set of 1D intermediate queries for the
required dimension z;
Pfi = CBP(Q%, z;(qy), ®;(q.,), cost(ICk)); //find max SLP execution for z;

through repeated calls to the CBP routine for different queries corresponding to z;
execInfo = CBEw g (PF, cost(ICk));
status = execInfo.status;
selec,, = execInfo.learnedSelec;

if (status == terminated)
¢, = update(q,,, selecy,);
else {

g1, = update(q,,, selecy,);
q., = update(q.,, selecy,);
D. = De - {m;}; //error-prone dimensions reduce by 1

reorganize intermediate query partitions and find revived dimensions;
goto Restart;

}
}

if (D, is non-empty)

kt+; //jump to next isosurface
else

complete = true;

}

execute P, (q,,);

Figure 10.9: Bouquet Algorithm for Adhoc queries

an intermediate relation from the set Q1*} cannot complete execution of Q within the budget

cost(1Cy).

Proof: Since the evecution with mazimum learning potential for QY and budget cost(IC}) is
terminated, we know a lower bound on actual selectivity of x. The lower bound on x is such
that all the intermediate relations in Q' have cost more than cost(ICy,). As a result, any plan

for Q that uses one or more intermediate relations from Q=} costs more than cost(ICy) and

hence cannot complete within budget cost(ICY).

105



Unlike completed execution, a terminated execution does not have the permanent benefit
of reducing the dimensionality and hence leads to wasted overheads in the bouquet execution
sequence. But since any execution plan for Q must use at least one intermediate relation from

the 1D subproblems of Q, the following result holds true:

Lemma 10.1 For a query Q and budget cost(ICYy), if the executions are terminated for all the

1D subproblems, then optimal cost for Q is certainly more than cost(1Cy).

Maximum Number of 1D executions to cross an isosurface Here, we prove results

regarding the number of executions for a given cost-budget, using the above lemma:

Result 2 For a query with D error-prone dimensions, the maximum number of terminated
executions with a fixed cost-budget is D.
Proof: Since the initial number of 1D subproblems is D and if all executions are terminated

then none of the subproblems is revived in the process.

While the sequence of only terminated executions is bounded by D, the total number of
1D executions for a given virtual isosurface can still be more than D if one of the executions is
completed. This is because a completed execution can cause reorganization of the intermediate
queries across the subproblems and hence may lead to revival of the subproblems for which a

terminated execution has already been performed.

Result 3 For a query with D error-prone dimensions, the mazximum number of executions

D(D+1)

(terminated or completed) with a fived cost-budget is ==

Proof: We know that a terminated execution cannot reduce the dimensionality of the problem
and a completed execution can revive the subproblems for which execution has been terminated
with the same cost-budget. Hence, to waste maximum execution effort before reducing the di-
mensionality due to a completed execution, there can be at most (D — 1) terminated 1D execu-

tions. After that, one ‘completed’ execution leaves a (D — 1) dimensional problem to be solved.
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Hence, the maximum number of 1D executions with a given cost-budget is given by the following

recurrence relation:

NumPExec(D) = [(D — 1) + 1] + NumExec(D — 1) with NumEzec(l) =1

D(D +1)

= NumEzec(D)=D+ (D—-1)+(D—-2)4+..+2+1= 5

10.3.2 MSO, Analysis for Generic Multi-D vESS

With the above, we prove the following result regarding the MSO, of the bouquet execution

sequence.

Theorem 10.1 The MSO, is mazimized when, for actual query location q, € (ICx_1, ICy, ],
the bouquet executions are distributed among the isosurfaces in the following fashion: [nyi, na,
ns, ..., g1, ng/ = [D, D, D, ..., D, W/. With such an execution sequence, MSOy is given
by (5) D* + (555 D.
Proof: We prove the first part by contradiction and then compute the MSOg for the given
sequence.

Assume that the cost-budget for the first isosurface that covers q, is C. The cost budgets for

c_ _cC c

previously processed isosurfaces are: [ch_l, T TheFr s oo CJ.

First we compute the total cost for the proposed bouquet execution sequence and then show
that any change to the above sequence will only decrease the total bouquet execution cost.

Step 1: The total overheads for the proposed sequence are given by:

CB(*#Ia):(DXrk—czl)JF(DXTk—g)+<DXTk—g>+-~-+<ng>+(wXC)

1 1 1 D(D +1)
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Step 2: If only one of the selectivities is learned on the previous isosurface, it will cause
reduction in the number of executions on the last isosurface and increase in executions on the
previous surface, the new execution counts will be: [D, D, D, ..., D+ (D —1), @] and the

bouquet cost will be bounded by:

1 1 1 D -1 D(D -1
CBnew(*7Qa)§C(Dx(Tk_1+rk—2+“'+;)+( . )+ (2 )>

Now, the increase in cost is given by:

Acn(#,qu) = C <(D— 1) n DD-1) D(D+1))

r 2 2
—C (@ —D) _C ((D(l —TT) - 1))

1
D

Hence, the bouquet cost can increase only if r < 1 — = which is a contradiction since r > 1
and D > 1.
MSO, computation: Overall, this implies the total execution cost is upper bounded by

WC + D x (% + % + ...) while the oracle’s cost for qq, is g + € giving a MSO guarantee of:

D(D+1) 11
MSOg:rx[T%—Dx(;%—ﬁnL...)]
mso, = 22T L p

2 r—1

0, (5) 5+ (322)

We get MSO, to be D(D + 3) for r = 2. Further, the MSO, expression reaches its minimum

2
/2 D(D +1
value for, r =1+ DIl leading to MSO, = (\/5+ —< 2+ )) )
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10.4 Performance Results

10.4.1 MSO bounds

Unlike PB where the MSO, depends on the density of the plans on isosurfaces, PBay provides

MSO, as a monotonically increasing function of D, as highlighted in Figure 10.10.
120.00
+MSO_g
100.00
80.00
60.00
40.00

20.00

0.00

Dimension

Figure 10.10: MSO; increase with dimensions

Interestingly, even without any preprocessing effort, PBay could achieve MSO guarantees
not much worse compared to PB— the comparison is given in Table 10.1. As we can observe,
MSO, does not degrade by more than a factor of 3 for most queries. Although there is no
query in our suite for which PBay performing better than PB— it is, in principle, quite possible
because PBay has the advantage of using feedback information from the executions and has
a fixed number of executions per isosurface. On the other hand, PB depends on heuristic

enhancements and off-line processing to reduce the isosurface plan-densities to practical levels.

10.4.2 Other empirical observations

In addition to the MSO bounds, we also performanced experiments to analyze PBay with regard

to empirical MSO performance and number of plans used. It was found that, the empirical MSO

109



Query MSO, MSO; (r=2) | MSOg (optimal 7)
(Anorexic + CSI) (PB/_\H) (PBAH)
3D_H_Q5 8.4 18 17.5
3D_H_Q7 7.2 18 17.5
3D_DS.Q15 9.2 18 175
3D_DS_Q96 8.8 18 17.5
4D H Q8 15 28 26.7
4D _DS_Q7 9.1 28 26.7
4D_DS_Q26 8.1 28 26.7
4D_DS_Q91 16 28 26.7
5D_H_Q7 15 40 37.3
5D_DS_Q19 15 40 37.3

Table 10.1: Guarantees in ad hoc query environment

performance was much better compared to the MSO bounds, this happened because the bounds
take care of the worst case where the dimensions are repeatedly revived on many consecutive
isocost surfaces — which rarely happened in practice. Overall, empirical MSO varied between
10 to 20, which was significantly better than corresponding values of MSO bounds specifically
for high dimensional queries.

Also it was found that, for different ¢, instances of same query, PBay uses different set of
plans in the execution sequences — this is in contrast with PB which uses a small set of preidenti-
fied executions to execute any ¢, in the ESS. This is expected because PB spends preprocessing
effort to find a small execution sequence for the entire ESS using various enhancements like
execution swallowing and execution covering, while PBay cannot utilize any enhancement and
prepares the execution sequence for a given ¢, in an on-the-fly manner. More importantly,

PBan still provides empirical sub-optimality performance comparable to that of PB.
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Chapter 11

Discussion

Having presented the mechanics and performance of the bouquet approach, we now take a step
back and relook at the ways to relax some of the optional assumption made during the thesis.

Next, we critique the bouquet technique, and then explore the deployment scenarios.

11.1 Revisiting Assumptions

In this section, we revisit certain issues that are very important in terms of their impact
execution plan sub-optimality but were initially avoided using simplying assumptions. We made
those assumptions so that the discussion can be focused on the primary issue of selectivity
estimation errors. Now, we revisit these optional assumptions of the bouquet approach and

propose possible direction(s) in which they can be addressed within the bouquet framework.
11.1.1 Selectivity Independence Assumption

Intra-relational predicate combinations

Usually, selectivity independence is employed to compute the overall selectitivity for a com-
bination of intra-relational predicates — this is not necessarily true for the bouquet approach.

The reason for the above property is that, due to the exploratory nature of plan bouquet ex-
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ecution(s), the actual combined selectivity can be usually discovered by evaluating all filter
predicates over the output received from the relational scan operator without any significant
cost overhead. Of course, it is valid only when the predicate evaluation costs are insignificant
compared to scan operator’s cost.

For example, consider the following query over standard TPC-H schema.

select *

from lineitem, orders, part

where |_orderkey = o_orderkey and |_partkey = p_partkey and p_retailprice < 1000 and p_type =
'SMALL'

This query gives the order details of cheap and small parts in the data. Here, the predicate
|_orderkey = o_orderkey is join-predicate among the relations lineitem and orders and | _partkey
= p_partkey is a join-predicate among the relations lineitem and parts — the remaining two
predicates are filter predicates on the relation part.

The standard query processing architecture employs binary operators for joins, i.e., joins two
relations at a time. Due to this fact, an operator can employ only one of the join-predicate, but
this restriction is not there on scan operators for base relations. Hence, combined selectivity
for filter predicates p_retailprice < 1000 and p_type = 'SMALL" need not be estimated but can

be discovered using a single scan operator.

Independence among join-predicates

Until now in the thesis, selectivity independence assumption has been employed whenever it
is required to compute the combined selectivity of more than one join-predicate. Next, we
propose a possible direction in which bouquet approach can be extended without making the
independence assumption among the join-predicates.

Specifically, join-predicate independence assumption implies that the selectivity of a predicate

join-predicate does not depend on whether it has been used before or after employing another
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join-predicate. Consider the cardinality expressions of query EQ2 (in Chapter 10) repeated
in Figure 11.1a. Here, the selectivity of (P X L) join remains = even when it is used in

P X (S X L), where it is employed after S X L and results in cardinality expression xy|L|.

XY, L] or y1X, [L|

base-relations
[Pl L] ISIi o]
(a) with join-predicate (p) Withoutjoin-predicatg
independence assumption independence assumption

Figure 11.1: Cardinality expressions with and without join-predicate independence assumption

Consider the case when the join-predicates do not have independent selectivities, let us
denote the selectivity of join-predicate P X L with z; when used directly and x5 when used
after join-predicate S X L. Similarly, denote the selectivity of S X L with yo when used after
P X L and y; when used directly. Note that, these selectivities are still independent wrt the
predicate O X L since every tuple will satisfy the join-predicate with relation O as it does not
face any loss of keys. The resulting cardinality expressions are shown in Figure 11.1b. Here,
the cardinality of PSL is y;2z2|L| when the join-order is P X (S X L) and z1y2|L| when the
join-order is (P X L) X S — clearly y125|L| = z1y2| L.

With independence assumption (INDEP case), it was a 2D problem where the cardinality
of all the intermediate relations (as well as the output relation) could be computed after learning
the actual value of = and y. While in the absence of independence assumption (DEP case), it
is a 3D problem as it need to learn the actual values of x1, y1, y2 or x1, y1, T2 to compute the

cardinalities for all the relations. To elaborate, while the completed execution for x; converts
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the 2D subproblem {PSL, PSLO} from zyy, into 1D subproblem with dimension s, it does
not merge with the dimension y; for {SL, SLO}.

The new problem is equivalent to a problem with the following variables: X = x|L|,
Y = wy|L| and Z = x1y9|L| = wy1xo|L|, where X, Y, Z are the output cardinalities of
{PL,PLO}, {SL,SLO} and {PSL, PSLO}, respectively. Once X, Y and Z are known, all
the variable x1,z9, y1, and ys can be computed from them. Thus, in general, the dimensionality
without independence assumption is the number of intermediate relations with unique cardi-
nality expressions, instead of the number of error-prone predicates, and can be denoted with
D*. Further, since usage of CBP ensures one execution (completed or terminated) for each
of these variables, the maximum number of executions per isosurface is given by D*. To put
things in perspective, the new dimensionality D* for a star-query with all D join predicates
being error-prone will be given by 2” — 1. Coincidentally for the example query EQ2, the ad-
verse impact is not significant and MSO, increases from 10 to 12 (=4 x 3) when join-predicate
independence assumption is relaxed. Similarly, the increased values of MSO, for our test suite
of queries is given in Table 11.1. It is an interesting future work to analyze the tightness of

these MSO, values.

Query MSO, (r=2) | MSO; | Query Graph
(INDEP) | (DEP) | (# relations)
3D_H_Qb 18 24 chain(6)
3D_H_Q7 18 24 chain(6)
3D_DS_Q15 18 24 chain(4)
3D_DS_Q9%6 18 23 star(4)
4D_H_Q8 28 48 branch(8)
1D DS Q7 28 60 star(5)
4D_DS_Q26 28 60 star(5)
4D_DS_Q91 28 88 branch(7)
5D_H.Q7 10 60 chain(6)
5D_DS_Q19 40 96 branch(6)

Table 11.1: MSO guarantees without join-predicate independence assumption
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11.1.2 Perfect Cost Model

Thus far, we had catered to arbitrary errors in selectivity estimation, but assumed that the cost
model itself was perfect. In practice, this is certainly not the case, but if the modeling errors
were to be unbounded, it appears hard to ensure robustness since, in principle, the estimated
cost of any plan could be arbitrarily different to the actual cost encountered at run-time.
However, we could think of an intermediate situation wherein the modeling errors are non-zero

but bounded — specifically, the estimated cost of any plan, given correct selectivity inputs, is

estimate, 1
known to be within a § error factor of the actual cost. That is, Cestimated [(1 )’ (1+9)].
Cactual

Our construction is lent credence to by the recent work of [87], wherein static cost model
tuning was explored in the context of PostgreSQL — they were able to achieve an average o
value of around 0.4 for the TPC-H suite of queries. This “unbounded estimation errors, bounded
modeling errors” framework is amenable to robustness analysis and leads to following result:

Theorem 11.1 If the cost-modeling errors are limited to error-factor 6 with regard to the actual
2

cost, the bouquet algorithm ensures that: MSO, = (1+6)%p L 1
r —

The effectiveness of this result is clear from the fact that, when 6 = 0.4, corresponding
to the average in [87], the MSO, increases by at most a factor of 2. Such low value of § is
also corroborated by the views of industry experts [62] based on their experience in real world
scenarios.

Chouguet(qa) = 0(a + ar + ar? + ...+ ark’l) — ark’Q(é — %) (11.1)

. . . k—2 .
And the corresponding cost for "oracle” algorithm is *~+—, causing

a(rk— —
g gph2(5 - 1y
SubOpt(x,q,) < (11.2)

ark—2

5
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MSObounded,modeling,error S 52]\4SOperfect,model - (52 - 1) (1 1. 3)

MSObounded,modeling,error S 52 (MSOperfect,model - 1) + 1 (1 1 4)

11.1.3 No known Selectivity Bounds and Lack of Absolute Metric

Until now, we have presented performance of the bouquet algorithm only on the sub-optimality
based metrics, and also assumed that no bounds on selectivities are known. Here, we propose
extensions to the bouquet approach where we consider the usage of selectivity bounds to improve

execution performance and also propose another absolute performance metric for bouquet style

execution approaches.
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Figure 11.2: Utilizing lower bound (LB) and upper bound (LB) on selectivities

Using Selectivity Bounds While worst case guarantees in the absence of selectivity bounds
are the primary benefit of the bouquet approach, the technique can also utilize lower and upper
bounds on error-prone selectivities, if they are available. Specifically, these can be utilized to
restrict and identify the relevant portion of the ESS which may help in improving the MSO

performance by skipping irrelevant executions from the original cost-budgeted sequence, as
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shown in Figure 11.2. In this Figure, the selectivity bounds help to skip 22 out of 32 executions

and the execution sequence is only {Ella E127 E18> E19, EQ(), E24, E25, E267 E’277 Ego }

An Absolute Metric Here, we analyze the total (absolute) execution cost for the bouquet
and show that it is a function of the maximum isosurface plan-density along with the optimal
execution cost of the terminal execution, i.e., execution corresponding to the upper bound on
selectivities. Further, we observe that this absolute metric, i.e., total bouquet execution cost,
can be improved by trading off with the MSO guarantee provided by the sequence.
Specifically, for 1D ESS with cost ratio r, we know that the worst case sub-optimality is

2
d 7 and the total bouquet execution cost is given by TAC = (1 +

bounded by MSO, =
1

r—1

Both these metric decrease steeply in the range (1,2] after which MSO, starts increasing while

)Cmaz- Figure 11.3 shows the variation of MSO, and gﬂ with increasing cost-ratio r.

gf‘g continues to decrease to asymptotically reach 1. For r = 2, TAC is 2C,,,, and when 7 is

increased to 4, TAC decreases to 1.33C),q, while MSO, increases to 5.33.
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Figure 11.3: Variation of MSO, and % with cost-ratio r
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11.2 Critique of Bouquet Approach

Generic limitations of plan-switching approaches Being a plan-switching approach, the
bouquet technique suffers from the drawbacks generic to such approaches: Firstly, they are poor
at serving latency-sensitive applications as they have to perforce wait for the final plan exe-
cution to return result tuples. Secondly, they are not recommended for update queries since
maintaining transactional consistency with multiple executions may incur significant overheads
to rollback the effects of the aborted partial executions. Finally, with single-plan optimiz-
ers, DBAs use their domain knowledge to fine-tune the plan using “plan-hints”. But this is
not straightforward in plan-switching techniques since the actual plan sequence is determined
only at run-time. Notwithstanding the limitations, such techniques are now featured even in
commercial products (e.g. [2]).

There are also a few problems that are specific to the bouquet approach, the first one is appli-

cable to both PB and PBay while the other two are specific to PB technique:

Unsuitable for small estimation errors The bouquet approach is intended for use in diffi-
cult estimation environments — that is, in database setups where accurate selectivity estimation
is hard to achieve. However, when estimation errors are apriori known to be small (but selec-
tivity bounds are not explicitly available), re-optimization techniques such as [65, 12], which
use the optimizer’s estimate as the initial seed, are likely to converge much quicker than the
bouquet algorithm, which requires starting at the origin to ensure the first quadrant invariant.

But, if the estimates were apriori guaranteed to be under-estimates, then the bouquet algorithm

can also leverage the initial seed.

Changes in data-distribution While it is inherently robust to changes in data distribution,
since these changes only shift the location of ¢, in the existing ESS, the same is not true
with regard to database scale-up. That is, if the database size increases significantly, then the

original ESS no longer covers the entire error space. An obvious solution to handle this problem
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is to recompute the bouquet from scratch, but most of the processing may turn out to be
redundant. Therefore, developing incremental bouquet maintenance strategies is an interesting

future research challenge.

Dimensionality of selectivity error space The dimensionality of error space can be huge
for complex queries which has direct impact on the bouquet identification overheads as well as
the MSO,. In addition to error-prone selectivity dimensions, even parameterized predicates (if
any) need to be included in the ESS causing further increase in bouquet identification over-
heads — although bouquet execution considers only appropriate subspace using the instantiated
parameters at run-time. But, it is important to note that, a complex query does not necessarily
imply a commensurately large number of error dimensions because: (i) The selectivities of base
relation predicates of the form “column op constant” can be estimated accurately with current
techniques; (ii) The join-selectivities for PK-FK joins can be estimated accurately if the entire
PK-relation participates in the join. Still, techniques need to be developed in future to identify

and remove those dimensions whose impact on MSO, is negligible compared to others.

11.2.1 Deployments Aspects

Given the above discussion, the bouquet approach is currently recommended specifically for
providing response-time robustness in large archival read-only databases supporting complex
decision-support applications that are likely to suffer significant estimation errors. We expect
that many of today’s OLAP installations may fall into this category. We wish to highlight that
from a deployment perspective, the bouquet technique is intended to complementarily co-exist
with the classical optimizer setup, leaving it to the user or DBA to make the choice of which

system to use for a specific query instance.
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Chapter 12

Conclusions and Future Directions

Selectivity estimation errors resulting in poor query processing performance are part of the
database folklore. While there has been many innovative research proposals that are capable
of ameliorating the adverse impact of these errors on the execution performance, none of them
provide any performance guarantees. The contribution of this thesis is a new query processing
framework which is based on discovery of error-prone selectivities in a controlled manner and
allows theoretical analysis of the performance as compared to an oracular system that magically
knows the correct values for these selectivities.

Next, we summarize the conclusions of this thesis in the direction of achieving execution
performance that is robust to selectivity estimation errors followed by outlining a number of

potential areas for further research to achieve the larger goal of robustness in query processing.

12.1 Conclusions

In this thesis, we investigated a new approach to this classical problem, wherein the estima-
tion process was completely discarded for error-prone predicates. Instead, such selectivities
were progressively discovered at run-time through a carefully graded sequence of cost-budgeted
executions from a “plan bouquet”. The execution sequence, which followed a cost-doubling

geometric progression, ensured that the overheads are bounded, thereby ensuring MSO, of 4
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times the plan cardinality of the densest isosurface. Also, incorporating randomized strategies
in the above algorithm brought down the multiplicative factor of 4 to only 1.8 as the guaran-
tee on the expected performance. To the best of our knowledge, such bounds have not been
previously presented in the database literature.

We also proposed an efficient isosurface identification algorithm for pragmatic overheads
during bouquet identification, and two compile time enhancements that significantly improved
the worst case guarantees. Together they ensured that MSO, was less than 20 across all the
queries in our evaluation set, an enormous improvement compared to the MSO performance
of the native optimizer, wherein this metric ranged from thousands to millions. Further, the
bouquet’s ASO performance was always either comparable to or much better than the native
optimizer, with most of the query locations having a sub-optimality of less than 4. While
the bouquet algorithm did occasionally perform worse than the native optimizer for specific
query locations, such situations occurred at less than 1% of the locations, and the performance
degradation was relatively small, a factor of 2 or less.

Finally, we also extended the bouquet approach to handle the query scenarios where the
preprocessing effort at compile-time may not be feasible, including ad hoc queries and queries
with larger number of error-prone dimensions. In this direction, we designed a revamped
algorithm that exploits the output cardinality of the cost-budgeted executions to learn lower
bounds on error-prone selectivities and generate the execution sequence in an on-the-fly manner.
Even with its dynamic nature it follows a bound on the number of executions per virtual
isosurface leading to performance guarantees as a function of number of error-prone dimensions.
Interestingly, the MSO guarantees with this approach are found to be within a small factor of

the values that could be achieved with the preprocessed bouquet sequence.

12.1.1 Relevance in Non-relational Systems

In recent times, the database community has seen a large number of attempts to suit different

kinds of data processing requirements and do not resemble the traditional relational database
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systems, which is the primary focus of this thesis. Still, we wish to highlight that the proposed
techniques are useful in any system that uses selectivity inputs to choose the ideal execution
plan and the chosen plans satisfy the monotonicity and smoothness assumption. In general, the
underlying ideas have the potential to improve query processing performance in other systems
as well, due to below mentioned reasons.

The first and foremost advantage with bouquet technique is that it can achieve reasonable
query processing performance even in the complete absence of any statistical information about
the data — the mandatory information required is only the base-relation cardinalities which can
be trivially managed. In contrast, the statistical information seems vital for selection of rea-
sonable plans in any system where there are large number of executions choices having widely
varying execution times. Many data processing systems handle this absence of meta-data infor-
mation by either directly using imperative code or commodity hardware to execute otherwise
highly suboptimal plans, which is not always sufficient to achieve near-optimal performance.

Further, the decision to start exploration with a plan that is optimal for very small selectivity
and to maintain sufficient cost gap (e.g. geometrically increasing) between the exploratory
executions ensures that the relative overheads increase quite slowly as compared to the absolute
overheads. These ideas are generic and can be used even if the system does not really have
a cost-based optimizer and/or satisfies the optimal cost monotonicity properties in piecewise

manner.

Closing Statement In closing, the bouquet approach promises an easy to deploy solution
with guaranteed performance and repeatability in query execution, features that had hitherto

not been available, thereby opening up new possibilities for robust query processing.

12.2 Future Directions

This thesis gives an initial set of query processing techniques that are easy to deploy and

amenable to theoretical performance analysis. We now turn our attention to some interesting
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future directions which highlight the fertile research ground provided by the plan bouquet

framework:

1. Dynamically learned cost model: While we have analyzed the impact of the cost
modeling errors on the performance guarantees in terms of a known factor 4, it is inter-
esting to see whether the unpredictable run-time conditions due to fluctuating workload

situations can also be handled in the learning-based framework of plan bouquet.

2. Bouquet technique for a workload: In this thesis, our focus was to analyze the exe-
cution performance overheads for a single independent query in the system. With more
queries in the simultaneous workload there are more opportunities in sharing the selec-
tivity learning and even sharing the execution subplans, which hints towards a potential

area for further research.

3. Removing the join-predicate independence assumption: In this direction, we have
already provided a first cut solution by extending the ‘on-the-fly’ bouquet construction
algorithm. But this direction still needs further research to explore the looseness of these

MSO bounds.

4. Tightness of performance guarantees: In this thesis, we presented suboptimality
guarantees for multi-dimensional queries and also proposed enhancements that empiri-
cally improve the guarantees to a significant level. But it was not analyzed whether the
proposed upper bounds are tight or there is still scope of further improvement — a theo-
retical analysis in this regard is required to fully understand the capabilities of discovery

based query processing techniques.

5. Exploiting the behavior of optimal cost profile: In this work, the only requirement
is that the optimal cost profile should be monotonic wrt increase in selectivity inputs. It

has also been observed that, the slope of the optimal cost profile actually decreases as we
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move along the selectivity dimensions. This concave behavior of optimal cost profile helps
indirectly by improving the effectiveness of the execution covering enhancement but it has
not been included in the formal analysis, which may possibly lead to improved guarantees
for at least those queries where concave behavior can be inferred from the query structure

— this is another interesting direction for future research.

. Reduction in preprocessing overheads: The NEXUS algorithm brings the prepro-
cessing requirement down by at least an order of magnitude for most high-dimensional
queries, but most of the plan executions identified in this process are later skipped by the
plan swallowing and covering enhancements. Thus, it can be interesting to see whether
it is possible to directly identify or at least approximate the execution sequence (after
both enhancements) without actually identifying the much larger initial sequence through

NEXUS.

. Ranking of error-prone dimensions: It is clear, even with NEXUS algorithm, the
overheads of identifying complete bouquet sequence still increase at a significantly high
rate when the dimensionality of selectivity error space increases. One possible direction to
keep the overheads in control is to rank the error-prone dimensions and skip the low-rank
dimensions such that there is a tradeoff between the bouquet identification overheads and

the degradation in MSO guarantee due to the left over dimension(s).

. Incremental bouquet maintenance: The bouquet algorithm for canned queries work
by identifying a fixed execution sequence at compile-time and then using the deterministic
sequence to handle any query instance in the selectivity error space. While this bouquet
sequence can withstand any change in the distribution of data, any change in data scale
makes it unsuitable for query instances in the new selectivity error space. To handle this,
a straightforward approach is to compute the entire execution sequence from scratch, but

this may cause redundant work in the exploration phase. Hence, it would be interesting
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to see whether the additional work required to update the bouquet execution sequence

can be minimized.
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12.A Appendix

12.A.1 Query Text (based on benchmark queries)
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select

from

where

n_name,
|_extendedprice * (1 - |_discount) as revenue

customer, orders, lineitem, supplier, nation, region

c_custkey = o_custkey and |_orderkey = o_orderkey

and |_suppkey = s_suppkey

and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and o_orderdate >= 1994-01-01

and o_orderdate < 1994-01-01 + interval '25" day

and c_acctbal <= 9900 and s_acctbal <= 9900

Figure 12.1: 3D_H_Q5 (Based on TPC-H Query 5)
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select

n_name,

sum(l_extendedprice * (1 - |_discount)) as revenue
from

customer, orders, lineitem, supplier, nation, region
where

c_custkey = o_custkey

and |_orderkey = o_orderkey

and |_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_.name = 'ASIA’

and o_totalprice < $X1

and c_acctbal < $X2

and |_extendedprice < $X3
group by

n_name
order by

revenue desc

Figure 12.2: 3D_H_Q5° (Based on TPC-H Query 5)

select

supp_nation, cust_nation, |_year, volume
from (

select
nl.n_name as supp_nation, n2.n_name as cust_nation,
extract(year from |_shipdate) as |_year, |_extendedprice * (1- |_discount)
as volume

from
supplier,lineitem, orders, customer, nation nl, nation n2

where
s_suppkey = |_suppkey and o_orderkey = |_orderkey
and c_custkey = o_custkey and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and |_shipdate between date '1995-01-01" and date '1996-12-31'
and c_acctbal <= 9900 and s_acctbal <= 9900 )

Figure 12.3: 3D_H_Q7 (Based on TPC-H Query 7)
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select
supp_nation, cust_nation, |_year, volume
from (
select
nl.n_name as supp_nation, n2.n_name as cust_nation,
extract(year from |_shipdate) as |_year, |_extendedprice * (1- |_discount)
as volume
from
supplier,lineitem, orders, customer, nation nl, nation n2
where
s_suppkey = | suppkey and o_orderkey = |_orderkey
and c_custkey = o_custkey and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and ( (nl.n_name = 'FRANCE' and n2.n_name = 'GERMANY")
or (nl.n_name = 'GERMANY" and n2.n_name = 'FRANCE’) )
and |_shipdate between date '1995-01-01" and date '1996-12-31'
and c_acctbal <= 9900 and s_acctbal <= 9900 )

Figure 12.4: 5D_H_Q7 (Based on TPC-H Query 7)

select
o_year, volume
from (
select
extract(year from o_orderdate) as o_year, |_extendedprice *
(1-I_discount) as volume, n2.n_name as nation
from
part, supplier, lineitem, orders, customer, nation nl, nation n2, region
where
p_partkey = |_partkey and s_suppkey = |_suppkey
and |_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey and nl.n_regionkey = r_regionkey
and s_nationkey = n2.n_nationkey
and o_orderdate between date '1995-01-01" and date '1995-09-01'
and p_type = 'ECONOMY ANODIZED STEEL'
and c_acctbal <= 9900 and s_acctbal <= 9900 )

Figure 12.5: 4D_H_Q8 (Based on TPC-H Query 8)
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select
o_year,
sum(case when nation = 'BRAZIL’ then volume
else 0 end) / sum(volume) as mkt_share
from
(
select
DATE_PART('YEAR',o_orderdate) as o_year,
|_extendedprice * (1 - |_discount) as volume,
n2.n_name as nation
from
part, supplier, lineitem, orders,
customer, nation nl, nation n2, region
where
p_partkey = |_partkey
and s_suppkey = |_suppkey
and |_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and p_retailprice < $X1
and s_acctbal < $X2
and |_extendedprice < $X3
and o_totalprice < $X4
) as all_nations
group by
o_year
order by
o_year

Figure 12.6: 4D_H_QS8" (Based on TPC-H Query 8)
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select
i_item_id, ss_quantity, ss_list_price,
ss_coupon_amt, ss_sales_price

from
store_sales, customer_demographics, date_dim, item, promotion

where
ss_sold_date_sk = d_date_sk and ss_item_sk = i_item _sk and
ss_cdemo_sk = cd_demo_sk and ss_promo_sk = p_promo_sk and
cd_gender = 'F' and cd_marital_status = "M’ and cd_education_status = 'College’
and (p_channel_email = 'N’ or p_channel event = 'N') and d_year = 2001
and i_current_price < 99 and p_cost <= 1000

Figure 12.7: 4D_DS_Q7 (Based on TPC-DS Query 7)

select
ca_zip, cs_sales_price
from
catalog_sales, customer, customer_address, date_dim
where
cs_bill_customer_sk = c_customer_sk and c_current_addr_sk = ca_address_sk
and ( substr(ca_zip,1,5) in ('85669', '86197','88274", 83405,
'86475’, '85392’, '85460’, '80348’, '81792")
or ca_state in ("CA’,WA','GA"))
and cs_sold_date sk = d_date_sk and d_moy = 2 and d_year = 1999

Figure 12.8: 3D_DS_Q15 (Based on TPC-DS Query 15)
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select
i_brand_id brand_id, i_brand brand, i_manufact_id,
i_manufact, ss_ext_sales_price
from
date_dim, store_sales, item, customer, customer_address, store
where
d_date_sk = ss_sold_date_sk and ss_item_sk = i_item_sk
and i_manager_id=97 and d_moy=12 and d_year=2002
and ss_customer_sk = c_customer_sk and c_current_addr_sk
=ca_address_sk and substr(ca_zip,1,5) <> substr(s_zip,1,5)
and ss_store_sk = s_store_sk
and s_tax_percentage <= 0.1

Figure 12.9: 5D_DS_Q19 (Based on TPC-DS Query 19)

select
i_item_id, avg(cs_quantity) , avg(cs_list_price) ,
avg(cs_coupon_amt) , avg(cs_sales_price)
from
catalog_sales, customer_demographics, date_dim, item, promotion
where
cs_sold_date sk = d_date_sk and cs_item_sk = i_item_sk and
cs_bill_cdemo_sk = cd_demo_sk and cs_promo_sk = p_promo_sk
and cd_gender = 'F' and cd_marital_status = 'U’ and cd_education_status

= Unknown' and (p_channel_email = 'N’ or p_channel_event = 'N’) and
d_year = 2002 and i_current_price <= 99
group by
i_item_id
order by
i_item_id

Figure 12.10: 4D_DS_Q26 (Based on TPC-DS Query 26)
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select
cc_call_center_id , cc_.name , cc_manager , sum(cr_net_loss)

from
call_center,catalog_returns, date_dim, customer, customer_address,
customer_demographics, household_demographics

where
cr_call_center_sk = cc_call_center_sk and cr_returned_date_sk =
d_date_sk and cr_returning_customer_sk= c_customer_sk and cd_demo_sk
=c_current_cdemo_sk and hd_demo_sk = c_current_hdemo_sk and
ca_address_sk = c_current_addr_sk and d_year = 2000 and d_moy = 12
and ( (cd_marital_status = 'M" and cd_education_status = 'Unknown")
or(cd_marital_status = "W’ and cd_education_status = 'Advanced Degree'))
and hd_buy_potential like '5001-10000%" and ca_gmt_offset = -7

group by
cc_call_center_id,cc_name,cc_manager,cd_marital_status, cd_education_status

order by
sum(cr_net_loss) desc

Figure 12.11: 4D_DS_Q91 (Based on TPC-DS Query 91)

select s_store_name, hd_dep_count, ss_list_price, s_.company_name
from

store_sales, household_demographics, time_dim, store
where

ss_sold_time_sk = time_dim.t_time_sk and

ss_hdemo_sk = household_demographics.hd_demo_sk and

ss_store_sk = s_store_sk and time_dim.t_hour = 8

and time_dim.t_minute >= 30 and

household_demographics.hd_dep_count = 2

and store.s_store_name = 'ese’

Figure 12.12: 3D_DS_Q96 (Based on TPC-DS Query 96)
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