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Abstract

Over the last four decades, relational database systems, with their mathematical basis in first-

order logic, have provided a congenial and efficient environment to handle enterprise data during

its entire life cycle of generation, storage, maintenance and processing. An organic reason for

their pervasive popularity is intrinsic support for declarative user queries, wherein the user only

specifies the end objectives, and the system takes on the responsibility of identifying the most

efficient means, called “plans”, to achieve these objectives.

A crucial input to generating efficient query execution plans are the compile-time estimates

of the data volumes that are output by the operators implementing the algebraic predicates

present in the query. These volume estimates are typically computed using the “selectivities” of

the predicates. Unfortunately, a pervasive problem encountered in practice is that these selec-

tivities often differ significantly from the values actually encountered during query execution,

leading to poor plan choices and grossly inflated response times.

The database research community has spent considerable efforts to address the above chal-

lenge, which is of immediate relevance to currently operational systems. The proposed tech-

niques include: (a) Improving estimation accuracy through novel statistical models, sampling

and execution-feedback mechanisms; (b) Identifying execution plans that are relatively robust

to such errors; and (c) Dynamically changing plans at run-time if estimation errors are detected

during the execution of the originally chosen plan. While this rich body of literature features

several innovative formulations, the prior techniques all suffer from a systemic limitation – the
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Abstract

inability to provide any guarantees on the execution performance.

In this thesis, we materially address this long-standing open problem by developing a rad-

ically different query processing strategy that lends itself to attractive guarantees on run-time

performance. Specifically, in our approach, the compile-time estimation process is completely

eschewed for error-prone selectivities. Instead, from the set of optimal plans in the query’s

selectivity error space, a limited subset called the “plan bouquet”, is selected such that at least

one of the bouquet plans is 2-optimal at each location in the space. Then, at run time, an

exploratory sequence of cost-budgeted executions from the plan bouquet is carried out, eventu-

ally finding a plan that executes to completion within its assigned budget. The duration and

switching of these executions is controlled by a graded progression of isosurfaces projected onto

the optimal performance profile. We prove that this construction provides viable guarantees

on the worst-case performance relative to an oracular system that magically possesses accurate

apriori knowledge of all selectivities. Moreover, it ensures repeatable execution strategies across

different invocations of a query, an extremely desirable feature in industrial settings.

Our second contribution is a suite of techniques that substantively improve on the perfor-

mance guarantees offered by the basic bouquet algorithm. First, we present an algorithm that

skips carefully chosen executions from the basic plan bouquet sequence, leveraging the observa-

tion that an expensive execution may provide better coverage as compared to a series of cheaper

siblings, thereby reducing the aggregate exploratory overheads. Next, we explore randomized

variants with regard to both the sequence of plan executions and the constitution of the plan

bouquet, and show that the resulting guarantees are markedly superior, in expectation, to the

corresponding worst case values.

From a deployment perspective, the above techniques are appealing since they are com-

pletely “black-box”, that is, non-invasive with regard to the database engine, implementable

using only API features that are commonly available in modern systems. As a proof of concept,

the bouquet approach has been fully prototyped in QUEST, a Java-based tool that provides

iv



Abstract

a visual and interactive demonstration of the bouquet identification and execution phases. In

similar spirit, we propose an efficient isosurface identification algorithm that avoids exploration

of large portions of the error space and drastically reduces the effort involved in bouquet con-

struction.

The plan bouquet approach is ideally suited for “canned” query environments, where the

computational investments in bouquet identification are amortized over multiple query invoca-

tions. The final contribution of this thesis is extending the advantage of compile-time subop-

timality guarantees to ad hoc query environments where the overheads of the off-line bouquet

identification may turn out to be impractical. Specifically, we propose a completely revamped

bouquet algorithm that constructs the cost-budgeted execution sequence in an “on-the-fly”

manner. This is achieved through a “white-box” interaction style with the engine, whereby

the plan output cardinalities exposed by the engine are used to compute lower bounds on the

error-prone selectivities during plan executions. For this algorithm, the suboptimality guaran-

tees are in the form of a low order polynomial of the number of error-prone selectivities in the

query.

The plan bouquet approach has been empirically evaluated on both PostgreSQL and a

commercial engine ComOpt, over the TPC-H and TPC-DS benchmark environments. Our

experimental results indicate that it delivers orders of magnitude improvements in the worst-

case behavior, without impairing the average-case performance, as compared to the native

optimizers of these systems. In absolute terms, the worst case suboptimality is upper bounded

by 20 across the suite of queries, and the average performance is empirically found to be within

a factor of 4 wrt the optimal. Even with the on-the-fly bouquet algorithm, the guarantees are

found to be within a factor of 3 as compared to those achievable in the corresponding canned

query environment.

Overall, the plan bouquet approach provides novel performance guarantees that open up

exciting possibilities for robust query processing.
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Chapter 1

Introduction

It has been more than four decades since the relational model [31] of data representation enabled

a significant step forward in database query processing by removing the dependence between

application programs and underlying data representation. As a result, modern database systems

provide a declarative query interface, typically in the form of SQL, that allow the user to specify

what information from the database is needed without having to specify how to retrieve it from

the data and compute query results. In Figure 1.1, we show an example SQL query EQ over

TPC-H schema that enumerates the orders for cheap parts.

SELECT *
FROM part, lineitem, orders
WHERE p partkey = l partkey and

o orderkey = l orderkey and
p retailprice < 1000

Figure 1.1: Example SQL Query (EQ)

To support efficient data access in these systems, the task of identifying the most time-

efficient procedural equivalent of the input query, termed as ‘execution plan’, is performed by a

module called the query optimizer. Soon after the proposal of relational model, System R [82]

developed cost-based query optimization wherein alternative execution plans are compared on

the basis of their cost, i.e. expected time to complete execution, and the minimum cost choice
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among them is picked for execution. Since then, cost-based query optimization has served as a

template for query optimizer design.

An execution plan (or just plan) is a sequence of relational operators that produce the query

result by evaluating the predicates specified in the query. For instance, a sample plan for query

EQ is shown in Figure 1.2 where the predicates in the query are evaluated using relational scan

and binary join operators with different algorithmic choices, e.g. Index Scan and Sort-Merge

Join, respectively. The total time taken by a plan to complete query execution depends on the

selectivity of the query predicates, i.e. fraction (or percentage) of data tuples satisfying the

predicate, and the physical implementation of the operators.

Figure 1.2: Sample Execution Plan for EQ

To compare across various execution choices, query optimizers employ two abstract models:

(1) operator output selectivity (normalized cardinality) estimation model, and (2) operator

execution cost estimation model. Clearly, the ability of a cost-based optimizer to identify the

ideal execution plan is dependent on the quality of these models. Specifically, the quality

of selectivity estimation model is a function of its ability to capture the distributions and
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correlations present in the data, while that of cost model depends on how well it captures the

behavior of the underlying hardware and physical implementations of the operators.

While there has been a plethora of research proposals to improve the quality of these models,

query optimization has largely remained a “black art”, as highlighted by the following com-

ments from the leading academic and industry experts:

Prof. David Dewitt (Univ. of Wisconsin Madison, Microsoft Jim Gray Lab) [86]: Query

optimizers do a terrible job of producing reliable, good plans (for complex queries) without a lot

of hand tuning.

Dr. Surajit Chaudhuri (Microsoft Research) [75]: Almost all of us who have worked on

query optimization find the current state of the art unsatisfactory with known big gaps in the

technology.

Dr. Guy Lohman (IBM Research) [62]: With such errors (in cardinality estimation), the

wonder isn’t “Why did the optimizer pick a bad plan?” Rather, the wonder is “Why would the

optimizer ever pick a decent plan?”

In this thesis, motivated by the above comments on this long standing issue, we present a

radically new approach to database query processing that lends itself to attractive guarantees on

run-time execution performance, regardless of the actual selectivities. Based on this approach,

we propose techniques that provide performance guarantees orders of magnitude better than the

worst-case performance of native engines, for both canned as well as ad hoc query environments.

Moreover, these techniques can be deployed in a non-invasive manner with regard to the existing

database engine.
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1.1 Cost-based Query Optimization

With the aim of identifying the ideal execution plan, cost-based query optimizers estimate a host

of selectivities corresponding to the predicates in the query. For example, for simple SPJ1 query

EQ, the optimizer estimates the selectivities of a selection predicate (p retailprice < 1000)

and two join predicates (part 1 lineitem, orders 1 lineitem). The selectivities are estimated

using statistical metadata (histograms, distinct counts, etc), and assumptions like attribute

value independence, join containment assumption, etc [25]. These selectivity estimates serve

as primary inputs to a cost model that compares various execution plan choices to determine

the cost-optimal execution plan. The chosen execution plan, which is a tree of unary and

binary relational algebra operators (select, project, join, etc) instantiated with physical operator

algorithms, is then fed to the query executor module. Finally, the executor module follows the

operator sequence to interact with the underlying data source and produce the query result

tuples. These steps of query processing in relational databases are visualized in Figure 1.3.

Figure 1.3: Traditional RDBMS architecture

1An SPJ query essentially represents a single SQL SELECT-FROM-WHERE block with no grouping or
aggregation or subqueries. Further, an SPJ query with only conjunctive predicates in the WHERE block is
called a conjunctive SQL query.
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The cost-based query optimizers, pioneered by System R [82] and refined extensively by later

research, deliver satisfactory performance whenever the queries are simple, modeling assump-

tions are valid, and the meta-data information is fresh and sufficient for selectivity estimation

of predicates. But with the growth in query complexity, the challenge of identifying the op-

timal execution plan has increased manifold [51]. Also, the ‘suboptimality’ due to mistaken

plan choice, i.e. the performance ratio wrt to the ideal plan choice, increase with the growth

in data scale and skew. The current situation is that for complex OLAP queries over large

databases, the selectivity estimates are often significantly in error with respect to the actual

values subsequently encountered during query execution, leading to grossly inflated execution

times. Also, it is widely accepted that the suboptimality impact of selectivity estimation errors

is significantly larger as compared to that of the cost modeling errors [62, 58, 87].

In this thesis, we first study individual impact of selectivitity estimation errors by assuming

the cost model to be perfect – that is, we use only optimizer costs in the evaluations. While this

assumption is certainly not valid in practice, improving the cost model quality is, in principle,

an orthogonal problem to that of selectivity estimation. Later, at the end of the thesis in

Chapter 11, we revisit this assumption and analyze the impact of having an erroneous cost

model on the results of this thesis.

1.2 Selectivity Estimation Errors

Selectivity estimation errors, which can even be in orders of magnitude in real database en-

vironments [65, 62], arise due to a variety of well-documented reasons [84, 62, 85], including

outdated statistics, coarse summaries, attribute-value independence (AVI) assumptions, com-

plex user-defined predicates, and error propagation in the query execution operator tree [51].

Moreover, in environments such as ETL workflows, the statistics may actually be unavailable

due to data source constraints, forcing the optimizer to resort to “magic numbers” for the values

(e.g. 1/10 for equality selections [82]).
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To analyze the impact of estimation errors, consider a restricted 1D version of the query EQ

wherein only the selection predicate p retailprice < 1000 is assumed to be error-prone. Here,

we find that the plan choices of the query optimizer change as a function of the selectivity of

the predicate p retailprice < 1000. Specifically, through repeated invocations of the optimizer

with increasing selectivity value for the selection predicate1, we identify “parametric optimal

set of plans” (POSP) and their optimality ranges across the entire selectivity range of the

predicate, i.e. plans P1 through P5, whose structures and optimality ranges are shown in

Figure 1.4. Further, each plan is annotated with the selectivity range over which it is optimal

– for instance, plan P3 is optimal in the (1.0%, 7.5%] interval. (In Figure 1.4, P = Part, L =

Lineitem, O = Orders, NL = Nested Loops Join, MJ = Sort Merge Join, and HJ = Hash Join).

Figure 1.4: POSP plans on p retailprice dimension

Next, observing the cost behavior of these plans (in Figure 1.5), it is found that if the actual

selectivity is close to 90% but underestimated to be in the range (0, 0.3%] by the optimizer,

then EQ is executed using plan P1 resulting in 20 times sub-optimal performance. On the other

hand, if the actual selectivity is around 0.1% and overestimated to be 90%, then the performance

suboptimality is close to two orders of magnitude. Even for the simple base predicate in EQ,

such errors can actually happen due to staleness of the statistical information for a highly

skewed data distribution. Even if the statistics were fresh, the selectivity estimation module

of most engines would easily make similar large errors if the predicate happen to be written as

log10(p retailprice) < 3.

A considerable body of literature exists on proposals to tackle the issue of erroneous selec-

1This is achieved by leveraging ‘selectivity injection’ API, as described later in Chapter 8.
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tivity estimation. For instance, techniques for improving the statistical quality of the meta-

data include improved summary structures [7, 69], sampling [61, 74], feedback-based adjust-

ments [84, 7], and on-the-fly re-optimization of queries [52, 12, 72]. A complementary approach

is to identify robust plans that are relatively less sensitive to estimation errors [29, 10, 12, 47, 21].

While these prior techniques provide novel and innovative formulations, they are limited in their

scope and performance, as explained in detail in Chapter 2 – a primary drawback being lack of

performance guarantees.

1.3 Plan Bouquet Approach

In this thesis, we investigate a conceptually new approach to database query processing, wherein

the compile-time estimation process is completely eschewed for error-prone selectivities. In-

stead, these selectivities are systematically discovered at run-time through a calibrated sequence

of cost-budgeted plan executions. That is, we attempt to side-step the selectivity estimation

problem, rather than address it head-on, by adopting a “seeing is believing” perspective on

these values.

1D Example We introduce the new approach through the restricted 1D version of the EQ

example query, as discussed earlier. The process starts with repeated invocations of the opti-

mizer to identify the “parametric optimal set of plans” (POSP) that cover the entire selectivity

range of the predicate. A sample outcome of this process is already shown in Figure 1.4 and

the optimizer-computed costs of these POSP plans over the selectivity range are shown (on a

log-log scale) in Figure 1.5. In this figure, we define “POSP infimum curve” (PIC), as the

trajectory of the minimum cost choice from among the POSP plans – this curve represents the

ideal performance.

The next step, which is a distinctive feature of our approach, is to discretize the PIC by

projecting a graded progression of isocost (IC) steps onto the curve. For example, in Figure 1.5,

the dotted horizontal lines represent a geometric progression of isocost steps, IC1 through IC7,
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Figure 1.5: POSP performance (log-log scale)

with each step being double the preceding value. The intersection of each IC with the PIC

(indicated by �) provides an associated selectivity, along with the identity of the best POSP

plan for this selectivity. For example, in Figure 1.5, the intersection of IC5 with the PIC

corresponds to a selectivity of 0.65% with associated POSP plan P2. We term the subset of

POSP plans that are associated with the intersections as the “plan bouquet” for the given

query – in Figure 1.5, the bouquet consists of {P1, P2, P3, P5}.

The above exercise is carried out at query compilation time. Subsequently, at run-time,

the correct query selectivities are implicitly discovered through a exploratory sequence of cost-

budgeted executions of bouquet plans. Specifically, beginning with the cheapest cost step, we

iteratively execute the bouquet plan assigned to each step until either:

1. The partial execution overheads exceed the step’s cost value – in this case, we know that

the actual selectivity location lies beyond the current step, motivating a switch to the

next step in the sequence; or

2. The current plan completes execution within the budget – in this case, we know that the
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actual selectivity location has been reached, and a plan that is at least 2-optimal wrt the

ideal choice, was used for the final execution.

Example To make the above process concrete, consider the case where the selectivity of

p retailprice is 5%. Here, we begin by partially executing plan P1 until the execution overheads

reach IC1 (1.2E4 | 0.015%). Then, we extend our cost horizon to IC2, and continue executing

P1 until the overheads reach IC2 (2.4E4| 0.03%), and so on until the overheads reach IC4 (9.6E4

| 0.2%). At this juncture, there is a change of plan to P2 as we look ahead to IC5 (1.9E5 |

0.65%), and during this switching all the intermediate results (if any) produced thus far by

P1 are discarded. The new plan P2 is executed until the associated overhead limit (1.9E5) is

reached. The cost horizon is now extended to IC6 (3.8E5 | 6.5%), in the process discarding P2’s

intermediate results and executing P3 instead. The execution in this case will complete before

the cost limit is reached since the actual location, 5%, is less than the selectivity limit of IC6.

Viewed in toto, the net suboptimality turns out to be 1.78 since the exploratory overheads are

0.78 times the optimal cost, and the optimal plan itself was (coincidentally) employed for the

final execution.

Extension to Multiple Dimensions When the above 1D approach is generalized to a

multi-dimensional selectivity environment, the IC steps and the PIC curve become surfaces,

and their intersections represent selectivity surfaces on which multiple bouquet plans may be

present. For example, in the 2D case, the IC steps are horizontal planes cutting through a

hollow three-dimensional PIC surface, typically resulting in hyperbolic intersection contours

featuring a multitude of plans covering disjoint segments of the contours – an instance of this

scenario is shown in Figure 4.2.

Notwithstanding these changes, the basic mechanics of the bouquet algorithm remain vir-

tually identical. The primary difference is that we jump from one isosurface to the next only

after it is determined that none of the bouquet plans present on the current isosurface can

completely execute the given query within the associated cost budget.
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1.3.1 Performance Characteristics

At first glance, the plan bouquet approach, as described above, may appear to be utterly absurd

and self-defeating because: (a) At compile-time, considerable preprocessing may be required to

identify the POSP plan set and the associated PIC; and (b) At run-time, the overheads may

be hugely expensive since there are multiple plan executions for a single query – in the worst

scenario, as many plans as are present in the bouquet!

However, we will attempt to make the case in the remainder of this thesis, that it is indeed

possible, through careful design, to have plan bouquets efficiently provide robustness profiles that

are markedly superior to the native optimizer’s profile. Specifically, we define robustness to

be “the worst-case suboptimality in plan performance that can arise due to selectivity errors”,

denoted as MSO (maximum sub-optimality)1. With regard to this MSO metric, the bouquet

mechanism delivers substantial improvements over current optimizers. Moreover, it does so

while providing comparable or improved average-case performance.

Figure 1.6: Bouquet performance (log-log scale)

For instance, the runtime performance of the bouquet technique on EQ is profiled in Fig-

1Precise definition given in Chapter 3.
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ure 1.6 (dark blue curve). We observe that its performance is much closer to the PIC (dark

green) as compared to the worst case profile for the native optimizer (dark red), which is com-

prised of the supremum of the individual plan profiles. In fact, the MSO for the bouquet is

only 3.6 (at 6.5%), whereas the native optimizer suffers a suboptimality of around 100 when P5

(which is optimal for large selectivities) is mistakenly chosen to execute a query with a small

selectivity of 0.01%. The average suboptimality of the bouquet, computed over all possible

errors, is 2.4, somewhat worse than the 1.8 obtained with the native optimizer. However, when

the enhancements described later in this thesis are incorporated, the enhanced bouquet’s per-

formance (dashed blue) improves to 3.1 (worst case) and 1.7 (average case), thereby dominating

the native optimizer on both metrics.

1.4 Summary of Contributions

In a nutshell, this thesis presents the first-ever set of techniques in OLAP query processing that

provide guarantees on execution performance at query compilation time. The guarantees are in

the form of upper bounds on MSO independent of the actual selectivities of the query predicates.

They are achieved by substituting the selectivity estimation module with a selectivity discovery

framework for error-prone predicates. It is to be emphasized that the techniques are non-

invasive with regard to the database engine and can be successfully implemented using only

API features (e.g. selectivity injection, abstract plan costing, etc.) that have already found

expression in modern industrial DB engines – as explained later in Chapter 8. The individual

contributions of the thesis are summarized below, on a chapter by chapter basis.

1.4.1 Chapter 4: MSO Bounds and Repeatability

The primary contribution of the thesis is the novel cost-budgeted execution sequence that is

constructed using the cost-based discretization of the PIC leading to guaranteed upper bounds

on MSO. For instance, we prove that the cost-doubling strategy used in the 1D example results

in an MSO upper-bound of 4 – this bound is inclusive of all exploratory overheads incurred by
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the partial executions, and is irrespective of the query’s actual selectivity. In fact, we can go

further to show that 4 is the best competitive factor achievable by any deterministic algorithm.

For the multi-dimensional case, the MSO bound becomes 4 times the bouquet cardinality (more

accurately, the plan cardinality of the densest isosurface).

Apart from improving robustness, there is another major benefit of the bouquet mechanism:

On a given database, the execution strategy for a particular query instance, i.e. the sequence

of plan executions, is repeatable across different invocations of the query instance – this is in

marked contrast to prior approaches wherein plan choices are influenced by the current state of

the database statistics and the query construction. Such stability of performance is especially

important for industrial applications, where considerable value is attributed to reproducible

performance characteristics [10].

1.4.2 Chapter 5: Randomized Bouquet Algorithm

In addition to the deterministic algorithm, we also explore randomization opportunities in the

plan bouquet approach. Specifically, we propose randomization of intra-surface plan sequence

and isosurface placement, such that the guarantees on maximum expected suboptimality are

markedly superior to their worst-case counterparts. In fact, we show that both randomizations

can also be used in tandem to achieve even better bounds on maximum expected suboptimality.

1.4.3 Chapter 6: Compile-time Enhancements to Improve MSO

Bounds

As discussed above, the MSO bound for any query with multiple error-prone predicates is a

function of the plan-densities of the isosurfaces in its selectivity error space. In fact, it was

empirically found that the plan densities for complex benchmark OLAP queries can be in the

range of hundreds. To handle these large values of isosurface plan-densities leading to high

absolute value of guarantees, we present a suite of compile-time enhancements to the basic

plan bouquet algorithm that result in materially improved suboptimality guarantees. In this
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direction, we first utilize the concept of plan-swallowing [46] to reduce the maximum isosurface

plan-density by reducing the set of optimal plans in the entire selectivity error space. Next,

we introduce the concept of execution-covering, where we utilize the observation that multiple

executions with smaller cost-budgets can be skipped, without any adverse impact on the MSO

guarantee, if their collective role can be played by a carefully identified execution with a larger

cost-budget.

1.4.4 Chapter 7: Efficient Bouquet Identification Mechanism

The bouquet construction requires to identify only isosurfaces with geometrically increasing

cost values. As a result, large sections of the selectivity error space do not directly contribute

to the bouquet construction. Based on this observation, we propose an algorithm that traces

only the locations along the isosurfaces and avoids the exploration of unnecessary portions of

the space. In principle, it is possible that the plan-swallowing enhancement does not remain as

effective as shown in [46] due to restricted knowledge of POSP. In this regard, we empirically

found that the benefits of plan-swallowing at intra-surface level continues to be comparable to

the benefits achieved with complete information about the selectivity error space.

1.4.5 Chapter 8: Plan Bouquet Architecture and Prototype Imple-

mentation

This is followed by the generic architecture of the bouquet approach and the details regarding

the required API features to support non-invasive implementation of the technique with regard

to the database engine. Specifically, there is a external ‘Bouquet Driver’ program that treats

the database engine as a black-box. At compile-time, it constructs an execution-sequence using

only calls to the query optimizer module and at run-time, it requires an executor module that

responds to any cost-budgeted execution by only notifying its completion-status. Finally we

discuss about QUEST, a Java-based prototype implementation of the bouquet technique that

provides a visual demonstration of bouquet identification as well as execution phase.
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1.4.6 Chapter 9: Empirical Evaluation

In order to empirically validate its utility, we have evaluated the bouquet approach on both

PostgreSQL and a popular commercial database ComOpt. Our experiments utilize a rich set

of complex decision support queries sourced from the TPC-H and TPC-DS benchmarks. The

query workload includes selectivity spaces with as many as five error-prone dimensions, thereby

capturing environments that are extremely challenging from a robustness perspective. Our

performance results indicate that the bouquet approach typically provides orders of magnitude

improvements, as compared to the optimizer’s native choices. As a case in point, for Query

19 of the TPC-DS benchmark with 5 error prone join selectivities, the MSO plummeted from

about 106 to just 10! The potency of the approach is also indicated by its providing an MSO

guarantee of less than 20 over our entire query workload, while the average suboptimality was

typically within a factor of 4 wrt the optimal.

What is even more gratifying is that the above performance profiles are conservative since

we assume that at every plan switch, all previous intermediate results are completely thrown

away – in practice, it is conceivable that some of these prior results could be retained and reused

in the execution of a future plan.

1.4.7 Chapter 10: MSO Bounds for Ad hoc Queries

In this chapter, we address those query scenarios where the compile-time bouquet construction

phase may not be practical, e.g. ad hoc query environment. Specifically, we show that the

compile-time guarantees of the bouquet technique can be extended to such environments as

well, by relaxing only the black-box interaction assumption to white-box engagement, i.e., the

engine also reports the output cardinality for individual cost-budgeted executions which is then

used to compute lower bounds on error-prone selectivities.

For this purpose, we propose a completely revamped algorithm that enables “on-the-fly”

construction of the cost-budgeted execution sequence and provides compile-time suboptimality
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guarantees in the form of a low order polynomial in the number of error-prone selectivities of

the query. With this algorithm, the MSO guarantees for our suite of queries are empirically

found to be within a factor of 3 wrt the guarantees achievable with the offline version.

1.5 Summary

In closing, we wish to highlight that from a deployment perspective, the bouquet technique is

intended to complementarily co-exist with the classical optimizer setup, and not to replace it. It

is left to the user or DBA to make the choice of which system to use for a specific query instance

– essential factors that are likely to influence this choice are discussed in Chapter 11. Here, we

also discuss the limitations of the bouquet approach and revisit some of the assumptions made

in the thesis with initial ideas in the direction of their relaxation.

Overall, the bouquet approach provides novel performance guarantees that open up new

possibilities for robust query processing.

1.6 Thesis Organization

The remainder of the thesis is organized as follows: We start with reviewing the related liter-

ature in Chapter 2 followed by a precise description of the robust query processing problem,

along with the underlying assumptions and notations in Chapter 3. Theoretical bounds on the

MSO provided by the bouquet technique are presented in Chapter 4 followed by randomized

variants in Chapter 5 with the corresponding bounds on maximum expected suboptimality.

Then, Chapter 6 discusses the compile-time enhancements that result in significantly stronger

MSO guarantees. Next, we describe an efficient mechanism to achieve pragmatic overheads

for bouquet identification in Chapter 7, followed by other implementation details of the plan

bouquet architecture and prototype in Chapter 8. Further, the experimental framework and

performance results for the black-box techniques are reported in Chapter 9. In the end, we

present the white-box technique to achieve performance guarantees for ad hoc queries in Chap-

15



ter 10. Finally, we present ideas to relax the optional simplifying assumptions, critique the

bouquet technique in Chapter 11 and conclude in Chapter 12.
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Chapter 2

Related Work

In this chapter, we start with a brief discussion on the concept of robustness, in particular wrt

database query processing and possible reasons that cause lack of robustness followed by the

details regarding the focus area of this thesis, i.e. selectivity estimation errors. Next, we provide

a quick recap of the existing literature that handles the erroneous estimates in different ways.

Finally, while there are many possible ways of classifying the existing techniques, we put the

plan bouquet approach in perspective by using classification on the basis of: (a) performance

metric, (b) approach (reactive, proactive or non-traditional) and (c) execution style.

2.1 Robustness in Query Processing

While in generic context of data management, robustness includes redundancy, disaster pre-

paredness and recovery from physical disk failure, etc. Robust query processing, is specifically

about the performance predictability and the ability to avoid sudden disruptions in query exe-

cution performance [44]. The possible reasons for disruption in execution performance are:

• error(s) in estimated selectivities,

• changes in physical database design or available materialized views,

• changes in data source characteristics including partitioning or network disruption or

streaming characteristics, and
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• unstable execution environment due to changes in resource availability, fluctuating work-

loads or conflicts in concurrency control.

But, there have been a series of research studies, panels and seminars in the past decade

which argue that inspite of all the above proposals, database query processing and its robustness

is still an unsolved and highly relevant issue [41, 44, 58, 38, 43, 81, 69, 20, 25].

2.2 Problem Focus

Our focus in this work is primarily the performance disruptions due to errors in selectivity

calculations. It has been well accepted that the impact of these errors on execution perfor-

mance is significant enough to receive special attention – as pointed out by the following recent

statement from industry expert Dr. Guy Lohman [62]:

“The root of all evil, the Achilles Heel of query optimization, is the estimation of the size of

intermediate results, known as cardinalities. Everything in cost estimation depends upon how

many rows will be processed, so the entire cost model is predicated upon the cardinality model.

In my experience, the cost model may introduce errors of at most 30% for a given cardinality,

but the cardinality model can quite easily introduce errors of many orders of magnitude!”

Query processing environment To clearly describe our focus we now describe the query

processing environment assumed in this thesis,

• static data source,

• physical design and available views are fixed and adaptive indexing is not in action,

• query execution cost is not affected by the run-time issues like resources availability etc.

Later in the thesis (Chapter 11), we analyze the impact of run-time conditions in terms

of maximum deviation from estimation cost/time.
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2.3 Survey of Existing Techniques

Histograms and other statistical structures Soon after the pioneering work of System-

R [82], it was realized that selectivities estimated based on the uniform distribution assumption

will mostly mislead the query optimizer due to the skew in data. Thus, to capture the data

distribution without requiring lot of space, [55, 76, 27] proposed use of histograms followed by

use of frequent values as complementary statistics [64] to handle extreme skew. These methods

work remarkably well for computing selectivities of single attribute predicates and are used

by most database systems till date in various forms. Recently, the research on histograms has

been revived by proposals of histograms that minimize q-error metric [69, 68] and heterogeneous

histograms [53], i.e., using different types buckets in the same histogram.

While histograms support reasonable selectivity estimates for single attribute predicates,

there are other challenging assumptions [28] that affect the process of plan comparison in

the query optimizer. Among these, the most critical assumption is that of attribute value

independence (AVI) which ignores attribute correlations and is responsible for huge errors in

selectivity estimates for multiple-attribute predicates and joins [51]. To capture such multi-

dimensional information, multi-dimensional histograms were proposed in [70] and developed

further by [78, 56, 33]. But such histograms were not well accepted in industry due to the

associated storage and maintenance overheads. These overheads can be controlled to some

extent by utilizing self-tuning histograms [7, 19, 60] which can be updated using the feedback

information from the queries. A survey of other developments in histogram techniques can be

found in [50].

Apart from histograms, other ways of summarizing data distributions include use of wavelet

transform [66, 39] and discrete cosine transform (DCT) [57] that are much better in terms

of space efficiency. Recently, there have been proposals to capture the data distribution in-

formation with probabilistic models [40], graph-based techniques [83], graphical models [85]
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and kernel density estimators [48]. All these innovative techniques have the ability to repre-

sent statistical information with very less space requirement but face creation and maintenance

challenges with increase in the number of attributes in the query predicates.

Random sampling Random sampling is another promising line of research that has been

explored as a complementary technique to that of histograms. It is used to reduce overheads

in creation and maintenance of histograms [70, 23] and to produce better estimates in difficult

scenarios, e.g., multiple predicate combinations, as it scales better than histograms with increase

in the number of attributes in the predicates. Also, it has been shown that with adaptive

sampling [61], the number of samples required for a given accuracy is independent of the data

scale. Although, given sufficient number of samples, it can produce more accurate estimates

than histograms but it requires frequent access to relations on the slow secondary storage and

hence does not satisfy the requirement of small query optimization time. Further for the case

of join estimates, while it has been shown that trivial random sampling may need prohibitively

large number of samples [22], there has been proposals to achieve practical solutions with the

help of extra frequency statistics or index [22, 88, 36, 74].

Inter-query feedback cache Another interesting research direction is where information

relevant to the queries is learned from the feedback received from the workload queries itself [26,

84] and utilized to improve estimates for future queries. While, such technique is inexpensive to

implement, it does not ensure significant help as learned information may not be relevant across

workload queries. Still, this direction has received significant attention and developed further

to learn statistics over query expressions [18, 17, 35] because of its ease of implementation and

lack of any side-effect. Recent proposals also presented proactive ways [24] of learning extra

information from query plans by introducing appropriate modifications in their structure.

Robust plans All the above proposals tried to improve the selectivity estimates for the query

predicates and choose the ideal execution plan using the estimates. One more approach has been

to expect the estimates to be erroneous and modify the plan selection process such that, the
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criteria is not cost-optimality for a given estimated selectivity but its sensitivity to estimation

errors or performance over a range of selectivities. The examples for such approaches include:

plan with least expected cost [30, 29], plan chosen using robust cardinality estimates [10], plan

that is resistant to unbounded estimation errors [47] and plan with minimum variance across

selectivity error space [21].

Another series of attempts tried to construct at optimization time, plan with specialized

operator, such that they are better equipped to handle the estimation errors at execution-

time, they include complex operators with ability to switch among them [32] and more recently

smooth operators [16, 42].

Re-optimization/Intra-query execution feedback The research directions summarized

above always commit to single plan during optimization time and use to during the entire

execution process, and hence they are limited in their capability to handle unknown scenarios at

execution time. To overcome this limitation, techniques were proposed to detect sub-optimality

during execution and going back to the optimizer with the additional information gathered

during the partial execution to pick another plan [52, 65, 12]. While these techniques certainly

perform better than initial plan choice but it is not always possible to detect sub-optimality

and it may require multiple iterations leading to increased total overheads.

There have also been attempts that use the execution feedback to reorder the operators in

the optimizer choice plan [59, 67] in the hope to achieve an ordering with lesser cost. As an

extreme version of such approaches, there have been attempts that forgo the concept of a plan

during a selectivity learning phase [8, 72, 6, 49] or decide to use different operators to execute

different portions of the data [9, 14, 77]. While these attempts have certainly proved to be

effective, but they require huge modifications to the executor module and they are also limited

in their ability to change join-order due to plan state management requirements.

Discussion Despite all the efforts to improve selectivity estimation module, query optimiz-

ers continue to use simplifying assumptions (AVI and value containment in joins) in difficult
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estimation scenarios for the sake of efficiency of query optimization. Due to this, the process

of deciding execution plan is usually associated with uncertainty wrt the selectivities and other

run-time conditions. It is well known that, such inherent uncertainty present in query process-

ing module, frequently cause its performance to be highly sub-optimal as well as unpredictable.

Overall, query processing has not been robust against selectivity estimation errors.

2.4 Performance Metric Based Classification

In recent seminar [44] different proposals were considered regarding a metric for robustness in

query processing, including: (1) coefficient of variation of execution times, (2) average relative

error in cardinality estimation across all physical operators of query or (3) geometric mean

of the output cardinality for different selectivities of the query. But a consensus could not

be reached, possibly because robustness is dependent upon complex interaction among many

factors. In this thesis, we focus only on the performance side and do not include the input

parameters in the metric. Specifically, we propose a set of sub-optimality based performance

metrics (details in Chapter 3) that include worst case and average case performance.

We emphasize that our goal of minimizing the worst case performance sub-optimality in

the presence of unbounded selectivity errors, does not coincide with any of the earlier works

in this area. Previously considered objectives in literature include: (a) improved performance

compared to the optimizer generated plan [12, 47, 52, 65, 72]; (b) improved average perfor-

mance and/or reduced variance [29, 21, 10]; (c) improved accuracy of selectivity estimation

structures [7]; (d) bounded impact of multiplicative estimation errors [69]; and (e) smooth

performance degradation [42, 16].

Further, the presence of compile-time guarantees on execution performance distinguishes

the plan bouquet approach from all the previous approaches.
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2.5 Approach Based Classification

While it is not completely fair to compare techniques with widely different objectives, we still

provide a brief review of the previous attempts to put the plan bouquet approach in perspec-

tive. As summarized in Figure 2.1, we classify the techniques on the basis of whether they

take traditional, reactive, proactive or non-traditional approach to counter the selectivity esti-

mation errors during their compile-time and/or run-time phase. Next, we discuss the common

characteristics for each of these approaches.

Figure 2.1: Classification on the basis of approach to handle errors

Traditional approach:

• follows basic steps of System-R approach, i.e., (a) cost-based optimization to choose an

23



execution plan with standard relational operators, (b) the execution steps are followed

without any modification.

• performs optimally in the absence of selectivity estimation errors but can be arbitrarily

sub-optimal in the face of unbounded errors.

Reactive:

• uses information available due to execution-feedback of current or previous queries.

• performs optimally in the absence of estimation errors since the only overhead is possibly

a lightweight logic for learning from feedback at compile time and for error-detection at

run-time.

• usually improves over the execution performance in the presence of estimation errors

but is also suspectible to inconsistent selectivity inputs [80] during optimization (since

selectivities are a mix of estimates and run-time feedback values) and hence prone to

thrashing during execution [12].

Pro-active:

• consists of additional step(s) to prepare itself against the selectivity estimation errors and

for the same reason, its total overheads are more than optimal execution even in the

absence of estimation errors

• has more capability to handle estimation errors compared to reactive approaches but usu-

ally requires fresh modifications to the existing system e.g. Rio [12], Graphical models [85],

etc.

Non-traditional:

• nowhere similar to System-R approach, optimizer and executor usually work together or

cannot be even differentiated, since they favor adaptivity over optimality of execution.

• the performance characteristics are either similar to that of proactive approaches or not

comparable since there is no optimal execution plan similar to traditional approaches, but

these solution need maximum amount of modifications or even complete redesign of the
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database system, e.g. Eddies [9], NPRR [73], etc.

The approach of plan bouquet technique is proactive during compile-time (bouquet iden-

tification step) as well as run-time (preplanned switching of plans) to counter the possibility

of selectivity estimation errors. But the required implementation effort is low inspite of the

proactive approach since the necessary API features have already found expression in modern

database systems.

2.6 Execution-style Based Classification

The techniques can be further categorized, in terms of their execution style as (a) single plan

approaches, (b) plan-switching, (c) plan-morphing and (d) tuple-routing.

Among these, all the single plan approaches, surveyed in [45], can be used in complement

with the plan bouquet approach as improved estimates can reduce the number of error-prone

predicates in the query. Further, the techniques that are non-traditional (in one of the phases)

bring new advantages with them but also require huge implementation effort, hence they are

not comparable to approaches that can be implemented in existing systems. Finally, while the

plan-morphing and plan-switching techniques are already surveyed in [34, 11], we present them

in comparison to the bouquet technique.

Plan-switching approaches We start with the overview of the closely related techniques

which can be collectively termed as plan-switching approaches, as they involve run-time switch-

ing among complete query plans. At first glance, our bouquet approach, with its partial exe-

cution of multiple plans, may appear very similar to run-time re-optimization techniques such

as POP [65] and Rio [12]. However, there are key differences: Firstly, they start with the

optimizer’s estimate as the initial seed, and then conduct a full-scale re-optimization if the es-

timate are found to be significantly in error. In contrast, we always start from the origin of the

selectivity space, and directly choose plans from the bouquet for execution without invoking

the optimizer again. A beneficial and unique side-effect of this start-from-origin approach is
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that it assures repeatability of the query execution strategy.

Secondly, both POP and Rio are based on heuristics and do not provide any performance

bounds. In particular, POP may get stuck with a poor plan since its validity ranges are defined

using structure-equivalent plans only. Similarly, Rio’s sampling-based heuristics for monitoring

selectivities may not work well for join-selectivities and its definition of plan robustness on the

basis of performance at corners (principal diagonal) has not been justified.

Recently, a novel interleaved optimization and execution approach was proposed in [72]

wherein plan fragments are selectively executed, when recommended by an error propagation

framework, to guard against the fallout of estimation errors. The error framework leverages an

elegant histogram construction mechanism from [69] that minimizes the multiplicative error.

While this technique substantively reduces the execution overheads, it provides no guarantees

as it is largely based on heuristics.

Single plan approaches Techniques that use a single plan during the entire query execu-

tion [29, 10, 47, 69, 21] run into the basic infeasibility of a single plan to be near-optimal across

the entire selectivity space. The bouquet mechanism overcomes this problem by identifying a

small set of plans that collectively provide the near-optimality property. Further, it does not

require any prior knowledge of the query workload or the database contents.

Our technique may superficially look similar to PQO techniques, (e.g. PPQO [15]), since

a set of plans are identified before execution by exploring the selectivity space. The primary

difference is that these techniques are useful for saving on optimization time for query instances

with known parameters and selectivities. On the other hand, our goal is to regulate the worst

case performance impact when the computed selectivities are likely to be erroneous.

Plan-morphing approaches Further, the bouquet technique does not modify plan struc-

tures at run-time (modulo spilling directives). This is a major difference from “plan-morphing”

approaches, where the execution plan may be substantially modified at run-time using custom-

designed operators, e.g. chooseplan [32], switch [12], feedback [24], etc.
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One more direction that has received interest in recent years is to invent adaptive operators

for scan [16] and joins [42] in query plans. Although, they have been shown to be quite effective

in cases when the sub-optimality of the plan is a result of wrong operator decisions but not much

progress has been made for cases when the sub-optimality is caused due to wrong choice of join-

order itself. The primary motivation for these approaches is that the performance degradation

need to be smooth, i.e, avoid the basic issue of performance cliffs in plan-switching techniques.

However, in our case, the performance cliffs have been found to be quite infrequent as well as

dwarf.

Routing-based approaches On the other hand, the use of only one active plan (at a time)

to process the data makes the bouquet algorithm dissimilar from Routing-based approaches

wherein different data segments may be routed to different simultaneously active plans – for

example, plan per tuple [9] and plan per tuple group [77].

2.7 Summary

Overall, the plan bouquet technique brings performance guarantees due to its proactive ap-

proach but remains easy to deploy since the execution phase still uses traditional-plans. On the

other hand, the proactive approach makes it comparatively less suitable to the environments

where the estimation errors are known to be very small and the plan-switching based execution

style makes it unsuitable for latency-sensitive applications, as discussed later in Chapter 11.
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Chapter 3

Problem Framework, Notations and

Assumptions

In this chapter, we present our query model, robustness model, the associated performance

metrics, underlying assumptions and the notations used in the sequel.

3.1 Query Model

In our framework, each user query Q is associated with a set of selectivity predicates SP , a

subset of which are error-prone wrt their estimation. Next, we define a query space QS for Q

to be {Q, AKP,EPP}, where AKP is the set of predicates with accurately known selectivities,

and EPP is comprised of the remaining predicates that are error-prone (i.e. AKP ∪ EPP =

SP ).

From the EPP , we construct an error-prone selectivity space, called ESS, wherein each

error-prone predicate maps to an independent [0, 1] selectivity dimension in the space. That is,

ESS is a [0, 1]D hypercube with D = |EPP |, where each D-dimensional point q(s1, s2, . . . , sD)

represents a possible location of the query Q, as determined by its selectivities on each of these

dimensions.The assignment of an independent dimension to each EPP is in conformity with the

28



selectivity independence assumption that is prevalent in modern query optimizer frameworks.

In the ESS defined as above, the cost of an execution plan Pi at a query location q in the

ESS is denoted by c(Pi, q). Also, we denote the query optimizer’s estimated location of Q in

the ESS by qe, and the actual location at runtime by qa. The optimal plan at qe, as determined

by the native optimizer, is denoted by Popt(qe), and similarly the optimal plan at qa by Popt(qa).

Further, we assume that the query locations and the associated estimation errors range over

the entire ESS, that is, all (qe,qa) error combinations are possible.

3.2 Robustness Model

Robustness can be defined in many different ways and there is no universally accepted metric [44]

– here, we use the notion of performance sub-optimality to characterize robustness.

With the above query model, the sub-optimality incurred due to using plan Popt(qe) at

location qa is simply defined as the ratio:

SubOpt(qe, qa) =
c(Popt(qe), qa)

c(Popt(qa), (qa))
∀qe, qa ∈ ESS (3.1)

with SubOpt ranging over [1, ∞). The worst-case SubOpt for a given qa is defined to be wrt

the qe that results in the maximum sub-optimality, that is, where selectivity inaccuracies have

the maximum adverse performance impact:

SubOptworst(qa) = max
qe∈ESS

(SubOpt(qe, qa)) ∀qa ∈ ESS (3.2)

With the above, the global worst-case is simply defined as the (qe, qa) combination that results

in the maximum value of SubOpt over the entire ESS, that is:

MSO = max
qa∈ESS

(SubOptworst(qa)) (3.3)
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The above definitions are appropriate for the manner in which modern optimizers operate,

wherein selectivity estimates are made at compile-time, and a single plan is executed at run-

time. However, in the plan bouquet technique, neither of these characteristics is true – error-

prone selectivities are not estimated at compile-time, and multiple plans may be invoked at run-

time. Notwithstanding, we can still compute the corresponding statistics by: (a) substituting

qe with a “don’t care” ∗; and (b) having the cost of the bouquet, denoted by c(B, qa), include

the overheads incurred by the exploratory partial executions. That is,

SubOpt(∗, qa) =
c(B , qa)

c(Popt(qa), qa)
∀qa ∈ ESS (3.4)

and

MSO = max
qa∈ESS

(SubOpt(∗, qa)) (3.5)

Finally, the bouquet technique also furnishes a guarantee on its MSO performance, which is

denoted by MSOg.

Analogous to the above, the randomized variants of the bouquet algorithm are evaluated

for the maximum expected sub-optimality across ESS, defined as

MESO = max
qa∈ESS

(E[SubOpt(∗, qa)])

and the guarantee on maximum expected sub-optimality is denoted by MESOg.

3.2.1 Ancillary Performance Metrics

In addition to the above primary metrics, we also evaluate the bouquet technique over a related

set of performance metrics. Specifically, if we assume that all query locations and error combi-

nations are equally likely, that is, the estimated query locations and the actual query locations

are uniformly and independently distributed over the entire ESS, the average sub-optimality
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over ESS is defined as:

ASO =

∑
qe∈ESS

∑
qa∈ESS

SubOpt(qe , qa)∑
qe∈ESS

∑
qa∈ESS

1
(3.6)

And, the corresponding version for the bouquet technique is:

ASO =

∑
qa∈ESS

SubOpt(∗, qa)∑
qa∈ESS

1
(3.7)

These definitions can easily be extended to the general case where the estimated and actual

locations have idiosyncratic probability distributions.

An important point to note is that even when the bouquet algorithm performs well on the

MSO and ASO metrics, it is possible that for some specific locations qa ∈ ESS, its performance

is poorer than the worst performance of the native optimizer – that is, the bouquet is harmful

for the queries associated with these locations. This possibility is captured using the following

MaxHarm metric:

MH = max
qa∈ESS

(
SubOpt(∗, qa)

SubOptworst(qa)
− 1 ) (3.8)

Note that MH values lie in the range (−1,MSOg −1], and harm occurs whenever MH is positive.

3.3 Notations

For notational convenience, we will hereafter represent the optimal cost and the bouquet cost

for a given location q with copt(q) and cB(q), respectively. Inclusive of these, the common

notations used in the thesis are enumerated in Table 3.1 for quick reference.
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Notation Description
Q User query

ESS Error-prone Selectivity Space
D Number of ESS dimensions

q(s1, s2, ..., sD) Query Location in ESS
qe Optimizer estimated selectivity location in ESS
qa ESS location corresponding to actual runtime selectivities

Popt(q) Optimal plan at location q
copt(q) Cost of optimal plan at location q
cB(q) Cost incurred by plan bouquet for location q
c(Pi, q) Cost of plan Pi at location q

SubOptworst(qa) Worst case native sub-optimality for location qa
SubOpt(∗, qa) Sub-optimality of location qa for plan bouquet

MSO Worst case sub-optimality across ESS
ASO Average sub-optimality across ESS
MH Maximum harm across ESS

MSOg Compile-time guarantee on worst-case sub-optimality
MESOg Compile-time guarantee on maximum expected sub-optimality
ICk kth isosurface (isocost surface) in the ESS

cost(ICk) Cost-budget corresponding to isosurface ICk

Table 3.1: Reference table for Notations

3.4 Assumptions

Plan Cost Functions

An assumption that fundamentally underlies the entire bouquet mechanism is that of Plan

Cost Monotonicity (PCM) – that is, the costs of the POSP plans increase monotonically with

increasing selectivity values. It captures the intuitive observation that when more data is

processed by a plan, signified by larger selectivities, the cost of processing also increases. This

assumption has often been made in the literature [15, 21, 46], and generally holds for the plans

generated by current database systems on decision-support queries [81]. The only exception

that we have found is for queries featuring existential operators, where the POSP plans may

exhibit decreasing monotonicity with selectivity. Even in such scenarios, the basic bouquet

technique can be utilized by the simple expedient of plotting the ESS with (1 − s) instead of
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s on the selectivity axes. Thus, only queries having optimal cost surfaces with a maxima or

minima in the interior of the error space, are not amenable to our approach.

Apart from monotonicity, we also assume the cost functions to be continuous (smooth)

throughout the ESS, again a commonplace feature in practice.

Note: We wish to highlight here that the requirement for our techniques is monotonicity and

smoothness of the optimal cost profile. The existence of these properties on individual plan

costs is sufficient but not necessary for the optimal cost profile to be smooth and monotonic.

In addition to the above, we also make the following assumptions during most of the thesis

before relaxing them in Chapter 11.

1. Selectivity Independence We assume that the selectivities for the EPP ’s are indepen-

dent of each other allowing us to construct an ESS with a different dimension for each

of the EPP predicates. Later in Chapter 11, we show how the bouquet approach can

be extended to provide guarantees even when the independence between predicates is not

assumed.

2. Perfect Cost Model While the errors in cost modeling can also cause mistake in plan

choices and hence performance suboptimality but since it is an orthogonal issue, for

now we assume the cost model to be perfect. Intuitively, it means that the we assume

a functional mapping between the abstract optimizer cost values and wall clock-times.

Later in Chapter 11, we derive the impact of having an erroneus cost model on the

sub-optimality based performance of the proposed technique.

3. No known Selectivity Bounds During this thesis, we have assumed the native engines

can face arbitrarily large estimation errors and there are no lower/upper bounds available

on the actual selectivities of the error-prone predicates. If these values are available in

some cases, they can be used to further improve the performance of bouquet sequence as

shown in Chapter 11.
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Chapter 4

Robustness Bounds using Plan

Bouquet Approach

We begin our presentation of the plan bouquet approach by characterizing its MSO performance

bounds for the 1D scenario, and then extend the analysis to the general multi-dimensional case.

4.1 1D Selectivity Space

4.1.1 1D algorithm

By virtue of our assumptions on plan cost behavior, the PIC is a monotonically increasing and

continuous function throughout the ESS; its minimum and maximum costs are denoted by Cmin

and Cmax, respectively. As described in the Introduction, this PIC is discretized by projecting

a graded progression of cost steps onto the curve. Specifically, consider the case wherein the

steps are organized in a geometric progression with initial value a (a > 0) and common ratio r

(r > 1), such that the PIC is sliced with m = blogr
Cmax
Cmin

+ 1c cuts, IC1, IC2, . . . ICm, satisfying

the boundary conditions a/r < Cmin ≤ cost(IC1) = a and cost(ICm−1) < Cmax = cost(ICm),

as shown in Figure 4.1.

For 1 ≤ k ≤ m, denote the selectivity location where the kth cost step (ICk) intersects
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Figure 4.1: 1D selectivity space

the PIC by qk and the corresponding bouquet plan as Pk. All the qk locations are unique, by

definition, due to the monotonicity and continuity features of the PIC. However, it is possible

that some of the Pk plans may be common to multiple intersection points (e.g. in Figure 1.5,

plan P1 was common to steps IC1 through IC4). Finally, for mathematical convenience, assign

q0 to be 0.

With this framework, the bouquet execution algorithm, outlined in Algorithm 1, operates

as follows in the most general case, where a different plan is associated with each step: We start

with plan P1 and budget cost(IC1), progressively working our way up through the successive

bouquet plans P2, P3, . . . until we reach the first plan Pk that is able to fully execute the query

within its assigned budget cost(ICk). It is easy to see that the following lemma holds:

Lemma 4.1 If qa resides in the range (qk−1, qk], 1 ≤ k ≤ m, then plan Pk executes it to

completion in the bouquet algorithm.

Proof: We prove by contradiction: If qa was located in the region (qk, qk+1], then Pk could
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Algorithm 1: 1D Bouquet Algorithm

// for each cost step ICk
for k = 1 to m do

start executing bouquet plan Pk
// perform cost-budgeted execution

while run cost(Pk) ≤ cost(ICk) do
execute Pk
if Pstep completes execution then

return query result
end

end
terminate Pk and discard partial results

end

not have completed the query due to the PCM restriction. Conversely, if qa was located in

(qk−2, qk−1], Pk−1 itself would have successfully executed the query to completion. With similar

reasoning, we can prove the same for the remaining regions that are beyond qk+1 or before qk−2.

2

4.1.2 Performance Analysis

Consider the generic case where qa lies in the range (qk−1, qk]. Based on Lemma 1, the associated

worst case cost of the bouquet execution algorithm is given by the following expression:

cB(qa) = cost(IC1) + cost(ICk) + ...+ cost(ICk)

cB(qa) = a+ ar + ar2 + ...+ ark−1 =
a(rk − 1)

r − 1
(4.1)
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The corresponding cost for an “oracle” algorithm that magically apriori knows the correct

location of qa is lower bounded by ark−2, due to the PCM restriction. Therefore, we have

SubOpt(∗, qa) ≤
a(rk−1)
r−1

ark−2
=

r2

r − 1
− r2−k

r − 1
<

r2

r − 1
(4.2)

Note that the final expression is independent of k, and hence of the specific location of qa.

Therefore, we can state for the entire selectivity space, that:

Theorem 4.1 Given a query Q with a 1D ESS, and the associated PIC discretized with a

geometric progression having common ratio r, the bouquet execution algorithm ensures that

MSOg =
r2

r − 1

Further, the choice of r can be optimized to minimize this value – the RHS reaches its minima

at r = 2, at which the value of MSOg is 4.

4.1.3 Optimality Analysis

The following theorem shows that the proposed 1D algorithm with r = 2 gives the best per-

formance achievable by any deterministic online algorithm – leading us to conclude that the

doubling-based discretization is the ideal solution.

Theorem 4.2 Given a universe of cost-budgeted executions of POSP plans, no deterministic

online algorithm can ensure MSOg lower than 4 in the 1D scenario.

Proof: We prove by contradiction, assuming there exists an optimal online robust algorithm,

R* with a MSOg of f , f < 4.

The proof is divided into two parts: First, we show that R* must be a monotonically

increasing sequence of plan execution costs, [a1, a2, . . . , am]; and second, we demonstrate that

achieving an MSO of less than 4 requires the ratio of cumulative costs for consecutive steps in

the sequence to be strictly decreasing – however, this is fundamentally impossible and hence

the contradiction.
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(a) Assume that R* has cost sequence [a1, . . . , ai, aj, . . . , am+1] which is sorted in increasing

order except for the inversion caused by aj < ai .

Now, let us define a plan execution to be useful if its execution covers a hitherto uncovered

region of the selectivity space. With this definition, an execution of aj after ai is clearly useless

since no fresh selectivity ground is covered by this cheaper execution. A sample instance with

reference to Figure 5, is executing P2, which covers the selectivity region (0, q2), after P3 which

covers the region (0, q3) – this does not add any value since the latter subsumes the former.

In summary, an out-of-order execution sequence cannot provide any improvement over an

ordered sequence, which is why aj can be safely discarded to give a completely sorted sequence

[a1, . . . , ai, . . . , am].

(b) For the sorted execution sequence R*, denote the cumulative cost at each step with

Aj =
∑j

i=1 ai, and the ratio between the cumulative costs for consecutive steps as Yj =
Aj+1

Aj
.

Note that, by definition. Aj+1 > Aj.

Now, since R* has MSOg of f , the sub-optimality caused by each and every step should be

at most f , that is,

Aj+1

aj
≤ f ∀j ∈ [1,m)

and therefore

Aj+1 ≤ faj ⇒ Aj+1 ≤ f(Aj − Aj−1)

⇒ YjAj ≤ f(Aj − Aj−1)

After dividing both sides with Aj, we get

Yj ≤ f

(
1− 1

Yj−1

)
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Through elementary algebra, it is known that ∀z > 0,
(
1− 1

z

)
≤ z

4
. Therefore, we get

Yj ≤
(
f

4

)
Yj−1

Since f < 4, it implies that the sequence Yj is strictly decreasing with multiplicative factor < 1.

With repeated application of the same inequality, we obtain

Yj ≤
(
f

4

)j−1
Y1

For sufficiently large j, this results in

Yj < 1⇒ Aj+1 < Aj

which is a contradiction to our earlier observation that Aj+1 > Aj.

2

4.2 Multi-dimensional Selectivity Space

We now move on to the general case of multi-dimensional selectivity error spaces. A sample

2D scenario is shown in Figure 4.2a, wherein the isosurfaces ICk are represented by contours

that represent a continuous sequence of selectivity locations (in contrast to the single location

in the 1D case). Further, multiple bouquet plans may be present on each individual contour,

as shown for ICk wherein four plans, P k
1 , P k

2 , P k
3 , P k

4 , are the optimizer’s choices over disjoint

(x, y) selectivity ranges on the contour. Now, to decide whether qa lies below or beyond ICk,

in principle every plan on the ICk contour has to be executed – only if none complete, do we

know that the actual location definitely lies beyond the contour.

This need for exhaustive execution is highlighted in Figure 4.2b, where for the four plans

lying on ICk, the regions in the selectivity space on which each of these plans is guaranteed
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Figure 4.2: 2D Selectivity Space: (a) Isocost Contours (b) Space coverage by plans on ICk

to complete within the budget cost(ICk) are enumerated (the contour superscripts are omitted

in the figure for visual clarity). Note that while several regions are “covered” by multiple

plans, each plan also has a region that it alone covers – the hashed regions in Figure 4.2b. For

queries located in such regions, only the execution of the associated unique plan would result

in confirming that the query is within the contour.

The basic bouquet algorithm for the generic multi-dimensional case is shown in Algorithm 2,

using the notation nk to represent the number of plans on isosurface ICk.

4.2.1 Performance Bounds

Given a query Q with qa located in the range (ICk−1, ICk], the worst-case total execution cost

for the multi-D bouquet algorithm is given by

cB(qa) =
k∑
i=1

[ni × cost(ICi)] (4.3)

Using ρ to denote the number of plans on the densest isosurface, and upper-bounding the values
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Algorithm 2: Multi-dimensional Bouquet Algorithm

// for each isosurface ICk
for k = 1 to m do

// for each plan on isosurface ICk
for i = 1 to nk do

start executing bouquet plan P k
i

// perform cost-budgeted execution

while run cost(P k
i ) ≤ cost(ICk) do

execute P k
i

if P k
i completes execution then
return query result

end

end
terminate P k

i and discard partial results

end

end

of the ni with ρ, we get the following performance guarantee:

cB(qa) ≤ ρ×
k∑
i=1

cost(ICi) (4.4)

Now, following a similar derivation as for the 1D case, we arrive at the following theorem:

Theorem 4.3 Given a query Q with a multidimensional ESS, and the associated PIC dis-

cretized with a geometric progression having common ratio r and maximum isosurface plan

density ρ, the bouquet execution algorithm ensures that MSOg =
ρr2

r − 1
.

Setting r = 2 in this expression ensures that MSOg = 4ρ.

To the best of our knowledge, the above MSO bounds are the first such guarantees in the

literature. Further, from these formulations, we can trivially infer that the ancillary metrics,

ASO and MH, are bounded by MSOg and (MSOg − 1), respectively.
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Chapter 5

Bounds on Maximum Expected

Sub-optimality

In the previous chapter, we focused on deterministic guarantees for the worst-case sub-optimality

across query locations in the entire ESS. We now move on to exploring how randomization can

be introduced in the plan bouquet algorithm, leading to guarantees on the maximum expected

sub-optimality, i.e., MESOg. While our randomized algorithms work for arbitrary number of

dimensions, for ease of presentation, we restrict our discussion here to 2D ESS – hence, we will

use the term contour to represent the isosurfaces.

5.1 Randomized Intra-contour Plan Sequence

The basic plan bouquet algorithm executes nk plans on the kth contour, but does not impose

any order on these executions. In fact, the ordering of executions has no impact on the worst

case analysis, as every plan on the contour has a region that it alone covers, suggesting exactly

the same worst case performance for any execution order.

Notwithstanding the above, the sub-optimality for a particular query instance could vary

with the execution order of the contour plans. To analyze this, we split the bouquet overheads
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into two components: (a) the overheads suffered at the finishing contour; and (b) the overheads

accumulated from the earlier contours (denoted as TB). While TB remains the same for all

query instances that lie between a consecutive pair of contours, the former is dependent on

the execution order. Consider, for instance, the qa located as shown in Figure 5.1a. With

the default execution order, P k
1 through P k

4 , qa is completed by the terminal P k
4 execution,

resulting in overheads of TB + 4 ∗ cost(ICk). On the other hand, the overheads would reduce to

TB + cost(ICk) if P k
4 was chosen as the first plan in the execution sequence (Figure 5.1b). The

implication here is that the expected suboptimalities can be improved by randomly choosing

plan execution orders on each contour. However, minimizing this expected value may result in

a weakening of the worst-case guarantee, and the tradeoff is quantified below.

Figure 5.1: Worst-case and best-case (intra-contour) plan sequences for qa

We construct the following variant of the bouquet algorithm – for each contour ICk, the

execution sequence of the nk plans is a permutation chosen uniformly at random from all possible

permutations. For this variant, the performance guarantees are captured by the following result:

Lemma 5.1 The bouquet algorithm with randomized intra-contour plan sequence provides

MESOg = ρ

(
r

r − 1
+
r

2

)
+
r

2
, while retaining MSOg =

ρr2

r − 1
.
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Proof: Assume that qa lies in the unique region corresponding to plan P k
i (ith plan on kth

contour). Note that the randomization strategy only impacts the cost incurred due to the

finishing contour ICk, since any permutation on the previous contours will fail to complete qa.

Specifically, since the plan sequence is chosen uniformly at random from all possible permuta-

tions, qa will finish with 1, 2, 3, . . . , nk executions with equal probability of
1

nk
. In other words,

it corresponds to a discrete uniform random variable X with nk support points, where X = i

represents the sequences that finish with i executions.

With the above framework, the expected bouquet cost is given by

E[cB(qa)] = cost(IC1) + cost(IC2) + ....+ cost(ICk−1) + E[cost(ICk)]

leading to

E[cB(qa)] = (n1)a+ (n2)ar + (n3)ar
2 + ...+ (nk−1)ar

k−2 +

[
1

nk
(1× ark−1 + ...+ nk × ark−1)

]

E[cB(qa)] = (n1)a+ (n2)ar + (n3)ar
2 + ...+ (nk−1)ar

k−2 +

[(
nk + 1

2

)
× ark−1

]
Overestimating every ni with ρ leads to

E[cB(qa)] ≤ ρ(a+ ar + ar2 + ...+ ark−2) +

[(
ρ+ 1

2

)
× ark−1

]

Dividing by ark−2, i.e., the minimum possible cost in (ICk−1, ICk] gives

E[SubOpt(∗, qa)] ≤ ρ

(
1

rk−2
+

1

rk−3
+ ...+ r + 1

)
+

[(
ρ+ 1

2

)
× r
]

Finally, overestimating the finite geometric series with an infinite series provides

E[SubOpt(∗, qa)] < ρ

(
1 +

1

r
+

1

r2
+ ...∞ terms

)
+

[(
ρ+ 1

2

)
× r
]
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resulting in

E[SubOpt(∗, qa)] < ρ

(
r

r − 1

)
+

(
ρ+ 1

2

)
r = ρ

(
r

r − 1
+
r

2

)
+
r

2
(5.1)

2

With the best possible random sequence, that requires only 1 execution for the finishing

contour, the suboptimality is ρ
(

r
r−1

)
+r and for the worst case, where ρ executions are required

by the finishing contour, it is given by ρ
(

r
r−1

)
+ ρr. Clearly, the above analysis and the bound

on expected sub-optimality is independent of k.

Setting a common ratio of r = 2.4 minimizes MESOg to 2.9ρ + 1.2 – as a side effect, MSOg

marginally increases from 4ρ to 4.1ρ. Moreover, even if we wish to retain MSOg of 4ρ by setting

r = 2, then MESOg is only mildly weakened to 3ρ + 1. Essentially, this suggests that we can

simultaneously obtain excellent performance on both metrics.

5.2 Randomized Contour Placement

Observe that the worst case sub-optimality instances correspond to qa’s that lie just beyond

a contour (i.e. copt(qa) = cost(ICk−1) + ε) since their execution finishes with a plan on the

next contour, which is r−optimal. On the other hand, qa’s that lie just below a contour (i.e.

copt(qa) = cost(ICk)−ε) complete their execution with an almost-optimal plan. Such differential

treatment of query instances based on their locations can be ameliorated by randomizing the

placement of the contours – this is illustrated in Figure 5.2 for the example location qa. With the

original contour placement (Figure 5.2a), P k
4 completes execution for qa expending cost(ICk),

whereas after slightly repositioning the contours (Figure 5.2b), qa is completed by P k′
4 with

cost(ICk′) ≈ cost(ICk)
r

.

To leverage the above, we construct a randomized variant, similar to that proposed in [63],

wherein the entire geometric sequence is shifted left by a random multiplicative factor
1

rX
,

where X is a uniform random variable ∈ [0, 1). That is, the cost associated with the first
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Figure 5.2: Worst-case and best-case contour placements for qa

contour is randomized between
a

r
and a, the later contours retaining the default r cost-ratio.

For this variant, the performance guarantees are captured by the following result:

Lemma 5.2 The bouquet algorithm with randomized contour placement provides MESOg =

ρ
r

ln r
, while retaining MSOg =

ρr2

r − 1
.

Proof: For starters, assume that the contours are placed as per the deterministic bouquet

algorithm. Now, consider a qa that lies infinitesimally above ICk−1 – its worst-case subopti-

mality is
ρr2

r − 1
, as per Theorem 4.3. However, when the entire geometric sequence is shifted

left by a random multiplicative factor
1

rX
, where X is a uniform random variable ∈ [0, 1), this

suboptimality becomes a decreasing function of the amount of shift. Specifically, the expected

sub-optimality is

E[SubOpt(∗, qa)] < E

[
1

rX

(
ρr2

r − 1

)]
=

ρr2

r − 1

(∫ 1

X=0

r−XdX

)
=

ρr2

r − 1
×
(
r − 1

r ln r

)
=

ρr

ln r

(5.2)

Caveat : An implicit assumption in the above analysis is that the value of ρ is not increased by
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the randomization (although the individual contour plan densities may have been altered due

to the changed contour locations).

Next we claim that, a similar analysis holds for an arbitrary qa lying between the original

deterministic contours ICk−1 and ICk. The only difference is that instead of a continuously de-

creasing sub-optimality function of the shift, we get the following behavior: The sub-optimality

initially decreases as the ICk contour moves from its original position towards qa, reaching a

minimum when qa is present on the contour. Then, there is a sudden discontinuous increase in

sub-optimality when the contour crosses qa, because qa is now covered by a new contour that

is r times its optimal cost. As the shift continues, the new covering contour begins to move

closer to qa, again resulting in a decreasing function. In expectation, this behavior is the same

as that shown for the specific case above.

To put the above arguments mathematically, consider a generic location with optimal cost

cost(ICk−1) × rz with z ∈ (0, 1]. Here, the contour ICk comes closer to qa when X varies in

the range [0, 1− z) and suddenly covered by a r-optimal contour just after X = 1− z, beyond

which the new contour moves closer to qa. With this behavior, the expected sub-optimality for

this location is given by:

E[SubOpt(∗, qa)] <
1−z∫

X=0

(
1

rz
× 1

rX

)(
ρr2

r − 1

)
dX +

1∫
X=1−z

(
r × 1

rz
× 1

rX

)(
ρr2

r − 1

)
dX

E[SubOpt(∗, qa)] <
(
ρr2

r − 1

) 1−z∫
X=0

(
1

rX+z

)
dX +

1∫
X=1−z

(
1

rX+z−1

)
dX


Substituting Y1 = X + z and Y2 = X + z − 1,

E[SubOpt(∗, qa)] <
(
ρr2

r − 1

) 1∫
Y1=z

(
1

rY1

)
dY1 +

z∫
Y2=0

(
1

rY2

)
dY2


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E[SubOpt(∗, qa)] <
(
ρr2

r − 1

)[(
−1

ln r

)(
1

r
− 1

rz

)
+

(
−1

ln r

)(
1

rz
− 1

r0

)]

E[SubOpt(∗, qa)] <
(
ρr2

r − 1

)[(
1

ln r

)(
1− 1

r

)]
=

ρr

ln r

2

Setting a common ratio of r = e ≈ 2.72 minimizes MESOg to ≈ 2.72ρ – as a side effect, MSOg

slightly increases to 4.3ρ. Moreover, even if we wish to retain the 4ρ MSO guarantee by setting

r = 2, then MESOg is only mildly weakened to 2.89ρ. Again, we observe simultaneous excellent

performance on both metrics.

5.3 Using the Randomization Strategies in Tandem

We now move on to deriving MESOg when both randomization strategies are applied to the

plan bouquet algorithm in tandem. Specifically, the contour placement randomization is applied

first, and then for each resulting contour, the execution order randomization is applied. For this

combined algorithm, the following theorem gives an upper bound on the worst-case expected

sub-optimality.

Theorem 5.1 Given a query Q on a multi-dimensional ESS, the bouquet execution algorithm

with contour placement randomization followed by intra-contour plan sequence randomization

provides MESOg = ρ
(r + 1)

2 ln r
+

(r − 1)

2 ln r
, while retaining MSOg =

ρr2

r − 1
.

Proof: The intra-contour randomization performance for a given placement of contours

(Lemma 5.1), remains essentially the same for each instantiated value of the contour place-

ment random variable (Lemma 5.2). Hence, we use the law of iterated expectations to calculate

the expected sub-optimality for a given location qa, by leveraging Equation 5.1 across different

random contour placements:
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E[SubOpt(∗, qa)] ≤ E

[
1

rX

[
ρ

(
r

r − 1
+
r

2

)
+
r

2

]]

E[SubOpt(∗, qa)] ≤
[
ρ

(
r

r − 1
+
r

2

)
+
r

2

]
× E

[
1

rX

]

E[SubOpt(∗, qa)] ≤
[
ρ

(
r

r − 1
+
r

2

)
+
r

2

]
× r − 1

r ln r

E[SubOpt(∗, qa)] ≤
[
r(r + 1)ρ

2(r − 1)
+
r

2

]
× r − 1

r ln r

E[SubOpt(∗, qa)] ≤
r + 1

2 ln r
ρ+

r − 1

2 ln r
=

(r + 1)ρ+ (r − 1)

2 ln r
(5.3)

2

For r = 2, we obtain

|3ρ+ 1|r=2 × 0.72 = |2.16ρ+ 0.72|r=2

Further, this guarantee bound can be improved by minimizing the
r + 1

ln r
multiplier of ρ – the

multiplier reaches its minimum value for r = 3.6, leading to

MESOg = |1.8ρ+ 1|r=3.6

5.4 Discussion

The above results are summarized in Table 5.1. It is noteworthy that using r = 2 retains MSOg

while minimizing MESOg requires different cost-ratios for each variant.

With regard to implementation, the intra-contour plan sequence only requires a simple shuf-

fling algorithm – for instance, the standard Knuth’s shuffle [54]. On the other hand, random-
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Variant Cost-ratio(r) MESOg MSOg

No randomization 2 4ρ 4ρ

Randomized Plan Sequence
2 3ρ+ 1 4ρ

2.4 2.9ρ+ 1.2 4.1ρ

Randomized Contour Placement
2 2.89ρ 4ρ

2.4 2.74ρ 4.1ρ
2.72 2.72ρ 4.3ρ

Randomized Plan Sequence & Contour Placement

2 2.16ρ+ 0.72 4ρ
2.4 1.94ρ+ 0.8 4.1ρ
2.72 1.86ρ+ 0.86 4.3ρ
3.6 1.8ρ+ 1 4.98ρ

Table 5.1: Performance of randomized variants of the bouquet algorithm

izing the initial contour location is more complicated since in principle, for each new starting

cost, a complete rescan of the ESS is required to determine the fresh set of contours. However,

even if we restricted ourselves to merely two instances of contour placement, corresponding to

X = 0 and X = 0.5, we achieve an attractive combination of MESOg = 2.38ρ+ 1 and MSOg =

4.1ρ, for r = 2.4.
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Chapter 6

Compile-Time Enhancements to

Improve Robustness Bounds

The bouquet mechanism’s MSOg guarantee of 4 for the 1D case is shown to be inherently

strong in Section 4.1.1. However, the multi-dimensional bounds depend on ρ, the maximum

plan density across the isosurfaces, which can be quite high – for instance, in excess of 150 for

the 5D queries considered in our study. Therefore, to have a practically useful bound, we need

to ensure that the value of ρ is reduced as far as possible.

A potential approach to achieving reduction in the “effective” value of ρ is to somehow skip

some of the cost-budgeted executions from the original bouquet sequence. At first glance, such

removal of executions may appear contrary to the principle of exhaustive contour execution

described in Section 4.2. However, as we will show in the remainder of this section, it can

be achieved by ensuring that the roles of skipped executions are played by carefully identi-

fied alternative executions. Specifically, we present two compile-time enhancements here for

implementing such an execution skipping process.
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6.1 Plan Swallowing Enhancement

Our first technique leverages the notion of “anorexic reduction” [46] to directly reduce the

cardinality of the POSP itself. In this approach, POSP plans are allowed to “swallow” other

plans, that is, occupy their regions in the ESS, if the sub-optimality introduced due to these

swallowings can be bounded to a user-defined threshold, λ. Through extensive experimentation,

it was shown in [46] that even for complex OLAP queries with high dimensional ESS, a λ setting

of 20% was typically sufficient to bring the number of POSP plans down to “anorexic levels”,

that is, a small absolute number within or around 10.

When anorexic reduction is introduced into the plan bouquet setup, it immediately serves

to steeply reduce the effective value of ρ. However, there is also a downside – the constant

multiplication factor is increased by a factor (1 + λ) due to the inflation in the cost budget.

Overall, the deterministic guarantee is altered from 4 ρposp to 4 (1 + λ) ρanorexic .

Empirical evidence that this tradeoff is highly beneficial is shown in Table 6.1, which com-

pares for a variety of multi-dimensional error spaces, the bounds (using Equation 4.3) under

the original configuration and under anorexic reduction (λ = 20%). As a particularly com-

pelling example, consider 5D DS Q19, a five-dimensional selectivity error space based on Q19

of TPC-DS – we observe here that MSOg plunges by more than an order of magnitude, going

down from 379 to 30.4.

6.2 Execution Covering Enhancement

We now move on to describing an independent and complementary enhancement that can

further reduce the effective ρ. It leverages the observation that even if a particular execution is

skipped, the selectivity region covered by this execution can still be covered using execution(s)

from later contours – of course, at a higher cost. Such skipping clearly implies increase in sub-

optimality for some individual query instances – however, from a holistic perspective, it serves
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Error Space ρposp MSOg ρanorexic MSOg

3D H Q5 11 33 3 12.0
3D H Q7 13 34 3 9.6
4D H Q8 88 213 7 24.0
5D H Q7 111 342.5 9 37.2

3D DS Q15 7 23.5 3 12.0
3D DS Q96 6 22.5 3 13.0
4D DS Q7 29 83 4 17.8
4D DS Q26 25 76 5 19.8
4D DS Q91 94 240 9 35.3
5D DS Q19 159 379 8 30.4

Table 6.1: Effect of Anorexic Reduction [λ = 20%] on Robustness Guarantees

to substantively reduce the effective ρ and thereby deliver much stronger MSOg guarantees.

Figure 6.1: E7 can complete all locations in R(E3) with cost(IC2) = 2 * cost(IC1)

To formalize this enhancement, we represent the bouquet algorithm as a sequence of cost-

budgeted plan executions BS = {E1, E2, . . . , Eterminal}, where Eterminal is the final execution

that can complete all locations in the ESS. Additionally, we use the function φ(Ei) to indicate

the identity of the executed plan, and ω(Ei) to represent the cost budget of the execution. So,

if Ei corresponds to the execution of P k
j , then φ(Ei) = Pj and ω(Ei) = cost(ICk).

Now, for each Ei, denote with R(Ei), the region of the ESS that Ei is apriori known to
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certainly complete within its budget, i.e, all q s.t. c(φ(Ei), q) ≤ ω(Ei). To make this notion

concrete, visual representations of R(E3) and R(E7) are shown in Figure 6.1, highlighted with

purple horizontal lines and green slanted lines, respectively. In addition, the figure also shows

that E7 can complete all query locations in R(E3) within twice the cost budget of E3.

For quick reference, the notations employed hereafter in this section are summarized in

Table 6.2.

Notation Description
�cover Execution ‘cover’ relation
BS Original bouquet execution Sequence
Ei ith execution in the bouquet execution sequence

Eterminal Final execution in the execution sequence
φ(Ei) Identity of plan used in execution Ei
ω(Ei) Cost budget of execution Ei
R(Ei) Region in ESS covered by ith execution

SubOpt(Ei) SubOpt corresponding to ith execution
CS Covering execution Sequence
CSk Covering Sequence that covers the set of original executions from ICk
CSopt Set of Optimal Covering Sequence(s)
CSI Covering Sequence Identification Algorithm

Table 6.2: Reference table for Notations for Execution Covering

6.2.1 The Cover Relation

We define the ability of an execution to complete the ESS region of another execution as the

Cover Relation over the set of executions. Formally, an execution Ei can cover execution Ej,

denoted as Ei �cover Ej, if R(Ei) ⊇ R(Ej). The �cover relation imposes a partial order on the

set of executions, with Eterminal being the unique top element since R(Eterminal) = ESS.

Example An example 2D ESS is shown in Figure 6.2, featuring a total of 32 executions

spanning across 7 contours. The corresponding Hasse diagram for the cover relation on the set

of executions in the bouquet sequence is shown in Figure 6.3a, where elements of the partial

order become nodes, and non-transitive relations among the elements become edges. Further,

the weight of each node is given by the cost budget of the corresponding execution, i.e., ω(Ei).
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Figure 6.2: Example bouquet sequence

Since the weights are the same for all executions from a given contour, they are highlighted

only once for each contour in Figure 6.3a, e.g., 8C for nodes 16 to 22.

Figure 6.3: (a) Hasse diagram (b) Execution cost and sub-optimality analysis

Detailed sub-optimality analysis for the basic bouquet sequence Next, we show in

Figure 6.3b, the detailed analysis of the basic bouquet execution sequence wrt execution cost

and sub-optimality. Here, each node Ei is labeled with the accumulated overheads until and
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including Ei, i.e.
∑i

j=1 ω(Ej). While the accumulated overheads are monotonically increasing,

the sub-optimality variation is not necessarily so, and is given by the following recurrence

formula:

SubOpt(Ei) =


SubOpt(Ei−1) + r if ω(Ei) = ω(Ei−1)

SubOpt(Ei−1)

r
+ r if ω(Ei) 6= ω(Ei−1)

r if i = 1

With each new execution, the sub-optimality gets an additive term r due to the increase in

the accumulated execution cost. But whenever there is a contour change, the sub-optimality

first undergoes an improvement by a factor of r due to increase in the minimum optimal cost

covered by Ei, before facing the additive term r. Thus, the sub-optimality increases while

working our way through a contour, but may observe a dip when a contour jump happens.

Similarly, with MSOk
g defined as the maximum sub-optimality encountered in the region

between contours ICk−1 and ICk, we find that MSOk
g varies according to the recurrence:

MSOk
g = rnk +

MSOk−1
g

r
with MSO0

g = 0 for mathematical convenience. It is noteworthy

that, MSOk
g increases monotonically with contour index k only if nk >

MSOk−1
g

r2
is satisfied for

all k ∈ (1,m]. Finally, in Figure 6.3b, these computed values are marked besides each contour

and the overall MSOg = 24.25 that occurs on the 4th contour, is highlighted in boldface.

6.2.2 Motivating Scenario: MSOg Reduction due to Execution Cov-

ering

Consider Figure 6.3a, where execution E28 is capable of covering executions E20, E21 and

E22. That is, if E20, E21, E22 are skipped from the bouquet sequence, their associated regions

∪22i=20R(Ei) can still be covered by execution E28. Implementing this observation, as depicted

in Figure 6.4, the effective plan density of IC4 reduces from 7 to 6 – since the cost budget

of E28 is equivalent to 2 executions from IC4. Note that, this execution cover has no impact

on sub-optimality performance till E19, but causes a sub-optimality reduction for all the later
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executions and hence reduction in MSOk
g for all the contours beyond IC4. Overall, MSOg

marginally reduces from 24.25 to 22.25.

As a general rule, implementing a particular execution covering does not harm MSOg if the

cover’s budget does not exceed the sum of the budgets of the replaced executions. That is,

Ecover �cover {Ec, . . . , Ec′} can be employed if ω(Ecover) ≤ ω(Ec) + . . .+ ω(Ec′).

Figure 6.4: Using cover E28 → {E20, E21, E22} improves MSOg from 24.25 to 22.25

6.2.3 Covering Sequences

Extending the above single execution cover example, we define a covering sequence (CS) as an

execution sequence that contains a cover for each and every execution in the original sequence.

Since Eterminal cannot be covered by any other execution, it must be present in every candidate

covering sequence, implying a total of 2|BS|−1 candidates. For each candidate CS, MSOg can

be computed as

MSOg(CS) = max
1≤a≤m

[∑a
k=1 Ω(CSk)

cost(ICa−1)

]
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where CSk ⊂ CS is the set of execution(s) that cover executions from ICk and Ω(CSk) =∑
Ei∈CSk ω(Ei) and m is the total number of contours. 1 Also, cost(IC0) = Cmin = cost(IC1)

2
+ ε.

Optimal Covering Sequence Among all the CS candidates, the covering sequence(s) cor-

responding to the minimum value of MSOg are characterized as optimal covering sequences

(CSopt). The CSopt sequences can be identified through a brute force evaluation of all can-

didates, but the complexity is exponential in the number of executions in the sequence, and

it is therefore impractical. As a viable alternative, we propose a greedy algorithm, termed as

Covering Sequence Identification (CSI), to find a CS with improved MSOg. Specifically, CSI

decomposes the original problem into contour-wise subproblems, each of which is modeled as a

red-blue domination problem. The subproblems are then solved efficiently using a greedy ap-

proach, and the contour-wise solution nodes are stitched together to form a covering sequence

(details in Chapter 7).

As a concrete outcome of the CSI algorithm, the solution CS for the running example is

shown in Figure 6.5a (the equivalent ESS coverage representation is shown in Figure 6.5b).

Note that the resulting MSOg has come down to only 14.5 as compared to 24.25 of the original

bouquet sequence.

With regard to the above CS solution, a few interesting sidelights emerge:

• In contrast to the original bouquet sequence, the executions are not necessarily contour-

ordered in a covering sequence. For instance, E31 from IC6 is executed before executions

E23 and E24 from IC5.

• The CS uses only 11 out of 32 executions in the original sequence.

• The effective contour plan densities decrease from [3, 5, 7, 7, 6, 3, 1] to [2, 4, 4, 4, 2, 2, 1].

Specifically for IC3, ES uses 7 executions from IC3, while CS covers it employing CS3

1If an execution is capable of acting as a cover for executions from different contours, then it is counted only
once for the lowest index contour, while calculating MSOg.
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Figure 6.5: (a) Execution covering sequence (b) Modified space coverage

={E11,E15,E17,E21}, which is equivalent to 4 executions (since it requires two executions,

E17 and E21, from IC4.
1

• An increase in execution cost (and hence sub-optimality) occurs only for the three re-

gions covered by E1(C → 2C), E4(5C → 6C) and E9(17C → 18C). For most of the

remaining regions, the execution cost improves significantly, e.g., E15(41C → 10C) and

E31(265C → 58C). This observation suggests that along with significant reductions in

MSOg, concurrent improvements in ASO and MH may also be expected.

The effectiveness of CSI is further corroborated by its performance on queries based on

the TPC-H and TPC-DS benchmarks – these results are summarized in Table 6.2.3. Overall,

the MSOg never exceeded 20 even for high-dimensional queries, including those with high

initial values of MSOg! As a particularly compelling example, for a five-dimensional error-space

5D H Q7, the covering sequence used only 10 executions (out of the original 34), and more

importantly brought MSOg down from 37.2 to only 15.

1The underlined executions, E11 and E15, are part of CS3 but their overheads are already counted in CS2.
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Error MSOg # Executions MSOg # Executions
Space (Anorexic) (Anorexic) (Anorexic+CSI) (Anorexic+CSI)

3D H Q5 12 8 8.4 4
3D H Q7 9.6 6 7.2 3
4D H Q8 24 18 15 7
5D H Q7 37.2 34 15 10

3D DS Q15 12 16 9.2 9
3D DS Q96 13 10 8.8 7
4D DS Q7 17.8 14 9.1 7
4D DS Q26 19.8 23 8.1 8
4D DS Q91 35.3 34 16 14
5D DS Q19 30.4 24 15 13

Table 6.3: Effect of Execution Covering on Robustness Guarantees

Computational Effort Overall, the worst case complexity for the CSI algorithm isO(mρ log(mρ))

against O(2mρ) of the brute force algorithm. Further, to be able to use this enhancement, it

is required to first construct the Hasse Diagram which involves establishing the cover relation

among all pairs of executions from consecutive contours. For this purpose, we have devised a

three step mechanism, where the proposed checks in the first two steps are computationally

very cheap as compared to the third step. To elaborate, we first identify true positives by

evaluating a simple necessary and sufficient criteria, then discard true negatives by evaluating

another cheap to evaluate necessary condition, and finally, if the previous two steps do not prove

conclusive, evaluate the computationally expensive sufficiency criteria. The complete details of

this procedure can be found in Chapter 7.

Finally, since the computational efforts required in both Hasse diagram construction and

covering sequence identification, depend on the number of executions in the sequence, it is

recommended to use CSI only after anorexic reduction has already been employed.

60



Chapter 7

Efficient Identification of Plan Bouquet

Sequence

Given a user query Q, the first step is to identify the error-prone selectivity dimensions in the

query. For this, we can leverage the approach proposed in [52], wherein a set of uncertainty

modeling rules are outlined to classify selectivity errors into categories ranging from “no un-

certainty” to “very high uncertainty”. Alternatively, a log could be maintained of the errors

encountered by similar queries in the workload history. Finally, there is always the fallback

option of making all predicates where selectivities are evaluated, to be selectivity dimensions

for the query.

The chosen dimensions form the error-prone selectivity space(ESS). In general, each dimen-

sion ranges over the entire [0,1] selectivity range – however, due to schematic constraints, the

range may be reduced. For instance, the maximum legal value for a PK-FK join is the recip-

rocal of the PK relation’s row cardinality. The next step is to identify the isosurfaces in this

ESS.
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7.1 NEXUS: Algorithm for Identifying an Isosurface

The primary inputs to the bouquet identification phase are the isosurfaces (contours in 2D)

drawn on the ESS. Thus far, we had viewed each isosurface as a continuous region comprised of

selectivity locations having identical cost values for their optimal plans. As a practical matter,

however, we have to construct and process approximate discretized versions of these regions.

That is, we need to use a D-dimensional grid with finite resolution1 res to approximate the

ESS hypercube [0, 1]D.

With this discretized ESS, an isosurface for cost C is constructed as a D-dimensional set of

contiguous grid locations q such that copt(q) lies in the interval [C, (1 + α)C], where copt(q) is

the cost of the optimal plan at location q, and α is a tolerance factor. Since the tolerance factor

could occasionally result in “thickening the surface” due to inter-surface locations also creeping

into the surface set, we additionally require that each point in the surface must have at least

one of its lower neighbors violating the above cost interval requirement. Finally, we assume

that the resolution of the ESS grid is sufficiently high such that we can always find contiguous

isocost locations even with small values of α, say 0.05.

A straightforward strategy to identify the isosurfaces from the ESS is to first explore the

discretized ESS in a exhaustive manner, and then identify the locations that are acceptable for

the required isocost values. But the overheads for such an approach would increase exponentially

with ESS dimensionality, and become impractical for typical OLAP queries. Moreover, the

exhaustive enumeration is an overkill for isosurface identification since: (a) we do not need

information about the internal regions that lie between the isosurfaces and take up the vast

majority of the space in ESS; and (b) we do not exploit the potential for overlapping the

identification of later isosurfaces with the execution of the earlier isosurfaces, which could

provide a head-start in the bouquet execution process.

1We use the term resolution to remain consistent with prior works [46, 47] that dealt with discretized
selectivity spaces.
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Motivated by the above observations, we propose1 in this section a focused approach for the

identification of isosurfaces. Specifically, it quickly identifies the locations corresponding to a

particular isosurface without wasting much effort on extraneous locations. For this purpose,

we leverage our basic assumptions of monotonicity and smoothness of plan costs – these imply

that in each dimension of the discretized ESS, the optimal costs are in increasing order and do

not change abruptly.

We begin by presenting the algorithm for a 2D ESS, followed by the extension to higher-

dimensional selectivity spaces. The notations used in this section are summarized in Table 7.1.

Notation Description
C Cost of isosurface
res Resolution of the ESS grid
α Cost tolerance factor in isosurface identification

copt(q) Optimal cost at location q in the ESS
L A generic isosurface location in the ESS

Lx±1 ESS locations in immediate neighborhood of L along dimension x
S Initial seed location for an isocost surface in the ESS

Table 7.1: Reference table for Notations for NEXUS algorithm

7.1.1 2D ESS

Given a location L with coordinates (x, y) in the discretized 2D ESS, we denote its three

immediate “lower” neighbors as follows: (x − 1, y) with Lx−1; (x, y − 1) with Ly−1; and (x −

1, y− 1) with L−1. With these notations, the location L(x, y) is included in the contour C if it

satisfies the following conditions:

(a) C ≤ copt(L) ≤ (1 + α)C and

(b) copt(Lx−1) < C or copt(Ly−1) < C or copt(L−1) < C.

The first condition establishes the acceptable cost interval for L, while the second ensures that

at least one of L’s dominated neighbors is outside of the cost interval (to prevent “surface

1This is joint work with C.Rajmohan [79]
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thickening”, as explained earlier). It is to be noted here that, in condition(b) the RHS value

cannot be more than C since otherwise L won’t satisfy condition (a) which is the primary

condition for contour acceptability.

With the above setting, the contour identification algorithm works in two phases:

1. Locating the Initial Seed: Here, the aim is to find the contour location that has the

maximum ’y’ coordinate, and use it as a seed location for the next phase of the algorithm.

This extreme point can only lie on either the left edge or the top edge of the ESS, i.e. (0,0)

to (0, res) or (0,res) to (res, res). To determine the correct edge, we simply cost these

three ESS corners, and determine which edge includes C in its range of values. Once the

edge has been determined, the exact location S, to serve as the initial seed, is determined

using a binary search on that edge using the cost value C.

2. Neighborhood EXploration Using Seed (NEXUS): Since the seed has the maximum ’y’

location, for locating our next isocost point, we need to only consider the 3rd and 4th

quadrants relative to the seed as origin. However, locations in the 3rd quadrant are

already known to be unacceptable due to PCM. Therefore, the initial seed location S can

be used to recursively generate new seed locations solely in the 4th quadrant and thus

grow the contour.

For a given seed location S(x, y), we denote the location (x + 1, y) with Sx+1 and the

location (x, y − 1) with Sy−1. By virtue of PCM, we know that copt(Sx+1) > copt(S)

and copt(Sy−1) < copt(S). We find from the query optimizer the optimal costs for these

candidate seed locations, and choose the new seed based on the following simple criterion:

If copt(Sy−1) < C, then set S = Sx+1 else S = Sy−1.

The end of this recursive routine is marked by the non-existence of both Sx+1 and Sy−1

in the ESS grid.

A sample working of the above algorithm is visually demonstrated through a set of Figures.
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Figure 7.1: Finding seed location in 2D ESS

First, the identification of the initial seed S using 6 optimization calls is shown in Figure 7.1.

Then the recursive contour exploration in the 4th quadrant of S is shown in Figure 7.2 – here,

the optimized locations are marked with either a red colored triangle N or a green colored dot

• – the latter constitute the accepted contour locations, whereas the former indicates locations

that were explored but rejected. Finally, Figure 7.3 shows the contour exploration completing

when S hits the ESS boundary.

Figure 7.2: Intermediate Contour Exploration in 2D ESS
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Figure 7.3: Completely Explored Contour in 2D ESS

Discussion It is noteworthy that #redN = #green•, i.e. the algorithm performs exactly

twice the number of optimizer calls as compared to the optimal algorithm that finds only

acceptable contour locations. This is because at any point during contour exploration, there

are exactly two candidates for the new seed – Sx+1 and Sy−1, and one of them will definitely

be on the (accepted) contour. In fact, it is easy to see that since the decision is based solely

on Sy−1, the optimization call for Sx+1 should be invoked only if required, and thereby further

reduce the number of wasted optimization calls.

7.1.2 Extension to nD ESS

Next, we show that the neighborhood exploration approach for contour identification can be

easily extended to general multi-dimensional ESS. For this purpose, we start with the extended

algorithm for 3D ESS that systematically invokes different instances of the 2D algorithm.

Locating the Initial 3D Seed Here, the initial seed S is the isosurface location with the

maximum z coordinate. To find this point, it is first checked whether the seed lies on the edge

(0, 0, 0) to (0, 0, res), which implies that S = (0, 0, z) with z < res. If yes, the seed can be

determined by using a binary search on this edge – this corresponds to Case 1 in Figure 7.4.

If no, the initial seed is located using a procedure similar to 2D ESS for the XY-slice with
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z = res, which is visualized as Case 2 in Figure 7.5 and 7.6 - here, there are two possibilities:

S = (0, y, res) with y < res (Case 2a), or S = (x, res, res) with x < res (Case 2b).

Figure 7.4: Example Contour Exploration in 3D ESS (Case 2b)

3D Isosurface Exploration We first explain the isosurface exploration phase for Case 2b.

To identify all isosurface locations with z = res, we use the 2D exploration algorithm for the

XY-slice with z = res, and grow the initial seed S as explained previously. For exploring

the locations with lower values of z, the initial seeds for each XY-slice are generated by 2D

exploration of the XZ-slice corresponding to y = res, using the initial seed S and candidate

locations Sx+1 and Sz−1.

Similarly in Case 1, the initial seeds for each lower value of z are generated by exploring

the YZ-slice corresponding to x = 0, starting with an initial seed S and candidate locations

Sy+1 and Sz−1. Finally, the algorithm for Case 2a proceeds in two sub-phases where the first

sub-phase is similar to Case 1 until it finds a seed with y = res (shown as S ′ in Case 2a of

Figure 7.5), and thereafter in the second phase it follows an algorithm similar to Case 2b of of

Figure 7.6).
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Figure 7.5: Example Contour Exploration in 3D ESS (Case 1)

Figure 7.6: Example Contour Exploration in 3D ESS (Case 2a)

Generic nD Algorithm In D-dimensional space, the initial seed location is of the form

(0s, v, rest) where 0 < v < res and s + t = D − 1. Given such a seed, the dimension-pair

(ds+1, ds+1+t) is used to generate more seeds through the 2D algorithm, and for each such

seed, the D − 1 dimensional subproblem over the dimensions (d1, d2, . . . , ds+t) is recursively
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solved. The recursion terminates with the completion of 2D exploration of the dimension-pair

(ds+1, ds+1+t).

7.1.3 Impact on Bouquet Identification Overheads

Overall, NEXUS can be used to either: (a) enable an early-start for the bouquet execution phase

without invoking CSI; or, alternatively (b) reduce the total effort of identifying all isosurface

plans before using CSI (by ignoring the ESS regions that lie in between the isosurfaces). In

addition, this approach also makes isosurface exploration a highly parallelizable task since in

principle, a new thread can be created whenever a seed is generated for a lower dimensional

subspace.

7.2 Implementing Plan Swallowing

As discussed in Section 6.1, the natively high plan-density values for the isosurfaces in ESS can

be reduced by reducing the size of POSP itself, by utilizing the plan-swallowing enhancement.

While the enhancement is usually quite effective in terms of reduction in cardinality of POSP

set but is computationally intensive as it requires: (a) optimization call for each location in

ESS to compute POSP and (b) costing calls across the ESS for each plan in POSP to get its

behavior across space, to apply the enhancement using CostGreedy-FPC routine [47].

But in the bouquet approach, requirement is to minimize the maximum plan density across

the isosurfaces rather than finding the smallest set of plans for the entire ESS. For this reason, we

utilize the plan-swallowing enhancement separately for each of the isosurfaces. Further, while

it is best to use the entire POSP as the swallower set to get maximum reduction for individual

isosurfaces. We make use of another efficient variant, termed as intra-surface plan swallowing,

where the swallower set contains only the plans from the same isosurface. In principle, it is

possible that the intra-surface alternative fairs badly in terms of its ability to reduce the plan-

density of the isosurface. But, since it was emprically shown in [79] that the reduction quality

does not degrade noticeably, we use intra-surface variant of plan swallowing enhancement. An
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additional advantage with intra-surface processing is that it fits well with the parallel processing

capability of NEXUS, which means that the isosurfaces with reduced effective plan-density can

be produced independent of one another.

7.3 Implementing Execution Covering

7.3.1 Covering Sequence Identification Algorithm

Clearly, the basic bouquet algorithm provides a simple to implement solution where no skip-

ping of executions take place. On the other hand, the exhaustive algorithm enumerates all

candidate covering sequences, but incurs a computational effort that is exponential in the num-

ber of executions present in the bouquet sequence. To bridge this gulf, we describe here a

polynomial-time algorithm, CSI, that attempts to improve the MSOg of the bouquet sequence

with the following idea – “find covering executions for plans on the MSO causing contour and

its predecessors”.

For instance, the MSOg of 24.5 in the example of Figure 6.3b is caused at IC4 due to

the aggregate impact of ω(CS1) through ω(CS4). This MSOg can be improved by finding the

covering sequences individually for the contours IC1 through IC4. For this purpose, we describe

below a subroutine of CSI that finds the covering sequence for a contour ICk while trying to

minimize its effective plan density – employing this routine brings the MSOg in Figure 6.3b

down to 14.5 .

Figure 7.7: Adapting Red-Blue Weighted Domination for solving minimize(w(CS4))
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Minimizing ω(CSk) The problem of minimizing ω(CSk) can be abstracted as an adaptation

of the Red Blue Weighted Dominating Set [37] problem - a sample adaption corresponding to

our running example is shown in Figure 7.7a.

Here, the blue set contains nodes from contour ICk. and the red set contains nodes from

the contours ICk through ICk′ , where cost(ICk′) ≤ |ICk|× cost(ICk). Apart from the covering

edges (solid brown) borrowed from the Hasse diagram (i.e., ICk+1 to ICk), it also includes

transitive edges (dotted green) for farther contours (ICk+2 onwards) and identity edges (solid

black) from red version to blue version of ICk nodes. Finally, the weight of any red node is

given by the corresponding value of ω(Ei).

With the above modeling, the problem of minimizing ω(CSk) is the same as finding the

minimum-weight subset of red nodes that can dominate all the nodes in the blue set. Now, since

red-blue weighted domination is known to be a NP-hard problem, and also equivalent to the

Minimum-weight Set-Cover problem [37], we have utilized an adaptation of the greedy weighted

set-cover algorithm to ensure efficiency – the greedy criterion is the minimum weight per newly

covered blue node. The pseudocode for the resulting subroutine is shown in Algorithm 3.

For the example formulation in Figure 7.7a, the weight per covered blue node for each of

the red nodes, is shown in Figure 7.7b. Here we find that E31 is the greedy red choice, and it

is the solution since there are no more blue nodes to be covered. The greedy subroutine has

run time complexity of Vbluelog(Vred), and approximation factor of log(Vblue) + 1. The covering

sequence obtained for IC4 with this approach is shown in Figure 7.8.

The CSI Algorithm CSI begins by identifying the contour that causes the MSOg, denoted

ICk∗ , and then applies the minimization subroutine on contours IC1 through ICk∗ in sequence.

After this pass, it is possible that the “culprit” MSOg contour has now shifted to a new contour

ICk∗∗ > ICk∗ – if so, another minimization pass is carried out for contours from ICk∗ through

ICk∗∗ . Otherwise, the algorithm is concluded since MSOg cannot be improved further.

The motivation for processing contours in increasing cost order during each minimization
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Figure 7.8: Solution for minimize(w(CS4)) using red-blue domination

pass is that the covering nodes identified for contour ICk may also cover nodes from contours

ICk+1 and beyond, thereby reducing the number of uncovered nodes for higher contours.

Algorithm 3: Minimize ω(CSk) Subroutine

Input: Vblue = ICk, Vred = (ICk ∪ . . . ∪ ICk′), ω : BS → R
Output: Vcov
// Vcov is the set of covering executions (subset of Vred)
Vcov = {} ;
// Vdom is the set of executions covered by Vcov (subset of Vblue)
Vdom = {};
// for each node v in Vred, dom(v) denotes the set of executions that it

can cover in Vblue
while Vdom ⊂ Vblue do

vsel = φ ;
f(vsel) =∞ ;
for v ∈ Vred \ Vcov do

f(v) = ω(v)
|dom(v)\Vdom|

;

if f(vsel) > f(v) then
vsel = v;

end

end
Vdom = Vdom ∪ dom(vsel);
Vcov = Vcov ∪ {vsel};

end

72



7.3.2 Efficiently Constructing Hasse Diagram of Executions

In principle, the CSI routine needs to determine the cover relation among all pairs of executions

in BS. However, the explicit checking of these pairs can be reduced by leveraging the following

inference tests:

1. If both executions are from the same contour, reject the pair as a cover relation cannot

exist between them.

2. If one of the executions is Eterminal, then accept the pair since the cover exists, by definition

of Eterminal.

3. If the executions lie more than one contour apart, then explicit evaluation is required only

if a transitive cover relation is non-existent.

Even with the above pruning, the processing required for the remaining pairs may still turn

out to be computationally significant, since the explicit test for a pair (Ei, Ej) is equivalent

to establishing whether R(Ej) is a subset of R(Ei). We therefore present next an alternative

procedure to determine the cover relation Ei �cover Ej, which does not entail this subset check.

Cover Determination Procedure

Let L(Ei) denote the contour locations for Ei. We use MAXi to represent the ESS location

whose value on each dimension corresponds to the maximum selectivity coordinate on that

dimension across all contour locations of Ei. That is,

sd(MAXi) = max
l∈L(Ei)

sd(l) for 1 ≤ d ≤ D

Similarly, we denote with MINi the ESS location corresponding to the minimum selectivity
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coordinate for each dimension across all contour locations of Ei. That is,

sd(MINi) = min
l∈L(Ei)

sd(l) for 1 ≤ d ≤ D

To make these notions concrete, the MAXi and MINi locations for the first 3 contours

of the example ESS are shown as red squares (�) and blue diamonds (�), respectively, in

Figure 7.9.

Figure 7.9: MAXi and MINi locations for executions on contours IC1 to IC3

To determine the cover existence between Ei and Ej, we first employ two heuristic checks

that may not be decisive in all cases, but are quite efficient to evaluate. Their efficiency stems

from their usage of simple product order1 based checks among only MAXi’s and MINi’s, which

are easily computable through a single scan of the L(Ei) locations.

Product Check 1: The necessary and sufficient condition that MINi �product MAXj for

Ei �cover Ej, helps to efficiently identify true positives. For example, it can quickly

1We use generalized version of the standard product order which is defined as: Given two pairs (a1,b1) and
(a2, b2) in A×B, one sets (a1, b1) �product (a2, b2) if and only if a1 ≥ a2 and b1 ≥ b2.
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determine that in Figure 7.9, the candidate execution pair (E7, E3) satisfies the cover

relation.

Product Check 2: The necessary condition that MAXi �product MAXj for Ei �cover Ej,

helps to quickly reject true negatives. For instance, (E5, E3) can be quickly rejected using

this criterion.

In the event that the above two checks are not conclusive, we employ a final check that is

decisive in all scenarios, but is comparatively expensive since it requires, for each location in

set L(Ei), processing the entire set of locations in L(Ej).

Product Check 3: The condition L(Ei) �product L(Ej) is sufficient to decide whether Ei �cover

Ej. Here, L(Ei) �product L(Ej) is satisfied if there exists a location ls ∈ L(Ei) for each

lt ∈ L(Ej), such that ls �product lt.

While certainly more expensive than Checks 1 and 2, note that Check 3 is expected to be

relatively more efficient than the direct region-subset check, since typically |L(Ei)| � |R(Ei)|.

To highlight the potency of the above evaluation procedure, consider for instance the neigh-

boring contours IC2 and IC3 in Figure 7.9. Here, there are 35 execution pairs arising from

the contours, and among them, 6 pairs are identified as true positives (Check 1), 21 pairs are

rejected as true negatives (Check 2), leaving only 8 pairs for the final comparison (Check 3).
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Chapter 8

Plan Bouquet Architecture and

Prototype Implementation

8.1 Bouquet Architecture and Essential API Features

For a given Q with an ESS, the query execution workflow of the bouquet approach becomes

operational as shown in Figure 8.1. For this purpose, the database engine needs to support the

following functionalities: (1) selectivity injection; (2) abstract plan costing and execution; and

(3) cost-budgeted partial execution of plans. Next, we elaborate on the usage of each of these

features, followed by implementation details of the bouquet driver layer.

8.1.1 Selectivity Injection

For isosurface exploration using the algorithm described in Section 7.1, we need to be able

to systematically generate queries with the desired ESS selectivities. One option is to, for

each new location, suitably modify the query constants and the data distributions, but this

is clearly highly cumbersome and time-consuming. We have therefore taken an alternative

approach in our PostgreSQL implementation, wherein the optimizer is instrumented to directly

support injection of selectivity values in the cost model computations. Interestingly, some
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Figure 8.1: Architecture of Bouquet Mechanism

commercial optimizer APIs already support such selectivity injections to a limited extent (e.g.

IBM DB2 [4]).

8.1.2 Abstract Plan Costing and Execution

Once the isosurfaces have been explored, we need to reduce their plan densities using the

anorexic reduction technique, as explained in Section 6.1. This is achieved through the FPC

variant of the Cost Greedy algorithm [46], which requires an abstract plan costing feature for

estimating the cost of a plan outside its optimality region. This feature is already supported

by some commercial optimizers (e.g. [5]).

Further, during the bouquet execution phase, we need to be able to instruct the execution

engine to execute a particular bouquet plan. This feature also is currently provided by a few

commercial systems (e.g. [5]).
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8.1.3 Cost-budgeted Execution

The bouquet approach requires, in principle, only a simple “timer” that keeps track of elapsed

time, and terminates plan executions if they exceed their assigned cost budgets. No material

changes need to be made in the engine internals to support this feature. The premature

termination of plans can be achieved easily using the statement.cancel() functionality supported

by JDBC drivers. Note that although bouquet identification provides budgets in terms of

abstract optimizer cost units, they can be converted to equivalent time budgets through the

techniques proposed in [87].

8.1.4 Bouquet Driver Layer

As highlighted in Figure 8.1, we have an external program, the “Bouquet Driver”, which treats

the query optimizer and executor as black-boxes. First, it interacts with the query optimizer

module to determine the isosurfaces and the plan bouquet. Then it performs executions of

the bouquet plans using an execution client and a tracking client. The execution client selects

the plan to be executed next, while the tracking client keeps track of the time elapsed, and

terminates the execution if the allotted time budget is exhausted.

8.2 QUEST Prototype

This prototype implementation of the bouquet technique1 helps an interested user to visually

observe the selectivity estimation problems that plague current database optimizers, and the

novel robustness characteristics that the bouquet technique brings to bear on these chronic

problems. A two-dimensional ESS query2 based on Query 5 of the TPC-H benchmark, operating

on a fully indexed 1 GB standard TPC-H database hosted on the PostgreSQL engine, will be

used as a running example to explain these scenarios.

1This is joint work with Sumit Neelam [71].
2With customer and lineitem as error-prone selectivity dimensions.
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8.2.1 Sub-optimality of Native Optimizer

The first screen highlights the estimation errors and its impact on plan choice and execution

performance for the input query. A sample instance of the corresponding QUEST interface is

shown in Figure 8.2, where the user can observe:

• An operator-level comparison between Popt(qe) and Popt(qa) – in this instance, Popt(qe)

features a series of Nested Loop joins while Popt(qa) opts for Hash Joins, and the join

orders are different.

• The locations of qa and qe in the ESS, and the large error gap between them – in this

instance, qa=(30.9%, 26.7%) while qe is underestimated to be (0.25%, 3.1%).

• The adverse performance impact due to the estimation error – in this instance, the sub-

optimality is around 17.

Figure 8.2: Sub-optimality of Native Optimizer
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8.2.2 Bouquet Identification

Turning our attention to bouquet technique, we start with a description of the compile-time

phase i.e. bouquet identification, whose graphical display is shown in Figure 8.3. Here, the

left picture shows the three-dimensional PIC surface of the native optimizer, characterized by

a large number of POSP plans and a steep cost-profile over ESS. Since the bouquet’s MSO

guarantee is a direct function of the POSP cardinality, the dense cost diagram is subjected to

plan swallowing enhancement [46] in order to reduce the number of plans to a small number

without substantively affecting the query processing quality (cost-increase threshold λ) of any

individual query in the selectivity space. On this reduced diagram the bouquet’s distinctive

feature of cost-based discretization using geometrically increasing isocost planes (common ratio

r) is applied – the combined effect of reduction (λ) and discretization (r) is presented in the

second picture of Figure 8.3.

In the example, the original POSP diagram has 29 plans with a PIC covering the cost range

from 1.1E4 to 3.2E5. After plan swallowing enhancement1, the plan cardinality goes down to

6 plans. Finally, the PIC is divided using 5 isocost contours with r=2, and the POSP plan

cardinality distribution on these contours is (4, 4, 4, 3, 1).

Here, the user will be able to provides values of their choice for reduction parameter λ and

discretization parameter r. For these values, the resulting MSO guarantee will be evaluated

and compared against the MSO guarantee with recommended values of the parameters (λ =

20%, r = 2).

8.2.3 Bouquet Execution

The next step illustrates execution phase of the bouquet technique as calibrated sequence of

budgeted partial executions, starting with plans on the cheapest isocost contour, and then

systematically working its way through the contours until one of the plans executes the query

1With reduction parameter λ = 20%, as recommended in [46].
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Figure 8.3: Bouquet Identification Interface

to completion within its assigned budget. The dynamism of this iterative process is captured

in the interface shown in Figure 8.4, which is continually updated to show:

• The ESS region covered by each partial plan execution – subsequent to each such execu-

tion, the associated region is shadowed with the plan’s color.

• The execution order timeline of the plans, along with their tree structures – this allows

database analysts to carry out offline replays of the plan execution sequence.

• The contour budgets, which initially appear as white bars of geometrically increasing

height, and are then filled with blue after the corresponding partial executions (in the

figure, after 15 partial executions, plan P6 on Contour 5 completes the query within the

assigned budget).

• The sub-optimality of bouquet execution (for the sample query, it is around 3.7).

Here, controls are provided to enable pausing the bouquet operation after each partial
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execution so that the specific progress made through each such execution can be fully assimilated

before continuing to the next step.

Figure 8.4: Bouquet Execution Interface

8.2.4 MSO Guarantees & Repeatability

The interface also provides the user with an opportunity to verify for themselves the MSO and

repeatability guarantees offered by the bouquet technique. Firstly, with regard to the MSO

guarantee, user can fill in any desired location of qa in the text box shown in Figure 8.4 (below

the isocost contours), and then invoke the bouquet algorithm on this query instance to confirm

that the sub-optimality incurred is within the apriori stated bound (for the sample query, this

MSO bound is less than 20, which is orders of magnitude lower than the empirically determined

MSO of 104 obtained with the native optimizer).

Secondly, with regard to repeatability, our goal is to show that, unlike the native optimizer,
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the bouquet execution sequence is only a function of qa, and not of qe. To this end, we can

radically alter, using the CODD metadata editing tool [31], the distribution histograms of the

attributes featured in the query, while keeping the underlying data unchanged. Subsequent to

the alteration, the bouquet algorithm can be re-executed and confirmed to behave identically

to its prior incarnation.
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Chapter 9

Empirical Evaluation

We now turn our attention towards profiling the performance of the bouquet approach on

a variety of complex OLAP queries, using the MSO, ASO and MH metrics enumerated in

Chapter 3. In addition, we also describe experiments that show: (a) spatial distribution of

robustness in the ESS; (b) low bouquet cardinalities; (c) low sensitivity of the MSOg to the λ

reduction parameter; and (d) extension of the results to commercial databases. As specified in

Chapter 3, the entire evaluation is carried out using optimizer costs, while assuming that all

combinations of the actual and estimated query locations are possible in the ESS.

Before going into the evaluation details, we describe the experimental setup and the rationale

behind the choice of comparative techniques. This is followed by a brief discussion on the

compile-time overheads incurred by the bouquet algorithm.

9.1 Experimental Setup

Database Environment The test queries are chosen from the TPC-H and TPC-DS bench-

marks to cover a spectrum of join-graph geometries, including chain, star, branch, etc. with

the number of base relations ranging from 4 to 8. The number of error-prone selectivities range

from 3 to 5 in these queries, all corresponding to join-selectivity errors, for making challenging

multi-dimensional ESS spaces. We experiment with the TPC-H and TPC-DS databases at
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their default sizes of 1GB and 100GB, respectively. Finally, the physical schema has indexes on

all columns featuring in the queries, thereby maximizing the cost gradient
Cmax
Cmin

and creating

“hard-nut” environments for achieving robustness.

The summary query workload specifications are given in Table 9.1 – the naming nomencla-

ture for the queries is xD y Qz, where x specifies the number of dimensions, y the benchmark

(H or DS), and z the query number in the benchmark. So, for example, 3D H Q5 indicates a

three-dimensional error selectivity space on Query 5 of the TPC-H benchmark.

Query Join-graph Cmax Query Join-graph Cmax
(# relations) Cmin (# relations) Cmin

3D H Q5 chain(6) 16 3D DS Q96 star(4) 185
3D H Q7 chain(6) 5 4D DS Q7 star(5) 283
4D H Q8 branch(8) 28 4D DS Q26 star(5) 341
5D H Q7 chain(6) 50 4D DS Q91 branch(7) 149

3D DS Q15 chain(4) 668 5D DS Q19 branch(6) 183

Table 9.1: Query workload specifications

System Environment For the most part, the database engine used in our experiments is

PostgreSQL 8.4 [3], equipped with the API features described in Section 8.11. Specifically,

the first two features were introduced with minimal changes to the source code. On the other

hand, cost-budgeted execution is natively supported by invoking the following command at

the tracking client: “select pg cancel backend(process id)”. The required process id (of the

execution client) can be found in the view pg stat activity, which is maintained by the engine

itself.

The hardware platform is a vanilla Sun Ultra 24 workstation with 8 GB memory and 1.2

TB of hard disk.

Comparative Techniques In the remainder of this section, we compare the bouquet algo-

rithm (with anorexic parameter λ = 20% and CSI enhancements) against the native PostgreSQL

1All the experiments have been repeated on PostgreSQL 9.4 as well with virtually no difference in the results.
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optimizer, and the SEER robust plan selection algorithm [47].

SEER uses a mathematical model of plan cost behavior in conjunction with anorexic re-

duction to provide replacement plans (Prep(qe) for qe) that, at all locations in the ESS, ei-

ther improve on the native optimizer’s performance, or are worse by at most the λ fac-

tor. It is important to note here that, in the SEER framework, the comparative yardstick

is Popt(qe), the optimal plan at the estimated location, whereas in our work, the compari-

son is with Popt(qa), the optimal plan at the actual location. Still, it has been shown in

[47] that in many cases c(Prep(qe), qa) � c(Popt(qe), qa), hence SEER is expected to per-

form better than the native optimizer on our sub-optimality based metrics. Finally, since

c(Prep(qe), qa) ≤ (1 + λ)× c(Popt(qe), qa) ∀qa ∈ ESS, we can infer that MH ≤ λ with SEER.

On the other hand, purely heuristic-based reoptimization techniques, such as POP [65] and

Rio [12], are not included in the evaluation suite. No doubt they can be very effective when

the estimation errors are small in magnitude and number. But when the errors are significant,

as is commonplace in practice [62], their performance on our metrics (MSO or MH) could be

arbitrarily poor. This is because of their inability to provide worst-case performance guarantees

– in fact, they are unable to do so with regard to both Popt(qe) and Popt(qa), as explained in

detail in Appendix.

Further, the heuristics that POP and Rio employ are more appropriate for low-dimensional

spaces – for example, that near-optimality of a plan at the corners of the principal diagonal

of the error space, implies near-optimality in the interior of this space; or, that the selectivity

validity ranges found by comparing only with the class of structure-equivalent plans, provide

good approximations to the true ranges. Therefore, these techniques may not work well when

faced with large multi-dimensional estimation errors, which is the primary target of our work.

For ease of exposition, we will hereafter refer to the bouquet algorithm, the native optimizer,

and the SEER algorithm as BOU, NAT and SEER, respectively, in presenting the results.
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9.2 Compile-time Overheads

The computationally expensive aspect of BOU’s compile-time phase is the identification of the

plans on the isosurfaces of the ESS. For this task, we have proposed a new algorithm NEXUS,

as described in Section 7.1, that can selectively explore locations for a particular isosurface,

and ignore the remaining portion of the ESS. Currently, using only single-core processing, the

compile-time overheads for 3D, 4D and 5D queries with NEXUS are typically a few minutes,

a few hours, and several hours, respectively. Although the overheads continue to increase ex-

ponentially with the number of ESS dimensions, we wish to highlight that NEXUS is highly

parallelizable and can therefore exploit modern multi-core architectures to substantively ame-

liorate, in absolute terms, these overheads.

Further, as mentioned in Section 7.1, the plan bouquet execution can be overlapped with its

compilation – specifically, execution can be started as soon as the first plan on the first isosurface

is identified, and the identification of subsequent plans can be carried out concurrently with

the ongoing executions. Finally, note that the isosurface identification process is a one-time

exercise, and its overhead can be amortized by repeated invocations of the same query, which

often happens with “canned” form-based interfaces in the enterprise domain.

9.3 Empirical Worst-case Performance (MSO)

In Figure 9.1, the empirical MSO performance is profiled, on a log scale, for a set of 10 repre-

sentative queries submitted to NAT, SEER and BOU. The first point to note is that NAT is not

inherently robust – to the contrary, its MSO is huge, ranging from around 103 to 107. Secondly,

SEER also does not provide any material improvement on NAT – this may seem paradoxical

at first glance, but is only to be expected once we realize that not all the highly sub-optimal

(qe, qa) combinations in NAT were necessarily helped in the SEER framework. Finally, and in

marked contrast, BOU provides orders of magnitude improvements over NAT and SEER – as
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a case in point, for 5D DS Q19, BOU drives MSO down from 106 to around just 10. In fact,

even in absolute terms, it consistently provides an MSO of less than ten across all the queries.

Figure 9.1: Empirical MSO Performance

9.4 Average-case Performance (ASO)

At first glance, it may be surmised that BOU’s dramatic improvement in worst-case behavior

is purchased through a corresponding deterioration of average-case performance. To quantita-

tively demonstrate that this is not so, we evaluate ASO for NAT, SEER and BOU in Figure 9.2,

again on a log scale. We see here that for some queries (e.g. 3D DS Q15), ASO of BOU is much

better than that of NAT, while for the remainder (e.g. 4D H Q8), the performance is compa-

rable. Even more gratifyingly, the ASO in absolute terms is typically less than 5 for BOU. On

the other hand, SEER’s performance is again similar to that of NAT – this is an outcome of

the high dimensionality of the ESS which makes it extremely difficult to find universally safe

replacements that are also substantively beneficial.

9.5 Spatial Distribution of Robustness

We now profile for a sample query, namely 5D DS Q19, the percentage of locations for which

BOU has a specific range of improvement over NAT. That is, the spatial distribution of enhanced

robustness,
SubOptworst(qa)

SubOpt(∗, qa)
. This statistic is shown in Figure 9.3, where we find that for the

88



Figure 9.2: ASO Performance

vast majority of locations (close to 85%), BOU provides two or more orders of magnitude

improvement with respect to NAT. SEER, on the other hand, provides significant improvement

over NAT for specific (qe, qa) combinations, but may not materially help the worst-case instance

for each qa. Therefore, we find that its robustness enhancement is less than 10 at all locations

in the ESS.

Figure 9.3: Distribution of enhanced Robustness (5D DS Q19)

9.6 Adverse Impact of Bouquet (MH)

Thus far, we have presented the improvements due to BOU. However, as highlighted in Chap-

ter 3, there may be individual qa locations where BOU performs poorer than NAT’s worst-case,

i.e. SubOpt(∗, qa) > SubOptworst(qa). This aspect is quantified in Figure 9.4 where the max-

imum harm is shown (on a linear scale) for our query test suite. We observe that BOU may

be upto a factor of 2 worse than NAT. Moreover, SEER now steals a march over BOU since
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it guarantees that MH never exceeds λ (= 0.2). However, the important point to note is that

the percentage of locations for which harm is incurred by BOU is less than 1% of the space.

Therefore, from an overall perspective, the likelihood of BOU adversely impacting performance

is rare. Further, even in these few cases the harm is limited (≤ MSO-1), especially when viewed

against the order of magnitude improvements achieved in the beneficial scenarios.

Figure 9.4: MaxHarm performance

9.7 Plan Cardinalities

The plan cardinalities of NAT, SEER and BOU are shown on a log-scale in Figure 9.5. We

observe here that although the original POSP cardinality may be in the several tens or hundreds,

the number of plans in SEER is orders of magnitude lower, and those retained in BOU is even

smaller – only around 10 or fewer, even for the 5D queries. This is primarily due to the

initial anorexic reduction and the subsequent confinement to the isosurfaces. The important

implication of these statistics is that the bouquet size is, to the first degree of approximation,

effectively independent of the dimensionality and complexity of the error space.

9.8 Commercial Database Engine

All the results presented thus far were obtained on our instrumented PostgreSQL engine. We

now present sample evaluations on a popular commercial engine, hereafter referred to as COM.

Since COM’s API does not directly support injection of selectivities, we constructed queries
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Figure 9.5: Bouquet Cardinality

3D H Q5b and 4D H Q8b wherein all error dimensions correspond to selection predicates on the

base relations – the selectivities on such dimensions can be indirectly set up through changing

only the constants in the query. The database and system environment remained identical to

that of the PostgreSQL experiments.

Focusing on the performance aspects, shown in Figure 9.6, we find that here also large

values of MSO and ASO are obtained for NAT and SEER. Further, BOU continues to provide

substantial improvements on these metrics with a small sized bouquet. Again, the robustness

enhancement is at least an order of magnitude for more than 90% of the query locations, without

incurring any harm at the remaining locations (MH < 0). These results imply that our earlier

observations are not artifacts of a specific engine.

Figure 9.6: Commercial Engine Performance (log-scale)
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9.9 MSOg Sensitivity to λ Setting

Until now, both BOU and SEER were evaluated empirically over different metrics, by setting

the reduction-parameter λ to 20%, a value that had been found in [46] to routinely provide

anorexic reduction over a wide range of database environments. However, a legitimate question

remains as to whether the ideal choice of λ requires query and/or data-specific tuning. To

assess this quantitatively, we show in Figure 9.7, the MSOg values as a function of λ over the

(0,100) percent range for a spectrum of query templates. The observation here is that the MSOg

values drop steeply with the use of covering enhancement and improve even further when λ is

increased to 10%, and subsequently are relatively flat in the (10,30) percent interval, suggesting

that our 20% choice for λ is a safe bet in general.

Figure 9.7: MSOg vs Reduction-parameter (λ)
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Chapter 10

MSO Bounds for Ad hoc Queries

As discussed in the previous chapters, the sub-optimality guarantees of the PB technique are

contingent on the compile-time bouquet identification phase, whose overheads grow exponen-

tially with the number of EPPs in the query. Such overheads are acceptable in canned query

environments due to the expected amortization over repeated invocations for different instances

of the template query. However, when we turn our attention to ad hoc queries, the preprocessing

effort required in the query compile-time phase may not be practical.

In this chapter, we present a revamped algorithm PBAH to specifically address the provi-

sion of MSO guarantees for ad hoc queries. The differentiating factor compared to PB is the

interaction style with the executor module, which is relaxed from the black-box mode of PB to

a white-box engagement for PBAH. To elaborate, at the end of each cost-budgeted execution,

the query executor not only provides its completion status (black-box) but also provides the

progress achieved by the execution in terms of the cardinality of the output which is then used

to compute lower bounds on the error-prone selectivities. The white-box interaction helps in

bounding the number of 1D executions required to cross an isosurface – specifically in terms

of the number of EPPs in the query. Gratifyingly, over similar workloads to those considered

in the previous chapters, MSOg values are typically within a factor of 3 as compared to the
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black-box bouquet technique.

Like PB, the PBAH technique can be implemented in a completely non-invasive manner

wrt the database engine, if an API that supports output cardinality feedback at the end of

each cost-budgeted execution is available. The infrastructure to support this facility already

exists in almost every modern database systems in the form of cardinality tracking or monitoring

modules. In fact, similar infrastructure is the basis of a recent feature in Micosoft SQL Server [5],

termed as ‘Live Query Statistics’ [1].

To suit ad hoc queries, PBAH constructs the execution sequence in an on-the-fly manner,

requiring only a few calls to the query optimizer before each cost-budgeted execution. For

this purpose, PBAH incorporates two new modules: (1) cost-budgeted planning, to create a

1D execution having maximum selectivity learning potential for the given cost-budget and (2)

intermediate query injection, to attack 1D subproblems for a query with multiple EPPs. Again,

both these modules are straightforward to implement through API level interaction with the

database engine, as explained later in this chapter.

We first show that for any query with single error-prone predicate, PBAH can construct an

‘on-the-fly’ execution sequence identical to that of PB and hence retains MSOg of 4. Next,

we generalize the PBAH technique for the multi-dimensional version of the problem by using a

decomposition approach, i.e., ‘solve the multi-dimensional problem by attacking its constituent

1D subproblems’. With this approach, we show that the maximum number of executions to cross

any isosurface is upper bounded by D(D+1)
2

where D is the number of error-prone selectivities,

leading to MSO guarantees that are a lower order polynomial in D. Note here that PBAH does

not require to enumerate any isosurface, hence it are referred to as virtual isosurface and the

ESS is referred to as virtual ESS (vESS) during this chapter.
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10.1 PBAH for 1D vESS

The PBAH technique for a 1D query constructs an execution sequence identical to that of PB, we

first give a recap of the PB technique, followed by the difference in their construction mechanism.

Summary of PB in 1D vESS Recall from Section 4.1.1 that the PB algorithm for 1D vESS

is a sequence of cost-budgeted executions {P1, cost(IC1)}, {P2, cost(IC2)}, ..., {Pm, cost(ICm)}

where the cost budgets corresponding to IC1, IC2, ..., ICm are geometrically distributed with

initial cost value a and common ratio r such that cost(ICm) = Cmax and a
r
< Cmin ≤

cost(IC1) = a. This sequence of cost-budgeted executions is constructed by first enumerating

the optimal performance curve across the entire 1D selectivity range, and then identifying

appropriate selectivity locations q1, q2, . . ., qm, on the optimal curve such that Popt(qk)=Pk and

copt(qk)= cost(ICk).

Here, the novel aspect of PBAH technique is that the generic execution ICk is created without

enumerating the entire selectivity range: Assuming qa > qk−1, we first identify the selectivity

location qk from the selectivity range (qk−1, qmax ], and then use it to create the cost-budgeted

execution for ICk. According to Lemma 4.1, this execution completes the query if qa ∈ (qk−1, qk

], in which case the remaining executions (for ICk+1 onwards) are not required to be identified.

Otherwise if terminated, it implies that qa > qk and the same process can be repeated to

find qk+1. The task of finding the next selectivity location qk is fulfilled by a new module,

cost-budgeted planning (CBP), described next.

10.1.1 Cost-Budgeted Planning (CBP)

Here, we find a query location with known optimal cost from among the locations in a 1D

selectivity range and return the optimal plan choice for it. Let us denote the lower bound and

upper bound on selectivity with qlb and qub, having default values 0 and 1, respectively.

Specifically, the module takes the query Q and a cost value Cpick as input, along with

selectivity bounds qlb and qub such that copt(qlb) < Cpick ≤ copt(qub). The aim is to identify an

95



intermediate selectivity location, denoted with qpick, such that qlb ≺ qpick � qub and copt(qpick) =

Cpick, and then return the plan Popt(qpick). This process is illustrated in Figure 10.1 using the

green curve to represent virtual optimal cost surface. As discussed in Chapter 3, the optimal

cost curve is smooth and monotonic which implies that: (1) there exists (exactly) one location

with optimal cost Cpick between qlb and qub, (2) qpick can be location using binary search. Hence,

cost-budgeted planning is implemented as a binary search between qlb and qub through repeated

calls to the query optimizer module. Once qpick is identified, we return the plan choice Popt(qpick)

to create a cost-budgeted execution Ek with φ(Ek) = Popt(qpick) and cost-budget ω(Ek) = Cpick.

Figure 10.1: Cost-budgeted planning (CBP)

Alternative Implementation We can also use exponential search [13] whenever qlb � qub

and copt(qlb) � copt(qub), since our requirement of Cpick = 2 × copt(qlb) implies that qpick is

expected to be much closer to qlb than qub.

Discussion The 1D algorithm for PBAH using CBP is outlined in Algorithm 4. Overall, since

the execution sequence for any qa is identical to that of PB, we conclude that PBAH retains

MSOg of 4.
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Algorithm 4: PBAH (1D)

qlb = 0
qub = 1
// for each cost step ICk
for k = 1 to m do

// cost-budgeted planning: search qk in the range (qlb,qub ] using

cost(ICk) and return optimal plan at qk
Pk = CBP(Q, qlb, qub, cost(ICk))
start executing plan Pk
// perform cost-budgeted execution

while run cost(Pk) ≤ cost(ICk) do
execute Pk
if Pk completes execution then

return query result
end

end
terminate Pk and discard partial results
qlb = qk + ε

end

10.1.2 Characteristic of 1D Executions

Selectivity Learning Potential (SLP) for a cost-budgeted execution For a query

with 1 EPP, the SLP of a cost-budgeted execution E = (P,C) is defined to be the maximum

selectivity value that can be completely learned by the execution E and is denoted with qPC .

The SLP of an execution is given by the selectivity value at the intersection between the cost

curve for the plan P and the cost step C. Figure 10.2 visually shows the SLP for executions

created for cost-budgets C1 and C2 by using plans P1 and P2. Clearly, for cost-budgeted

C1, execution with plan P1 has more SLP than with P2, while for cost-budget C2, more SLP

corresponds to the execution that uses plan P2.

SLP of execution created using CBP Now, since CBP always chooses the plan from the

intersection of cost-step with virual optimal cost curve, i.e. ,the infimum of cost-curves across all

plans, the resulting execution has maximum SLP for the given cost-budget. As an implication,
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Figure 10.2: SLPs for P1 and P2 for costs C1 and C2

the executions performed by the 1D bouquet algorithm satisfies the following characteristics:

• when an execution with cost-budget C is terminated, it implies that optimal cost of

solving the 1D problem is lower bounded by C,

• the only completed execution solves the 1D problem by learning the actual selectivity for

qa with at most twice the optimal cost required for solving the 1D problem.

10.2 PBAH for 2D vESS

The PBAH technique for 1D query was simply to find the plan on only the next cost step, rather

than enumerating the entire optimal curve. A straightforward extension of this approach for

a query with multiple EPPs would be to identify the next multi-dimensional isosurface and

process plans present on it. However, since the plan-density reduction enhancements require

to first enumerate the isosurface which is not feasible in ad hoc environment, this may lead

to large number of executions for the isosurface and hence impractically large MSOg values.

Instead, we take a decomposition approach where the multi-D problem is solved by attacking

its 1D subproblems.

We first explain the technique using EQ2, a 2D query on TPC-H schema, as shown in

Figure 10.6 which enumerates orders of cheap parts from suppliers with low account balances.
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For this query, the two EPPs correspond to P ./ L and S ./ L.

select *

from

part P, lineitem L, supplier S, orders O

where

P.p partkey = L.l partkey and S.s suppkey = L.l suppkey and

O.o orderkey = L.l orderkey and

P.p retailprice < 1000 and

S.s acctbal < 95

Figure 10.3: Example TPC-H Query EQ2

Figure 10.4: Join Graph for EQ2

10.2.1 Intermediate Queries

Given any SPJ query Q, it can be represented using a join-graph G with relations as vertices

and join-predicates as edges. Also, the composite relation formed by combining relations in G

corresponds to the final output relation of Q. For instance, Figure 10.4 shows the join graph

for EQ2, where each directed edge represents a K-FK join predicate (pointing to K-side) and

the composite relation PSLO corresponds to the output relation of EQ2. Further, a connected

subgraph of G corresponds to a potential intermediate relation in the execution plan for Q. The

number of intermediate relations for a given query depends on the number of base relations and

the structure of the join graph. For instance, a star query with n base relations has (2n−1 − 2)

intermediate relations e.g. the 6 intermediate relations for the star query EQ2 with 4 base

relations are shown in Figure 10.5.

Now, for each intermediate relation S, we can construct an intermediate query by selecting

from Q the relations, base-predicates and join-predicates that correspond to subgraph S and
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Figure 10.5: Intermediate relations for the example query EQ2

denote it with QS. For instance, query text corresponding to intermediate relation PLO, i.e.

QPLO is shown below:

select *

from

part P, lineitem L, orders O

where

P.p partkey = L.l partkey and O.o orderkey = L.l orderkey and

P.p retailprice < 1000

Figure 10.6: Intermediate query for PLO

10.2.2 Decomposition into Subproblems

For each intermediate relation (as well as output relation), the output cardinality can be written

as a function of the base relation cardinalities and the join-predicate selectivities. For instance,

denoting the selectivity of P ./ L with x and that of S ./ L with y, and knowing the selectivity

for K-FK join O ./ L to be 1
|O| , the cardinality expressions for the intermediate relations

corresponding to EQ2 are shown in Figure 10.7. While the current example has only join

predicates only, the concepts are easily extendible to error-prone base predicates as well.

Now, the vESS dimensionality of any intermediate query (as well as the query itself) is

given by the number of unknowns in its cardinality expression. Clearly, the dimensionality for

these queries range from 0 to D and they can be partitioned on the basis of their unknowns.
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Figure 10.7: Intermediate relations and their cardinality expressions

The intermediate queries with known cardinalities are denoted with Q{φ} and are distinguished

using box filled with green color in Figure 10.7. Further, 1-dimensional queries are highlighted

with closed curves in Figure 10.7 and denoted with Q{p} where p represents the selectivity

dimension(s). Thus, we have:

• Qφ = {QOL }

• Q{x} = { QPL, QPLO }

• Q{y} = { QSL, QSLO }

• Q{xy} = { QPSL, QPSLO }

Here, both Q{x} and Q{y} are 1D subproblems for the 2D example query. Clearly, the number

of 1-dimensional subproblems for a D-dimensional query is given by D, one corresponding to

each error-prone selectivity. The subproblem Q{xy} is a 2D problem which will be converted

into 1D subproblem after one of the selectivity is completely learned.

10.2.3 Solving 1D Subproblems Using Repeated Invocations of CBP

The module CBP creates a sequence of executions with maximum SLP for a given 1D query.

But, in the case of 1D subproblem of a higher-dimensional problem, it has been shown above
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that each 1D subproblem may correspond to multiple intermediate queries, each of which has

its own optimal cost curve.

Here, the execution for dimension x is identified by using repeated invocations of CBP once

for each intermediate query in the 1D subproblem Q{x}, and choosing the one with maximum

SLP. This idea is visually highlighted through Figure 10.8 where the red dot corresponds to

larger selectivity as compared to the blue dot.

Figure 10.8: Execution with maximum SLP using repeated invocations of CBP

One execution per 1D subproblem Since the above execution corresponds to maximum

learning potential for dimension x, any other execution created using a intermediate query in

Q{x} cannot improve upon the selectivity learning with the same cost-budget. Hence, gen-

eralized CBP ensures that only one execution is sufficient for a given 1D subproblem, i.e.

combination of a cost-budget and a query set Q{x}.

10.2.4 Implications of 1D Executions

Terminated execution If the execution for Q{x} with budget cost(ICk) is terminated, then

it means that any plan for Q that uses intermediate relations from the set Q{x} cannot complete

the query within budget cost(ICk).
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Completed execution If the execution for Q{x} completes within its budget cost(ICk), then

it implies that the actual selectivity x can be completely learned using the output cardinality

feedback from the execution. For example, if the completed execution using QPLO returns 1000

tuples as output, then x can be computed by solving the corresponding cardinality equation

x|L| = 1000. As a side-effect of such complete learning, the 2D subproblem Q{xy} also gets

converted to a 1D problem and leads to the following reorganization of the intermediate queries:

• Qφ = {QOL, QPL, QPLO }

• Q{y} = {QSL, QSLO, QPSL, QPSLO }

Intuitively, a terminated execution temporarily restricts the usage of intermediate relations

for the current virtual isosurface and hence reduces the space of plans that can complete Q

within budget cost(ICk). Note that all such dimensions are revived automatically once the

budget is increased. On the other hand, a completed execution permanently reduces the vari-

ability in the cardinalities of the intermediate relations.

10.2.5 Number of 1D Executions to Cross an Isosurface

Only terminated executions If the execution for Q{x} is terminated, we move on to create

an execution for the other 1D subproblem Q{y} with the same budget cost(ICk). If the second

execution also gets terminated, then we can say that copt(qa) > cost(ICk), since it is not possible

to construct an execution plan for Q without using any intermediate node from Q{x} ∪ Q{y}.

As an instance from EQ2, the output relation PSLO for Q cannot be constructed using only

PSL and OL as intermediate relations. Overall, if all executions are terminated then there can

be at most 2 executions with same budget cost(ICk), and it is also implied that the isosurface

is crossed, i.e., cost(qa) > cost(ICk).

With one completed execution In the other case when the execution for Q{y} is completed,

it leads to conversion of Q{xy} to Q{x}, therefore reviving the x dimension for the current
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isosurface. Since Q has now become a 1D problem, it requires only 1 execution per isosurface.

Hence, there will be at most 3 executions with cost(ICk) as budget – e.g., (1) terminated for

x, (2) completed for y, and (3) terminated/completed for x (converted from xy). If the last

execution is completed then the 2D problem is solved, otherwise it continues as a 1D problem

for the following isosurfaces.

10.3 PBAH for Multi-D vESS

In general, the algorithm for multi-D vESS is to identify the set of intermediate queries for

each dimension and use them to find the execution with maximum SLP using repeated calls

to the CBP routine. These 1D executions either result in complete selectivity learning of the

dimension which result in reduced dimensionality of the vESS and also possible revival of other

dimensions. On the other hand, in case we find that executions for all the remaining dimensions

are terminated, we can increase the cost-budget and start performing executions for the next

isosurface. The pseudocode for PBAH algorithm is shown in Figure 10.9.

10.3.1 Implications of 1D Executions

We first recall two crucial facts regarding our decomposition approach for multi-D vESS, i.e.,

1. Any 1D execution requires only one execution per cost-budget.

2. The number of 1D subproblems is exactly D.

Now, the importance of completed 1D executions is already evident from the fact that each

such execution has the ability to reduce the dimensionality of the original problem one by one,

finally reaching a 1D problem that requires only 1 execution per isosurface. Next, we present

the generic result that establishes the ability of terminated executions to make progress in

solving a D-dimensional problem.

Result 1 For a given query Q with multiple error-prone selectivities, if the execution created

using a 1D subproblem Q{x} for budget cost(ICk) is terminated, then any plan for Q that uses
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PBAH PseudoCode (multi-D)
qlb = (0,0, ..., 0);

qub = (1,1, ..., 1); //initialize the selectivity bounds
De = {x1,x2,...,xD} //set of error-prone dimensions
k = 1;

complete = false;

while(complete == false) { //execution-loop until query completes
Restart:

for (xi in De) { //for each error-prone dimension
Qxi = findIntermediateQueries(xi); //find set of 1D intermediate queries for the

required dimension xi
P k
xi

= CBP(Qxi, xi(qlb), xi(qub), cost(ICk)); //find max SLP execution for xi
through repeated calls to the CBP routine for different queries corresponding to xi

execInfo = CBEWB(P
k
xi
, cost(ICk));

status = execInfo.status;

selecxi
= execInfo.learnedSelec;

if(status == terminated)

qlb = update(qlb, selecxi
);

else {
qlb = update(qlb, selecxi);

qub = update(qub, selecxi
);

De = De - {xi}; //error-prone dimensions reduce by 1
reorganize intermediate query partitions and find revived dimensions;

goto Restart;

}
}

if (De is non-empty)

k++; //jump to next isosurface
else

complete = true;

}
execute Popt(qub);

Figure 10.9: Bouquet Algorithm for Adhoc queries

an intermediate relation from the set Q{x} cannot complete execution of Q within the budget

cost(ICk).

Proof: Since the execution with maximum learning potential for Q{x} and budget cost(ICk) is

terminated, we know a lower bound on actual selectivity of x. The lower bound on x is such

that all the intermediate relations in Q{x} have cost more than cost(ICk). As a result, any plan

for Q that uses one or more intermediate relations from Q{x} costs more than cost(ICk) and

hence cannot complete within budget cost(ICk).
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Unlike completed execution, a terminated execution does not have the permanent benefit

of reducing the dimensionality and hence leads to wasted overheads in the bouquet execution

sequence. But since any execution plan for Q must use at least one intermediate relation from

the 1D subproblems of Q, the following result holds true:

Lemma 10.1 For a query Q and budget cost(ICk), if the executions are terminated for all the

1D subproblems, then optimal cost for Q is certainly more than cost(ICk).

Maximum Number of 1D executions to cross an isosurface Here, we prove results

regarding the number of executions for a given cost-budget, using the above lemma:

Result 2 For a query with D error-prone dimensions, the maximum number of terminated

executions with a fixed cost-budget is D.

Proof: Since the initial number of 1D subproblems is D and if all executions are terminated

then none of the subproblems is revived in the process.

While the sequence of only terminated executions is bounded by D, the total number of

1D executions for a given virtual isosurface can still be more than D if one of the executions is

completed. This is because a completed execution can cause reorganization of the intermediate

queries across the subproblems and hence may lead to revival of the subproblems for which a

terminated execution has already been performed.

Result 3 For a query with D error-prone dimensions, the maximum number of executions

(terminated or completed) with a fixed cost-budget is D(D+1)
2

.

Proof: We know that a terminated execution cannot reduce the dimensionality of the problem

and a completed execution can revive the subproblems for which execution has been terminated

with the same cost-budget. Hence, to waste maximum execution effort before reducing the di-

mensionality due to a completed execution, there can be at most (D − 1) terminated 1D execu-

tions. After that, one ‘completed’ execution leaves a (D− 1) dimensional problem to be solved.
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Hence, the maximum number of 1D executions with a given cost-budget is given by the following

recurrence relation:

NumExec(D) = [(D − 1) + 1] +NumExec(D − 1) with NumExec(1) = 1

⇒ NumExec(D) = D + (D − 1) + (D − 2) + ...+ 2 + 1 =
D(D + 1)

2

10.3.2 MSOg Analysis for Generic Multi-D vESS

With the above, we prove the following result regarding the MSOg of the bouquet execution

sequence.

Theorem 10.1 The MSOg is maximized when, for actual query location qa ∈ (ICk−1, ICk ],

the bouquet executions are distributed among the isosurfaces in the following fashion: [n1, n2,

n3, ..., nk−1, nk] = [D, D, D, ..., D, D(D+1)
2

]. With such an execution sequence, MSOg is given

by
(
r
2

)
D2 +

(
r(r+1)
2(r−1)

)
D.

Proof: We prove the first part by contradiction and then compute the MSOg for the given

sequence.

Assume that the cost-budget for the first isosurface that covers qa is C. The cost budgets for

previously processed isosurfaces are: [ C
rk−1 , C

rk−2 , C
rk−3 , ..., C

r
, C].

First we compute the total cost for the proposed bouquet execution sequence and then show

that any change to the above sequence will only decrease the total bouquet execution cost.

Step 1: The total overheads for the proposed sequence are given by:

cB(∗, qa) =

(
D × C

rk−1

)
+

(
D × C

rk−2

)
+

(
D × C

rk−3

)
+ ...+

(
D × C

r

)
+

(
D(D + 1)

2
× C

)

=

(
D × C × (

1

rk−1
+

1

rk−2
+ ...+

1

r
)

)
+

(
D(D + 1)

2
× C

)
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Step 2: If only one of the selectivities is learned on the previous isosurface, it will cause

reduction in the number of executions on the last isosurface and increase in executions on the

previous surface, the new execution counts will be: [D, D, D, ..., D+ (D− 1), D(D−1)
2

] and the

bouquet cost will be bounded by:

cB
new(∗, qa) ≤ C

(
D × (

1

rk−1
+

1

rk−2
+ ...+

1

r
) +

(D − 1)

r
+
D(D − 1)

2

)
Now, the increase in cost is given by:

∆cB(∗, qa) = C

(
(D − 1)

r
+
D(D − 1)

2
− D(D + 1)

2

)

= C

(
(D − 1)

r
−D

)
= C

(
(D(1− r)− 1)

r

)
Hence, the bouquet cost can increase only if r < 1− 1

D
which is a contradiction since r > 1

and D ≥ 1.

MSOg computation: Overall, this implies the total execution cost is upper bounded by

D(D+1)
2

C +D× (C
r

+ C
r2

+ ...) while the oracle’s cost for qa is C
r

+ ε giving a MSO guarantee of:

MSOg = r × [
D(D + 1)

2
+D × (

1

r
+

1

r2
+ ...)]

MSOg =
D(D + 1)r

2
+D × (

r

r − 1
)

MSOg =
(r

2

)
D2 +

(
r(r + 1)

2(r − 1)

)
D

We get MSOg to be D(D+ 3) for r = 2. Further, the MSOg expression reaches its minimum

value for, r = 1 +

√
2

D + 1
, leading to MSOg =

(
√
D +

√
D(D + 1)

2

)2

.
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10.4 Performance Results

10.4.1 MSO bounds

Unlike PB where the MSOg depends on the density of the plans on isosurfaces, PBAH provides

MSOg as a monotonically increasing function of D, as highlighted in Figure 10.10.

Figure 10.10: MSOg increase with dimensions

Interestingly, even without any preprocessing effort, PBAH could achieve MSO guarantees

not much worse compared to PB– the comparison is given in Table 10.1. As we can observe,

MSOg does not degrade by more than a factor of 3 for most queries. Although there is no

query in our suite for which PBAH performing better than PB– it is, in principle, quite possible

because PBAH has the advantage of using feedback information from the executions and has

a fixed number of executions per isosurface. On the other hand, PB depends on heuristic

enhancements and off-line processing to reduce the isosurface plan-densities to practical levels.

10.4.2 Other empirical observations

In addition to the MSO bounds, we also performanced experiments to analyze PBAH with regard

to empirical MSO performance and number of plans used. It was found that, the empirical MSO
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Query MSOg MSOg (r=2) MSOg (optimal r)
(Anorexic + CSI) (PBAH) (PBAH)

3D H Q5 8.4 18 17.5

3D H Q7 7.2 18 17.5

3D DS Q15 9.2 18 17.5

3D DS Q96 8.8 18 17.5

4D H Q8 15 28 26.7

4D DS Q7 9.1 28 26.7

4D DS Q26 8.1 28 26.7

4D DS Q91 16 28 26.7

5D H Q7 15 40 37.3

5D DS Q19 15 40 37.3

Table 10.1: Guarantees in ad hoc query environment

performance was much better compared to the MSO bounds, this happened because the bounds

take care of the worst case where the dimensions are repeatedly revived on many consecutive

isocost surfaces – which rarely happened in practice. Overall, empirical MSO varied between

10 to 20, which was significantly better than corresponding values of MSO bounds specifically

for high dimensional queries.

Also it was found that, for different qa instances of same query, PBAH uses different set of

plans in the execution sequences – this is in contrast with PB which uses a small set of preidenti-

fied executions to execute any qa in the ESS. This is expected because PB spends preprocessing

effort to find a small execution sequence for the entire ESS using various enhancements like

execution swallowing and execution covering, while PBAH cannot utilize any enhancement and

prepares the execution sequence for a given qa in an on-the-fly manner. More importantly,

PBAH still provides empirical sub-optimality performance comparable to that of PB.
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Chapter 11

Discussion

Having presented the mechanics and performance of the bouquet approach, we now take a step

back and relook at the ways to relax some of the optional assumption made during the thesis.

Next, we critique the bouquet technique, and then explore the deployment scenarios.

11.1 Revisiting Assumptions

In this section, we revisit certain issues that are very important in terms of their impact

execution plan sub-optimality but were initially avoided using simplying assumptions. We made

those assumptions so that the discussion can be focused on the primary issue of selectivity

estimation errors. Now, we revisit these optional assumptions of the bouquet approach and

propose possible direction(s) in which they can be addressed within the bouquet framework.

11.1.1 Selectivity Independence Assumption

Intra-relational predicate combinations

Usually, selectivity independence is employed to compute the overall selectitivity for a com-

bination of intra-relational predicates – this is not necessarily true for the bouquet approach.

The reason for the above property is that, due to the exploratory nature of plan bouquet ex-
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ecution(s), the actual combined selectivity can be usually discovered by evaluating all filter

predicates over the output received from the relational scan operator without any significant

cost overhead. Of course, it is valid only when the predicate evaluation costs are insignificant

compared to scan operator’s cost.

For example, consider the following query over standard TPC-H schema.

select *

from lineitem, orders, part

where l orderkey = o orderkey and l partkey = p partkey and p retailprice < 1000 and p type =

’SMALL’

This query gives the order details of cheap and small parts in the data. Here, the predicate

l orderkey = o orderkey is join-predicate among the relations lineitem and orders and l partkey

= p partkey is a join-predicate among the relations lineitem and parts – the remaining two

predicates are filter predicates on the relation part.

The standard query processing architecture employs binary operators for joins, i.e., joins two

relations at a time. Due to this fact, an operator can employ only one of the join-predicate, but

this restriction is not there on scan operators for base relations. Hence, combined selectivity

for filter predicates p retailprice < 1000 and p type = ’SMALL’ need not be estimated but can

be discovered using a single scan operator.

Independence among join-predicates

Until now in the thesis, selectivity independence assumption has been employed whenever it

is required to compute the combined selectivity of more than one join-predicate. Next, we

propose a possible direction in which bouquet approach can be extended without making the

independence assumption among the join-predicates.

Specifically, join-predicate independence assumption implies that the selectivity of a predicate

join-predicate does not depend on whether it has been used before or after employing another
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join-predicate. Consider the cardinality expressions of query EQ2 (in Chapter 10) repeated

in Figure 11.1a. Here, the selectivity of (P 1 L) join remains x even when it is used in

P 1 (S 1 L), where it is employed after S 1 L and results in cardinality expression xy|L|.

Figure 11.1: Cardinality expressions with and without join-predicate independence assumption

Consider the case when the join-predicates do not have independent selectivities, let us

denote the selectivity of join-predicate P 1 L with x1 when used directly and x2 when used

after join-predicate S 1 L. Similarly, denote the selectivity of S 1 L with y2 when used after

P 1 L and y1 when used directly. Note that, these selectivities are still independent wrt the

predicate O 1 L since every tuple will satisfy the join-predicate with relation O as it does not

face any loss of keys. The resulting cardinality expressions are shown in Figure 11.1b. Here,

the cardinality of PSL is y1x2|L| when the join-order is P 1 (S 1 L) and x1y2|L| when the

join-order is (P 1 L) 1 S – clearly y1x2|L| = x1y2|L|.

With independence assumption (INDEP case), it was a 2D problem where the cardinality

of all the intermediate relations (as well as the output relation) could be computed after learning

the actual value of x and y. While in the absence of independence assumption (DEP case), it

is a 3D problem as it need to learn the actual values of x1, y1, y2 or x1, y1, x2 to compute the

cardinalities for all the relations. To elaborate, while the completed execution for x1 converts
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the 2D subproblem {PSL, PSLO} from x1y2 into 1D subproblem with dimension y2, it does

not merge with the dimension y1 for {SL, SLO}.

The new problem is equivalent to a problem with the following variables: X = x1|L|,

Y = y1|L| and Z = x1y2|L| = y1x2|L|, where X, Y , Z are the output cardinalities of

{PL, PLO}, {SL, SLO} and {PSL, PSLO}, respectively. Once X, Y and Z are known, all

the variable x1,x2, y1, and y2 can be computed from them. Thus, in general, the dimensionality

without independence assumption is the number of intermediate relations with unique cardi-

nality expressions, instead of the number of error-prone predicates, and can be denoted with

D∗. Further, since usage of CBP ensures one execution (completed or terminated) for each

of these variables, the maximum number of executions per isosurface is given by D∗. To put

things in perspective, the new dimensionality D∗ for a star-query with all D join predicates

being error-prone will be given by 2D − 1. Coincidentally for the example query EQ2, the ad-

verse impact is not significant and MSOg increases from 10 to 12 (=4 × 3) when join-predicate

independence assumption is relaxed. Similarly, the increased values of MSOg for our test suite

of queries is given in Table 11.1. It is an interesting future work to analyze the tightness of

these MSOg values.

Query MSOg (r=2) MSOg Query Graph
(INDEP) (DEP) (# relations)

3D H Q5 18 24 chain(6)
3D H Q7 18 24 chain(6)

3D DS Q15 18 24 chain(4)
3D DS Q96 18 28 star(4)
4D H Q8 28 48 branch(8)

4D DS Q7 28 60 star(5)
4D DS Q26 28 60 star(5)
4D DS Q91 28 88 branch(7)
5D H Q7 40 60 chain(6)

5D DS Q19 40 96 branch(6)

Table 11.1: MSO guarantees without join-predicate independence assumption
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11.1.2 Perfect Cost Model

Thus far, we had catered to arbitrary errors in selectivity estimation, but assumed that the cost

model itself was perfect. In practice, this is certainly not the case, but if the modeling errors

were to be unbounded, it appears hard to ensure robustness since, in principle, the estimated

cost of any plan could be arbitrarily different to the actual cost encountered at run-time.

However, we could think of an intermediate situation wherein the modeling errors are non-zero

but bounded – specifically, the estimated cost of any plan, given correct selectivity inputs, is

known to be within a δ error factor of the actual cost. That is,
cestimated
cactual

∈ [
1

(1 + δ)
, (1 + δ)].

Our construction is lent credence to by the recent work of [87], wherein static cost model

tuning was explored in the context of PostgreSQL – they were able to achieve an average δ

value of around 0.4 for the TPC-H suite of queries. This “unbounded estimation errors, bounded

modeling errors” framework is amenable to robustness analysis and leads to following result:

Theorem 11.1 If the cost-modeling errors are limited to error-factor δ with regard to the actual

cost, the bouquet algorithm ensures that: MSOg = (1 + δ)2ρ
r2

r − 1

The effectiveness of this result is clear from the fact that, when δ = 0.4, corresponding

to the average in [87], the MSOg increases by at most a factor of 2. Such low value of δ is

also corroborated by the views of industry experts [62] based on their experience in real world

scenarios.

Cbouquet(qa) = δ(a+ ar + ar2 + ...+ ark−1)− ark−2(δ − 1

δ
) (11.1)

And the corresponding cost for ”oracle” algorithm is ark−2

δ
, causing

SubOpt(∗, qa) ≤
δ a(r

k−1)
r−1 − ar

k−2(δ − 1
δ
)

ark−2

δ

(11.2)

115



MSObounded modeling error ≤ δ2MSOperfect model − (δ2 − 1) (11.3)

MSObounded modeling error ≤ δ2(MSOperfect model − 1) + 1 (11.4)

11.1.3 No known Selectivity Bounds and Lack of Absolute Metric

Until now, we have presented performance of the bouquet algorithm only on the sub-optimality

based metrics, and also assumed that no bounds on selectivities are known. Here, we propose

extensions to the bouquet approach where we consider the usage of selectivity bounds to improve

execution performance and also propose another absolute performance metric for bouquet style

execution approaches.

Figure 11.2: Utilizing lower bound (LB) and upper bound (LB) on selectivities

Using Selectivity Bounds While worst case guarantees in the absence of selectivity bounds

are the primary benefit of the bouquet approach, the technique can also utilize lower and upper

bounds on error-prone selectivities, if they are available. Specifically, these can be utilized to

restrict and identify the relevant portion of the ESS which may help in improving the MSO

performance by skipping irrelevant executions from the original cost-budgeted sequence, as
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shown in Figure 11.2. In this Figure, the selectivity bounds help to skip 22 out of 32 executions

and the execution sequence is only {E11, E12, E18, E19, E20, E24, E25, E26, E27, E30 }.

An Absolute Metric Here, we analyze the total (absolute) execution cost for the bouquet

and show that it is a function of the maximum isosurface plan-density along with the optimal

execution cost of the terminal execution, i.e., execution corresponding to the upper bound on

selectivities. Further, we observe that this absolute metric, i.e., total bouquet execution cost,

can be improved by trading off with the MSO guarantee provided by the sequence.

Specifically, for 1D ESS with cost ratio r, we know that the worst case sub-optimality is

bounded by MSOg =
r2

r − 1
and the total bouquet execution cost is given by TAC = (1 +

1

r − 1
)Cmax. Figure 11.3 shows the variation of MSOg and TAC

Cmax
with increasing cost-ratio r.

Both these metric decrease steeply in the range (1, 2] after which MSOg starts increasing while

TAC
Cmax

continues to decrease to asymptotically reach 1. For r = 2, TAC is 2Cmax and when r is

increased to 4, TAC decreases to 1.33Cmax while MSOg increases to 5.33.

Figure 11.3: Variation of MSOg and TAC
Cmax

with cost-ratio r
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11.2 Critique of Bouquet Approach

Generic limitations of plan-switching approaches Being a plan-switching approach, the

bouquet technique suffers from the drawbacks generic to such approaches: Firstly, they are poor

at serving latency-sensitive applications as they have to perforce wait for the final plan exe-

cution to return result tuples. Secondly, they are not recommended for update queries since

maintaining transactional consistency with multiple executions may incur significant overheads

to rollback the effects of the aborted partial executions. Finally, with single-plan optimiz-

ers, DBAs use their domain knowledge to fine-tune the plan using “plan-hints”. But this is

not straightforward in plan-switching techniques since the actual plan sequence is determined

only at run-time. Notwithstanding the limitations, such techniques are now featured even in

commercial products (e.g. [2]).

There are also a few problems that are specific to the bouquet approach, the first one is appli-

cable to both PB and PBAH while the other two are specific to PB technique:

Unsuitable for small estimation errors The bouquet approach is intended for use in diffi-

cult estimation environments – that is, in database setups where accurate selectivity estimation

is hard to achieve. However, when estimation errors are apriori known to be small (but selec-

tivity bounds are not explicitly available), re-optimization techniques such as [65, 12], which

use the optimizer’s estimate as the initial seed, are likely to converge much quicker than the

bouquet algorithm, which requires starting at the origin to ensure the first quadrant invariant.

But, if the estimates were apriori guaranteed to be under-estimates, then the bouquet algorithm

can also leverage the initial seed.

Changes in data-distribution While it is inherently robust to changes in data distribution,

since these changes only shift the location of qa in the existing ESS, the same is not true

with regard to database scale-up. That is, if the database size increases significantly, then the

original ESS no longer covers the entire error space. An obvious solution to handle this problem
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is to recompute the bouquet from scratch, but most of the processing may turn out to be

redundant. Therefore, developing incremental bouquet maintenance strategies is an interesting

future research challenge.

Dimensionality of selectivity error space The dimensionality of error space can be huge

for complex queries which has direct impact on the bouquet identification overheads as well as

the MSOg. In addition to error-prone selectivity dimensions, even parameterized predicates (if

any) need to be included in the ESS causing further increase in bouquet identification over-

heads – although bouquet execution considers only appropriate subspace using the instantiated

parameters at run-time. But, it is important to note that, a complex query does not necessarily

imply a commensurately large number of error dimensions because: (i) The selectivities of base

relation predicates of the form “column op constant” can be estimated accurately with current

techniques; (ii) The join-selectivities for PK-FK joins can be estimated accurately if the entire

PK-relation participates in the join. Still, techniques need to be developed in future to identify

and remove those dimensions whose impact on MSOg is negligible compared to others.

11.2.1 Deployments Aspects

Given the above discussion, the bouquet approach is currently recommended specifically for

providing response-time robustness in large archival read-only databases supporting complex

decision-support applications that are likely to suffer significant estimation errors. We expect

that many of today’s OLAP installations may fall into this category. We wish to highlight that

from a deployment perspective, the bouquet technique is intended to complementarily co-exist

with the classical optimizer setup, leaving it to the user or DBA to make the choice of which

system to use for a specific query instance.
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Chapter 12

Conclusions and Future Directions

Selectivity estimation errors resulting in poor query processing performance are part of the

database folklore. While there has been many innovative research proposals that are capable

of ameliorating the adverse impact of these errors on the execution performance, none of them

provide any performance guarantees. The contribution of this thesis is a new query processing

framework which is based on discovery of error-prone selectivities in a controlled manner and

allows theoretical analysis of the performance as compared to an oracular system that magically

knows the correct values for these selectivities.

Next, we summarize the conclusions of this thesis in the direction of achieving execution

performance that is robust to selectivity estimation errors followed by outlining a number of

potential areas for further research to achieve the larger goal of robustness in query processing.

12.1 Conclusions

In this thesis, we investigated a new approach to this classical problem, wherein the estima-

tion process was completely discarded for error-prone predicates. Instead, such selectivities

were progressively discovered at run-time through a carefully graded sequence of cost-budgeted

executions from a “plan bouquet”. The execution sequence, which followed a cost-doubling

geometric progression, ensured that the overheads are bounded, thereby ensuring MSOg of 4
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times the plan cardinality of the densest isosurface. Also, incorporating randomized strategies

in the above algorithm brought down the multiplicative factor of 4 to only 1.8 as the guaran-

tee on the expected performance. To the best of our knowledge, such bounds have not been

previously presented in the database literature.

We also proposed an efficient isosurface identification algorithm for pragmatic overheads

during bouquet identification, and two compile time enhancements that significantly improved

the worst case guarantees. Together they ensured that MSOg was less than 20 across all the

queries in our evaluation set, an enormous improvement compared to the MSO performance

of the native optimizer, wherein this metric ranged from thousands to millions. Further, the

bouquet’s ASO performance was always either comparable to or much better than the native

optimizer, with most of the query locations having a sub-optimality of less than 4. While

the bouquet algorithm did occasionally perform worse than the native optimizer for specific

query locations, such situations occurred at less than 1% of the locations, and the performance

degradation was relatively small, a factor of 2 or less.

Finally, we also extended the bouquet approach to handle the query scenarios where the

preprocessing effort at compile-time may not be feasible, including ad hoc queries and queries

with larger number of error-prone dimensions. In this direction, we designed a revamped

algorithm that exploits the output cardinality of the cost-budgeted executions to learn lower

bounds on error-prone selectivities and generate the execution sequence in an on-the-fly manner.

Even with its dynamic nature it follows a bound on the number of executions per virtual

isosurface leading to performance guarantees as a function of number of error-prone dimensions.

Interestingly, the MSO guarantees with this approach are found to be within a small factor of

the values that could be achieved with the preprocessed bouquet sequence.

12.1.1 Relevance in Non-relational Systems

In recent times, the database community has seen a large number of attempts to suit different

kinds of data processing requirements and do not resemble the traditional relational database
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systems, which is the primary focus of this thesis. Still, we wish to highlight that the proposed

techniques are useful in any system that uses selectivity inputs to choose the ideal execution

plan and the chosen plans satisfy the monotonicity and smoothness assumption. In general, the

underlying ideas have the potential to improve query processing performance in other systems

as well, due to below mentioned reasons.

The first and foremost advantage with bouquet technique is that it can achieve reasonable

query processing performance even in the complete absence of any statistical information about

the data – the mandatory information required is only the base-relation cardinalities which can

be trivially managed. In contrast, the statistical information seems vital for selection of rea-

sonable plans in any system where there are large number of executions choices having widely

varying execution times. Many data processing systems handle this absence of meta-data infor-

mation by either directly using imperative code or commodity hardware to execute otherwise

highly suboptimal plans, which is not always sufficient to achieve near-optimal performance.

Further, the decision to start exploration with a plan that is optimal for very small selectivity

and to maintain sufficient cost gap (e.g. geometrically increasing) between the exploratory

executions ensures that the relative overheads increase quite slowly as compared to the absolute

overheads. These ideas are generic and can be used even if the system does not really have

a cost-based optimizer and/or satisfies the optimal cost monotonicity properties in piecewise

manner.

Closing Statement In closing, the bouquet approach promises an easy to deploy solution

with guaranteed performance and repeatability in query execution, features that had hitherto

not been available, thereby opening up new possibilities for robust query processing.

12.2 Future Directions

This thesis gives an initial set of query processing techniques that are easy to deploy and

amenable to theoretical performance analysis. We now turn our attention to some interesting
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future directions which highlight the fertile research ground provided by the plan bouquet

framework:

1. Dynamically learned cost model: While we have analyzed the impact of the cost

modeling errors on the performance guarantees in terms of a known factor δ, it is inter-

esting to see whether the unpredictable run-time conditions due to fluctuating workload

situations can also be handled in the learning-based framework of plan bouquet.

2. Bouquet technique for a workload: In this thesis, our focus was to analyze the exe-

cution performance overheads for a single independent query in the system. With more

queries in the simultaneous workload there are more opportunities in sharing the selec-

tivity learning and even sharing the execution subplans, which hints towards a potential

area for further research.

3. Removing the join-predicate independence assumption: In this direction, we have

already provided a first cut solution by extending the ‘on-the-fly’ bouquet construction

algorithm. But this direction still needs further research to explore the looseness of these

MSO bounds.

4. Tightness of performance guarantees: In this thesis, we presented suboptimality

guarantees for multi-dimensional queries and also proposed enhancements that empiri-

cally improve the guarantees to a significant level. But it was not analyzed whether the

proposed upper bounds are tight or there is still scope of further improvement – a theo-

retical analysis in this regard is required to fully understand the capabilities of discovery

based query processing techniques.

5. Exploiting the behavior of optimal cost profile: In this work, the only requirement

is that the optimal cost profile should be monotonic wrt increase in selectivity inputs. It

has also been observed that, the slope of the optimal cost profile actually decreases as we
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move along the selectivity dimensions. This concave behavior of optimal cost profile helps

indirectly by improving the effectiveness of the execution covering enhancement but it has

not been included in the formal analysis, which may possibly lead to improved guarantees

for at least those queries where concave behavior can be inferred from the query structure

– this is another interesting direction for future research.

6. Reduction in preprocessing overheads: The NEXUS algorithm brings the prepro-

cessing requirement down by at least an order of magnitude for most high-dimensional

queries, but most of the plan executions identified in this process are later skipped by the

plan swallowing and covering enhancements. Thus, it can be interesting to see whether

it is possible to directly identify or at least approximate the execution sequence (after

both enhancements) without actually identifying the much larger initial sequence through

NEXUS.

7. Ranking of error-prone dimensions: It is clear, even with NEXUS algorithm, the

overheads of identifying complete bouquet sequence still increase at a significantly high

rate when the dimensionality of selectivity error space increases. One possible direction to

keep the overheads in control is to rank the error-prone dimensions and skip the low-rank

dimensions such that there is a tradeoff between the bouquet identification overheads and

the degradation in MSO guarantee due to the left over dimension(s).

8. Incremental bouquet maintenance: The bouquet algorithm for canned queries work

by identifying a fixed execution sequence at compile-time and then using the deterministic

sequence to handle any query instance in the selectivity error space. While this bouquet

sequence can withstand any change in the distribution of data, any change in data scale

makes it unsuitable for query instances in the new selectivity error space. To handle this,

a straightforward approach is to compute the entire execution sequence from scratch, but

this may cause redundant work in the exploration phase. Hence, it would be interesting
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to see whether the additional work required to update the bouquet execution sequence

can be minimized.
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[73] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join al-

gorithms: [extended abstract]. In Proc. of the 31st ACM Symposium on Principles of

Database Systems, PODS ’12, pages 37–48, 2012. 25

[74] Frank Olken and Doron Rotem. Random sampling from databases: a survey. Statistics

and Computing, 5(1):25–42. 7, 20

[75] Aditya Parameswaran. An interview with surajit chaudhuri. XRDS, 19(1):38–39, Septem-

ber 2012. 3

[76] Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number of tu-

ples satisfying a condition. In Proc. of the 1984 ACM SIGMOD Intl. Conf. on Management

of Data, SIGMOD ’84, pages 256–276, 1984. 19

[77] Neoklis Polyzotis. Selectivity-based partitioning: A divide-and-union paradigm for effective

query optimization. In Proc. of the 14th ACM Intl. Conf. on Information and Knowledge

Management, CIKM ’05, pages 720–727, 2005. 21, 27

134



BIBLIOGRAPHY

[78] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without the attribute

value independence assumption. In Proc. of the 23rd Intl. Conf. on Very Large Data Bases,

VLDB ’97, pages 486–495, 1997. 19

[79] C. Rajmohan. Turbocharging plan bouquet identification. Master’s thesis, Database Sys-

tems Lab, Indian Institute of Science, Bangalore, 2015. 63, 69
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12.A Appendix

12.A.1 Query Text (based on benchmark queries)

select
n name,
l extendedprice * (1 - l discount) as revenue

from
customer, orders, lineitem, supplier, nation, region

where
c custkey = o custkey and l orderkey = o orderkey
and l suppkey = s suppkey
and s nationkey = n nationkey and n regionkey = r regionkey
and o orderdate >= 1994-01-01
and o orderdate < 1994-01-01 + interval ’25’ day
and c acctbal <= 9900 and s acctbal <= 9900

Figure 12.1: 3D H Q5 (Based on TPC-H Query 5)
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select
n name,
sum(l extendedprice * (1 - l discount)) as revenue

from
customer, orders, lineitem, supplier, nation, region

where
c custkey = o custkey
and l orderkey = o orderkey
and l suppkey = s suppkey
and c nationkey = s nationkey
and s nationkey = n nationkey
and n regionkey = r regionkey
and r name = ’ASIA’
and o totalprice ≤ $X1
and c acctbal ≤ $X2
and l extendedprice ≤ $X3

group by
n name

order by
revenue desc

Figure 12.2: 3D H Q5b (Based on TPC-H Query 5)

select
supp nation, cust nation, l year, volume

from (
select

n1.n name as supp nation, n2.n name as cust nation,
extract(year from l shipdate) as l year, l extendedprice * (1- l discount)
as volume

from
supplier,lineitem, orders, customer, nation n1, nation n2

where
s suppkey = l suppkey and o orderkey = l orderkey
and c custkey = o custkey and s nationkey = n1.n nationkey
and c nationkey = n2.n nationkey
and l shipdate between date ’1995-01-01’ and date ’1996-12-31’
and c acctbal <= 9900 and s acctbal <= 9900 )

Figure 12.3: 3D H Q7 (Based on TPC-H Query 7)
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select
supp nation, cust nation, l year, volume

from (
select

n1.n name as supp nation, n2.n name as cust nation,
extract(year from l shipdate) as l year, l extendedprice * (1- l discount)
as volume

from
supplier,lineitem, orders, customer, nation n1, nation n2

where
s suppkey = l suppkey and o orderkey = l orderkey
and c custkey = o custkey and s nationkey = n1.n nationkey
and c nationkey = n2.n nationkey
and ( (n1.n name = ’FRANCE’ and n2.n name = ’GERMANY’)
or (n1.n name = ’GERMANY’ and n2.n name = ’FRANCE’) )
and l shipdate between date ’1995-01-01’ and date ’1996-12-31’
and c acctbal <= 9900 and s acctbal <= 9900 )

Figure 12.4: 5D H Q7 (Based on TPC-H Query 7)

select
o year, volume

from (
select

extract(year from o orderdate) as o year, l extendedprice *
(1-l discount) as volume, n2.n name as nation

from
part, supplier, lineitem, orders, customer, nation n1, nation n2, region

where
p partkey = l partkey and s suppkey = l suppkey
and l orderkey = o orderkey and o custkey = c custkey
and c nationkey = n1.n nationkey and n1.n regionkey = r regionkey
and s nationkey = n2.n nationkey
and o orderdate between date ’1995-01-01’ and date ’1995-09-01’
and p type = ’ECONOMY ANODIZED STEEL’
and c acctbal <= 9900 and s acctbal <= 9900 )

Figure 12.5: 4D H Q8 (Based on TPC-H Query 8)
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select
o year,
sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume) as mkt share

from
(
select

DATE PART(’YEAR’,o orderdate) as o year,
l extendedprice * (1 - l discount) as volume,
n2.n name as nation

from
part, supplier, lineitem, orders,
customer, nation n1, nation n2, region

where
p partkey = l partkey
and s suppkey = l suppkey
and l orderkey = o orderkey
and o custkey = c custkey
and c nationkey = n1.n nationkey
and n1.n regionkey = r regionkey
and r name = ’AMERICA’
and s nationkey = n2.n nationkey
and p retailprice ≤ $X1
and s acctbal ≤ $X2
and l extendedprice ≤ $X3
and o totalprice ≤ $X4

) as all nations
group by

o year
order by

o year

Figure 12.6: 4D H Q8b (Based on TPC-H Query 8)
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select
i item id, ss quantity, ss list price,
ss coupon amt, ss sales price

from
store sales, customer demographics, date dim, item, promotion

where
ss sold date sk = d date sk and ss item sk = i item sk and
ss cdemo sk = cd demo sk and ss promo sk = p promo sk and
cd gender = ’F’ and cd marital status = ’M’ and cd education status = ’College’
and (p channel email = ’N’ or p channel event = ’N’) and d year = 2001
and i current price < 99 and p cost <= 1000

Figure 12.7: 4D DS Q7 (Based on TPC-DS Query 7)

select
ca zip, cs sales price

from
catalog sales, customer, customer address, date dim

where
cs bill customer sk = c customer sk and c current addr sk = ca address sk
and ( substr(ca zip,1,5) in (’85669’, ’86197’,’88274’, ’83405’,
’86475’, ’85392’, ’85460’, ’80348’, ’81792’)
or ca state in (’CA’,’WA’,’GA’))
and cs sold date sk = d date sk and d moy = 2 and d year = 1999

Figure 12.8: 3D DS Q15 (Based on TPC-DS Query 15)
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select
i brand id brand id, i brand brand, i manufact id,
i manufact, ss ext sales price

from
date dim, store sales, item, customer, customer address, store

where
d date sk = ss sold date sk and ss item sk = i item sk
and i manager id=97 and d moy=12 and d year=2002
and ss customer sk = c customer sk and c current addr sk
=ca address sk and substr(ca zip,1,5) <> substr(s zip,1,5)
and ss store sk = s store sk
and s tax percentage <= 0.1

Figure 12.9: 5D DS Q19 (Based on TPC-DS Query 19)

select
i item id, avg(cs quantity) , avg(cs list price) ,
avg(cs coupon amt) , avg(cs sales price)

from
catalog sales, customer demographics, date dim, item, promotion

where
cs sold date sk = d date sk and cs item sk = i item sk and
cs bill cdemo sk = cd demo sk and cs promo sk = p promo sk
and cd gender = ’F’ and cd marital status = ’U’ and cd education status
= Unknown’ and (p channel email = ’N’ or p channel event = ’N’) and
d year = 2002 and i current price <= 99

group by
i item id

order by
i item id

Figure 12.10: 4D DS Q26 (Based on TPC-DS Query 26)
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select
cc call center id , cc name , cc manager , sum(cr net loss)

from
call center,catalog returns, date dim, customer, customer address,
customer demographics, household demographics

where
cr call center sk = cc call center sk and cr returned date sk =
d date sk and cr returning customer sk= c customer sk and cd demo sk
=c current cdemo sk and hd demo sk = c current hdemo sk and
ca address sk = c current addr sk and d year = 2000 and d moy = 12
and ( (cd marital status = ’M’ and cd education status = ’Unknown’)
or(cd marital status = ’W’ and cd education status = ’Advanced Degree’))
and hd buy potential like ’5001-10000%’ and ca gmt offset = -7

group by
cc call center id,cc name,cc manager,cd marital status, cd education status

order by
sum(cr net loss) desc

Figure 12.11: 4D DS Q91 (Based on TPC-DS Query 91)

select s store name, hd dep count, ss list price, s company name
from

store sales, household demographics, time dim, store
where

ss sold time sk = time dim.t time sk and
ss hdemo sk = household demographics.hd demo sk and
ss store sk = s store sk and time dim.t hour = 8
and time dim.t minute >= 30 and
household demographics.hd dep count = 2
and store.s store name = ’ese’

Figure 12.12: 3D DS Q96 (Based on TPC-DS Query 96)
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