
Performance Testing Environments For Database Systems

Anupam Sanghi
M.E, CSA, IISc Bangalore

SR No: 04-04-00-10-41-14-1-11143

June 14, 2016

ME Project Report

Abstract

Database systems’ testing, in the state of the art uses synthetic data and workload generators such as
TPC-H and TPC-DS. Synthetic generators are used because the real customer data is hard to obtain due to
its sensitive nature as well as huge size. But these synthetic benchmarks usually have a fixed schema and
workload, and also they do not provide much flexibility in data generation except for the size of the database.
Due to these limitations, they often fail to capture realistic scenarios. In this project, we have constructed
a workload-dependent synthetic data generator, which ensures that the query performance is similar on the
real and simulated environments for a predefined workload. By similar query performance, we mean that the
executor does similar volumetric processing of data for each node in the execution plan tree. The generation
technique is independent of the size of the database and has a unique feature of generating and supplying data
on-the-fly. This eliminates the data loading and storing overheads and can can therefore be helpful in futuristic
big data scenarios as well, where these features are indispensable. Since, the generator does not require any
static data storage, it is well adapted to the philosophy of CODD (COnstructing Dataless Databases), a tool
that helps to do compile-time system testing by constructing dataless databases.

1 Introduction

Effective testing of database engines and applications
is predicated on the ability to easily construct alter-
native scenarios with regard to the database contents
[1]. In the state of the art, it involves executing a
set of queries (known as query workload) on synthetic
databases. A query is processed in two phases - at
compile-time, the query optimizer picks an optimal
plan from a set of plans. Thereafter, the executor
runs the chosen plan on the database, also called as
execution-time processing, to give the result. There-
fore, testing can be broadly categorized into compile-
time testing and execution-time testing. There are sev-
eral synthetic benchmarks like TPC-H [2], TPC-DS [3]
that are commonly used to carry out performance tests
in various domains. But unfortunately, these bench-
marks are far from realistic customer scenarios. Due
to its sensitive nature, the customer data is also hard
to obtain. This therefore results in unidentified bugs

before deployment [4]. Database performance testing
tries to capture the performance-related bugs in the
engines.

The major limitations of techniques that use syn-
thetic benchmarks are as follows:

• Fixed schema and workload: The synthetic
data generators possess a fixed schema and
workload, which fail to accommodate various re-
alistic settings.

• Inability to tune the generated data: Not
much flexibility is given in generation. The
data usually has a fixed predefined distribution,
which might again fail to adapt to the real sce-
narios.

• Infeasible at big data scale: In today’s era
of so-called big data systems, the data is of pro-
hibitively large sizes. It is easy to see that
the traditional testing techniques become com-
pletely impractical simply because of the time

and space overheads that arise due to the tedious
data loading and storing processes.

Motivated by the above problem, [1] proposed
a tool called CODD1 (COnstructing Dataless
Databases), that took the first step towards alleviat-
ing the problem of effective testing of big data sys-
tems, by implementing a new metaphor of “data-less
databases”. It aims to provide a platform to construct
virtual databases with no static (stored) data, using
which query execution can be simulated easily. This
can therefore overcome the above mentioned limita-
tions.

1.1 Compile-time Testing

CODD currently supports compile-time testing as-
pect of the database systems2. At compile-time, the
query optimizer uses the meta-data characteristics of
the database to pick the optimal plan for execution.
Thus, this stage does not require the actual data to
be present in the system. CODD leverages this prop-
erty by providing a platform to directly construct the
metadata. Therefore, database environments with the
desired metadata characteristics can be efficiently sim-
ulated without persistently generating and/or stor-
ing their contents. Correct simulation implies obtain-
ing identical plan diagrams [5], indicating that the
optimizer behaves identically on the real and simu-
lated scenarios. Another unique feature of CODD
is its support for automated scaling of meta-data in-
stances, which can be used to mimic futuristic sce-
narios. For instance, consider the situation where a
database engineer wishes to evaluate the query opti-
mizer’s behaviour on a futuristic big data set-up fea-
turing “yottabyte”(1024 bytes) sized relational tables.
Obviously, just generating this data, let alone storing
it, is practically infeasible even on the best of systems,
but using CODD this can be easily modelled within a
few minutes on a vanilla laptop [6].

1.2 Execution-time Testing

Unlike compile-time, execution-time testing does need
the actual data to be present, at least transiently,
in the system. Therefore, solving the problem for
execution-time testing becomes challenging. To han-
dle this, we used the technique of workload-dependent
data generation to obtain synthetic data that can
mimic the performance of the real database on a pre-
defined workload. By mimicking, we mean that the

executor does similar volumetric processing of data
for each node in the execution plan tree in both real
and simulated environments. Further, our genera-
tion mechanism does not depend on the size of the
database, something indispensable in big data scenar-
ios.

1.3 Applications

Volumetric execution-time testing as mentioned above
has numerous applications like:

• Component Testing: On introducing a new
component/technique into the engine, testing its
performance is required. This can be done eas-
ily by using our generator to get data with the
desired properties. This data can be supplied to
the executor on demand, which can forward it
to the newly added component.

• Resolve customer issues: This application
was motivated from HP Enterprise. Client orga-
nizations outsource the testing of their database
applications. Here, the data generator can serve
as a platform that can provide synthetic data
possessing the desired properties of the client’s
data. This would eliminate the requirement
of getting access to the client’s production sys-
tem and yet can resolve the performance related
problems of the engine. For example, solutions
might be (a) propose a hardware configuration,
(b) new algorithm for an operator for efficient
execution.

• Testing on Futuristic Scenarios: If the or-
ganisations want to perform testing on futuristic
scenarios, where the data size is up/down-scaled,
then this can also be done easily by scaling the
inputs given to CODD and it will ensure that the
generated metadata and synthetic data mimics
the desired scenario.

1.4 Prior Work

There are various techniques in the literature that deal
with synthetic data generation. Some techniques like
[7, 8] focus on making the generation process paral-
lelizable and scalable for pre-defined data distribu-
tions. But, these fail to resemble the real scenarios as
they do not capture the correlations that exist between
the attributes within and across tables. Also there has
been some work done in the direction of generating

1In archaic English, cod means “empty shell”, symbolising the data-less context.
2Currently CODD supports several industrial-strength optimizers, including IBM DB2, Microsoft SQL Server, Oracle, HP

SQL/MX and PostgreSQL.

2

data from the statistical metadata [4], but this also
loses the non-trivial correlations and therefore fail to
mimic the real scenarios. The idea of using annotated
query plan trees was introduced by Binnig et. al. in a
tool called QAGen [9, 10], and was further extended
in a tool called MyBenchmark [11, 12]. This work was
based on the approach called symbolic query process-
ing. It constructs a symbolic database3 on a per query
basis, to which constraints are added depending on the
input plans and finally these symbolic databases are
integrated and instantiated by using constraint sat-
isfaction program. Though this technique is able to
handle a larger set of queries, it defeats our purpose
of making an on-the-fly data generator since it would
require N symbolic databases for N input trees in the
very first step of the algorithm.

Our implementation is based on the work done by
Arasu et. al. [13, 14] as the technique is in principle
independent of the size of the generated database. We
have modified their technique to:

• support on-the-fly data generation: In the
earlier technique, a view is created correspond-
ing to every relation and a linear program (LP)
is formulated for each view separately. There-
after, from the LP solution, the views are instan-
tiated and relations are constructed from them.
The modified technique does not require instan-
tiating the views, rather we create relation sum-
maries. These summaries (much smaller in size
than the actual relations) are capable of sup-
porting on-the-fly generation.

• handle larger class of schemas: The earlier
technique handled only snowflake schemas. We
have extended it to support any schema with
non-cyclic dependencies between the relations.
The snowflake schema is a special category of
non-cyclic dependencies, where the dependency
graph is a tree.

• reduce the error in satisfying the con-
straints: The errors in the earlier technique
were an outcome of two cases: (i) errors as a
result of maintaining view consistency and (ii)
sampling technique used for data generation.
We have made the generation algorithm deter-
ministic, which ensures that no errors due to
sampling gets added up.

• accept generic projections: The earlier work
did not handle generic projection operators.

They were limited to the cases where the pro-
jections are non-overlapping. We have proposed
a new technique that can handle any kind of pro-
jection operators.

Our generator takes the database schema and a set
of ALQP as the input. From these ALQP set, we
generate a cardinality constraint for each operator in
the plan tree. Further, these constraints are converted
into a linear program, which then is passed on to the
LP solver. The result from the LP solver is finally fed
into the relations generator that has the capability of
supplying tuples on demand.

We verified our work on TPC-DS benchmark,
where we constructed 14 queries by modifying the
original queries to suit the assumptions that the algo-
rithm requires. In our results, we found that the query
performance, with regard to the volumetric processing
at each node of the plan tree, was very similar on the
real 10 GB TPC-DS database and our synthetically
generated one.

1.5 Roadmap

In the rest of this document, we shall first discuss the
concept of ALQPs and cardinality constraints along
with some notations that will be used often in Section
2. Further, we go on and formally define the problem
and state the assumptions made in Section 3. There-
after, Sections 4 and 5 discuss the architecture of the
data generator along with a detailed description of its
various components. In Section 6, we propose an al-
gorithm for handling generic projections. Section 7
includes an empirical evaluation of our generator and
finally we conclude with various open problems that
can be explored.

2 Preliminaries

2.1 Annotated Logical Query Plan
(ALQP)

An ALQP gives the sequence of operators in the skele-
ton of a query plan along with the input and output
cardinalities for each relational algebraic operator.
For example, consider a database having relations: R
(a, b), S (p, q, r) and T (x, y) and the following query:

3A symbolic database is like a regular database, but its attribute values are symbols (variables) not constants.

3

AND S.r > 100
AND R.b <= 80
AND T.x <= 30
AND R.a = S.p
WHERE S.q = T.y
FROM R, S, T
SELECT *

For the above query, a possible ALQP in shown in
Figure 1.

./
S.q = T.y

50

σT.x≤30

1000

./
R.a = S.p

350

σR.b≤80

700

σS.r>100

800

R
size = 5000

S
size = 10000

T
size = 15000

Figure 1: Annotated Logical Query Plan

2.2 Cardinality Constraints

Assuming that R1, ...,Rl are the set of relations in
the database, each operator in the ALQP corresponds
to a cardinality constraint that can be written in the
following form:

|πAσP(Ri1 .// Rip)| = k

where A denotes a set of attributes, P is a selection
predicate, and k is a non-negative integer.

For example, the constraints corresponding to the
ALQP shown in Figure 1 are:

|T | = 15000 (2.1)

|R| = 5000 (2.2)

|S| = 10000 (2.3)

|σT.x≤30(T)| = 1000 (2.4)

|σR.b≤80(R)| = 700 (2.5)

|σS.r>100(S)| = 800 (2.6)

|σS.r>100 ∧ R.b≤80(R ./ S)| = 350 (2.7)

|σS.r>100 ∧ R.b≤80 ∧ T.x≤30(R ./ S ./ T)| = 50 (2.8)

3 Problem

3.1 Statement

We shall now formally state the problem:

Given a database schema S and a set of ALQPs
W, generate a database instance that conforms
to S and satisfies all the cardinality constraints
(C1, C2, ..., Cm) generated from W.

3.2 Assumptions

The assumptions made in our work are:

• All the joins appearing in the constraints are pri-
mary key-foreign key joins.

• The dependency (due to joins) between relations
should be non-cyclic.

• Selection predicates include only non-key at-
tributes.

4 Architecture

Figure 2 provides an overview of the architecture of
the data generator. Its various components are:

• Parser: The purpose of parser is to take W as
input and give the set of cardinality constraints
as described in Section 2.2. Note that for now we
are not considering projection operator. There-
fore, all the constraints will be of the form:

|σP(Ri1 .// Rip)| = k (4.1)

• View Generator: This component takes the
database schema as input and creates a view Vi
corresponding to every relation Ri. Creation of
views help us to get rid of the join expressions in
the constraints, i.e., once the views are created,
each constraint can be re-written as a selection
predicate over a single view only. We shall see
this component in detail in Section 5.1.

• LP Formulator: This component uses the
views given by the view generator to re-write
the cardinality constraints given by the parser.
Further, an LP is created for each view. This
is done by converting each constraint (on that
view) to a corresponding equation. Once this
is done, the system of equations is passed on to
the LP solver. We shall discuss the details of
constructing equations in detail in Section 5.2.

4

• LP Solver: This component takes the system
of equations and gives one of the feasible solu-
tions4. We use the GNU Linear Programming
Kit (GLPK) [15] for solving the LP.

• Relations Generator: This component takes
the solution given by the LP solver and (i) makes
it consistent across the views, (ii) constructs
compressed relations from it, which is sufficient
to generate the entire relation. Section 5.3 dis-
cusses this component in detail.

• Tuple Generator: The compressed relations
that we obtain from the relations generator serve
as the seeds to the tuple generator. The tu-
ple generator has the capability of generating
a tuple(s) on demand for any relation Ri. The
detailed description of this component is men-
tioned in section 5.4.

Figure 2: Architecture

5 Details

5.1 View Generator

As discussed earlier, the purpose of this component is
to simplify the constraints such that we can replace all
the join expressions by a single view. For this we need
to construct a view Vi corresponding to each relation
Ri. A view Vi can be considered as a set of non-key
attributes that are present in either Ri or in any other
relation on which Ri depends. The dependencies be-
tween relation can be seen from the dependency graph.

Dependency Graph: In a dependency graph, we
create a node for every relation. A directed edge from
a node Ri to Rj is added, if Ri contains a foreign-key
referencing Rj .

Now, a relation Ri is said to be dependent on re-
lation Rj if there exists a path from Ri to Rj in the

dependency graph.

Let us see the following example: Consider a
database having following four relations:

Catalog sales(PK1, FKC , FKD, cs sales price)

Date dim(PK3, d qoy, d year)

Customer(PK2, FKCA)

Customer address(PK4, ca state)

Here, PK1, PK2, PK3, PK4 are the primary keys
of the respective relations. FKC references to
Customer, FKD references to Date dim and FKCA

references to Customer address. Therefore, the de-
pendency graph would be as shown in Figure 3.

Figure 3: Dependency Graph

After executing the View Generation Algorithm
(shown in Algorithm 1), the views thus obtained would
be:

Catalog sales′(ca state, d qoy, d year, cs sales price)

Date dim′(d qoy, d year)

Customer′(ca state)

Customer address′(ca state)

4The system of equations can have infinite solutions. The solution corresponding to the original database instance might differ
from the solution we get here. But, both the solutions would satisfy all the constraints.

5

Algorithm 1 View Generation Algorithm

Input: {Ri}i∈[n] . Set of relations R1,..,Rn

Output: {Vi}i∈[n] . Set of views V1,..,Vn
Functionalities Used:

• getFK(Ri) . Returns set of < attr, ref >
pairs corresponding to the FKs in Ri

• getNonKey(Ri) . Returns set of non-key
attributes in Ri

1: procedure getView(Ri,{Vi}i∈[n], {flagi}i∈[n])
2: if !(flagi) then
3: Vi ← getNonKey(Ri)
4: for < attr, ref > in getFK(Ri) do
5: Vi ← Vi ∪ getView(ref , {Vi}i∈[n],
{flagi}i∈[n])

6: end for
7: flagi ← true
8: end if
9: return Vi

10: end procedure
11: Init: Vi ← ∅, flagi ← false ∀i ∈ [n]
12: for i← 1 to n do
13: Vi ← getView(Ri, {Vi}i∈[n], {flagi}i∈[n])
14: end for

5.2 LP Formulator

The LP Formulator receives the set of constraints from
the parser and the set of views from the view gener-
ator. The first task it does is to re-write the con-
straints by replacing the join expressions with appro-
priate views. Say we have a constraint having join:
Ri ./ Rj . Since, we have assumed that all joins are of
primary key-foreign key type, one of these is a depen-
dent relation. Say Ri depends on Rj . In such a case,
we shall replace the expression Ri ./ Rj with Vi. Be-
cause of the way we constructed the views, it is easy
to see that we can apply the predicate that was there
on Ri ./ Rj to Vi. Likewise, all the join expressions
can be expressed in terms of a single view respectively.

So now we can solve for each view separately. For
each view Vi, we will find the set of constraints im-
posed on Vi. A constraint Cj on Vi will be of the
following form:

|σPj
(Vi)| = kj (5.1)

Now, let us assume we have a single view V having
a set of attributes A1, A2,...,An. We need to formu-
late an LP for the view V. Let the domain of an
attribute Ai be represented by Dom(Ai). We assume
that the domain of all the attributes are positive in-
tegers bounded by an integer D. For attributes with

non-integral domain, we can map the values to inte-
gers. This assumption is to simplify the analysis and
can be removed easily.

Say we are given a set of m constraints that V sat-
isfies. Each constraint Cj (1 ≤ j ≤ m) for simplicity
can be expressed as: < Pj , kj >, which means that
the number of tuples (rows) satisfying the condition
Pj is equal to kj .

For every tuple t ∈ Dom(A1) × Dom(A2) × ... ×
Dom(An), we create a variable xt representing the
number of copies of t in V. Now, for each of the m
constraints Cj (1 ≤ j ≤ m), we create a linear equa-
tion: ∑

t:Pj(t)=true

xt = kj

In addition, we also require that xt > 0 ∀t. Here, since
the number of variables in the LP is proportional to
the domain size, which can be huge, there are some
optimizations that can be done to reduce the size of
the LP. We will now discuss these optimizations.

5.2.1 Domain Decomposition

A set vi is created for each attribute Ai. Values in vi

are added according to the following: We iterate over
the constraints and if a constraint has

• Ai >= a or Ai < a, we add a in vi.

• Ai > a or Ai <= a, we add a+ 1 in vi.

• Ai = a, we add a and a+ 1 both in vi.

All the other constraints can be expressed as combi-
nations of the above. In addition, we also add 1 (min-
imum value in domain) in vi if not already present.
Let vi1, v

i
2, ..., v

i
li

represent the constants (in increasing

order) in the set vi. Now we can divide the domain of
an attribute Ai into a set of li intervals Ii : [viq, v

i
q+1)

(1 ≤ q < li) ∪ [vili ,). The semantics of the variables
can now be modified such that we introduce a variable
xt′ for each interval combination t′ ∈ I1×I2× ...×In,
representing the number of tuples lying in the interval
combination t′.

Therefore, now for each constraint Cj (1 ≤ j ≤ m),
the linear equation would be:∑

t′:Pj(t′)=true

xt′ = kj

Here as well we will have the additional constraint of
xt′ > 0 ∀t′. Example: Let us see the LP formula-
tion for relation Catalog sales having following con-
straints:

|CS| = 14401261

|σcs sales price>150(CS)| = 734606

6

|σcs sales price>150∧ca state=1(CS)| = 13806

These constraints can be converted into the corre-
sponding LP equations as follows:

x[1,151)[1,2)+x[1,151)[2,)+x[151,)[1,2)+x[151,)[2,) = 14401261
(5.2)

x[151,)[1,2) + x[151,)[2,) = 734606 (5.3)

x[151,)[1,2) = 13806 (5.4)

Therefore, we can see that by applying this opti-
mization, the number of variables are a function of the
size of the sets vis instead of the domain size. But,
even after applying this optimization, the number of
variables are exponential in the number of attributes.
To further reduce the LP’s complexity, we will next
look at another optimization that tries to decompose
the view into smaller views.

5.2.2 View Decomposition

In this optimization, we will decompose the view into
small components having fewer attributes. The con-
straints will then be applied to these small compo-
nents. Since, the number of attributes are fewer, the
size of the LP would also reduce.

The algorithm consists of the following steps:

• Constructing a graph from the constraints.

• Identifying the smaller components.

• Applying constraints on the smaller compo-
nents.

Graph Construction: Construct a graph G =
(V,E), where vertices corresponds to the attributes
in the view and we add an edge (Ai, Aj) in G if there
exists a constraint C in which attributes Ai and Aj

co-appear. We also add more edges to the graph in
order to make it chordal. A graph is chordal if each
cycle of length 4 or more has a chord; a chord is an
edge joining two non-adjacent nodes of a cycle. It is
easy to see that a chord joining vertices correspond-
ing to attributes Ai and Aj can always be added by
assuming that the original set of constraints had the
trivial constraint:

|σAi≥1∧Aj≥1| = |R|

We converted the graph to chordal because the chordal
graphs have a special property [16] that allows us to
construct the original view from the decomposed com-
ponents.

Identifying Smaller Components: These smaller

components are nothing but the maximal cliques ob-
tained from the graph. Let Aci represent the set of
attributes that clique ci contains.

Adding Constraints: Instead of applying con-
straints to the complete view, we shall now apply
the constraints to the cliques. For each clique, we will
add all the constraints that are within their scope. In
addition, since cliques can have common attributes as
well, we need to add more constraints to ensure con-
sistency across cliques. Consider two set of attributes
Aci and Acj such that Aci ∩ Acj 6= ∅. Further for
any p ∈ Dom(Aci ∩ Acj), let ExtAci

(p) denote the
set of assignment to Aci that is consistent with the
assignment p. We include the following equation for
each p ∈ Dom(Aci ∩ Acj) in the LP:∑

y∈ExtAci
(p)

xy =
∑

z∈ExtAcj
(p)

xz

5.3 Relations Generator

The LP solver gives the result for each clique ci in the
form of the set:

{(x, kix)}x∈Dom(Aci
)

where kix represents the number of tuples in the
view that have x value combination in the attributes
present in Aci . Lets call this as the clique-solution set.
We might not explicitly mention it always, but when
we say x ∈ Dom(Aci), we consider only those domain
values for which the corresponding kix is non-zero since
we do not need to store the domain values that do not
occur from our LP solution.

The relations generator does the following:

• First, it merges the clique-solution sets to obtain
the solution for the complete view.

• Then, it makes the views consistent.

• Finally, it constructs relations summaries.

5.3.1 Obtaining View Solution

The solution for the complete view is obtained by
merging the cliques (Algorithm 2). This is done
by first ordering the cliques using the Order Cliques
Procedure (Algorithm 3). Thereafter, we merge the
cliques-solution sets one by one. For merging, we first
sort the clique-solution sets based on their common at-
tributes and then use the Align Procedure (Algorithm
4) and Merge Procedure. The Align Procedure bucke-
tize the two clique-solution sets simultaneously so that
the bucket sizes can become the same in the two sets.

7

The Merge Procedure simply merges the solutions in
the two sets one-to-one.

Algorithm 2 Cliques Merging Algorithm

Input: {{(x, kix)}x∈Dom(Aci
)}i∈[l], {ci}i∈[l] . Set

of value combinations with cardinalities for each
clique and the set of cliques

Output: XV . Set of value combinations with
cardinalities for the view V
Functionalities Used:

• sort(X, S) .
Sort X on value combinations corresponding
to the attributes present in the set S

1: Init: V ′ ← ∅
2: C← OrderCliques({ci}i∈[l])
3: V ′ ← C[0]
4: XV′ ← {(t, kt)}t∈Dom(V′)

5: for j ← 1 to l − 1 do
6: XCj ← {(x, kx)}x∈Dom(C[j])
7: XCj

← sort(XCj
,V ′ ∩ C[j])

8: XV′ ← sort(XV′ ,V ′ ∩ C[j])
9: XV′ ,XCj

← Align(XV′ , XCj
)

10: V ′ ← V ′ ∪ C[j]
11: XV′ ← Merge(XV′ , XCj)
12: end for
13: XV ← XV′

5.3.2 Making Views Consistent

So, after using the Cliques Merging Algorithm, we ob-
tain the solutions for every view. A solution for a view
Vi is of the form:

{(x, kx)}x∈Dom(Vi)

These solutions might be inconsistent as these inde-
pendently solved views might not be able to give a
valid solution for the relations. The relations have
referential constraints that might get violated. In or-
der to ensure that the final relations have referential
integrity, we need to make the view solutions consis-
tent. The technique used for this induces some error
in satisfying the cardinality constraints, but in our ex-
periments we show that these errors are minor and can
be tolerated easily in realistic scenarios.

To make the views consistent, we use the View
Consistency Algorithm (Algorithm 6). We first run
a topological sort on the dependency graph (like the
one shown in Figure 3). Since we assumed that the
dependencies are non-cyclic, we are guaranteed to get
an ordering of views. Now, for each view Vi in the
order, if there exists a value combination xi−1 in the

solution set of Vi−1, for which if we project the value
combination corresponding to the V ′is attributes, this
projected solution (say x′i−1) does not exist in solution
set of Vi. If so, we add another entry (x′i−1, 1) in the
solution set of Vi.

Algorithm 3 Order Cliques Procedure

Input: {ci}i∈[l], G . Set of cliques and the graph G
Output: C . Ordered set of cliques

Functionalities Used:

• findAllPaths(P,Q) . Returns all paths
between two sets of vertices P and Q

• getAdjacentCliques(C) . Returns the set
of cliques that share a vertex with any clique
in the set of cliques C

1: Init: C← c1, visisted← c1, k ← 1
2: while k 6= l do
3: for cj in getAdjacentCliques(C) do
4: flag ← true
5: commonV ertices← visited ∩ cj
6: for path in findAllPaths(visited,cj) do
7: if path ∩ commonV ertices = ∅ then
8: flag ← false
9: break

10: end if
11: end for
12: if flag then
13: visited← visited ∪ cj
14: C[k]← cj
15: k ← k + 1
16: break
17: end if
18: end for
19: end while
20: return C

5.3.3 Constructing Relation Summary

Once we have the consistent views solutions, we next
need to get the relation summaries from it. For this,
we create a summarized relation set R̃i for each re-
lation Ri. This set consists of the attributes in Ri

except the primary key attribute. In addition, we
maintain the corresponding number of tuples for each
entry in R̃i (like we have it in view solutions). For the
attributes that are common between the summarized
relation set and the corresponding view solution set,
the value combinations and corresponding cardinali-
ties are directly borrowed. What remains are the for-
eign key attributes. For filling a foreign key attribute
fk, we first need to see the view corresponding to the

8

relation that the foreign key refers to. Say the view
thus obtained is Vj . Now, to fill the fk value in rth row

of R̃i, we see the value combination in the rth row of
view solution set of Vi. From this value combination,
we project the attributes of Vj . Say the combination
thus obtained is v. Now, we iterate over the solution
set of Vj and keep summing up all the cardinality en-
tries seen until we find v. This summed value gives us
the fk value corresponding to rth row of R̃i.

We thus obtain the set R̃i for each relation Ri.
These are the relation summaries that are sufficient
to generate tuples on demand.

Algorithm 4 Align Procedure

Input: {Xi : (xi, ki)}i∈m, {Yj : (yj , lj)}j∈n . Set of
value combinations with cardinalities for two sets
of size m and n respectively

Output: X,Y . Returns the two sets after alignment
Functionalities Used:

• split(Z, r, value) . Returns the set after
splitting its rth entry (zr, countr) into Zr :
(zr, value) and Zr+1 : (zr, countr − value)

1: Init: i← 0, j ← 0
2: while Xi exists do
3: if ki < lj then
4: split(Y, j, ki)
5: else
6: if ki > lj then
7: split(X, i, kj)
8: end if
9: end if

10: i← i+ 1
11: j ← j + 1
12: end while
13: return X, Y

Algorithm 5 Merge Procedure

Input: {Xi : (xi, ki)}, {Yi : (yi, ki)}i ∈ [n] . Set of
value combinations with cardinalities for two sets
of same sizes

Output: Z . Merged Set
1: Init: Z← ∅
2: for i← 1 to n do
3: zi ← xi ∪ yi
4: Zi ← (zi, ki)
5: end for
6: return Z

Algorithm 6 View Consistency Algorithm

Input: {Xi : {(x, kx)}x∈Dom(Vi)}i∈[n], Dependency
Graph G . Solution set for each view

Output: Y . Consistent solution set for each view
Functionalities Used:

• topologicalsort(G) .
Returns a view tranveral order by taking the
dependency graph as the input

• project(Xi,Vj) . Returns
the value combinations in Xi corresponding
to the attributes present in Vj

1: Init: Y1 ← X1

2: for i← 2 to n do
3: tempset← project(Xi−1, Vi) - Xi(x)
4: if tempset 6= ∅ then
5: for z in tempset do
6: Yi ← Yi ∪ (z, 1)
7: end for
8: end if
9: end for

10: return Y

5.4 Tuple Generator

The relation generator gives us the summaries for each
relation. An entry in this set is of the form (x, kx). We
consider the PK values to be the row numbers of the
relation. Therefore, to get the rth tuple of relation Ri,
the PK is chosen as r and the rest of the attributes
come from the summarized relation. We iterate over
the rows of R̃i and keep summing the cardinalities
until the summation becomes greater than r. Say the
summation crossed the value r in jth row of R̃i. So
the rest of the values of the rth tuple are precisely the
one that are present in the jth row of R̃i.

6 Projections

In this section, we have proposed an algorithm for han-
dling projections. The solution proposed needs to be
optimized in order to make it practical. Let us assume
that the constraints that include projections are of the
form:

|πA(Ri1 .// Rip)| = k

The joins can be removed by converting them to views
as we did before. So now we get constraints of the
form:

|πA(Vi)| = k (6.1)

Note that since filter predicate will only limit the do-
main of the attributes and can easily fit in our model,

9

we have omitted them for simplicity.
The algorithm has the following steps:

• Construct a graph G with nodes corresponding
to the attributes of the view. We add an edge
between nodes of the attributes (Ai, Aj) if there
exists a constraint C of the form (6.1) where
Ai, Aj ∈ A.

• Find all connected components in G.

• For each connected component, we solve an ILP
that is formulated according to the algorithm
that we present next.

6.1 ILP Formulation For Projections

Let the connected component have the attributes
A1, A2, .., AN and r be the number of rows that are
to be generated.

For now, we are considering domain for all attribute
to be {1, 2, ...D}. We can reduce the size of the do-
main of an attribute Ai to the number of distinct
values in Ai. Obtaining this value is not difficult. For
simplicity we will stick the domain of size D for now.

We first define some notations. Let R be the rela-
tion to be generated and Rj denotes the jth row in R.

Now, let us define an indicator variable yjk1,...,kN
as

yjk1,...,kN
=

{
1 Rj = (k1, ..., kN)

0 otherwise

signifying if jth row is (k1, ..., kN). Here (k1, ..., kN) ∈
D = Dom(A1) × Dom(A2)... × Dom(AN). Further,

let us define another indicator variable Ỹp1,...,pN
as

Ỹp1,...,pN
=

{
1

∑r
j=1 y

j
p1,...,pN

> 0

0 otherwise

Here, pi ∈ Dom(Ai)∪{∗}. Here ∗ indicates any value
from the domain.

Now, for a constraint C of the form as mentioned in
(6.1), let PC = {pi, ..., pN} where pi = ‘∗’, if Ai /∈ A.
The constraint can then be expressed as:∑

pi∀Ai∈A
ỸPC = k

The ILP can be formulated as:

max
∑
C
ỸPC

such that, ∀C, we add∑
pi∀Ai∈A

ỸPC = k (6.2)

and
0 ≤ ỸPC ≤ 1 (6.3)

Also, we add the following two set of equations ∀j ∈
[r]: ∑

ki,...,kn∈D
yjk1,...,kN

= 1 (6.4)

and
0 ≤ yjk1,...,kN

≤ 1 (6.5)

Finally we add the condition:

Ỹp1,...,pN
≤

r∑
j=1

yjp1,...,pN
(6.6)

7 Experiments

For experiments, we took an instance of TPC-DS
benchmark database of size 10 GB and a workload
of 14 TPC-DS queries that were modified to suit our
assumptions. The resultant workload had simple se-
lect - join queries that can be written easily in the
form as expressed in equation (4.1).

Since the algorithm does not depend on the con-
tent of the database, working on TPC-DS is reason-
able. Working on realistic databases would add no
extra complexity to the algorithm.

The workload of 14 queries was first executed on
the original TPC-DS database. We took the corre-
sponding ALQP for each of the queries. We gave these
14 ALQPs along with the database schema as the in-
put to the data generation algorithm. And we got a
corresponding synthetic database. We then again ex-
ecuted this workload, this time on synthetic database.
We found that the synthetic data satisfied the cardi-
nality constraints except for the small additive errors
that were present due to the additional tuples that
were added while executing the View Consistency Al-
gorithm. We report these errors in Table 1.

Further, we wanted to check the impact of the op-
timizations in reducing the number of variables. The
effect of domain decomposition is straightforward as
it reduced the effective domain sizes of each attribute
exponentially. To check the impact of View Decompo-
sition Algorithm, we ran our LP Formulator with and
without the optimization. Table 2 shows the number
of variables with and without the optimization for the
views where we found improvement.

10

Table 1. Cardinalities of Base Tables
Table Name Original

DB
Synthetic
DB

Item 102000 102006
Store 102 103
Catalog sales 14401261 14401263
Customer address 250000 250001
Customer demographics 1920800 1920802
Inventory 133110000 133110000
Warehouse 10 10
Customer 500000 500001
Promotion 500 501
Date dim 73049 73066
Store sales 28800991 28800992
Web sales 7197566 7197559

Table 2. Number of variables
View Name Original Optimized
Item 105 15
Store 9 6
Catalog sales 324 66
Date dim 864 49
Store sales 437400 538
Web sales 12 8

8 Conclusions and Future Work

We considered the problem of execution-time testing
for database systems. We developed a data genera-
tor that is capable of mimicking real customer scenar-
ios for a predefined workload. Our generation ensures
that the data stored on the disk is independent of the
size of the database. This feature enables us to sup-
port big data scenarios as well. Further, our gener-
ation algorithm is capable of supplying tuples on de-
mand. Due to this, we adhere to CODD’s philosophy
of creating a database with no static data.

Currently, our implementation supports only sim-
plified queries that contain only selection and join op-
erators. Our next target is to optimize our algorithm
for handling projections and implement it. Operators
like Group By and Union also depend on projection.
If we can handle projections efficiently, handling these
operators is also straightforward. Also, we propose
handling generic schemas and joins as a future work.

9 References

[1] R. S. Trivedi, I. Nilavalagan, and J. R. Har-
itsa, “CODD: COnstructing dataless databases,”

DBTest, 2012.

[2] http://www.tpc.org/tpch/.

[3] http://www.tpc.org/tpcds/.

[4] E. Shen and L. Antova, “Reversing statistics
for scalable test databases generation,” DBTest,
2013.

[5] N. Reddy and J. R. Haritsa, “Analyzing plan di-
agrams of database query optimizers,” VLDB,
2005.

[6] A. S. and J. R. Haritsa, “CODD: A dataless ap-
proach to big data testing,” VLDB Endow., 2015.

[7] N. Bruno and S. Chaudhuri, “Flexible database
generators,” VLDB, 2005.

[8] J. E. Hoag and C. W. Thompson, “A parallel
general-purpose synthetic data generator,” SIG-
MOD Rec., 2007.

[9] C. Binnig, D. Kossmann, E. Lo, and M. T.
Özsu, “QAGen: Generating query-aware test
databases,” SIGMOD, 2007.

[10] E. Lo, C. Binnig, D. Kossmann, M. Tamer Özsu,
and W.-K. Hon, “A framework for testing dbms
features,” The VLDB Journal, 2010.

[11] E. Lo, N. Cheng, and W.-K. Hon, “Generating
databases for query workloads,” VLDB Endow.,
2010.

[12] E. Lo, N. Cheng, W. W. K. Lin, W.-K. Hon, and
B. Choi, “Mybenchmark: generating databases
for query workloads,” The VLDB Journal, 2014.

[13] A. Arasu, R. Kaushik, and J. Li, “Data gener-
ation using declarative constraints,” SIGMOD,
2011.

[14] A. Arasu, R. Kaushik, and J. Li, “DataSynth:
Generating Synthetic Data using Declarative
Constraints,” PVLDB, 2011.

[15] https://www.gnu.org/software/glpk/.

[16] J. Pearl, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers Inc., 2014.

11

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
https://www.gnu.org/software/glpk/

	Introduction
	Compile-time Testing
	Execution-time Testing
	Applications
	Prior Work
	Roadmap

	Preliminaries
	Annotated Logical Query Plan (ALQP)
	Cardinality Constraints

	Problem
	Statement
	Assumptions

	Architecture
	Details
	View Generator
	LP Formulator
	Domain Decomposition
	View Decomposition

	Relations Generator
	Obtaining View Solution
	Making Views Consistent
	Constructing Relation Summary

	Tuple Generator

	Projections
	ILP Formulation For Projections

	Experiments
	Conclusions and Future Work
	References

