Exploring the Semantics of Plan Diagrams

A Thesis
Submitted for the Degree of
Master of Science (Engineering)

in the Faculty of Engineering

By
Bruhathi HS

Supercomputer Education and Research Centre
INDIAN INSTITUTE OF SCIENCE
BANGALORE - 560 012, INDIA

February 2012

Abstract

Database Management Systems (DBMS) are popular software packages for storing and man-
aging enterprise data. Modern DBMS typically store data in the form of tables, called relations,
and query the information using the Structured Query Language (SQL), which is declarative in
nature. The number of candidate strategies, called “plans”, by which the query can be processed,
is exponential in the number of relations. Database systems therefore incorporate a “query opti-
mizer” module, which explores this exponential space using dynamic programming techniques,
to find the best query execution strategy. Query optimizers are especially critical for efficiently
processing the complex queries that characterize current decision-support applications.

In recent times, a fresh perspective on the behavior of query optimizers has been introduced
through the concept of “plan diagrams”. A plan diagram is a color-coded pictorial enumeration
of the optimizer’s plan choices over a query parameter space. In this thesis, we investigate a
variety of issues related to the semantics of plan diagrams, covering the structural characteristics
of parametric-optimal plans, the diagram coloring paradigm and the underlying database model.
Our specific contributions are the following:

The join order of an execution plan tree of a query is the order in which its relations are
joined and finding the optimal join order is one of the most crucial tasks in query optimization,
with any savings in this front being extremely beneficial. In this thesis, as our first contribution,
we develop and discuss a structure-based reduction scheme as a potent alternative to the popular
cost-based reduction schemes that have been explored in the past. In this new reduction scheme,
we merge all plans that have identical join orders into a single entity, leaving us with a diagram
that has as many colors as there are unique join orders. We discuss join order caching as

an immediate application of structure-based reduction that provides the “best” plan at every

ABSTRACT il

point along with savings in query optimization time, when the join order cardinality is low or
moderate. While experimental results indicate that the resulting join order cardinalities are low
or moderate in many cases, we also encounter situations wherein the cardinality is high. For
the latter case, we present the SRE (Small Relation Elimination) heuristic, that removes small
sized relations in the join orders to bring down the join order cardinality. Even though the plan
optimality is no longer guaranteed now, experimental evaluation of the heuristic shows that the
cost-increase of any query point is within acceptable limits. Finally, we study the occurrence
of common join orders in the plan diagrams produced in two different engines. Experimental
results show that this intersection is surprisingly very sparse.

Structure-based reduction provides an overview of the differences between plans in a plan
diagram. As our second contribution, we investigate a deeper comparison between plans that
is based on their complete plan tree structures. Specifically, we semantically color the plan di-
agrams such that the differences in colors between any pair of plans, reflects the differences in
their structures. With this approach, the plan diagram intrinsically reflects the diversity in the
parametric-optimal space. The challenges here include designing a quantitative metric for as-
sessing plan differences, and developing transformation techniques for accurately representing
these differences in the three-dimensional color model. In particular, we adapt Kruskal’s Iter-
ative Steepest Descent multidimensional scaling technique, and test its representational quality
through coloring a rich diversity of plan diagrams on benchmark database environments over a
suite of commercial database engines. Our experimental results indicate that the vast majority
of plan distances can be represented with satisfactory visual accuracy. Given this, we found
that, in most of the plan diagrams, more than half the space is colored with shades of the same
color, implying that large areas of plan diagrams are occupied by plan trees that are structurally
similar.

As our last contribution, we reengineer the plan diagram notion to the flexibly structured
world of eXtensible Markup Language (XML), which is the de facto standard for information
transfer on the Internet. Since XML queries are founded on monadic second-order logic, as
opposed to the first order logic of relational DBMS, they possess significantly more expressive

power than their relational counterparts, in the process exacerbating the query optimization

ABSTRACT 1il

challenge. We analyze, through the production of XML plan diagrams, the behavior of a hybrid
commercial optimizer that optimizes both SQL and XML queries in a unified framework.
Our experiments cover a variety of XML database benchmarks, including TPoX, XBench and
TPCH_X (XML version of the TPC-H benchmark), using a set of complex XQuery templates.
The results indicate that XML plan diagrams often feature complicated plan geometries that
remain in the plan diagram even after reduction. In fact, for both TPoX and TPCH_X, an
extremely high cost-increase threshold is required in order to remove the complex plan spatial
layouts from the plan diagram. Also, we found that more than three-quarters of the plans were
structurally very similar, implying that the optimizer makes extremely fine grained choices

with small changes in input parameters.

All the three semantic features discussed above have been incorporated in the publicly-

available Picasso optimizer visualization tool.

Contents

Abstract
List of Figures
List of Tables

1 Introduction

1.1 Query Templates e

1.2 Optimizer Diagrams e

1.3 Structure-based Reduction of Plan Diagrams

1.4 Semantic Coloring of Plan Diagrams

1.5 XML Plan Diagrams

1.6 Contributions

1.7 Organization

2 Survey of Related

Research

2.1 Challenges of SQL Query Optimization

2.1.1 Strategies for Plan Selection
212 JoinOrders

2.1.3 Refinements of Plan Choices at Run-time

2.2 Industrial Strength SQL Optimizers

2.3 Multidimensional Scaling L L

24 XML Query Processing

Y

vii

0 O W N

CONTENTS v
3 Structure-based Reduction of Plan Diagrams 22
3.1 JoinOrders 23

3.2 Overview of Structure-based Reduction 23

3.3 Benefits and Applications of Structure-based Reduction 28

3.4 Experimental Evaluation of Structure-based Reduction 30
3.4.1 Heuristic-based Solution L L Lo 34

3.5 Inter Engine Join Orders, 38

4 Semantic Coloring of Plan Diagrams 40
4.1 Problem Definition L 41
42 PlanDistance Metricso 41

4.3 Multidimensional Scaling oo 45
4.3.1 Kruksal’s Iterative Steepest Descent 46

4.4 Modelling the Coloring Problem as an MDS Problem 46
4.4.1 Iterative Steepest Descent Adapted to the Coloring Problem 48

4.5 Experimental Results and Analysis 52
45.1 Results 52

452 Time Overheadsof ISD 58

4.6 Representational Quality of Iterative Steepest Descent 59

S XML Plan Diagrams 61
5.1 XML Statistics Collection Lo 62
5.2 XQuery Templates 63

5.3 XML Selectivity Computation 67
5.3.1 Relational Selectivities 67

5.3.2 XML Selectivities e 69

5.3.3 Computation Methods 70

5.3.4 Selectivity Estimation Errors 71

54 PlanParsing 71

5.5 Experimental Results o oo 73

CONTENTS vi

5.5.1 ExperimentalSetup 73

552 TPoX . . . 76

553 XBench 78

554 TPCHX e 87

5.5.5 Selectivity Computation Problems 93

5.6 Structure-based Reduction of XML Plan Diagrams 98

5.7 Semantic Coloring of XML Plan Diagrams 98

6 Conclusions 102
6.1 Future Work L 104
Bibliography 106
A SQL templates 113
B XQuery templates 118

C Sample TPCH_X documents 122

List of Figures

1.1
1.2
1.3
1.4

L.5
1.6

3.1
3.2
33
34
3.5
3.6
3.7

4.1
4.2
43
4.4
45
4.6
4.7

Sample SQL Query e 1
Sample SQL Query ExecutionPlan 2
Example SQL Query Template (QT8) 3
Optimizer Diagrams for QT8 (X-Axiss SUPPLIER S_ACCTBAL, Y-Axis: LINEITEM

LEXTENDEDPRICE) . . . « ¢ v v e vt e et e e e e e e e e e e e e 5
Example XQuery 11
Example XQuery ExecutionPlan oL 12
Example Plan Tree forJoinOrder 24
Example for Structure-based Reduction 25
Example Join Orders 27
Structure-based Reduction of a Cost-based Reduced diagram 30
Structure-based Reduction for Opt A 32
Structure-based Reduction forOptB 33
Example Join Orders of QT8 -Opt A 36
Plan Tree Template for Differencing 43
Plan tree Differences 44
Output Color Space e 47
Placementof Plans 49
Initial Configuration and Dissimilarity Matrix 50
Working of Kruskal’sISD 51
Distribution of Jaccard distances for Opt A (scaled to V3 . 53

Vil

CONTENTS viii
4.8 Distribution of Jaccard distances for Opt B (scaled to V3) o 54
4.9 MDS Colored Plan Diagrams forOpt A 55
4.10 MDS Colored Plan Diagrams forOptB 56
5.1 Tables for storing statistics information L. 63
5.2 Example XML node and Statistics L 64
5.3 Example XQuery Template 65
5.4 XQuery Template Constraintso 68
5.5 Predicate Selectivity Computation L. 70
5.6 ExamplePlanTree 72
5.7 Database Schema for TPCH.X 75
5.8 XQuery Template for TPoX (QTX_SEC) 76
5.9 Optimizer Diagrams for TPoX - QTX_SEC (x-Axiss CUSTACC /Cus-

tomer/Accounts/Account/Balance/WorkingBalance, Y-Axis: ORDER /FIXML/Order/OrdQty/@Cash) 77
5.10 Plantrees (QTX_SEC) e 80
5.11 Selectivity Logs (QTX_SEC) 81
5.12 Optimizer Diagrams for XBench — QTX19 (x-axis: ORDER /order/total, Y-Axis: /cus-

tomers/customer/address_id) 4 e 82
5.13 XQuery template for XBench (QTX19) 83
5.14 Plan Trees (QTX19) e 85
5.15 Selectivity Logs (QTX19) 86
5.16 Query Templates 88
5.17 Optimizer Diagrams for TPCH_X— QTXS (x-Axis: SUPPLIERS /Suppliers/Supplier/AcctBal,

Y-Axis: CUSTOMERS /Customers/Customer/AcctBal .« . « « « v o v e v o v v o e et e e o 89
5.18 Annotated Plan trees — Partial (QTXS) 92
5.19 Selectivity Logs (QTXS5) 94
5.20 XQuery template for TPCH X (QTX2) 95
5.21 Selectivity Log Errors 96
5.22 XQuery Templates for Selectivity error 97
5.23 Jaccard Distribution in XML Plan Diagrams 99

CONTENTS X

5.24 Semantically Colored XML Plan Diagrams 100
Al QT2 .. e 114
A2 QTS . o e 115
A3 QT8 . . e 116
Ad QT . . 117
B.1 XQuery Template for TPoX (QTX_SEC) 119
B.2 XQuery Template for XBench (QTX19) 120
B.3 XQuery Template for TPCH.X 121

C.1 Sample XML Documents for TPCH_X Schema 125

List of Tables

3.1
32
33
34
3.5

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Structure-based Reduction Statistics forOpt A 31
Structure-based Reduction Statistics forOptB 31
Tree-types found in Opt A 34
Tree-types foundinOptB 34
Inter Engine Join Order Statistics 38
Statistics for ISD With Weights forOpt A 57
Statistics for ISD With Weights forOptB 58
Time Overheadsof ISD 59
Statistics for SMACOF With Weights forOpt A 60
Statistics for SMACOF With Weights forOptB 60
Document Count for TPCH X 75
Join Order Statistics for XML plan diagrams 98
Statistics for XML-QTs with weights 101

Chapter 1

Introduction

Modern DBMS (Database Management Systems) typically model data in the form of tables,
called relations, and query the information using the Structured Query Languages (SQL). SQL
is declarative in nature and hence specifies what has to be done, and not how to do it. An
example SQL query is listed in Figure 1.1. This SQL query lists the mode of shipping for all
items whose quantity is less than or equal to 26, and forms part of an order of price 21394 or

less.

select 1_shipmode
from orders, lineitem
where o_orderkey = l_orderkey

and o_totalprice < 21934

and 1_quantity < 26

group by 1_shipmode

order by 1_shipmode

Figure 1.1: Sample SQL Query

The number of candidate strategies, called “plans” by which the query can be processed is
exponential in the number of relations. The quality of a plan is measured in terms of its “cost”,
usually an estimate of its expected response time. Since the difference in cost between the best

execution plan and a randomly chosen one can be very high, database systems incorporate a

CHAPTER 1. INTRODUCTION 2

SELECT STATEMENT‘

1

Merge Join

Clustered Index Scan Clustered Index Smn‘

ORDERS LINEITEM

Figure 1.2: Sample SQL Query Execution Plan

“query optimizer” module to explicitly and automatically find the best query execution strat-
egy. This objective is achieved by exhaustively exploring the exponential search space using
dynamic programming techniques.

The best query execution plan as chosen by an optimizer for the SQL query listed in Fig-
ure 1.1, is shown in Figure 1.2. The query execution plan for this query uses the Merge Join
algorithm to join the relations ORDERS and LINEITEM, and these relations are accessed through
Clustered Index Scan.

The importance of query optimizers has elevated in recent times due to the high degree
of complexity in queries, operating on large data stores, typically found in data warehousing

applications. This is evident in benchmarks like TPC-H [62].

1.1 Query Templates

The cost of a given query execution plan is a function of many parameters, including the
database structure and contents, the engine settings, the system configuration, etc. For a query
on a given database and system configuration, the optimizer’s plan choice is primarily a function

of the selectivities of the base relations participating in the query — that is, the estimated number

CHAPTER 1. INTRODUCTION 3

select o_year, sum(case when nation = " BRAZIL’ then volume else 0 end) / sum(volume)

from (select YEAR(o_orderdate) as o_year, 1 extendedprice * (1 - l.discount) as volume,
n2.n_name as nation

from part, supplier, lineitem, orders, customer, nation nl, nation n2, region

where p_partkey = l_partkey and s_suppkey = l_suppkey and 1_orderkey = o_orderkey
and o_custkey = c_custkey and c_nationkey = nl.n_nationkey and nl.n_regionkey =
r_regionkey and s_nationkey = n2.n_nationkey and r_name = ’AMERICA’ and p_type
="ECONOMY ANODIZED STEEL’ and
s_acctbal :varies and 1_extendedprice :varies

) as all_nations

group by o_year

order by o_year

Figure 1.3: Example SQL Query Template (QT8)

of rows of each relation relevant to producing the final result. Varying the selectivities of one or
more of the base relations produces the selectivity space w.r.t. these relations. A “parameterized
query template” is a query with additional predicates that produce queries across this selectivity
space.

For example, consider QTS, the parameterized 2-D query template shown in Figure 1.3,
based on Query 8 of the TPC-H benchmark. This query determines the market share of a nation
within a given region for a given part type when the s_acctbal of the SUPPLIER relation and
the |_extendedprice of the LINEITEM relation are within their respective parametrized values.
Here, selectivity variations on the SUPPLIER and LINEITEM relations are specified through the

s_acctbal :varies! and I_ extendedprice :varies predicates, respectively.

1.2 Optimizer Diagrams

In recent times, a fresh perspective on the behavior of query optimizers has been introduced
through the concept of “optimizer diagrams” [38, 10, 14]. Primary among them is the plan

diagram, which is a visual representation of the execution plan choices made by the optimizer

!To implement :varies, we use one-sided range predicates of the form Relation.attribute <= constant

CHAPTER 1. INTRODUCTION 4

over an input parameter space, whose dimensions may include database, query and system-
related features. In a nutshell, plan diagrams visually capture the geometries of the optimality
regions of the parametric optimal set of plans (POSP) [23]. Currently, we support parameter
spaces whose dimensions are comprised of relational selectivities.

The plan diagram for QT8 (produced with the Picasso [52] optimizer visualization tool on
a popular commercial database engine) is shown in Figure 1.4(a). In this picture?, each colored
region represents a specific plan, and a set of 128 different optimal plans (from the optimizer’s
perspective), P1 through P128, cover the selectivity space. The value associated with each plan
in the legend indicates the percentage area covered by that plan in the diagram — the biggest, P1,
for example, covers 18.59% of the region, whereas the smallest, P128, is chosen in only 0.001%
of the space. Just above the plan legend we display the Gini coefficient, which measures the
skew in the volumes of the regions covered by the various plans featuring in the plan and reduced
plan diagrams. It is a number between 0 and 1, where O corresponds to no skew (i.e. all plans
cover approximately the same area) and 1 corresponds to extreme skew (i.e. one plan covers
almost the entire space).

The mode of plan diagram production is the following [52]: Given a d-dimensional query
template and a plot resolution of 7, 7% queries that are uniformly distributed over the selected
selectivity space are generated. Then, for each of these query locations, based on the associated
selectivity values, a query with the appropriate constants is instantiated — the constants are
determined by carrying out an “inverse-transform™ of the statistical meta-data available from
the optimizer, typically in the form of histograms. This query is then submitted to the query
optimizer to be “explained”, that is, to have its optimal plan computed and returned.

After the plans corresponding to all the query points are obtained, a different color is associ-
ated with each unique plan, and each point is colored with its associated plan’s color. Then, the
rest of the diagram is filled in by painting the hyper-rectangle around each point with the same
color. For example, in a 2-D plan diagram with a uniform grid resolution of 10, there are 100
real query points, and around each such point a square of dimension 10x10 is painted with the

point’s associated plan color. Plans are colored based on a pre-defined coloring scheme, with

2The figures in this thesis should ideally be viewed from a color copy, as the grayscale version may not clearly
register the features.

CHAPTER 1. INTRODUCTION

LINETEML_EXTENDEDPRICE [0.0,100.048 300

.P1
-
B

P4
Bes
[Tes
B

. L]
B

P127
P128

(b) Cost Diagram

LINEITEML_EXTENDEDFRICE [2.0,100.0)@ 300

T T T T 1
40 80 80
SUPPLIER.S_ACCTBAL (0.0.100.0)@ 300

(a) Plan Diagram

Gini Coeff: 0.50

18.504
16.163
11.558
10.757
5.363
3.660
3517

]
Sk,
Army &
(c) Card Diagram

Gini Coeff: 0.50

B-:
| [
| B
B pa
[s
| B2

Peg

B res

Figure 1.4: Optimizer Diagrams for QT8 (x-Axis: SUPPLIER S_ACCTBAL, Y-Axis: LINEITEM L_EXTENDEDPRICE)

T T
20 40 B0 a0
SUPPLIER.S_ACCTBAL (0.0,100.0)@ 300

(d) Reduced Plan Diagram (\ = 20%)

52.534
46.799
0.333
0.178
0.054
0.028
0.026
0.008

CHAPTER 1. INTRODUCTION 6

the biggest sized plan (size is measured in terms of volume coverage in the n-D space) being
colored red, the second biggest being colored blue and so on.

In conjunction with the plan diagram, we have two additional diagrams, the Cost Diagram
and the Card Diagram. The cost diagram quantitatively depicts the optimizer’s (estimated)
query processing costs of the plans shown in the plan diagram, while the cardinality diagram
displays the optimizer’s (estimated) query result cardinalities. The cost and card diagrams for
the QT8 example are shown in Figures 1.4(b) and 1.4(c), respectively.

Plan diagrams are often found to have high plan cardinalities, with many plans occupying
complex and non-convex boundaries. This can be observed in the plan diagram of Figure 1.4(a),
which features a lot of complex plans with also a large skew in the areas of the regions covered
by the various plans. This skew is captured by the 0.90 value of the Gini coefficient.

Given this complexity in plan diagrams, it is natural to investigate the possibility of making
the plan diagrams simpler in terms of their plan cardinalities, that is, to obtain a reduced plan
diagram. Recently, a cost-based approach to the reduction problem has been explored [10],
where given a plan diagram and a cost-increase-threshold () specified by the user, the plan
diagram is recolored to a simpler picture, featuring only a subset of the original plans, such that
the cost of any recolored query point does not increase by more than A\ percent, relative to its
original cost. That is, some of the original plans are “completely swallowed” by their siblings,
leading to a reduced number of plans in the diagram, without materially affecting the query
processing quality. Experimental evaluation with this approach has shown that the complex
plan diagrams are often reduced to be “anorexic” (small absolute number of plans) with only a
marginal increase in query processing costs. For example, the QT8 plan diagram (Figure 1.4(a))
can be reduced with A =20% to the diagram shown in Figure 1.4(d), where only eight of the

original 128 plans are retained.

1.3 Structure-based Reduction of Plan Diagrams

As the first contribution in this thesis, we present and analyze a different plan diagram reduction

scheme that is based on the structure of plans present in the diagram, rather than cost. The struc-

CHAPTER 1. INTRODUCTION 7

ture of a plan is largely determined by its join order, which represents the sequence in which
its base relations are joined, and its determination is considered to be the most challenging task
in optimizing a query. So, in our structure-based reduction scheme, we coalesce all plans that
have identical join orders into a single entity. Therefore, after the reduction process, there are
as many colors in the diagram as the number of distinct join orders.

Structure-based reduction has applications in join order caching of plans when the join order
cardinality is low or moderate. Here, when a query located in the plan diagram is issued, the
query is not optimized from scratch. Instead, the join orders are used as plan skeletons, using
which complete plans are fleshed out and evaluated to find the best plan, thus saving consid-
erable computational effort. An attractive feature of the structure-based reduction scheme is
that it makes no assumptions on the underlying cost model, and hence is applicable to all kinds
of queries — unlike cost-based reduction where PCM (Plan Cost Monotonicity) is required to
hold [10]. Yet another advantage is that it functions solely through the standard “hint” mech-
anism provided by optimizers, and does not require advanced features such as Foreign Plan
Costing (FPC) [10] — this makes it applicable in generic database engines.

Experimental evaluation on plan diagrams obtained from two industrial-strength commer-
cial optimizers, one being top-down and the other a bottom-up optimizer, in benchmark envi-
ronments indicate that the number of distinct join orders is typically in the range of 10 to 60.
This is true even for dense plan diagrams that have hundreds of plans. Since fresh optimization
of a query typically takes considerably more time (by about a factor of 20) than constructing
its best plan from the given join order, it is evident that join order caching is desirable for plan
diagrams whose join order cardinality is low. Moreover, even the factor of 20 is conservative
due to including overheads such as query validation and re-writing — if join order caching were
to be organically internalized in the optimizers, the expansion time is likely to come down even
further, making it also viable for plan diagrams with medium-scale join order cardinalities.

Further, if faced with high join order cardinalities, we could take recourse to the SRE (Small
Relation Elimination) heuristic-based solution: We remove from the join orders obtained, the
relatively smaller sized relations, thereby obtaining a pruned set of partial join orders. This step

is based on the hypothesis that the number of join orders is large because of the variations in the

CHAPTER 1. INTRODUCTION 8

joins of these smaller relations and that the change in the join order with respect to them does
not have a huge impact on the join order cost. For each unique partial join order, we assign a
representative complete join order, chosen randomly from among the complete join orders that
are built from the partial join order. When a new query has to be optimized, we evaluate the
representative join orders corresponding to each unique partial join order and choose the one
yielding the least cost.

We evaluated the above heuristic experimentally on some sample complex queries, and
found that after applying the heuristic, the number of join orders in the reduced diagram came
down to around 20 in most cases, with the per-query cost increase less than 30% over most
of the diagram. Further, even for the remaining queries, the cost-increase was less than 100%,
generally considered to be the acceptable deviation from optimality, in the database community.
Thus, structure-based reduction provides a potent mechanism to implement join order caching
for complex queries, either directly or through the heuristic.

Finally, we study the number of common join orders present in the plan diagrams of the two
engines. Surprisingly, we found the intersection to be null in most cases. This can be because
of various reasons including different cost models, variations in the implementation of different

join algorithms and employment of different heuristics to prune the search space.

1.4 Semantic Coloring of Plan Diagrams

Structure-based reduction scheme provides a bird’s eye view of the differences found between
plans in a plan diagram. In order to determine how different any two specific plans are, in
terms of their join orders or more generally, their complete plan tree structures, we need to drill
down into the plans. This process is cumbersome when more than a handful of plans have to be
analyzed. Our second contribution in this thesis alleviates the problem by semantically coloring
plan diagrams as opposed to the current plan-agnostic coloring scheme, wherein the largest plan
(in terms of volume) is assigned red, the second largest is assigned blue, and so on.
Specifically, we color the plan diagrams such that the differences in color between any pair

of plans reflects the differences in their structures. For instance, if the biggest and second-

CHAPTER 1. INTRODUCTION 9

biggest plans are very similar, they would both be assigned close shades of the same color, say
red. With this new approach to coloring, the plan diagram itself provides a first-cut reflection
of the plan-tree differences without having to go through the details of every plan. To assign
differences to every pair of plans, we adopt the plan differencing strategy from [14, 52], where
quantification of plan differences is done using the Jaccard distance metric, making all plan
differences to be in the interval (0, 1]. Given this framework, the modelling of the problem is as

follows:

Problem Statement: Consider an undirected complete graph G(V, E') with m vertices, where
each vertex v; € V represents a POSP (Parametric Optimal Set of Plans) plan. A vertex v;
has an associated weight w,,, representing the fractional volume covered by the plan in the
plan diagram. Each edge e;; € E has an associated weight p;; representing the structural
distance between the plans at its vertices v; and v;. Also, each vertex pair (v;,v;) is
assigned a weight w;;. The objective now is to come up with an efficient algorithm that
assigns a unique color to all the vertices in V' such that, given any pair of vertices (v;, v;),
their color distance c;; is as close as possible to the weight p;; of the edge joining them.
Further, if a choice has to be made, vertex pairs that are assigned higher weights (w;;)
receive preferential treatment in obtaining a more accurate coloring for their distances.

That is, our aim is to minimize (as close to 0 as possible) the following objective function:

m—1 m
v;=1

A variety of assignments are possible for the weights w;;: For example, they can be

wij (i — ¢i)°
+1

Wy, + w,,, giving preference to plan pairs with larger total area; or 1, which treats all
. 1 . .
vertex pairs equally; or, ———, where small sized plans are preferentially colored
Wy, + Wy,
better.
We choose the RGB range as our color space, hence constraining the output space to a cube.

So, in order to utilize the output space completely, we scale all the plan-pair differences by

the length of the cube’s diagonal. It is important to note that an ideal solution which gives an

CHAPTER 1. INTRODUCTION 10

objective value of zero may not always exist, since scaling down distances to lower dimensions
is an inherently lossy procedure.

As our optimization strategy, we consider methods from the family of multidimensional
scaling (MDS) techniques. We first evaluate the metric SMACOF [7] (Scaling by Majorizing a
Complicated function) approach, but the output of this iterative algorithm is in R? and scaling
down the values into the color cube leads to material deterioration in the quality of coloring.
However, through a quick analysis we observe that the non-metric SD (Steepest Descent) algo-
rithm [29, 30], can be easily modified to accommodate the cube constraint and hence adapted
it to suit our requirements. A downside of the adaption is that the convergence rate guarantees
provided by classical SD may no longer hold, but our empirical experience is that even for plan
diagrams with hundreds of plans, convergence is achieved within a few minutes.

We test the representational quality of our SD-based technique by coloring a rich diversity
of plan diagrams produced from benchmark database environments. Our results indicate that
sufficiently low objective function values (< 0.1) were always obtained, with the vast majority
of the plan-pairs being colored well (ratio of color distances to their plan distances is within
30% of the ideal). This indicates that most of the plan diagram is represented with satisfactory
visual accuracy. Further, these results closely match those from the unconstrained SMACOF
algorithm with respect to the average case behavior.

When we analyzed the semantically colored diagrams, we found that typically more than
half the space is colored with shades of the same color, implying that large areas of plan dia-
grams are occupied by structurally similar plan trees. Also, we found that these similar plans

generally occupy interior regions, away from the axes.

1.5 XML Plan Diagrams

In recent years, data represented in the hierarchically-structured XML document format has
found its way into mainstream database technology. Querying of this XML data is largely done
through an XML query language called XQuery [66]. An example XQuery taken from the
DCMD (Data Centric Multiple Documents) workload of the XBench benchmark [51] is shown

CHAPTER 1. INTRODUCTION 11

XQUERY
for $a in db2-fn:xmlcolumn(“ORDER.ORDER”)/order
where $a/total <= 975
return
<Output>
{$a/@id}
{$a/order_date}
{$a/ship_type}
</Output>

Figure 1.5: Example XQuery

in the Figure 1.5. The XQuery has been modified to conform to the XQuery optimizer’s syntax.
This query lists the orders (order id, order date and ship date), with total amount larger than or
equal to a certain number (975.0).

The optimal plan for the XQuery of Figure 1.5 chosen by the XQuery optimizer is shown
in Figure 1.6. This plan accesses the ORDER relation using the XML index on the order _total
attribute through the XISCAN operator. It then uses the XSCAN operator to navigate the XML
fragments, evaluate predicates and to extract the document fragments to provide the required
set of XML elements in the result.

As a final contribution of this thesis, we re-engineer the plan diagram notion to the flexi-
bly structured world of eXtensible Markup Language (XML), which is the de facto standard
for information transfer on the Internet. Since XML queries are founded on monadic second-
order logic, as opposed to the first order logic of relational DBMS, they possess significantly
more expressive power than their relational counterparts, in the process exacerbating the query
optimization challenge. We analyze, through the production of XML optimizer diagrams, the
behavior of a XML query industrial-strength optimizer that optimizes XQuery [65], the W3C
recommended standard for querying XML data. The challenges involved in obtaining the XML
plan diagrams include identifying the validity constraints on XQuery templates and determin-
ing the granularity at which the statistics need to be collected (document level or node level) for
selectivity computation. After obtaining the XML plan diagrams, we conduct experiments that

cover a variety of XML database benchmarks, including TPoX [35], XBench [51] and TPCH_X

CHAPTER 1. INTRODUCTION 12

RETURHN ‘

ot

FILTERl
HLJOIN |

XSCAN |

R

RIDSCHN

KISCAN

-i-i-i

ORD_TOTAL ‘

ORDER

Figure 1.6: Example XQuery Execution Plan

(XML version of the TPC-H [62] benchmark), using a set of complex XQuery templates. The
results indicate that XML plan diagrams often feature complicated plan geometries that remain
in the plan diagram even after both cost and structure-based reductions. In fact, for both TPoX
and TPCH_X, a very high cost-increase threshold is required in order to remove the complex
plan geometries using cost-based reduction. With respect to structure-based reduction, how-
ever, we find that the number of final join orders is very sparse (in single digits), even when the
query contained more than 5 relations. This fact along with the observation that more than half
of the plans were structurally very similar to each other are reflected in the semantically colored

versions of the XML plan diagrams.

CHAPTER 1. INTRODUCTION 13

1.6 Contributions

In this thesis, we explore a variety of semantic features in plan diagrams. We first investigate
a structure-based reduction strategy as a complementary method to the cost based reduction
schemes. In structure-based reduction, all plans that have identical join orders are merged into a
single entity. As one of its potent applications, we propose join order caching for plan diagrams
that is very useful when the join order cardinality is low or moderate. Join order caching pro-
vides the “best” plan for every query location along with savings in optimization time. Among
the many pros of structure-based reduction in comparison to cost-based reduction strategies,
we make no assumptions on the underlying cost model, and hence can apply structure-based
reduction to all kinds of query templates. We present experimental results obtained by applying
structure-based reduction on a suite of plan diagrams. While the results indicate that the re-
sulting join order cardinalities are low or moderate in many cases, we also encounter situations
wherein the cardinality may be high. For the latter case, we present the SRE (Small Relation
Elimination) heuristic, that removes small sized relations in the join orders to bring down the
join order cardinalities. Even though the plan optimality is no longer guaranteed, we present
experimental results, which show that the cost-increase of any query point is within acceptable
limits. Finally, we study the occurrence of common join orders in the plan diagrams produced
in two different engines, for the same set of plan diagrams as used in structure-based reduction
experiments. We surprisingly found that there are no common join orders between the plan
diagrams in most cases.

While structure-based reduction provides a broad overview of the differences between plans
present in plan diagrams, for analysis of differences between specific plans, it is necessary to
manually look into the details of the various plans. As a second contribution in this thesis, we
facilitate such analysis of plans by developing techniques to semantically color plan diagrams
- to color plans in the plan diagrams such that the difference in color between any two plans
reflects the differences in their plan structures. We first adopt the plan tree differencing methods
from [52, 14], for assigning quantitative differences between any two plans. Then, we adapt
Kruskal’s Iterative Steepest Descent method, a multidimensional scaling (MDS) technique to

solve our coloring problem. Through extensive experimentation on a host of plan diagrams

CHAPTER 1. INTRODUCTION 14

we found that the adapted technique represents the plan tree differences in color space with
reasonable visual accuracy. Also, we found that large areas in the plan diagrams are colored
with similar shades, implying that plans occupying larger areas have structurally similar plan
trees.

As the last contribution of our thesis, we extend the plan diagram notion to the flexibly
structured world of XML. We discuss the complexities involved in the process, which include
determining the granularity at which the statistics have to be collected, and identifying the nec-
essary conditions for a valid XQuery template. We provide experimental results obtained over
a variety of benchmark environments. The benchmark environments include TPoX [35] and
XBench [51], which are native XML benchmarks, as well as TPCH_X, our XML equivalent of
the classical TPC-H [62] relational benchmark. With respect to results, we found that the XML
plan diagrams produced, often feature patterns that merit further investigation and that there
are considerable differences between the plan diagrams produced between equivalent relational
and XML database environments. Finally, through structure-based reduction of XML plan dia-
grams, we show that the join order cardinalities of plan diagrams are low, and by semantically
coloring these XML plan diagrams, we show that many plans are often structurally very similar.

All the above-mentioned semantic features have been incorporated into the publicly-

available Picasso optimizer visualization tool [52].

1.7 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides an overview of re-
lated research. Structure-based reduction is elaborated in Chapter 3, followed by a detailed
description of the techniques developed for semantic coloring of plan diagrams in Chapter 4.
Further, we discuss the methods and complexities involved in obtaining XML plan diagrams in
Chapter 5. Finally, we conclude in Chapter 6 with a discussion of promising avenues for further

investigation.

Chapter 2

Survey of Related Research

Over the past few decades, a lot of research has been done in the field of declarative SQL query
optimization. There are excellent surveys such as [9] and [20] which give a comprehensive
view of the progress achieved over the years and an interested reader can refer the same. For
a survey of work on query optimization related to optimizer diagrams, we refer the reader to
[21]. In this chapter, we first give an overview of the basic concepts of query optimization.
We then motivate our study of join orders by the importance of join order enumeration and
provide details about the recent research advances. Further, we provide a short description of
the available MDS techniques and their applicability to our semantic based coloring problem.
Finally, we elaborate on the challenges in optimizing XML queries and briefly describe the

XQuery optimizer we have worked with in our study.

2.1 Challenges of SQL Query Optimization

The job of the SQL query optimizer is to take parsed SQL as input and generate an efficient
execution plan. It is computationally very challenging to produce an efficient plan for a given
query, since the search space of possible plans can be of the order of {2(3") [44], where n is the
number of base relations in the given query.

There are some important considerations in the design of an optimizer, some of which are

elaborated below.

15

CHAPTER 2. SURVEY OF RELATED RESEARCH 16

2.1.1 Strategies for Plan Selection

There are different plan selection strategies including randomized algorithms and use of set of
heuristic rules. One of the important strategies which is widely incorporated in commercial
optimizers is the exhaustive enumeration of search space using a cost based approach. The
seminal paper by Selinger et al. [42] (System-R project) was one of the key contributors in cost
based query optimization. They considered only the search space of left deep trees, but the
general idea of their algorithm can be used to explore the space of other tree spaces (right-deep,
zig-zag and bushy) as well.

System-R’s cost based optimizer uses dynamic programming to efficiently find a good plan.
In this approach, optimal solutions to sub-problems are combined to form the optimal solution
of the main problem. This is the principle of optimality [54]. The dynamic programming
approach performs well for queries which do not have more than around a dozen base relations,

after which it becomes infeasible due to the exponential increase in the search space complexity.

2.1.2 Join Orders

As discussed previously, dynamic programming techniques are extensively used to efficiently
find a good plan. One of the most crucial tasks in this process is to find the optimal join order
and significant attention has been given to studies on join order enumeration in the past.

Ono and Lohman [37] have elaborated on the computational complexity of enumerating
join orders for a single select-project-join query block for a variety of join graphs. Further,
more recently in 2006, Moerkotte and Neumann [34] showed that traditional bottom-up join
enumeration algorithms are far worse than than the lower bound given by Ono and Lohman and
went on to describe a new bottom-up enumeration algorithm that is optimal (conforms to the
lower bound given by Ono and Lohman) over any join graph.

Thus, join order enumeration being very important, but computationally expensive, any
savings during optimization would be highly beneficial. So, if the number of join orders in any
plan diagram turns small, the join order templates can be fed as skeletons to the optimization
process, thus saving a lot of optimization cost.

To our knowledge no prior work has been done on join order analysis with respect to plan

CHAPTER 2. SURVEY OF RELATED RESEARCH 17

diagrams. However, the concept of plan reuse was used extensively in [17], even though not in
the plan diagram setting. Another closely related work is by Satyanarayana et al. [48], where
they re-use plans as in [17], but they characterize the plans in the form of join trees and join
order templates, gather statistics of the join trees and join order templates, and use them to

discover the optimal plan of a new query.

2.1.3 Refinements of Plan Choices at Run-time

Inaccurate estimates of various parameters, lead to poor plan choices by the cost based query
optimizer. When moderately accurate values of some of these parameters are available at run
time and if their values remain constant throughout the execution time, then certain strategies
have been proposed. One of them is to find the best execution plan for all possible values
of the parameters and lookup the best plan for the current parameter values at runtime. With
the help of structure-based reduction, we can find the best join order for all possible values
of the parameters, flesh out the join orders at runtime and find the best plan among them. If
the join order cardinalities of plan diagrams turn out to be low, this can reduce much more
optimization time as compared to costing hundreds of plans at run-time. So, structure-based
reduction provides an intermediate strategy between fresh optimization of a query and costing

all POSP (Parametric Optimal Set of Plans) plans.

2.2 Industrial Strength SQL Optimizers

In order to study the cost distribution of query plans in industrial strength SQL optimizers Waas
and Galindo [49] have devised various algorithms. From the observations made using these
algorithms, they found that only 1% of the plans in the entire search space of plans, have cost
within twice the optimum cost. Also, they found that for queries having more than 4-5 relations,
the distributions “correspond to Gamma-distributions with shape parameter close to 1”. On a
different note, Reddy and Haritsa [38] have studied the optimality space of industrial strength
optimizers using the “plan diagram’ notion. They observed that optimizers make extremely fine

grained choices with changes in the query plan chosen, with minute changes in selectivity. They

CHAPTER 2. SURVEY OF RELATED RESEARCH 18

also observed that optimal plans often have irregular boundaries and highly intricate patterns,
indicating strong non-linear cost models. In the follow up of this work [10], Harish et al.
investigated the plan reduction issue from the theoretical, statistical and empirical perspectives.
They explored a cost-based approach to the reduction problem where given a plan diagram and
a cost-increase-threshold (\) specified by the user, the plan diagram was recolored to a simpler
picture, featuring only a subset of the original plans, such that the cost of any recolored query
point does not increase by more than \ percent, relative to its original cost. In our work, we take
a different tack of reducing plan diagrams from a structure-based perspective. We coalesce all
plans that have the same join order into a single entity, and so after the reduction, there are as
many plans in the diagram as the number of unique join orders. If the join order cardinalities
turn out to be low, then join order caching is an immediate application. Among the many
benefits of structure-based reduction as opposed to the cost-based approach is that we always
provide the optimal plan at every query location and that it is applicable for all types of queries,

since we do not make any assumptions about the underlying cost model.

2.3 Multidimensional Scaling

Multidimensional Scaling (MDS) comprises a family of techniques and has been researched
extensively. MDS has been broadly classified into metric MDS and non-metric MDS [46]. The
basic distinction between the two is the level of their input data. If only the rank-order of the
input dissimilarities is considered informative, then non metric MDS has to be considered and if
the input dissimilarities are related to the output proximities by a specific continuous function,
then metric MDS techniques need to be employed. But it is important to note that Non-Metric
MDS techniques can work on higher level data as well.

Among the various techniques developed, one of the more popular techniques for Met-
ric Multidimensional techniques is the SMACOF [7] (Scaling by majorizing a complicated
function) algorithm which has guarantees on the rate of convergence. Also, one of the old-
est and well known techniques for non-metric MDS is the Steepest Descent approach by

Kruskal [29, 30]. There are various other techniques and many other features of MDS which

CHAPTER 2. SURVEY OF RELATED RESEARCH 19

have been thoroughly investigated in [7].
MDS has been used extensively for various purposes, primarily for visualization of data, but
from a database perspective, it is used for visualizing semantic differences in plan trees for the

first time.

2.4 XML Query Processing

XML has become the de facto standard for information interchange. With this being the case,
databases are now being largely used to store and query the XML documents. There are many

approaches to storing XML data

1. Shredding the XML documents to be stored in relational columns. This implies that the
user given XML query will have to be converted to its equivalent SQL and also the results

returned will be converted to their equivalent XML format if needed.

2. Store the XML as BLOB (Binary large object) or CLOB (Character large object) data
types in relational columns. With this approach, it is generally not feasible to have in-
dexes and very often, all documents may need to be processed in their entirety with either

XQuery or SQL, whichever the engine supports.
3. Develop specialized data management for XML, also known as native XML databases.

4. A hybrid approach where XML is stored natively along with relational data.

Regarding the querying of XML documents in databases, the desired characteristics of an
XML query language were outlined in [63]. The development of some XML query languages
are highly influenced by his criteria. Some of the important issues addressed in his proposal
include XML output of the query, independence of schema, schema exploitation if possible,
and optimized query operations.

XQuery [65] has been established as the W3C recommendation in 2007 for querying XML.
However, prior to the establishment of the W3C standard, there had been several studies propos-

ing query languages for XML, including XML-QL [13], Lorel [1], Quilt [8] and XQL [60].

CHAPTER 2. SURVEY OF RELATED RESEARCH 20

As given in [45], XQuery semantics are highly influenced by Quilt and XPath [64]. XQuery
uses XPath for path expressions and FLWOR structure for describing the whole query. Also, it
embodies many of the desired characteristics elaborated in [63].

There are several challenges in querying XML data. They include XML data being het-
erogeneous and hierarchical in nature as opposed to homogeneous relational data which has
flat schemas, NULL values in XML being indicated by the absence of certain elements, with
no need to be specified explicitly and the varying of XML schemas from document to doc-
ument, and sometimes within the same column. Also, XQuery, and in general XML query-
ing languages are founded on monadic second order logic, as opposed to the first order logic
of relational DBMS and hence have significantly more expressive power than their relational
counterparts. This adds to the challenges of optimizing XML queries. The presence of such
complexities enforces the need for the analysis of XML query optimizers, which motivates our
work to extend the plan diagram notion to the XML world.

The first cost-based XML optimizer was designed and implemented for the Lore system [31,
32]. The query language used in this system is Lorel which is an extension of OQL. They
developed new indexing schemes and database statistics which describe the shape of the data
graph. They also described plan enumeration strategies with numerous access methods using
logical and physical query plans and a cost model.

Following this, a lot of research has been done in XQuery optimization with the development
of several XML compliant database systems. [19], [22], [18], [45] and [16] provide surveys on
XML query languages and XML query processing. Also, an overview of XQuery optimization
techniques and its implementation is given in [5]. We now briefly describe the optimization
techniques and implementation details of the XQuery processing system in DB_XML, which is
our optimizer of interest. DB_XML has Native XML support along with relational data and so
now supports XQuery along with SQL. This hybrid characteristic naturally brings support for
SQL/XML language. They even have a hybrid optimizer where XQuery and SQL optimization
is done in a unified framework. Given this, XQuery optimization largely reuses the already in-
place relational optimization techniques. They use holistic algorithms and heuristics to process

complex path expression within a single operator. These algorithms were designed to reduce

CHAPTER 2. SURVEY OF RELATED RESEARCH 21

the search space without compromising on the quality of plans. They also use structural and
value indexes in a combined fashion during plan generation. To this effect, they have introduced
new operators such as XSCAN, XANDOR and XISCAN. An excellent in-detail description of the

cost based optimization done in DB_XML is given in [4].

Chapter 3

Structure-based Reduction of Plan

Diagrams

As highlighted in Chapter 1, Section 1.2, plan diagrams often feature non-convex and compli-
cated patterns along with high plan cardinalities. One of the approaches to simplify the plan
diagram is through a cost-based process, which was investigated in [10], where plans were
swallowed by sibling plans without increasing the cost of any individual query point in the plan
diagram by more than a user-specified threshold. In this chapter, we approach the plan simpli-
fication process through an alternative structure-based procedure, where all plans that have the
same join order are merged into a single entity. We adopt this merging procedure since deter-
mining the join order is one of the most crucial tasks of optimization and join order caching
is a potential application, which provides the “best” plan along with savings in optimization
time when the join order cardinality is low or moderate. We first elaborate on the structure-
based reduction process. Then, we discuss the benefits of structure-based reduction relative
to cost-based reduction along with the applications of structure-based reduction. Further, we
present experimental results obtained by applying structure-based reduction on a suite of plan
diagrams. While the results indicate that the resulting join order cardinalities are low or mod-
erate in many cases, we also encounter situations wherein the cardinality is high. For the latter
case, we present the SRE (Small Relation Elimination) heuristic, that removes small sized rela-

tions in the join orders to bring down the join order cardinality. Even though the plan optimality

22

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 23

is no longer guaranteed, we present experimental results, which show that the cost-increase of
any query point is within acceptable limits. Finally, we study the occurrence of common join

orders in the plan diagrams produced by different commercial engines.

3.1 Join Orders

We now provide the formal definition of a join order for a query execution plan.

DEFINITION 1 Join Order.
The join order of a query execution plan is the order in which the relations of the query are
joined, with each join being annotated by the join-type and the join predicate(s) applied at that
join.

The join-type can be any of the various joins possible, including Natural Join, Left Outer
Join, Right Outer Join and Full Outer Join.

Given a query execution plan tree, its join order is determined by an inorder traversal of the
tree. Consider, for example, the plan tree shown in Figure 3.1. The annotated join-order for this
plan obtained after its inorder traversal would be:

(CUSTOMERN (¢_custkey=o_custkey) ORDERS X1 orderkey=o_orderkey) LINEITEM

Here, CUSTOMER and ORDERS relations are first joined together using the join predicate
c_custkey = o_custkey, the result of which is joined with the relation LINEITEM using [_orderkey

= o_orderkey as the join predicate. Both the joins are Natural joins as indicated by the X symbol.

3.2 Opverview of Structure-based Reduction

It is well known that determining the optimal join order is the most computationally challenging
task during the query optimization process and that this decision has a very profound effect
on the quality of the plan chosen. So, in the structure-based reduction process, we merge all
plans with the same annotated join order into a single entity. By same join order, we mean
that the annotated join orders of the plans are the same. Thus, after the reduction process,
there would be as many colors in the plan diagram as the number of unique join-orders. If the

resulting diagram turns out to be anorexic, then structure-based reduction is a potent alternative

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 24

Figure 3.1: Example Plan Tree for Join Order

to cost-based reduction, but without the cost increase overheads that are inherent in cost-based
reduction techniques.

As an example, consider the plan diagram of Figure 3.2(a) consisting of 31 plans. A cost-
based reduction of this plan diagram at a cost increase threshold of 20% is shown in Fig-
ure 3.2(b). The number of plans has reduced to 14, but most of the geometries of the plans
in the plan diagram remain intact. But the structure-based reduction of the same plan diagram,
which is shown in Figure 3.2(c), brings down the number of plan skeletons to 9, and addition-

ally, the diagram is much “cleaner”, with the complicated plan boundaries being now removed.

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS

25

SUPPLIER.S_ACCTBAL [0.0,100.01@ 300

Giri Coeff:0.86
[
B
B

P4
M
Hles

L

24.392
20.256
11330
10.556
10,004
4611

LI

P25 0016

: | lPGO 0013

0 20

T
40 60

CUSTOMER C_ACGTEAL [0.0.100.0) 300

(a) Plan Diagram

100+
2 a0
2
g
2w
éu

40_
g
T
S 201
L)

u_

80 100

l P31 0.002

100

80+

80

40+

SUPPLER.S_ADCTEAL [0.0,100.0) 300

20-

T
L} 20 ® & 80
CUSTOMER.C_ACCTBAL [0.0.100.0K5 300

100

(b) Cost-based Reduction (\ = 20%)

Gini Coeff: 0.45

T.110
20.256
5.167
2457
0.353
0.333
0.179

0.088

20 40

60

B0

0.058

CUSTOMER.C_ACCTRAL |0.0,100.0)@ 200

(¢) Structure-based Reduction

Figure 3.2: Example for Structure-based Reduction

Gini Coeff: 0.80

lP1
lP2
lPS

P4

N

P8
L]
Wi

P24

28480
218%
11,330
10.556
10.082
3.652
L

0413

X lP23 0177

0.152

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 26

Some of the join orders found in this plan diagram are listed below. Their tree representa-
tions are shown in Figure 3.3.
J1 - (SUPPLIER M(s,nationkey:n,nationkey,s,suppkey:l,suppkey) ((((NATION

N(njegionkey:r,regionkey) REGION) N(n,nati(mkey:c,nationkey) CUSTOMER) I>4(c,custkey:o,custkey)

ORDERS) M(l,07"de7’keyzo,orderkey) LINEITEM))

2 - (REGION M(n,regionkey:1",7'egionlcey) (NATION M(s,nationkey:nJLationkey) (CUS'
TOMER l>4(c,custkey:o,custkey,c,nationkey:s,nationlcey) (SUPPLIER l><](s,suppkey:l,supplcey) (ORDERS

M(l,07"de7“key:o,orderkey) LINEITEM)))))

JI1 - ((((REGION N(n,regionkey:r,regionkey) (NATION N(s,nationkey:n,nati(mkey)

SUPPLIER)) M(s,suppkey:l,suppkey) LINEITEM) M(Lorderk:eyzo,orderkey) ORDERS)

X (c-custkey=o_custkey,c_nationkey=n_nationkey) CUS TOMER)

J25 - (((((NATION l>4(n,regionkey:r,regionkey) REGION) M(n,nationkey:CJmtionlcey)

CUSTOMER) M(c,custlcey:o,custkey) ORDERS) M(l,07"de7“key:o,orderkey) LINEITEM)

Ul (s-nationkey=n_nationkey,s_-suppkey=Il_suppkey) S UPPLIER)

Even though the join order cardinality of the plan diagram is just 9, it covers a spectrum of
disjoint join orders, consisting of left-deep (Figure 3.3(d) corresponding to J25), zig-zag, where
each join has at least one input to be a base relation, and the tree is neither left-deep nor right-
deep (J1 and J11 corresponding to Figures 3.3(a) and 3.3(c)) and right-deep trees (J2 shown
in Figure 3.3(b)). While no bushy trees were found in this particular case, they were found in
many other plan diagrams, some of which are discussed later. Also, all three tree-types that are
exhibited in the plan diagram are also present in the cost-based reduced diagram that has only

14 plans.

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS

27

SELECT STATEMENT =7= SELECT STATEMENT =7=

CUSTOMER

SUPPLIER | m
ORDERS LINEITEM

SELECT STATEMENT <7=

LINEITEM
ORDERS

CUSTOMER

(d) J25

Figure 3.3: Example Join Orders

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 28

3.3 Benefits and Applications of Structure-based Reduction

We now discuss the benefits of structure-based reduction as compared to cost-based reduction,

which makes it very useful.

e No assumptions about the underlying cost model are made, thus making it suitable for
all kinds of query templates. Cost-based reduction, on the other hand requires plan cost

monotonicity to hold.

e Works solely through the standard “hint” mechanism supported by most engines. Some
cost-based reduction schemes require advanced features like foreign plan costing (FPC)

for their functioning.

e If it is known that the database instance and the optimizer/engine have not changed since
the time of plan diagram generation, structure-based reduction when used for join order
caching, modulo the SRE heuristic (Section 3.4.1), provides the plan as would have been
chosen by the optimizer (“optimal plan”). However, cost-based reduction procedures
provide plans that are within a cost-increase threshold of the optimal plan. On the other
hand, if either the database instance or the engine has changed, structure-based reduction
provides consistent join orders (i.e., as was chosen previously by the optimizer), which
1s sometimes an important requirement in many industrial settings. Cost-based reduction

procedures, however, could suggest a new plan.

e When values of certain parameters cannot be predicted at compile time, but can be known
at run-time, join order caching can be used as part of a run-time plan refinement strategy

to provide better plan choices along with savings in optimization time.

Applications. As an immediate application of the structure-based reduction scheme, we discuss
join-order caching. Here, when a new query corresponding to a location in the plan diagram is
issued, we do not carry out a fresh optimization of the query. Instead, the join-orders are used as
“skeletons” that are fed to the optimization process to be fleshed out into complete plans, which
are in turn costed to find the best plan. This process of feeding of just the join-orders to the

optimization process is achieved through the “hinting” mechanism provided by most database

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 29

engines. Among the functionalities provided by the hinting mechanism, users are typically
allowed to specify access methods (such as Index Scan and Table Scan), join orders and join
operators (such as Hash-Join, Merge-Join and NestedLoop-Join). For our purposes we need to
specify only the join orders.

We have empirically found that fresh optimization of a query requires about a factor of 20
more time than fleshing out a complete plan from a given join-order. This observation implies
that join order caching is certainly beneficial for plan diagrams whose join-order cardinality
is low — around 10. For the plan diagram in Figure 3.2(a) that has 31 plans, the structure-
based reduced diagram, which is shown in Figure 3.2(c) has only 9 join orders. Join order
caching would be highly beneficial in this case. Further, the time required for fleshing out the
skeletons includes overheads such as unnecessary query re-writing and hint validation, which if
eliminated, by incorporating join-order caching into the optimizer, would reduce the time taken
even further. This makes join-order caching viable even for plan diagrams with moderately
high cardinalities - around 40. Finally, when faced with very high join-order cardinalities, we
propose a heuristic-based solution — SRE (Small Relation Elimination) — to reduce it to anorexic
levels, which is outlined later in the chapter.

One more interesting use case is when we fail to get anorexic diagrams using cost based
reduction schemes. Structural reduction can be applied on top of the cost based reduction,
giving us the desired results. The plan diagram of Figure 3.2(a), after cost-based reduction
yields 14 plans as shown in Figure 3.2(b) at A = 20%. Application of structure-based reduction
on top of this leaves us with just 5 join orders as shown in Figure 3.4 with the bonus of obtaining
a “clean” diagram.

Also, extrapolating from the above idea, this two-level reduction scheme may prove to be
helpful in cases where we prefer A to be less than 20%, generally required to get anorexia in
cost-based reduction techniques. In such scenarios, this two level application of reduction might
get us a low number of plans along with lesser cost-increase thresholds. As an example, consider
again the plan diagram of Figure 3.2(a). If we desire a A of 5%, the number of plans remaining
after cost-based reduction is 23. After applying structure-based reduction on this result, we get

7 join orders and the diagram looks very similar to Figure 3.2(c). Considering plan costing takes

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 30

100
80+

807 Gini Coeff: 0.41

IJ1 .359

40+

SUPPLEER.S_ACCTBAL [0.0,100.0)8 300

20+

i 2 « @ @
CUSTOMER.C, ACCTBAL [0.6-100.01g 500 Y

Figure 3.4: Structure-based Reduction of a Cost-based Reduced diagram

far less time than fleshing out skeletons, this strategy can be very useful when the ratio of join
orders remaining after structure-based reduction of the cost reduced diagram to the number of
plans remaining after only cost-based reduction is less than the ratio of time required for plan
costing to the time required fleshing out a join order. If join order caching is internalized in the
optimizers, as discussed earlier, the second ratio would increase, thus providing more room for

the strategy to be helpful.

3.4 Experimental Evaluation of Structure-based Reduction

In this section, we present results obtained by applying structure-based reduction on plan dia-
grams that are produced on two industrial-strength commercial optimizers. These optimizers
are anonymously referred to as Opt A and Opt B !, with Opt A being a top-down optimizer and
Opt B, a bottom-up one.

Our experimental setup consists of running the database engines and obtaining plan dia-

grams on an Intel Core 2 Duo machine having a clock speed of 2.10 GHz (T8100), with 4GB

'Note for review purposes only: The optimizers are Microsoft SQL Server 2008 and DB2 9.7.

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 31

QT | No. of | No. of No. of pruned
plans | join orders | join orders

2 80 28 20

8 128 52 16

9 114 32 21

Table 3.1: Structure-based Reduction Statistics for Opt A

QT | No. of | No. of No. of pruned
plans | join orders | join orders

2 15 10 5

8 40 29 11

9 67 54 34

Table 3.2: Structure-based Reduction Statistics for Opt B

RAM (3GB usable), running a copy of Windows 7 Professional (32 bit).

Our results and analysis are based on our experiments using parameterized versions of three
queries from the TPC-H benchmark [62]. These three queries - 2, 8 and 9 of the TPC-H bench-
mark, are referred to as Query Templates (QT) 2, 8 and 9, respectively and are provided in
Figures A.1, A.3 and A.4, respectively. The templates for these queries were chosen as they
yield a fairly large number of plans as compared to the rest of the queries in both the engines.
Also, the templates are very complex as they involve a large number of tables and exhibit nest-
ing in the SELECT, FROM and WHERE clauses.

In Tables 3.1 and 3.2, we have enumerated the number of unique join-orders in QT2, QT8
and QT9 for Opt A and Opt B, respectively. We see that there is a substantial decrease in
the number of entities in the plan diagram in most cases. The plan diagrams and the respective
structure-based reduced diagrams corresponding to the three templates are shown in Figures 3.5
and 3.6 for Opt A and Opt B, respectively.

One characteristic feature in all the cases is that the structure-based reduced diagram looks
“cleaner” than the plan diagram. This is quite evident in the structure-based reduced diagram
of QT8 - Opt A, shown in Figure 3.5(d), where the complicated spatial layouts of the plan

optimality regions near the axes are replaced with relatively smoother boundaries.

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS

32

FARTSUPP PS_SUPPLYCOST [2.0,100.0)0 300

LINEMEML_EXTENDEDPRICE [0.0.100.01& 300

FARTSUPP PS_SUPPLYCOST [0.0,100.0) 300

Gini Coeff. 0.78

B+
B~
B
P4
W s
e
L]
e

‘ lPTB

0 20

T
40 60 80

PART.P_RETALPRICE [0.0,100.0)8 300

4792
26.340
9.244
5830
5598
2174
L]
0.001

0.001

100
l P80 0.001

FARTSUPP PS_SUPPLYCOST [0.0,100 0} 300

Gini Coeff. 0.74

l J2 35324
l JiodaTe2
l J 10918

J4 154

l J§ 229

lJ14 1.969
LI

l Jeg 0.006

Jeg 0.003

r T T T T
0 20 40 80 80
PART.P_RETALPRICE [0.0,100.0} 300

100
l J1e - 0.001

(a) Plan Diagram for QT2

Gini Coeff: 0.50
. P11 18504
l P2 16163
l P3 11558
P4 10757
. P5 5363
. P& 3660
. PT 3517
L] L] L]
. P126 0.001
. . : : : : 127 0.001
] 20 40 80 8 100
SUPPLIER §_ACCTEAL (0.0,100.0)@ 300 P128 0.001
(c) Plan Diagram for QTS
Gini Coeff. 0.82
l Pl 35434
l P2 18433
l P3 BE2E
P4 7482
l PE 4730
l pE 233
(I |
l P12 0.001
. : : : ‘ ‘ P13 0.001
’ s&gmmsjnncmm [&1000}@?00 b l P114 0001

(e) Plan Diagram for QT9

(b) Structure-based Reduced Diagram
for QT2

100 H Gini Coeff: 0.72
2 B e
§ 8 A 20364
o
3 | ERE
% y s s
g ol e s
X a0 4488
E‘ 20 L] L]
: []
4 17 0001

lh

: l J118 0,001

100
l J124 0,001

(d) Structure-based Reduced Diagram
for QTS

T T T
0 20 40 60 80

SUPPLIER §_ACCTRAL [0.0.100.0/@ 500

Gini Coeff: 0.73

l JI 43476
l 2 281
l Ji 16484

B 602

l Jig 2600

Jio 2578

L]
| EE
BT 0001

10 lJ104 0.001

(f) Structure-based Reduced Diagram
for QT9

" 0

FARTSUPP PS_SUPPLYGOST [0.0,100.0) 3¢0

0.001

r T
0 20
SUPPLIER §_ACCTEAL [0.0,100.01 500

T
40 4] 80

Figure 3.5: Structure-based Reduction for Opt A

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS

33

[0.0.100.61D 300

PARTSUPP.PS_SUPPLYCOST

LMEITEM.L_EXTEMDEDFPRICE [5.0,100.0]§% 300

FARTSUPP.PS_SUPPLYCOST [2.0,100.0KD 300

100

80

60

40

20

20+

100+

Giri Coeff: 075
B oww
B o
B e

P 65T
Mes sz
Ules asm

L] LI]
PI3 0083

| lP14 0.023

r T T T T
0 20 40 60 &0
PART.P_RETAILFRICE [0.0.100.0% 200

(a) Plan Diagram for QT2

B l PIE 002

Gini Coeff. 0.88
l P1 22624
l P2 21200
l B3 11622
P4 6.009
l P5 4483
l Ps 4188

[|
P38 0.002

r T T T T
0 20 40 80 L1}
SUPPLIER.S ACCTBAL 10.0.100.0[% 300

(c) Plan Diagram for QTS

| lPGB 0.002

[T

100+ Gini Cosff; 0.70
& B w0
g lJ2 34,000
g
g s o
w_
8 lJ3 BEH
2
E J GgeT
3
1
4 B 1250
£
E 20- Ji0 0.250
T lJ11 0.250
0 l.nz 0.083
0 20 40 B0 B0 100
PART.P_RETALPRICE [0.0,100.0}@ 300 g3 008
(b) Structure-based Reduced Diagram
for QT2
1007 Gini Coeff; 0.84
% l.n 22624
80_
g lJ3 20442
5 B: 2
g o
£ J 7008
B
g JHo 5894
Z 40
E B 5T
_II
F
E 204 L L
: JB 0002

T T T
20 40 60 80
SUPPLIER.S_ACCTBAL 10.0.100.0K% 300

: lJ39 0.002
b lJ40 0.001

(d) Structure-based Reduced Diagram

Gini Coeff: 0.89
l Pl 24748
l P2 12447
l P8 10112
P4 8699
l P§ 8240
l PE 6382

L LI
Pes 0.001

T
0 20 40 -1 80

SUPFLIER S_ACCTBAL (0.0.100.0)@ 300

(e) Plan Diagram for QT9

- - lPGS 0.001

90 per oot

for QTS

100+ Gini Coeff: 0.87

2 lJ1 24,748

§ 80+ M 165%

g lJ2 12447
au_

] lJa 10112

g

I lJ'.' 8470

g

1

@ g8 650

t

E o LI I

- lez 0.004
o J65 0001

T T T T 1
0 20 4 80 80 100
SUPPLIER S_ACCTBAL 0.0.100.013500 l JEE 0001

(f) Structure-based Reduced Diagram
for QT9

Figure 3.6: Structure-based Reduction for Opt B

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS

34

QT | left-deep | right-deep | bushy | zig-zag
2 1 0 15 12
8 7 0 14 31
9 1 0 9 22

Table 3.3: Tree-types found in Opt A

QT | left-deep | right-deep | bushy | zig-zag
2 0 0 10 0

8 1 0 11 17

9 0 0 15 39

Table 3.4: Tree-types found in Opt B

After drilling down to the plan structures, we tabulate in Tables 3.3 and 3.4, the tree-types
found in the all three QTs for Opt A and Opt B, respectively. We notice that there are no right-
deep join orders present in any of the three templates for both the optimizers. The one left-deep
join order of QT2 - Opt A, corresponding to J14, occupies around 2% of the diagram space and
is found to be the purple horizontal patch near the X-axis in Figure 3.5(b), while those of QT9
- Opt A (J86) and QT8 - Opt B (J28), shown in Figures 3.5(f) and 3.6(d), respectively, occupy
less than 0.05% of the space and are not visible to the naked eye.

All experimental results presented here are on two dimensional query templates, but the

techniques remain applicable to higher dimensional templates too.

3.4.1 Heuristic-based Solution

We discussed previously that structure-based reduction has useful applications to join order
caching. However, when the join order cardinalities of plan diagrams turn out to be very high, it
is not beneficial to directly use the structure-based reduction procedure. To overcome this draw-
back, we discuss a heuristic-based solution — SRE (Small Relation Elimination) — to structure-
based reduction that can be applied when the join order cardinality is substantially high, in order
to make join order caching feasible.

Analysis on the join-orders present in the plan diagrams showed that, in cases where the

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 35

number of join-orders were high, there existed many join orders which differed only in the join
of smaller relations. So, based on the hypothesis that large number of join orders are because
of the variations in the joins of smaller relations and that the change in the join order with
respect to them does not have a huge impact on the join order quality, we propose the following
heuristic-based solution as a recourse when high join-order cardinality is encountered. From
the join orders initially obtained from the plans, we remove the relatively smaller sized
relations, thereby obtaining a pruned set of partial join-orders. Then, for each unique partial
join order, we assign a representative complete join order, chosen randomly from among the
complete join orders that are built from the partial join orders. As an example, let us look the
plan diagram of QT8 - Opt A, shown in Figure 3.5(c), which has 52 join orders. Consider the
set of join orders shown below — J27, J69, J116 — that are taken from the plan diagram. Their
join predicates are dropped for ease of presentation and their tree-representations are shown in

Figures 3.7(a), 3.7(b) and 3.7(c), respectively.

J27 - (PART X ((SUPPLIER X NATION) X ((((LINEITEM X ORDERS) X CUSTOMER) X

NATION) X REGION)))

J69 - (PART X ((SUPPLIER X NATION) X (REGION X (NATION X ((LINEITEM X ORDERS)

X CUSTOMER)))))

J116 - (PART X ((SUPPLIER X NATION) X (REGION X (((LINEITEM X ORDERS) X

CUSTOMER) X NATION))))

After removing the relations NATION and REGION from all three join orders we get -

Pruned Join Order - (PARTS X (SUPPLIER X ((LINEITEM X ORDERS) X CUSTOMER)))

This is the partial join order to which any of the three complete join orders can be assigned as

the representative join order. Figure 3.7(d) shows the structure of the pruned join order.

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 36

sevccr smareuen -

o
LINEITEM ORDERS |

(b) J69

SUPPLIER

(LINEITEM) (ORDERS_)

(c) J116 (d) Pruned Join Order

Figure 3.7: Example Join Orders of QTS - Opt A

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 37

Now, when a query located in the plan diagram has to be optimized, we evaluate the repre-
sentative join orders corresponding to each unique partial join order and choose the one yielding
the least cost.

Experimental evaluation of this heuristic using the experimental setup described previously
did yield favourable results. The number of pruned join orders remaining in the plan diagrams
of QT2, QT8 and QT9, after removing the smaller relations, are shown in the fourth columns of
Tables 3.1 and 3.2 for Opt A and Opt B, respectively. It can be seen that the number of pruned
join orders has come down to around 20 in most cases. It is important to note that, even after
removal of the smaller relations, there are around 4-5 relations left in each of the queries and
hence we still have hundreds of potential join orders in our search space. Also, it was sufficient
to remove only 2 relations in most cases to get reduced join order cardinalities. Finally, the
heuristic was evaluated by applying it to every query location in the plan diagram. We observed
that the per-query cost increase was less than 30% for over 90% of the query locations in the
plan diagram. Even for the remaining the 10% of query locations, the cost-increase was less
than 100%, which is generally considered to be the highest acceptable cost-increase threshold.
Currently, the evaluation of the heuristic was carried out only for QT8 and QT9 with Opt A.
QT2 was not considered because it involves nesting in the Where clause of the query template
and there is no readily available mechanism in Opt A to force join orders for such queries.

Also, join-order reduction followed by SRE and cost-based reduction followed by join-order
reduction might seem comparable at first sight, but are two very different ways in which plan

diagrams can be reduced. In particular,:

1. The time taken by cost-based reduction is directly proportional to the number of query
points in the plan diagram, whereas for structure-based reduction it is proportional to the
number of plans in the plan diagram. This makes SRE computationally less expensive

than cost-based reduction followed by join order reduction.

2. Cost-based reduction strategies require the user to provide a cost increase threshold A,
and the recommended)\ in order to obtain anorexic number of plans is around 20%.
We have experimentally verified that the effective cost increase percentage through SRE

is around 20%-30%. Thus, SRE is not materially worse than cost-based reduction in

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 38

QT | AN B | Apruned N B_pruned
2 0 1
8 0 0
9 0 0

Table 3.5: Inter Engine Join Order Statistics

practice. However, SRE provides no guarantee on the maximum cost-increase of any

point.

3. Also, if database engines provide mechanisms to “hint” only the partial join orders that are
gotten through SRE, then it is possible to get the optimizer’s optimal choice, while there
are cost increases that are always associated with the cost-based reduction algorithms for

the replaced set of points.

Equipped with the above results, we conclude that structure-based reduction scheme can be
fruitfully employed for join-order caching, either directly, or through the application of the SRE

heuristic.

3.5 Inter Engine Join Orders

In Section 3.4, we looked at the structure-based reduction process by enumerating the unique
join orders found in individual plan diagrams. We now move on to exploring the common join
orders between the two optimizers, Opt A and Opt B for the same three templates, QT2, QT8
and QT9.

In Table 3.5 we have listed down the inter engine join order statistics for QT2, QT8 and
QT9. The second column corresponds to number of common complete join orders, and the
third corresponds to common pruned join orders (join orders with smaller relations removed).
The results as we can see, are quite surprising with no intersection at all in most cases. Even
among the set of pruned join orders, with smaller relations being removed, the intersection still
remains 0 for QT8 and QT9 and is very sparse (1) for QT2.

This disjoint behavior can be because of various reasons including different cost models,

CHAPTER 3. STRUCTURE-BASED REDUCTION OF PLAN DIAGRAMS 39

variations in the implementations of different join algorithms and difference in the methods of
storing and using statistics. Further investigations of this puzzling behavior comprises interest-

ing future work.

Chapter 4

Semantic Coloring of Plan Diagrams

With the ever increasing complexity of SQL queries, there is an increase in the plan cardinalities
and intricacies of plan boundaries in plan diagrams, the details of which were discussed in Chap-
ter 1. So, analysis of the plan diagrams is certainly not easy. In the previous chapter, through
structure-based, we broadly looked into the differences found between plans. Structure-based
reduction provides a broad overview on the kinds of plans present, but in case we require to
analyze structural differences between many plans, we still need to go through the cumbersome
process of comparing plans manually. In this chapter, we alleviate this problem, by semantically
coloring the plan diagrams. Specifically, we color the plan diagrams such that the differences
in colors between any pair of plans, reflects the differences in their structure.

We begin with formally defining the semantic plan diagram coloring problem and then go
on to describe the plan tree differencing metric adopted from [14, 52] to capture the plan tree
differences quantitatively. We then develop a technique to achieve semantic coloring of plan
diagrams. Specifically, we adapt Kruskal’s Iterative Steepest Descent method, which is a mul-
tidimensional scaling (MDS) technique. Finally, we discuss the experimental results obtained
by employing the adapted technique to color a suite of plan diagrams. We also provide analysis
on the quality of coloring obtained by the proposed technique and the kind of plans present in

the plan diagrams.

40

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 41

4.1 Problem Definition

The formal definition of the problem, which was provided in Chapter 1, is reiterated here.

Problem Statement: Consider an undirected complete graph G(V, E') with m vertices, where
each vertex v; € V represents a POSP (Parametric Optimal Set of Plans) plan. A vertex v;
has an associated weight w,,, representing the fractional volume covered by the plan in the
plan diagram. Each edge e;; € E has an associated weight p;; representing the structural
distance between the plans at its vertices v; and v;. Also, each vertex pair (v;,v;) is
assigned a weight w;;. The objective now is to come up with an efficient algorithm that
assigns a unique color to all the vertices in V' such that, given any pair of vertices (v;, v;),
their color distance c;; is as close as possible to the weight p;; of the edge joining them.
Further, if a choice has to be made, vertex pairs that are assigned higher weights (w;;)
receive preferential treatment in obtaining a more accurate coloring for their distances.
That is, our aim is to minimize (i.e. as close to 0 as possible) the following objective
function:

m

i (pij — cij)”

m—1
v;=1

A variety of assignments are possible for the weights w;;: For example, they can be

w
vj=v;+1

Wy, + w,,, giving preference to plan pairs with larger total area; or 1, which treats all
1
vertex pairs equally; or, ————, where small sized plans are preferentially colored
w

v Wy

better.

4.2 Plan Distance Metrics

To calculate plan tree differences, we employed the plan tree differencing strategy from [14, 52],
the details of which are revisited below.

Let the operator trees corresponding to a pair of plans p; and p; be denoted by 7; and T3,
respectively. Our comparison strategy is based on identifying and mapping similar operator

nodes in the two trees. In the following description, the term branch is used to refer to any

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 42

directed chain of unary-input nodes between leaf and a binary node, or between a pair of binary-
input nodes, in these trees. Branches are directed from the lower node to the higher node,

modelling the direction of data propagation. The matching proceeds as follows:

1. First, all the leaf nodes (relations) and all the binary-input nodes (typically join nodes)

are identified for 7; and 7j.

2. A leaf of T; is matched with a leaf of 7} if and only if they both have the same relation
name. In the situation that there are multiple matches available (that is, if the same re-
lation name appears in multiple leaves), an edit-distance computation is made between
the branches of all pairs of matching leaves between 7; and T;. The assignments are then

made in increasing order of edit-distances.

3. A binary node of 7; is matched with a binary node of 7} if the set of base relations that
are processed is the same. If the node operator names and the left and right inputs are
identical (in terms of base relations), the nodes are made white. However, if the node
operator names are different, or if the left and right input relation subsets are different,

then the nodes are colored.

4. A minimal edit-distance computation is made between the branches arising out of each
pair of matched nodes, and the nodes that have to be added or deleted, if any, in order
to make the branches identical, are colored. Unmodified nodes, on the other hand, are

matched with their counterparts in the sibling tree and made white.

5. Finally, each pair of matched nodes is assigned the same unique number in both trees.
For example, the number 15 is assigned to the final join node, representing the composite

relation formed by the join of all the base relations, in each tree.

Plan Differencing Metric. We now describe the procedure to quantify plan-tree differences.
Our formulation uses |7;| and |7}| to represent the number of nodes in plan-trees 7; and 7},
respectively, and |7; N T}| to denote the number of matching nodes between the trees. The

white nodes depict matching nodes, whereas the colored nodes represent distinct nodes. For

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 43

l HSJOIN(1)
TBSCAN(L) | HSJOIN(2)
TBSCAN(2) |H5JOIN(3]
(3)

TBSCAN

HSIOIN(4)
1 b _|\

lC } TBSCF\N(‘-]—] HSJOIN(S]
O
TBSCAN[:S] TBSCAN

¥
OO

Figure 4.1: Plan Tree Template for Differencing

our matching purposes, we do not consider the leaf nodes (relations) in the intersection, since
all the plan trees in a given plan diagram have the same set of base relations as their leafs.
Now, p is measured as the classical Jaccard Distance [47] between the trees of the two plans,

and is computed as

e
T3 U T

For example, consider the plan tree template in Figure 4.1. We construct 5 plan trees out of

p(T,T)) =1~ 4.2.1)

this such that, in the ith tree, the nodes labelled HSJOIN(i) and TBSCAN(i) are re-labelled as
NLJOIN and INDEXSCAN, respectively. Other nodes labelled with HSJOIN(j) and TBSCAN(j),
where j # i are re-labelled to be HSJOIN and TBSCAN, respectively. With this setting, we can
see that between each pair of trees constructed, the value of pis 1 — 1—75 = 0.53.

Consider the /st (Figure 4.2(a)) and 4th (Figure 4.2(b)) tree instances of the template tree.
The colored nodes indicate the differences between the two trees, while white nodes indicate

similarity. The leaves of the tree, which are the relations, are not taken into consideration

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 44

l NLJOIN
INDEX SCAN | HSJOIN I

TBSCAN HSJOIN

'\m{

(C) TBSCAN HSJOIN

é TBSCAN TBSCAN

1 0
)¢

(a) Ist tree instance

TBSCAN HSIOIN

i) s | [son
é) TBSCAN NLIOIN |

(C)INDEKSCAN HSJOIN

(ﬁ TBSCAN TBSCAN

3 3
) C)

(b) 4th tree instance

Figure 4.2: Plan tree Differences

while determining differences since they would be present in all plan trees of a plan diagram.
So, |T;NT;| = 7and |T; UT;| = 15. Hence, the value of p for these two trees would be

7
1—— =0.53.
15

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 45

Using this method we calculated the plan distances between every two plans, resulting in a
matrix of dissimilarities. Note that the p values are normalized between 0 and 1, with values
close to O indicating that all the plans are structurally very similar to each other, and values
close to 1 indicating that the plans are extremely dissimilar. Also, the metric is symmetric, with

p(1;, T}) being equal to p(T;, T;).

We now go on to describe the techniques employed to convert the plan dissimilarities to

distances in color space.

4.3 Multidimensional Scaling

As our optimization strategy, we considered methods from the family of multidimensional scal-

ing (MDS) techniques. As described in [7],

MDS: “Multidimensional scaling (MDS) is a method that represents measurements of sim-
ilarity (or dissimilarity) among pairs of objects as distances between points of a low-

dimensional multidimensional space”.

The classifications of MDS are provided in [46, 56]. Depending on the level of the input
data, different techniques of MDS are recommended in [7]. It is given that if only the rank-order
of the dissimilarities (plan tree differences) is considered informative, then non metric MDS has
to be considered and if the dissimilarities are related to the proximities (color distances) by a
specific continuous function, then metric MDS techniques need to be employed. Since for
our input data (plan tree differences), the dissimilarities are related to the proximities, metric
multidimensional scaling is the technique suitable for our purposes.

One of the metric MDS methods discussed in [7] for computing solutions is an iterative
algorithm based on Stress Majorization called SMACOF (Scaling by majorizing a complicated
function). However, due to reasons elaborated later in this chapter, we could not successfully
employ this technique even though it has guarantees on the rate of convergence. Instead, we
adapt a non-metric MDS technique, which is Kruskal’s Iterative Steepest Descent [29, 30] (ISD)

approach to achieve our goal. The ISD approach is outlined below.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 46

4.3.1 Kruksal’s Iterative Steepest Descent

Iterative Steepest Descent: Given a function f for which the minima needs to be determined,
we initially assign a random value to kick start the iterative process. In any iteration, we
move along the direction of the negative gradient by a chosen step size h. We continue
this iterative process till the convergence criteria is met. Usually, the test is to check
whether the change in the objective value and/or the value assigned, is more than a small

value e.

Choosing the step size (h) carefully is important to monotonically decrease the objective
function in every iteration and also for the algorithm to converge quickly. Also, starting at a bad
random value might end up in a local minima which is nowhere close to the global minima. To
reduce the possibility of this happening, it is recommended in [30] to run the method on a given
input with a variety of random positions. We have adopted the recommendation of optimizing

with many random inputs and have also carefully chosen h as elaborated in the next section.

4.4 Modelling the Coloring Problem as an MDS Problem

One of the first design considerations before employing MDS would be the number of dimen-
sions in the output space. Since our problem, as defined in Section 4.1 is to convert the dissimi-
larities into equivalent distances in color, we have the color space as our output. This being the
case, the RGB (Red, Green and Blue), and the CMYK (Cyan, Magenta, Yellow, Key - Black)
model are among the candidate choices for the output color space. If we choose the CMYK
model, when the percentage of the Key (Black) color is 100%, no change in any color by any
amount will change the resultant color. This will make a part of the output space redundant and
the colors of the vertices placed in that area by the MDS program will not reflect the dissimilar-
ities between them. So, to prevent such situations, we choose the RGB model which makes our

output space three dimensional. Thus, we have the mapping

g:D— ([0,1]*)"

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 47

G i
S/
c Z
) .
4
A‘. :

Figure 4.3: Output Color Space

where g represents the scaling function, D stands for the set of all symmetric matrices of the
type [0 — 1]™" (i.e., the set of all dissimilarity matrices), one of which is given to us as input,
n represents the number of vertices or equivalently, plans in the plan diagram and the three
co-ordinates of the [0, 1] space represent the colors Red, Green and Blue, respectively.

The next design issue is the variant of MDS to use - metric or non-metric, and along with
it, the specific technique to be employed. As already mentioned in Section 4.3, we choose a
non-metric MDS technique, the ISD approach, as opposed to the popular SMACOF strategy,
the reasons for which are elaborated as follows —

We know that all input dissimilarity values are in the range (0, 1] and that each of the color
values (Red, Green, Blue) are represented in the range [0, 1]. The latter part necessitates every
point in the output of our MDS program to lie in the [0, 1]* range, thus making the output space
into an unit cube as shown in the Figure 4.3. But the output of the SMACOF algorithm is
in R®. Even after we translate the output, so that most points are accommodated inside the
cube, a large number points still remain outside. Also, if we scale down the values into the
cube, it leads to deterioration in the quality of coloring. However, the non-metric ISD (Steepest
Descent) algorithm [29, 30], can be easily modified to accommodate the cube constraint. A
downside of the adaption is that the convergence rate guarantees provided by classical ISD may
no longer hold, but our empirical experience is that even for plan diagrams with hundreds of

plans, convergence is achieved within a few minutes.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 48

There is another important feature specific to our coloring problem. As already men-
tioned, the output space is an unit cube with maximum and minimum values possible being
(0.0,0.0,0.0) and (1.0,1.0,1.0), respectively. The maximum possible distance between any
two points in any cube would be along its diagonal, which is shown by a red line joining the
vertices A and H in Figure 4.3. Hence in our unit cube, the maximum possible distance is V3.
But the maximum possible distance in our input space is limited to 1. This would prove to be a
handicap since we would confine the output colors to a smaller color space and this may lead to
inaccurate representation of distances in the color space. To overcome this drawback, we scaled
up all the dissimilarities by a factor of v/3.

It is important to note that an ideal solution which gives an objective value of zero may not
always exist, since scaling down distances to lower dimensions is an inherently lossy procedure.
It may not be possible to embed all plans in 3D space, such that the distances between them sat-
isfy their respective dissimilarities. As an example, consider the example given in Section 4.2.

The dissimilarity matrix corresponding to these 5 plans — P1 to P5 is

0.0 0.53 0.53 0.53 0.53
0.53 0.0 0.53 0.53 0.53
0.53 0.53 0.0 0.53 0.53
0.53 0.53 0.53 0.0 0.53
0.53 0.53 0.53 0.53 0.0

In 3D space, we can have at most 4 points (P1 - P4), to be at equal distances (0.53) from
each other as shown in Figure 4.4. There is no means to place the fifth point P5, such that it
is at a distance of 0.53 from every point (P1 - P4) so as to obtain ideal coloring. This example

clearly shows the infeasibility of obtaining an optimal solution, no matter what the technique.

4.4.1 Iterative Steepest Descent Adapted to the Coloring Problem

The input to the ISD algorithm would be a matrix of dissimilarities, corresponding to every pair
of plans. We then compute the following steps iteratively till the change in the value assigned

to vertices, is more than a small value e.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 49

P2
0.53

Figure 4.4: Placement of Plans

Computing Slopes. This is done by taking the partial derivative of our objective function at
every co-ordinate of every vertex and by adding them up. If any of the co-ordinates of any point
is near the border of the unit cube (our output space), then we make its slope to be zero, so that

there is no movement along that co-ordinate.

Step Size. After the gradient is computed, we need to calculate the step size with which the
co-ordinates of the vertices should be moved. We choose the step size as the minimum of the
maximum distance any co-ordinate of any vertex can move inside the cube, along its negative

gradient.

Move the vertices. We move the vertices along their negative gradient (in all three dimensions)
with the step size decided. If the objective value increases, then we halve the step size and again
move the vertices. We continue this procedure till a step size that decreases the objective value
is found or no move can be made in this iteration.

As an example consider the following dissimilarity matrix for a set of 4 plans P, P, P53 and

Py, with e = 0.01.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

50

|-
0.95 F
o5 |
0.8 I P2
08 b P3
BLUE el b
0052 F Pl P4

GREEN

(a) Initial Random Configuration

P1 PQ P3 P4

P/ 0.0 0825 0913 0.820
P 0825 0.0 0944 0.807
P3| 0913 0944 0.0 0.270

Py \0.820 0.807 0.270 0.0

(b) Initial Dissimilarities: Objective =1.335

Figure 4.5: Initial Configuration and Dissimilarity Matrix

Py Py Py Py

P [00 0730 0.240 0.550
Py 0730 0.0 0.637 0.597
Py 0.240 0.637 0.0 0.333

Py \ 0.550 0.597 0.333

0.0

Figure 4.5(a) graphically shows the initial random locations that are assigned to the 4 plans.

The dissimilarity values, and the corresponding objective value obtained from this assignment

is given in Figure 4.5(b).

The working of Kruskal’s Iterative Steepest Descent method on these initial set of values

is shown graphically in Figure 4.6. Figures 4.6(a) and 4.6(b) correspond to the configuration

obtained after one iteration of the algorithm. We can see that the objective value has come

down to 0.714. After iteration 2, it further comes down to 0.139. After 10 iterations, which

corresponds to Figures 4.6(g) and 4.6(h), the algorithm converges with a low objective value of

3.4E-4, since no vertex (plan) moved by more than 0.01 units from its previous position. In any

given iteration, it can be observed that each vertex is moved by a value h (step-size), in one, two

or all three dimensions.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

51

BLUE

BLUE

BLUE

BLUE

(=}

=
NN OV 11—y~
TN AREIN I 1)

coco oococo

0.65

T T T T T T 1

TT T T T T T T TT1

P1

P1

(a) After 1 Iteration

P3 P)

Pl

(c) After 2 Iterations

P3 P

(e) After 3 Iterations

P3 P2

(g) After 10 Iterations

Py Py Ps Py
P 0.0 0438 0.077 0.207
Py 0438 0.0 0.393 0.358
P3| 0.077 0.393 0.0 0.230
Py \0.207 0.358 0.230 0.0

(b) Dissimilarity Matrix: Objective = 0.714

Py Py P; Py
P 0.0 0.907 0.232 0.524
Py 0.907 0.0 0.719 0.676
P3| 0.232 0.719 0.0 0.491
Py \0.524 0.676 0.491 0.0

(d) Dissimilarity Matrix: Objective = 0.139

Py P Py Py
P 0.0 0.820 0.231 0.519
P>, 0.820 0.0 0.621 0.597
P3| 0.231 0.621 0.0 0.390
Py \0.519 0.597 0.390 0.0

(f) Dissimilarity Matrix: Objective = 0.02

Py Py Ps Py
P 0.0 0.727 0.241 0.541
Py 0.727 0.0 0.630 0.593
P3| 0.241 0.630 0.0 0.335
Py \0.541 0.593 0.335 0.0

(h) Dissimilarity Matrix: Objective = 3.4E-4

Figure 4.6: Working of Kruskal’s ISD

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 52

4.5 Experimental Results and Analysis

In this section we color the plan diagrams by employing the technique developed in the previous
sections. Our test-bed is the same as that described in the previous chapter (Chapter 3), with
QT2, QT8 and QT9.

While experiments were conducted with a variety of weight assignments as discussed in
Section 4.1, in this section, we elaborate on the first case where w;; = w,, + w,;, giving
preference to plan pairs with larger total area,

In the following discussion, we refer to ‘pairs of plans being treated well’, and by that
we mean that the ratio of the color distance between any two plans to the Jaccard dissimilarity
between them is between 0.7 and 1.3. (error tolerance level is 30%). We choose 30% as our error
threshold in order to utilize the coarseness of color perception in the human eye, which cannot
distinguish between two closely placed colors in the color spectrum. In the case of minimizing
our objective function with weights being w;; = w,, + w,,, each of the plans is associated with
the area covered by the plan in the plan diagram. Hence, it is perhaps reasonable to look at the
weighted set of plan pairs treated well. The quantity ‘% of points pairs treated well” gives the
sum of weights of the set of plan pairs treated well divided by the total sum of weights of the
plan pairs. Naturally, like the weights assigned in the objective function, the weight given to a

plan pair is the sum of the areas of the two plans.

4.5.1 Results

In the process of analyzing the semantically colored plan diagrams, let us first look at the dis-
tribution of Jaccard dissimilarities between plans in the plan diagrams of all three templates for
both engines. These graphs are shown in Figures 4.7 and 4.8 for Opt A and Opt B, respectively.
It is very evident that for Opt A, in all three templates, we have a large number of plans (80, 128,
114), along with conspicuous peaks at higher Jaccard dissimilarities (> 1), indicating that, with
our adopted metric, most plans are highly dissimilar from each other. This is in sharp contrast
to Opt B for the cases of QT2 and QTS8, where we not only have few plans in comparison (15,

40), but also have peaks in the lower dissimilarity range, around 0.5 for QT2 and 0.75 for QT8.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 53

3000

2500

2000

4

'©

o

c

] mQT2
= 1500 B

k] mQT8
o

2 QT9

1000 —

500

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 095 1.05 1.15 1.25 135 1.45 155 165 1.75
Jaccard Distance

Figure 4.7: Distribution of Jaccard distances for Opt A (scaled to \/3)

However, QT9 - Opt B does have high plan cardinality and a large dissimilarity range, along
with a peak at the Jaccard distance of 1.05.

Now with these numbers in mind, it would not be wrong to expect plan diagrams that are
largely differently colored for all templates of Opt A and for QT9 - Opt B, and with fewer colors
for QT2 and QT8 of Opt B. The semantically colored plan diagrams of Opt A and Opt B are
shown in Figures 4.9 and 4.10, respectively.

For the semantically colored plan diagram of QT2 - Opt A, shown in Figure 4.9(a), we ex-
pected a plan diagram with large color variations, and hence the coloring obtained is surprising.
A large part of the plan diagram has shades of red along with maroon and orange. The explana-
tion for this is that a large area of the diagram is occupied by very few plans, this being evident
by the high Gini co-efficient of 0.79. Also, large number of plans are found concentrated near
the axes, and these plans do have colors which are far apart in color space. We have plans P23
and P67, colored bright yellow and blue (color distance of 1.73), respectively, both being thin

strips near the axes. This would be one of the diagonals in our cube. Also, there is the (P21,

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 54

1400

1200

1000

800

600

No. of plan pairs

400

il

0.05 015 025 0.35 065 075 085 095 105 115 125 1.35
Jaccard Distance

mQT2
mQTs
QTro

Figure 4.8: Distribution of Jaccard distances for Opt B (scaled to 1/3)

P48) pair colored (bright green, pink) that are situated in the ends of another diagonal in the
cube. However, the maximum Jaccard distance found in this plan diagram corresponds to the
plan pair (P24, P44) with 1.66.

With respect to the semantically colored plan diagram of QT2 - Opt B, shown in Fig-
ure 4.10(a), the coloring approximately matches our prediction, with bluish-green shades in
the upper half of the diagram. The maximum difference in color in this plan diagram is seen
between P12 and P15 with 0.981 (actual dissimilarity is 0.356). These plans correspond to thin
vertical bars very close to Y-axis. The maximum Jaccard dissimilarity of 0.794 is found for
the pair (P3, P10). They correspond to the light orange squarish patch located in the centre of
the bottom part, and the dark green vertical strip, situated leftmost in the upper half of the plan
diagram. The color dissimilarity corresponding to this pair is 0.781.

Moving to QT8 - Opt A, we see behavior similar to what we saw in QT2 - Opt A. We have
a relatively large number of plans (128), and a rather flat peak in the dissimilarity range [1, 1.5]

indicating that there a large number of plans which are highly dissimilar from each other, but a

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

55

[0.0,100.0)3 300

PARTSUPP.PS_SUPPLYCOST

LINEITEML_EXTENDEDPRICE [0.0,100.0] 300

PARTSUPP.PS_SUPPLYCOST [0.0,100.042 300

100

@
?

&0+

40

20|

T T 1
0 20 40 80 80 100

PART.P_RETAILPRICE [0.0,100.01¢ 300
(a) QT2 - Opt A

\ B

T T T T 1
[+ 20 40 60 80 100
SUPPLIER.S_ACCTBAL [0.0,100.0) 300

(b) QT8 - Opt A

100+

T T 1
0 2 40 80 80 100

SUPPLEER.S ACCTBAL [0.0,100.0) 300

() QT9 - Opt A

Gini Coeff. 0.79

. P1 34.792
. P2 26.340
. P3 9.244
. P4 5.830
. P5 5.598
. P& 2174
. PT 1.711
o

]]
P78 0.001
P79 0.001

. P20 0.001

Gini Coeff: 0.90
P1 18.504
P2 16.163
P3 11.568

. P4 10.757
P5 5.363

-] 3.660

Pi
| A

]
. P126 0.001

P127 0.001

P128 0.001

Gini Coeff: 0.82

| R
Br 1840
B cex
B
W o0

P6 2.337
. PT 2.109
L] L] L]

P112 0.001
. P113 0.001
P114 0.001

Figure 4.9: MDS Colored Plan Diagrams for Opt A

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

56

100

0 20 40 60 80
SUPPLIER.S_ACCTEAL [0.0,100.0} 500

(c) QT9 - Opt B

Gini Coeff: 0.75
g . Pl 36720
Q 80
] ez 3082
é . P3 6833
g Br ceer
g
T . P5 5250
= 40
o . P6 43833
o
& . PT 3780
20
E . e o
* Bre ooss

“, : . : : - s o002
0 20 40 60 &0 100
PART,P_RETAILPRICE [0.0,100.0) 300 P15 0023
(a) QT2 -OptB
100 Gini Coeff: 0.88
g L P 2262
g 80+ P2 21.200
é: L P 1122
g []
Q P4 6009
£
ﬁ . P5 4.493
E] | ps s
d PT 3.373
E 207 ° e o
: . P38 0.002
* . . . : . s 0002
0 20 40 80 &0 100
SUFPLIER.S_ACCTBAL [0.0.100.0k5 300 . P40 0.001
(b) QTS - Opt B
1907 Gini Coeff: 0.89

2 . Pl 24748

g 80 P2 12147

é . P2 10.112

B o Br: s

§ P5 8.240

& 407 . PE 6.392

o

N PT 5539

L []

E 20 . e o

o P65 0.001

: .PSG 0.001
100 .PG? 0.001

Figure 4.10: MDS Colored Plan Diagrams for Opt B

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

57

QT | No of | % of point pairs | % of plan pairs | Lowest | Highest | Objective Objective
plans | treated well treated well ratio ratio with weights | w/o weights

2 80 89% 66.8% 0.0 776.5 0.03 0.22

8 128 87.9% 62% 0.02 381 0.06 0.27

9 114 93.1% 62.5% 0.0 722 0.01 0.15

Table 4.1: Statistics for ISD With Weights for Opt A

large part of the plan diagram is colored with cyan and light green — colors which are close to
each other. The maximum color and Jaccard distances are 1.73 and 1.70 corresponding to plan
pairs (P126, P127) and (P22, P117), respectively. Plans P126 and P127 are colored black and
white, respectively and occupy too small a area to be noticed by the eye in the plan diagram.

QTS - Opt B, has a smaller dissimilarity range (0 - 1.1) as compared to QT8 - Opt A. We can
observe from Figure 4.10(b), the semantic colored plan diagram of QT8 - Opt B, that starting
from the origin, till about the middle of the plan diagram, plans are colored with similar shades
of green and blue. This suggests that the plans in the plan diagram are largely similar till the
selectivity crosses 25% along both X and Y axes. The maximum Jaccard distance is 1.15 (color
distance 1.18) between P1 and P23, P1 being colored pink at the top right and P23 being the
dark brown colored plan near the Y-axis. The maximum color distance is 1.47 between plans
P28 and P29, both of which are found very close to the axes, with Jaccard distance between
them being 0.001. They occupy less than 0.025% of the plan diagram space, which explains
why their color distance is very far apart from their actual dissimilarity value.

Inferences similar to the previous two cases can be drawn regarding the coloring of plan dia-
gram for both QT9 - Opt A and QT9 - Opt B. One observation regarding all plan diagrams is that
the maximum color distance achieved in each of them is slightly higher than the corresponding
maximum Jaccard distance found.

The accuracy of the interpretations that can be drawn from the MDS colored plan diagrams
do not seem far from reality when we look at the statistics of the generated coloring in Tables 4.1
and 4.2.

The objective values achieved in all the cases are sufficiently low to indicate that the plan

diagrams are reasonably well colored. Further, to justify this claim we can see that the ‘% of

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

58

QT | No of | % of point pairs | % of plan pairs | Lowest | Highest | Objective Objective
plans | treated well treated well ratio ratio with weights | w/o weights

2 15 98.6% 84% 0.45 7.77 0.002 0.025

8 40 96.0% 76.0% 0.04 1362.0 | 0.01 0.044

9 67 92.5% 57.1% 0.01 173 0.02 0.124

Table 4.2: Statistics for ISD With Weights for Opt B

point pairs treated well’, shown in column 3, is more than 85% for all three templates. ‘% of
plan pairs treated well’, given in column 4, is considerably less in many cases (around 60%).
This low percentage can be attributed to the fact that we have tried to optimize the objective
function with weights being the areas of the plans. Because of this, plans with larger areas tend
to be colored well, and since we have a high skew (Gini Co-efficient of 0.79), a large part of the
plan diagram will be occupied by very few plans, and those few plans tend to be colored well at
the cost of many other plans (which occupy very less area) not being colored within our error
tolerance range.

Also, one can notice the increase in the percentage of ‘% of point pairs treated well’ as the
value of the objective function decreases. Even though our objective function directly does not
optimize the ‘% of point pairs treated well’, it has the necessary effect in our situation.

The objective function value calculated without weights is more than the value obtained
when it is calculated with weights, as we can see in columns 7 and 8. This is expected since the
optimization was carried out with weights. The columns highest ratio and lowest ratio provide
information about the worst case performance of the technique employed. We can see that the
ratios can get as bad as possible, like in the case of QT9 - Opt A, where the lowest ratio is as

low as 0.

4.5.2 Time Overheads of ISD

In Table 4.3, we have tabulated the time taken and the number of iterations required to run ISD
for numerous query templates. All values have been computed with a convergence criteria of
e<=10F —5.

We observe here that, in general the average time taken increases with the increase in the

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 59

QT No. of | Avg. No. of | Max. Min. Avg. Time
plans | Iterations Iterations | Iterations | Taken (in seconds)
QT2-OptB | 15 386 814 229 <1
QT8-OptB | 40 4465 16807 2315 5.6
QT9-OptB | 67 2669 6851 616 8
QT2-OptA | 80 1927 3712 20 7.7
QT8-OptA | 128 1435 3374 675 13
QT9-OptA | 114 6426 16593 2668 59.4

Table 4.3: Time Overheads of ISD

cardinality of the plan diagram. For QT9-OptA, however, which has lower plan cardinality than
QTS8-OptA, the average time taken is much higher than QT8-OptA. This is because QT9-OptA
requires larger number of iterations as compared to QT8-OptA in order to meet the convergence
criteria. These large number of iterations are because there are a set of plans that are equally
dissimilar from each other, and in the process of trying to maintain their dissimilarities in the
color space, the algorithm keeps moving the plans back and forth in successive iterations, with

very small changes in the objective value.

4.6 Representational Quality of Iterative Steepest Descent

From the discussion on experimental results in the previous section, a natural question that
would surface is whether we could do better in terms of the representational quality by the
use of a different technique. Representational quality includes ‘% of point pairs treated well’,
‘% of plan pairs treated well” and the worst case ratios obtained. In this section, we compare
the results obtained through our adapted ISD with those obtained from SMACOF, and show
empirically that the performance is largely comparable.

The statistics obtained from coloring plan diagrams of the same three templates — QT2, QT8
and QT9, with SMACOF, under conditions similar to that of ISD are shown in Tables 4.4 and
4.5 for Opt A and Opt B, respectively.

We can see that the values in columns 3 and 4, corresponding to ‘% of point pairs treated

well” and ‘% of plan pairs treated well” are only slightly better than those obtained from ISD.

CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS

60

QT No of | % of point pairs | % of plan pairs | Lowest | Highest | No. of points
plans | treated well treated well ratio ratio outside cube

2 80 96.3% 72.9% 0.05 3215 45

After Scaling 23.12% 25.72% 0.0 294 0

8 128 92.8% 63.7% 0.03 634 81

After Scaling 51.3% 50.86% 0.0 634 0

9 114 94.71% 64.3% 0.007 | 906 66

After Scaling 59.77% 55.27% 0.003 588.9 0

Table 4.4: Statistics for SMACOF With Weights for Opt A

QT No of | % of point pairs | % of plan pairs | Lowest | Highest | No. of points
plans | treated well treated well ratio ratio outside cube

2 15 98.7% 86% 0.43 1.92 0

After Scaling 98.7% 86% 0.43 1.92 0

8 40 96.76% 77.4% 0.07 19.18 1

After Scaling 96.76% 77.4% 0.07 19.18 0

9 67 93.9% 62.2% 0.04 157 20

After Scaling 82.1% 55.22% 0.04 157 0

Table 4.5: Statistics for SMACOF With Weights for Opt B

However, the numbers corresponding to the lowest and highest ratios are better in SMACOF.
But, these results from SMACQOF are currently not bounded to a cube, and the number of points
outside the cube, as given in the last column of the tables, is high in many cases. For the case
of Opt A, more than half the plans are outside the cube in the case of all three templates. The
statistics obtained after scaling down the values are given just below the ones obtained before
scaling. We can clearly see that both “% of plan pairs treated well” and “% of point pairs
treated well” deteriorate, sometimes by an order of magnitude. Armed with the above facts, we

conclude that the ISD technique colors plan diagrams satisfactorily.

Chapter 5

XML Plan Diagrams

In recent years, the hierarchically-structured XML document format has found its way into
mainstream database technology, and several popular database systems have been extended
and developed to support XML storage and XML query processing along with relational data.
To this effect, there has been considerable interest in the past decade for optimizing XML
queries and in particular XQuery, which has been the W3C recommended standard for querying
XML [65].

A lot of effort has been invested in the recent past for analyzing the behavior of SQL opti-
mizers. As discussed in Chapter 1, the notion of plan diagrams has become widely popular as
a tool for such analysis. In the previous two chapters we explored two new semantic features
of plan diagrams which help analyze the behavior of SQL optimizers better. In this chapter we
focus on analysing the behavior of one such XQuery optimizer, referred to as DB_XML in the
way it handles XQuery, through the production of XML plan diagrams.

Generation of plan and other related diagrams for DB_XML comprised of the following

main tasks:

XML Statistics Collection: Mechanisms for generation and storage of statistics on XML data
in DB_XML had to be first identified. Then, methods had to be devised to access this

information.

XQuery Templates: The format of an XQuery template had to be defined and constraints for

a valid XQuery template had to be identified.

61

CHAPTER 5. XML PLAN DIAGRAMS 62

XML Selectivity Computations: Mechanisms for identifying, interpreting and computing se-
lectivities from the statistical summaries and the optimizer’s plan output had to be de-

signed.

Execution Plan Parsing: All new operators introduced in DB_XML to handle XQuery had to
be taken into account while identifying trees in the process of production of plan dia-

grams.

In this chapter, we first describe in detail each of the above steps. Then we provide exten-
sive experimental analysis on DB_XML’s behavior using a set of three benchmarks. Further,
we discuss the results obtained by applying the structure-based reduction technique from Chap-
ter 3. Finally, we present and analyze XML plan diagrams that are semantically colored using

techniques developed in Chapter 4

5.1 XML Statistics Collection

In the relational world, statistics collection is at the granularity of individual attribute columns,
with all relevant information stored in internal system tables, which can be directly accessed
through SQL queries. For XML, however, statistical information is organized with respect
to element paths (e.g. /Customers/Customer/AccountBalance), and the storage and
access of the information is considerably more involved, as explained next.

We will hereafter use the term XML_R to refer to a database relation that has one or more
XML columns (columns that have XML data). Given an XML _R, executing the runstats util-
ity (an utility provided by the DB_XML engine) on this relation provides the LOW2KEY and
HIGH2KEY values computed over all paths in the XML documents referenced by this relation,
as well as the total number of such instances. Further, to obtain distributional information, the
runstats utility has to be invoked using the “with distribution” option — a special requirement
in DB_XML is that this option is effective only after an index has been created on the associated
path.

The statistics generated for the XML_Rs corresponding to the element paths that define

the dimensions of the plan diagram, are dumped into a text file using another utility provided

CHAPTER 5. XML PLAN DIAGRAMS 63

by the DB_XML engine. Due to the lack of utilities for processing this file, we wrote our
own Perl parser to analyze the contents. The extracted information is stored in two tables,

XML_SUMMARY and XML_HIST, whose schemas are shown in Figure 5.1.

XML_SUMMARY (colid bigint, tbname varchar(50), elementpath long varchar, card
bigint, high2key varchar(100), low2key varchar(100))

XML _HIST (indexid bigint, indexpath long varchar, colid bigint, tbname varchar(50),
dtype varchar(32), value varchar(100), valcount bigint, distinctcount bigint)

Figure 5.1: Tables for storing statistics information

The XML_SUMMARY table contains the low keys, high keys and cardinalities of the various
element paths, whereas the XML_HIST table contains the histogram values and data types for
the terminating elements of the indexed paths. The information is separated over two tables
because the utility dumps statistics for all paths of XML documents stored in a XML column,
some of which may have an index, while others may not, in which case they would lack dis-
tributional information. Further, even in the presence of indexes, the information present in
XML_SUMMARY would be repeated as many times as the number of buckets in the histogram
summary, violating normalization imperatives.

To make the above notions concrete, consider an example bank customer database, where
the XML nodes have the structure shown in Figure 5.2(a), consisting of the customer’s account
number, name and balance. Sample summary statistics and a snippet of the (equi-depth) his-
togram on the acct element path (/root () /customer/acct/text ()), as produced by
DB _XML, are shown in Figures 5.2(b) and 5.2(c), respectively.

5.2 XQuery Templates

The relational columns that form the dimensions of SQL-based optimizer diagrams are called
Variable Selectivity Predicates (VSP). These VSPs are easily specified using the :varies syntax
embedded in SQL, as previously shown in Figure 1.3. With XQuery, however, the specification

is more complicated since the dimensions of the optimizer diagrams are now element paths in

CHAPTER 5. XML PLAN DIAGRAMS

64

<customer>
< acct> 1881 < /acct>
< name> Pablo Picasso < /name>
< bal> 1000 < /bal>

< /customer>

PathID = /root()/customer/acct/text()
2nd Highest Key = 5:6059

2nd Lowest Key = 3:01

Sum Node Cnt = 3721

(a) XML node

(b) Summary Stats

Value Count Distinct

Count
0 1 1
12 16 13
19 30 20
27 46 28
34 60 35
42 76 43
49 90 50
57 106 58
68 120 69
82 134 83

(c) Frequency Histogram

Figure 5.2: Example XML node and Statistics

the XML hierarchy, and it is difficult to directly infer these paths from the :varies predicate in

the query. In particular, the complete specification of an optimizer diagram dimension requires

information on the path structure, namespaces, table names, aliases and column names. We

will heareafter use the term VSX (Variable Selectivity XML element path)! to denote these

dimensions and distinguish them from the relational VSP notation.

All information about a particular VSX is provided as a prologue to the query template,

as shown in Figure 5.3, where there are two VSXs corresponding to customer accounts and

orders. This XQuery template retrieves those accounts that have a working balance within a

parametrized value and, for each of these accounts, extracts the associated orders involving

cash transactions within a parametrized value.

Here, the namespaces corresponding to the XQuery template are enumerated in the begin-

LQur usage of the term element here denotes both XML elements as well as XML attributes.

CHAPTER 5. XML PLAN DIAGRAMS 65

#NAMESPACE declare default element namespace
“http://www.fixprotocol.org/FIXML-4-4";
#NAMESPACE declare namespace c="http://tpox-benchmark.com/custacc”;

#VSX /c:Customer/c:Accounts/c:Account/c:Balance/c:WorkingBalance
CUSTACC CUSTACC CADOC

#VSX /FIXML/Order/OrdQty/@Cash ORDER ORDER ODOC

#—#

XQUERY
declare default element namespace “http://www.fixprotocol.org/FIXML-4-4";
declare namespace c="http://tpox-benchmark.com/custacc”;
for $acct in db2-fn:xmicolumn(“CUSTACC.CADOC")
/c:Customer/c:Accounts/c:Account[c:Balance/c: WorkingBalance :varies]
for $ord in db2-fn:xmlicolumn(“ORDER.ODOC”)
/FIXML/Order[@Acct=$acct/@id/fn:string(.)]
where $ord/OrdQty/@ Cash :varies
return
<result>
{$acct}
{$ord}

</result>

Figure 5.3: Example XQuery Template

ning of the prologue followed by VSXs. Each VSX in turn consists of its element path, table
name (i.e. its XML_R), alias and column name (i.e. the XML column), listed in that order. The
beginning of each namespace and each VSX is indicated through the use of #NAMESPACE
and #VSX, respectively, and the termination of the prologue is indicated through #—#. Note
that the :varies keywords are still embedded inside the Xquery template so as to unambigu-
ously determine where values would be substituted for varying the VSX. As a final point, the
order in which the VSX locations are listed in the prologue should match the lexical order of

the corresponding :varies predicates within the XQuery template.

Template Constraints. In order to meaningfully cover the full range of selectivities shown
in the various optimizer diagrams, an XQuery template should satisfy a variety of conditions,

which are enumerated below (for reference, the equivalent constraint in the SQL framework is

CHAPTER 5. XML PLAN DIAGRAMS 66

also listed):

1. Each XML column of a relation can participate in at most one VSX. (In SQL templates,

each relation can participate in at most one VSP.)

2. The element path in a VSX predicate typically consists of a logical seg-
ment, denoted L, that defines the semantic object whose selectivity is de-
sired to be varied, and a physical segment, denoted P, which is downstream
of L and whose value is actually varied in the query template. To make
this concrete, consider the VSX /c:Customer/c:Accounts/c:Account/
c:Balance/c:WorkingBalance in the XQuery template of Figure 5.3. Here
L is the segment (/c:Customer/c:Accounts/c:Account), while P is
the downstream segment /c:Account/c:Balance/c:WorkingBalance — the
parametrized variation across Customer Accounts is achieved through the varying
of WorkingBalance values. Similarly, for the second VSX, the logical segment is
/FIXML/Order and the physical segment is /Order/OrdQty/@Cash. As a final
point, note that it is also acceptable to have templates where the logical segment itself

terminates with the variable element, and there is no distinct P segment.

For a VSX predicate with an explicit P segment, it should be ensured that many-to-one
relationships do not occur in this segment. That is, in the graphical representation of the
XML schema [43], there should be no ‘*’ node in the path corresponding to P. (In SQL
templates, there is no equivalent to these notions of logical and physical segments since

hierarchies are inherently not present.)

3. If along with the VSX predicate, other predicates are also specified, then it should be
ensured that the application of these additional predicates is deferred in the plan tree.
Specifically, these non-VSX predicates should not be applied in conjunction with the
VSX predicate, at the leaf level, in the plan tree. (In SQL templates, VSP relations can

feature in join predicates but not in any other equality or range predicates.)

4. The permissible data types for VSX element paths are integer, float, string and date. (The

same set of data types are supported in SQL templates.)

CHAPTER 5. XML PLAN DIAGRAMS 67

5. The VSX element paths must have pre-generated statistical summaries. (The same con-

straint holds for VSPs in SQL templates.)

6. The VSXs should be on dense-domain paths in high cardinality XML columns. (The same

constraint holds for VSPs in SQL templates.)

To illustrate the constraints on XQuery templates, consider an XML database with CUS-
TOMER and ORDER documents adhering to the schema graphs shown in Figures 5.4(a) and
5.4(b), respectively. On this database, consider the XQuery template shown in Figure 5.4(c),
which returns the names and phone numbers of customers located within a parametrized address
value and whose orders feature item quantities within a parametrized value — this template is
compatible with respect to all of the above conditions.

However, if the query template were to be slightly altered as shown in Fig-
ure 5.4(d), it would become invalid as Condition 2 of the above requirements
would be violated — specifically, there is now a ‘*’ node in the physical segment

(order_lines/ ('*’)order_line/quantity_of_item).

5.3 XML Selectivity Computation

After the statistics are collected and the information regarding VSXs are retrieved from the
XQuery template, the next step in obtaining plan diagrams from DB_XML is to determine the
constants that would result in the desired VSX selectivity values. In the following discussion,
we first explain the selectivity computation process in the relational environment, and then

describe its extension to the XML world.

5.3.1 Relational Selectivities

As mentioned earlier, in the process of producing the plan diagram, we estimate the constants
that would result in the desired selectivities through an “inverse-transform” of the VSP statis-
tical summaries. To verify that the estimates provided by us and the optimizer are mutually

consistent, three types of selectivities are computed: Expected Selectivity, Predicate Selectivity

CHAPTER 5. XML PLAN DIAGRAMS

order
customers ~NSTIoo--.
. - >

l total order date order lines customer id
: |
l *

customer l .

order line
. . X) 'h) -L
first name id address_id item_id quantity of item
(a) CUSTOMER Schema Graph (b) ORDER Schema Graph

#PSX /customers/customer/address_id CUSTOMER CUSTOMER CUSTOMER
#PSX /order/order_lines/order_line/quantity_of_item ORDER ORDER ORDER
H—
XQUERY
for $cust in db2-fn:xmlcolumn(“CUSTOMER.CUSTOMER”)
/customers/customer[address_id :varies]
for $order in db2-fn:xmlcolumn(“ORDER.ORDER?”)
/order[customer_id=$cust/@id]/order lines/order line[quantity_of item :varies]
return <Output>
{$order}
{$cust/first_name}
{$cust/last_name}
{$cust/phone_number}
</Output>

(c) Valid XQuery Template

#PSX /customers/customer/address_id CUSTOMER CUSTOMER CUSTOMER
#PSX /order/order_lines/order_line/quantity_of_item ORDER ORDER ORDER
H#—#
XQUERY
for $cust in db2-fn:xmlcolumn(“CUSTOMER.CUSTOMER”)
/customers/customer[address_id :varies]
for $order in db2-fn:xmlcolumn(“ORDER.ORDER?”)/order[customer_id=$cust/@id
and order _lines/order _line/quantity_of item :varies]
return <Output>
{$order}
{$cust/first_name}
{$cust/last_name}
{$cust/phone_number}
</Output>

(d) Invalid XQuery Template

Figure 5.4: XQuery Template Constraints

CHAPTER 5. XML PLAN DIAGRAMS 69

and Plan Selectivity. These selectivities, whose values are expected to be close to each other in

a valid execution, are defined as follows:

Expected Selectivity: This is the selectivity of the VSP as determined by us through the sta-

tistical summaries of the database engine.

Predicate Selectivity: This is the optimizer’s estimated selectivity for the VSP when the uni-
dimensional query
select * from Table T where VSP(T)

is optimized.

Plan Selectivity: This is the selectivity associated with the node containing the VSP in the

optimizer’s plan choice for the user’s query.

5.3.2 XML Selectivities

For the above computations in the relational world, selectivity is simply and consistently in-
terpreted as the fractional number of rows in a table that are relevant to processing the user’s
query. However, with XML data, the definition is not so straight-forward since information is
organized in the form of nodes and documents containing these nodes. Therefore, selectivities
can be computed at the granularity of nodes or documents. For example, consider the scenario
where 100 XML nodes are organized in a single document, and the other extreme where there
are 100 documents, each containing one of these nodes. In the former case, the document se-
lectivity will always be 0 (no node in the document satisfies the predicate) or 1 (at least one
node in the document satisfies the predicate), whereas in the latter, the document selectivity
will represent the fractional number of nodes satisfying the predicate.

From a query processing perspective, node selectivities constitute a more meaningful metric
than document selectivities since they essentially correspond to rows in tables. Unfortunately,
the current implementation of indexes in DB_XML is such that although information to compute
node selectivities is available, only document selectivities are finally returned as outlined in [4].
As a further complication, the document selectivities computed at the leaves of the plan trees

later morph into node selectivities at the higher internal levels of the plan tree.

CHAPTER 5. XML PLAN DIAGRAMS 70

5.3.3 Computation Methods

Modulo the above conceptual issues, the Predicate and Plan selectivities of the DB_XML opti-

mizer are computed in the following manner:

Predicate Selectivity: The representative XQuery structure shown in Figure 5.5(a) is opti-
mized, with its place holders - NAMESPACES, TABLE NAME, COLUMN_NAME, VSX and
constant-value - filled up using the data from the XQuery template under consid-
eration. The Predicate Selectivity is taken to be the estimated number of XML results in
the final output, i.e., the number present as output in the RETURN operator of the plan tree

returned by the optimization process.

XQUERY

NAMESPACES

for $x in
db2-fn:xmlcolumn(“TABLE _NAME.COLUMN_NAME")VSX
where $x <= constant-value
return $x

(a) XQuery Structure

XQUERY

declare default element namespace
“http://www.fixprotocol.org/FIXML-4-4";

declare namespace c="http://tpox-benchmark.com/custacc”;

for $x in
db2-fn:xmicolumn(*ORDER.ODOC”)/FIXML/Order/OrderQty/@Cash
where $x<=20000
return $x

(b) Example XQuery

Figure 5.5: Predicate Selectivity Computation

As a concrete example, consider the VSX /FIXML/Order/OrderQty/@Cash fea-
tured in the example XQuery template of Figure 5.3. For this VSX, predicate selectivities

are computed using the XQuery instance shown in Figure 5.5(b).

Plan Selectivity: Similar to the implementation in the relational world, the Plan Selectivity of

a VSX is extracted from the annotated plan tree produced by the optimization process. It

CHAPTER 5. XML PLAN DIAGRAMS 71

is evaluated as the selectivity of the parent node of the XML relation associated with the
VSX in the plan tree — this parent node is typically a scan operator such as TBSCAN or

XISCAN.

5.3.4 Selectivity Estimation Errors

Apart from the above conceptual issue of document versus node selectivities, we have also
encountered what appear, within our limited understanding, to be bugs in the DB_XML imple-
mentation of selectivity estimation. Specifically, when the constants used in the VSX are neg-
ative values, then the Predicate and Plan selectivity estimations are way off from what would
be expected from the statistical summaries. Secondly, when the VSX attribute is of type string,
as opposed to integer or float, the selectivity estimations again bear little relationship to the
expected values. These situations are explicitly shown later in Section 5.5.5 of the experimental

study.

5.4 Plan Parsing

To cater to the complex data processing requirements of XML, the DB_XML engine has in-
corporated new XML-specific operators, which appear in the execution plan trees. These new
operators include XSCAN, XISCAN, XANDOR and XUNNEST, and a sample execution plan fea-
turing some of them is shown in Figure 5.6. All the operators have been taken into account
while identifying unique plan trees in the process of production of plan diagrams.

We briefly describe the operators below. For a detailed enumeration of the operators, we

refer the reader to [4, 57].

XSCAN: The XSCAN operator is employed to evaluate a single XPath expression. It takes
references to XML fragments as input and returns the XML elements that satisfy the
given XPath expression. The references to XML fragments that are processed by the
XSCAN operator are passed by a nested-loop join operator (NLJOIN), and hence XSCAN

always occurs in conjunction with the NLJOIN operator.

CHAPTER 5. XML PLAN DIAGRAMS 72

RETLURM
FmTERl
NLJDIN!
* HECAN
mnscml
*
N

i

XECANl mscaml
SEC_FE SEC_SECTOR
SECURITY SECURITY

Figure 5.6: Example Plan Tree

XISCAN: This operator is the XML equivalent of a relational index scan. It takes as input,
a single query predicate, which in this case is a XPath expression, scans the associated

index, and returns the row identifiers of the documents that qualify the search.

XANDOR: The XANDOR (XML index ANDing and ORing) is an n-ary operator that allows
evaluation of complex predicates by allowing ANDing and ORing of multiple index

scans.

XUNNEST: This operator is used to unnest an XML sequence from an XML data instance.
It takes the XML sequence as input and returns XML items along with their sequence

numbers.

CHAPTER 5. XML PLAN DIAGRAMS 73

5.5 Experimental Results

In this section, we describe the experimental framework on which we evaluated the DB_XML

optimizer, and the initial results obtained on this framework.

5.5.1 Experimental Setup

All our experiments were carried out on a vanilla hardware platform — specifically, a SUN
ULTRA 20 system provisioned with 4GB RAM running Ubuntu Linux 64 bit edition 9.10.
With respect to DB_XML?, both EXTENDED OPTIMIZATION and HASH-JOIN were enabled.
The reason for having chosen a different engine and experimental setup from that of the previous
2 chapters is that DB_XML provided a rich native support for XML data, and the latest version
supporting these features were made available to us for the Linux environment. Other popular
engines have also provided support for XML data and obtaining optimizer diagrams on these

engines would be interesting future work.

5.5.1.1 Databases

We worked with three different XML databases: TPoX, XBench and TPCH_X. TPoX and
XBench are native XML benchmarks, while TPCH_X is an XML equivalent of the classical
TPCH [62] benchmark used in SQL databases. TPoX models a transaction processing envi-
ronment, whereas XBench and TPCH_X are representative of decision-support environments —

their construction details are given below.

TPoX. The TPoX benchmark database was populated with 50000 cusTAacc, 500000 ORDER
and 20833 SECURITY documents, corresponding to the XXS scale, which takes about 1GB of
space. The data in these documents follow a variety of distributions ranging from uniform to
highly skewed, as per the benchmark specifications [59]. The richest set of indexes recom-

mended by the benchmark was created and statistics were collected on all these paths.

XBench. The XBench benchmark [51] supports a choice of four different kinds of databases,

2Note for review purposes only: The optimizer is DB2 9.7 pureXML.

CHAPTER 5. XML PLAN DIAGRAMS 74

namely TC/SD (Text centric, Single Document), TC/MD (Text centric, Multiple documents),
DC/SD (Data centric, Single Document) and DC/MD (Data centric, Multiple documents). In our
study, we chose the DC/MD flavor since it appeared to be the most challenging from the opti-
mizer’s perspective. Specifically, DB_XML was populated with the “large” option for DC/MD,
resulting in a database size of around 1 GB with all data conforming to the uniform distribution.
For each of the XQuery templates, indexes were created for all paths appearing in the template

and statistics were collected on these paths.

TPCH _X. The NATION, REGION, SUPPLIER and CUSTOMER relations of the TPCH benchmark
were converted to their equivalent NATIONS, REGIONS, SUPPLIERS and CUSTOMERS XML _Rs.
Further, the ORDER and the LINEITEM relations were combined into the ORDERS XML _R, while
the PART and PARTSUPP relations were merged into a single PARTS XML _R. The schemas of the
documents stored in these XML _Rs are shown in Figure 5.7. These schemas were constructed
and the data was generated using the examples provided with the Toxgene tool [6].

The database was populated with around 1GB of data, and indexes were created for all paths
present in the XQuery templates. For each of the 6 tables shown in the schema, multiple doc-
uments were loaded, with an entity per document i.e., the NATIONS, REGIONS, CUSTOMERS,
SUPPLIERS, PARTS and ORDERS tables were populated with one document per nation, region,
customer, supplier, part and order entity, respectively. Each order document in turn included its
corresponding lineitems and each part document had its supply information inlined. The num-
ber of documents populated in each of these tables is tabulated in Table 5.1 and a sample docu-
ment for each of the 5 tables is given in Appendix C. The database was made roughly equivalent
to the TPCH benchmark in terms of the cardinalities of the tables (except for ORDERS, which
was populated with only 300000 documents as opposed to a target value of 1500000 — this was
due to memory heap overflow problems occurring while generating data using Toxgene). Also,

the generated data was uniformly distributed over the associated domains.

5.5.1.2 Query Templates

We have considered only two-dimensional XQuery templates in this study. These templates

have been verified to be compatible with the constraints specified for legal XQuery templates

CHAPTER 5. XML PLAN DIAGRAMS 75

create table nations (nations xml)
create table regions (regions xml)
create table customers (customers xml)
create table suppliers (suppliers xml)
create table parts (parts xml)

create table orders (orders xml)

Figure 5.7: Database Schema for TPCH_X

Table Name | Number of Documents
nations 25
regions 5
customers 150000
suppliers 10000
parts 200000
orders 300000

Table 5.1: Document Count for TPCH_X

in Section 5.2. All the predicates are on floating-point element values. The plan diagrams
are produced at a resolution of 300 points in each dimension, resulting in almost a hundred
thousand queries being optimized over the space. The DB_XML optimizer itself was run at its
default optimization level of 5.

As described in Section 5.3, the constants to be used in the query templates are estimated
through a linear-interpolation-based inverse transform of the histogram summaries obtained
through the server side utility. Using these constants, we explicitly output a Selectivity Log that
explicitly tabulates the three types of selectivities delineated in Section 5.3, namely, Expected,
Predicate and Plan selectivities. Additionally, the log also indicates the relative and absolute
differences between the Expected and Predicate selectivity values.

Also, the cost-increase threshold used for plan diagram reduction in all our experiments is
A = 20%. The choice of this setting was based on the observations of [10], wherein anorexic

reduction was usually observed at this value for SQL-based query templates.

CHAPTER 5. XML PLAN DIAGRAMS 76

5.5.2 TPoX

We constructed a XQuery template from the cust_sold_security.xqr XQuery provided with
the TPoX benchmark, as shown in Figure 5.8. This template, which we will hereafter refer to
as QTX_SEC, returns the customer accounts whose working balance is within a parametrized
value and which have been used to trade one or more securities, and, for each of these accounts,
the trading amounts of the associated orders being within a parametrized value, the result being

alphabetically sorted on Account titles.

#NAMESPACE declare default element namespace
“http://www.fixprotocol.org/FIXML-4-4”;

#NAMESPACE declare namespace c="http://tpox-benchmark.com/custacc”;

#PSX /c:Customer/c:Accounts/c:Account/c:Balance/c:WorkingBalance
CUSTACC CUSTACC CADOC

#PSX /FIXML/Order/OrdQty/@Cash ORDER ORDER ODOC

#—#

XQUERY
declare default element namespace “http://www.fixprotocol.org/FIXML-4-47;
declare namespace c="http://tpox-benchmark.com/custacc”;
for $cust in db2-fn:xmlcolumn(“CUSTACC.CADOC”)
/c:Customer/c:Accounts/c:Account[c:Balance/c: WorkingBalance :varies]
for $ord in db2-fn:xmlcolumn(“ORDER.ODOC”)/FIXML/Order
[@Acct=$cust/@id/fn:string(.) and OrdQty/@ Cash :varies]
order by $cust/c:AccountTitle/text()
return
<Customer>
{$cust/c:AccountTitle}
{$cust/c:Currency}
</Customer>

Figure 5.8: XQuery Template for TPoX (QTX_SEC)

Optimizer Diagrams. The optimizer diagram suite for QTX_SEC is shown in Figures 5.9(a)
through 5.9(d). The plan diagram consists of 14 plans with plan P1 occupying about three-
quarters of the space and plan P14 present in only 0.001% of the diagram, resulting in an
overall Gini co-efficient of 0.39. Further, the number of plans decreases to 6 when parameter

differences between plan trees are not considered. The low density of plans may perhaps be

CHAPTER 5. XML PLAN DIAGRAMS 77

8 100 Gini Cowft: 0.38
B B ==
é 804 .Pﬂ nm =
s B: m
e P 0788 e
¥ e Br o
g L LT g:
% B o 8
2 4 Moo &
h [TT}
= LT e
g =
= a0 Fid 0013 8
1S .m L)
i3
w ez oo ey B
: y y ; : P oom ' i A o w ®
[20 40 8 80 10¢ Sl gy COtiney o g
. . . . Worki " 20 gy Aoy, o
CUSTACC c:Customersic Accountsic:Accountic :Balanceic WorkingBalance[D .0, a"@% &Q}x
100.0}@300 W
(a) Plan Diagram (b) Cost Diagram
100+ Gini Coeff. 0.39
g B v
g
N § o B2 2o
g B =
E B e P05
=, 9 | CIRTT
o l= g
=4 2
a i’ % 40 .!‘T 0.362
S 2 B o
2 2
g = PO 0018
= _
& B oxe
[=]
5 I 0002
n_
. . . ; ; 1 [T
o 20 40 &0 80
CUSTACC c:Customersic:Accountsi/c:Accountic Balance/c: WorkingBalance[0.0,
100.0}@300
(c) Card Diagram (d) Reduced Plan Diagram (A = 20%)

Figure 5.9: Optimizer Diagrams for TPoX - QTX_SEC (X-Axis: CUSTACC /Cus-
tomer/Accounts/Account/Balance/WorkingBalance, Y-Axis: ORDER /FIXML/Order/OrdQty/ @ Cash)

due to the queries being simpler, from an optimization perspective, in a transaction processing
environment. We also see that the plan diagram predominantly consists of vertical blue bands
(plan P2) on the red region (plan P1). Only close to the X and Y-axes do we find other plans,
such as the yellow horizontal stripe of plan P4, and the brown and orange vertical bands of plans
P3 and P6, respectively.

The operator trees for plans P1 (red) and P2 (blue) are shown in Figures 5.10(a) and 5.10(b),

respectively. We see here that while they both have the same join order (for ease of discussion,

CHAPTER 5. XML PLAN DIAGRAMS 78

we have removed annotations from the join order), namely CUSTACCXORDER, there is a struc-
tural difference between the two plans due to the re-positioning of an NLJOIN-XSCAN pair.
As is evident in the trees, the indexes ACCT_BAL and ORDER_ACCOUNTID are used to scan
the CUSTACC and ORDER relations, respectively. The purple vertical stripe (plan P5) also has
the same join order as that of plans P1 and P2, but uses the index ORDER_CASH, instead of
ORDER_ACCOUNTID, to access the ORDER relation.

In the region near and parallel to the X-axis, the join order changes to ORDERXCUSTACC
for plans P4, P7, P8, P9 and P14, with all five collectively occupying less than 2% of the area.

Finally, when the plan diagram is reduced with A\ = 20%, the number of plans comes down
to 11, as shown in Figure 5.9(d). The blue vertical bands of plan P2 require a A of 70% in order
to disappear due to swallowing by the red plan P1.

The cost and card diagrams are as shown in Figures 5.9(b) and 5.9(c). Interestingly, we
observe here that while the result cardinality has a simple affine relationship with the VSX

selectivities, the cost diagram in contrast exhibits a highly non-linear behavior.

Selectivity Logs. The first and last five entries of the selectivity logs for
the /Customer/Accounts/Account/Balance/WorkingBalance and
/FIXML/Order/OrdQty/@Cash VSXs are shown in Figures 5.11(a) and 5.11(b),
respectively.

We observe here that the Expected and Predicate selectivities are comparable throughout the
selectivity range. However, with regard to Plan selectivities, we observe certain discrepancies in
both the VSXs — for the WorkingBalance VSX, the selectivities are accurate till the 25.70%
mark but subsequently saturate and remain at this level, while with the @Cash VSX, they are

actually 0% for most of the range.

5.5.3 XBench

We now turn our attention to the XBench native XML benchmark. For this benchmark, a
representative XQuery template, QTX19, which is based on XQuery 19 of the queries listed
for the DC/MD database, is shown in Figure 5.13. It attempts to retrieve all orders within a

parametrized total value for which the associated customers are located within a parametrized

CHAPTER 5. XML PLAN DIAGRAMS

79

—
o |
o] |
=l

—

ACCT_BAL |

(a) Plan P1 (Red)

ORDER_ACCOUNTID

CHAPTER 5. XML PLAN DIAGRAMS

80

—

| DRDER_P.I:I:CIIJHTID
ORDER

ACCT_BAL

CLUSTACC
(b) Plan P2 (Blue)

Figure 5.10: Plan trees (QTX_SEC)

CHAPTER 5. XML PLAN DIAGRAMS 81

Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 2624.68 0.16 6.25% 0.01 0.16
0.50 5808.76 0.48 4.16% 0.02 0.48
0.83 8758.70 0.78 6.41% 0.05 0.78
1.17 11986.19 | 1.10 6.36% 0.07 1.10
1.50 15340.54 | 1.44 4.17% 0.06 1.44
98.50 085164.22 | 98.52 0.02% 0.02 25.70
98.83 088508.03 | 98.85 0.02% 0.02 25.70
99.17 991764.72 | 99.18 0.01% 0.01 25.70
99.50 995074.38 | 99.51 0.01% 0.01 25.70
99.83 998352.54 | 99.84 0.01% 0.01 25.70

(a) VSX: /Customer/Accounts/Account/Balance/WorkingBalance

Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 9.44 0.17 0.00% 0.00 0.17
0.50 26.33 0.51 1.96% 0.01 0.51
0.83 43.13 0.84 1.19% 0.01 0.00
1.17 59.34 1.17 0.00% 0.00 0.00
1.50 75.58 1.49 0.67% 0.01 0.00
98.50 4925.19 | 98.48 0.02% 0.02 0.00
98.83 4941.99 | 98.82 0.01% 0.01 0.00
99.17 4958.95 | 99.16 0.01% 0.01 0.00
99.50 4975.97 | 99.50 0.00% 0.00 0.00
99.83 4992.69 | 99.83 0.00% 0.00 0.00

(b) VSX: /FIXML/Order/OrdQty/@ Cash

Figure 5.11: Selectivity Logs (QTX_SEC)

address value, the result being sorted by the order date.

Optimizer Diagrams. The optimizer diagram suite for QTX19 is shown in Figures 5.12(a)
through 5.12(d). We see here that the plan diagram consists of 42 plans, and the area distribution
of these plans is highly skewed, with the largest plan occupying a little over 20% of the space
and the smallest taking 0.001%, the overall Gini co-efficient being as high as 0.89. Most of the
differences between the plans are subtle, arising out of their operator parameters, rather than the

plan tree structures themselves — for example, a common parameter difference between plans

CHAPTER 5. XML PLAN DIAGRAMS

82

CUSTOMERS jcusto merscustomearéddress id [0.0,

[20 40 80 0
ORDER forderitotal [0.0, 100.03@3200

(a) Plan Diagram

n Ll h

COMPILED CaRO[N]
"

(c) Card Diagram

100 WP

Paz

(L)

COMPILEDCOST(N)

L]
-
Oal g & *
Tag, P d%,@ﬁ
R T s

w®

(b) Cost Diagram

CUSTOMER & joustomars uste meraddress id [0.0,

100.0)@3m

r T T T T 1
a 20 40 L) 1] 100 .

ORDER Jorderitotal [0.0, 100.0}@300

o
.00

(d) Reduced Plan Diagram (A = 20%)

Figure 5.12: Optimizer Diagrams for XBench — QTX19 (X-Axis: ORDER /orderftotal, Y-Axis: /cus-

tomers/customer/address_id)

is attributable to the TMPCMPRS parameter, which is present in the TEMP and SORT operators.

When such parameter differences are ignored, the number of plans comes down sharply to just

10.

In Figure 5.12(a), plan P2 (dark blue) blends into the plan P1’s region (red) in a wave-like

pattern. The plan trees for P1 and P2 are shown in Figures 5.14(c) and 5.14(b), respectively. We

see here that the plans have different join orders — P1 computes ORDERXCUSTOMER whereas

P2 evaluates CUSTOMERXORDER - that is, they differ on which relation is outer and which is

CHAPTER 5. XML PLAN DIAGRAMS 83

#PSX /order/total ORDER ORDER ORDER
#PSX /customers/customer/address_id CUSTOMER
CUSTOMER CUSTOMER
#—H#
XQUERY
for $order in db2-fn:xmicolumn(“ORDER.ORDER”)/order,
$cust in db2-fn:xmlicolumn
(“CUSTOMER.CUSTOMER”)/customers/customer
where $order/customer_id = $cust/@id
and $order/total :varies and $cust/address_id :varies
order by $order/order_date
return
<Output>
{$order/@id}
{$order/order _status}
{$cust/address_id}
{$cust/ffirst_name}
{$cust/last_name}
{$cust/phone_number}
</Output>

Figure 5.13: XQuery template for XBench (QTX19)

inner in the join. In addition, there are also a few other structural differences between the plans.

Near and parallel to the Y-axis, we see a yellow vertical strip (plan P4) which is sprinkled
with light orange spots (plan P16). Plan P4 is shown in Figure 5.14(a) and differs from P16
only in the positioning of an NLJOIN-XSCAN pair.

The cost and card diagrams are shown in Figures 5.12(b) and 5.12(c), respectively. We ob-
serve here a simple affine relationship for both cost and cardinality with regard to the selectivity
values.

When reduction with A\ = 20% is applied to the plan diagram, the number of plans goes
down from 42 to 21, as shown in Figure 5.12(d). Interestingly, the wave pattern produced
by plan P2 remains intact — it is eliminated only when A is increased to 30%. However, it
is possible that the P2-associated wave pattern would have been removed at a lower A if our
reduction algorithm had supported partial swallowing, wherein a subset of the points associated
with a plan are replaced — currently, the reduction scheme used only supports total swallowing,

allowing a plan’s points to be replaced only if all its points are replaced.

CHAPTER 5. XML PLAN DIAGRAMS

84

(a) Plan P4 (Yellow)

(b) Plan P2 (Blue)

CHAPTER 5. XML PLAN DIAGRAMS

85

(c) Plan P1 (Red)

Figure 5.14: Plan Trees (QTX19)

CHAPTER 5. XML PLAN DIAGRAMS 86

Selectivity Logs. The first and last five entries of the selectivity logs corresponding to the
/order/total and /customers/customer/address_id VSXs are shown in Fig-
ures 5.15(a) and 5.15(b), respectively. The Expected selectivities for /order/total show
marginal differences with regard to the Predicate selectivities for the initial entries and, with
increasing selectivity, eventually become close to these values. However, Plan selectivity val-
ues remain close to the expected values only until the 50% mark, after which they saturate
and remain the same irrespective of the constant used, similar to our observations in the TPoX

environment.

Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 53.78 0.21 19.05% 0.04 0.21
0.50 117.30 0.74 32.43% 0.24 0.74
0.83 180.82 1.27 34.65% 0.44 1.27
1.17 244.35 1.80 35.00% 0.63 1.80
1.50 307.87 2.33 35.62% 0.83 2.33
98.50 11730.58 | 97.49 1.03% 1.01 50.00
98.83 11822.00 | 98.25 0.59% 0.58 50.00
99.17 11913.43 | 99.01 0.16% 0.16 50.00
99.50 12004.86 | 99.77 0.27% 0.27 50.00
99.83 12096.28 | 100.00 0.17% 0.17 50.00

(a) VSX: /order/total

Expected | Constant Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 962.47 0.17 0.00% 0.00 0.00
0.50 2887.42 0.50 0.00% 0.00 0.00
0.83 4812.37 0.84 1.19% 0.01 0.00
1.17 6737.33 1.17 0.00% 0.00 0.00
1.50 8662.28 1.50 0.00% 0.00 0.00
98.50 567229.38 | 98.48 0.02% 0.02 0.00
98.83 569177.96 | 98.60 0.23% 0.23 0.00
99.17 571126.54 | 98.60 0.58% 0.57 0.00
99.50 573075.12 | 98.60 0.91% 0.90 0.00
99.83 575023.70 | 98.60 1.25% 1.23 0.00

(b) VSX: /customers/customer/address_id

Figure 5.15: Selectivity Logs (QTX19)

CHAPTER 5. XML PLAN DIAGRAMS 87

On the other hand, for /customers/customer/address_id, the Expected selectivi-
ties match the Predicate selectivities with tolerable deviations for most of the selectivity range
— however, the Predicate selectivities for the last four entries (98.83% through 99.83%) remain
static at a value of 98.60%. This is in spite of close to 3000 records being present between the
constants associated with 98.83% and 99.83%. Further, our plan selectivity extraction mecha-
nism does not work even partially in this case, returning a value of 0% throughout the selectivity

range.

5.54 TPCHX

In our earlier work on SQL databases [52], we had constructed a variety of TPCH-based
parametrized SQL query templates. For example, QTS, the template shown in Figure 5.16(a),
is based on TPCH Query 5. This query lists the revenue volume done through local suppliers,
when the c_acctbal of the CUSTOMER relation and the s_acctbal of the SUPPLIER relation
are within their respective parametrized values. XQuery templates similar to these SQL tem-
plates were created for evaluating DB_XML — as a case in point, the QTXS template shown in

Figure 5.16(b) is similar to QTS.

Optimizer Diagrams. The suite of optimizer diagrams for QTXS is shown in Figures 5.17(a)
through 5.17(d). Further, for comparative purposes, we also show the plan diagram for the SQL
version, QTS, in Figure 5.17(e).

In Figure 5.17(a), we can see that there are 25 plans in the plan diagram with a wide variation
in the areas covered by these plans. The top three plans occupy more than 70% of the space,
and the last three occupy only 0.068% of the region — this skew in area coverage is captured
through the Gini coefficient, whose value is 0.78. When parameter differences between plan
trees are not considered, the number of plans reduces to 16 in the plan diagram.

The plan diagram is also characterized by a variety of intricate patterns, and has several
regions where many plans intermingle — the most prominent example is found in the upper
half region of the plan diagram where vertical bands of Plan P1 (red), Plan P2 (blue), Plan P3
(brown) and Plan P6 (orange) alternate with one another in a convoluted manner. Yet another

example is the intermingling of plan P1 (red), plan P3 (brown), plan P5 (purple) and plan P9
p ghng ot p P Y purp P

CHAPTER 5. XML PLAN DIAGRAMS

88

select
n_name, sum(l_extendedprice * (1 - |_discount)) as revenue
from
customer, orders, lineitem, supplier, nation, region
where
c_custkey = o_custkey and |_orderkey = o0_orderkey and
|_suppkey = s_suppkey and c_nationkey = s_nationkey and
s_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name = 'ASIA’ and o_orderdate >='1994-01-01’
and o_orderdate < '1995-01-01" and
c_acctbal :varies and s_acctbal :varies
group by n_name
order by revenue desc

(a) SQL template for TPCH (QTS5)

#VSX /Suppliers/Supplier/AcctBal SUPPLIERS SUPPLIERS SUPPLIERS
#VSX /Customers/Customer/AcctBal CUSTOMERS
CUSTOMERS CUSTOMERS
#—#
XQUERY for $reg in db2-fn:xmicolumn(“REGIONS.REGIONS”)
/Regions/Region[Name=" AFRICA”]
for $nat in db2-fn:xmlicolumn(“NATIONS.NATIONS”)
/Nations/Nation[xs:double(RegionKey)=$reg/@key/xs:double(.)]
let $sup = db2-fn:xmlcolumn(“SUPPLIERS.SUPPLIERS”)/Suppliers
/Supplier[(xs:double(NationKey)=$nat/@key/xs:double(.))
and (AcctBal :varies)],
$cust := db2-fn:xmlcolumn(“CUSTOMERS.CUSTOMERS”)/Customers
/Customer](xs:double(NationKey)=$sup/NationKey/xs:double(.))
and (AcctBal :varies)],
$line := db2-fn:xmlcolumn(“ORDERS.ORDERS”)/Orders/Order
[xs:double(CustKey) = $cust/@key/xs:double(.)
and OrderDate[. > "1994-01-01” and . < ”1997-01-01"]
/Lineltem[xs:double(SuppKey) = $sup/@Key/xs:double(.)]
let $summand :=(for $x in $line
return $x/ExtendedPrice*(1 -$x/Discount))
order by sum($summand)
return
<result> {$nat/@key} {$nat/Name}
<revenue> {sum($summand)} </revenue>
</result>

(b) XQuery template for TPCH_X (QTXS)

Figure 5.16: Query Templates

CHAPTER 5. XML PLAN DIAGRAMS 89

Gini Coeff. 0.79

| T
lP.‘! 2255
-

w
m
$
=
a
E
§
o P9 <
wn
E Bes w0 3
o Br e 8
v =
EX=] o
08 | T I
x® o
48
(=]
oo
: r T T T T 1 .0
ag) 2 40 8 80 100 P24 0002 il
= SUPPLIERS /Suppliers/Supplier/AcctBal .Pﬂ 0.001
[0.0, 100.0] @300
(a) Plan Diagram (b) Cost Diagram
— 100+
gé Gini Coeff. 0.1
3 | EREE)
T 801
@ P2 3821
E .
8 P4 10800
_— : -
z o B oo
2 [
ge : | O
(=]
d s - 7 B o
= Oa
8 _ x®
s 25 201
- 08
= “y -
2)
SU%: - - 0S o
log 1099 s"supp‘. & T T T T T |
U @30 orsisyp,,, ¥ s ‘?p@p 0 20 40 60 &0 100
SrAcctgy oédgg\@ SUPPLIERS /Suppliers/Supplier/AcctBal
B [0.0, 100.0] @300
(c) Card Diagram (d) Reduced Plan Diagram (A = 20%)
100
Gini Con .00
B aw=
% 80 B =
= B e
8 Moo20m
g2 B s
g:' L
5 w0 | LI
'ﬂl A im
E L -]
= T
o
a
o B o
Y 20 40 80 80 ool o1
CUSTOMER C_ACCTEAL [0.0, 100.0k@300 -

(e) Plan Diagram (QT5)

Figure 5.17: Optimizer Diagrams for TPCH_X— QTXS (x-Axis: SUPPLIERS /Suppliers/Supplier/AcctBal, Y-Axis:
CUSTOMERS /Customers/Customer/AcctBal

CHAPTER 5. XML PLAN DIAGRAMS 90

(turquoise) in the lower half of the diagram.

Let us denote the XML_Rs in the XQuery template of Figure 5.16(b), namely REGIONS,
NATIONS, SUPPLIERS, CUSTOMERS and ORDERS, as R, N, S, C and O, respectively. When we
drill down into the plan internals, we find that there are only three different join orders in the
whole plan space! Plans P1, P3, P13 and P17 have the left-deep join order (((RXN)XS)XC)XO,
plans P2, PS5, P6, P9, P10, P11, P14, P15 and P20 have the bushy join order ((RXN)X(SXC))XO
and plans P4, P7, P8, P12, P16, P18, P19 and P21-P25 also have a bushy join order which is
((RXIN)XS)MX(CcXO). The explicit trees for these plans are too large to include here, and have
therefore been made available at our project URL [53].

Turning our attention to the Cost Diagram (Figure 5.17(b)), we observe that the cost steadily
increases with the increase in selectivity of the CUSTOMERS XML _R. The effect of the SUP-
PLIERS relation seems mild in comparison, perhaps because the CUSTOMERS relation is about
15 times the size of the SUPPLIERS relation. We also see that the cost plateaus out when ap-
proximately 50% selectivity is reached in the VSX dimensions. To analyze this behavior, we
looked into the annotated plan trees at different points in the selectivity space. Annotated plan
trees at roughly 40%, 60% and 98% selectivities in both dimensions are partially shown in Fig-
ures 5.18(a), 5.18(b) and 5.18(c). The total cost of these plans being 4.87e5, 6.08e5 and 6.10e5,
respectively, it can be inferred by looking at these subtrees that the overall costs are dominated
by the NLJOIN operator in the CUSTOMERS subtree. For a selectivity increase selectivity from
40% to 60%, a cost increase of 1.12e5 is observed in the NLJOIN operator corresponding to
the CUSTOMERS relation. However, on moving from 60% to 98%, the cost goes up by merely
0.01e5. It appears puzzling that the NLJOIN cost does not scale up at least linearly with increas-
ing selectivity and this issue needs further investigation.

Moving on to the cardinality diagram (Figure 5.17(c)), it shows a constant result set size of
1 throughout the space since the query computes an aggregate operation (sum) in the final step.

Now, when the plan diagram is subject to A = 20% reduction, the original 25 plans come
down to 6, as shown in Figure 5.17(d). Further, several of the intricate patterns are eliminated
— for example, a part of the lower half region of rapidly alternating plans is singly dissolved by

the red plan (Plan P1).

CHAPTER 5. XML PLAN DIAGRAMS

91

SUPP_ACCTBAL | Card: 3.82E3 |

SUPP_ACCTBAL | Card: 5.00E3
SUPPLIERS |

CUST_ACCTBAL | Card: 6.02E4

CUST_ACCTBAL | Card: 7.50E4 |

CUSTOMERS ‘

(b) 60% Selectivity

CHAPTER 5. XML PLAN DIAGRAMS 92

1 7

NL.JOIN | Cost: 3.81E4 Card: 9.21E1 | NLJOIN | Cost: 5.71E5 Card: 1.44E3 |

+ = * o
SUPP_ACCTBAL | Card: 5.00E3

CUST_ACCTBAL | Card: 7.50E4

CUSTOMERS
SUPPLIERS

(c) 98% Selectivity

Figure 5.18: Annotated Plan trees — Partial (QTXS5)

Finally, when we compare the XML and SQL-based plan diagrams in Figures 5.17(a)
and 5.17(e), respectively, we notice that the XML diagram is significantly more complex in
comparison in terms of their spatial layouts even though the numbers of plans is the SQL-based
diagram is more than twice the number found in the XML diagram. This certainly merits further

investigation.

Selectivity Logs. The selectivity logs for the /Suppliers/Supplier/AcctBal and
/Customers/Customer/AcctBal VSXs are shown in Figures 5.19(a) and 5.19(b),
respectively — specifically, the first five and last five entries are extracted and shown
here. The Expected selectivities for /Suppliers/Supplier/AcctBal show tolera-
ble differences with regard to the Predicate selectivities for the initial entries and, with
increasing selectivity, eventually become close to these values. On the other hand, for

/Customers/Customer/AcctBal, the Expected selectivities match the Predicate selec-

CHAPTER 5. XML PLAN DIAGRAMS 93

tivities with tolerable deviations for most of the selectivity range — however, for the last eight
Expected selectivity entries (97.50% through 99.83%), the Predicate selectivity stays put at
97.24%. This is in spite of the fact that there are more than 3500 records between the constants
associated with 97.50% and 99.83%. Again, this is an issue that needs to be investigated further.

Finally, the Plan selectivity values for both the VSXs show behavior similar to the previous

cases — the selectivity values saturate at the 50% mark.

5.54.1 Query Complexity Problem

Apart from the above issue with plan selectivities, we also ran into another problem when we
evaluated the XQuery template QTX2 shown in Figure 5.20, which is based on Query 2 of
TPCH. For this template, the plan diagram features only two very similar plans, the difference
being a slight variation in their join orders, with the first NLJOIN operator, which combines
the SUPPLIERS and PARTS relations, having SUPPLIERS as the outer relation in P1 (red), and
PARTS as the outer relation in P2 (blue). It is certainly in the realm of possibility that this plan
diagram genuinely features only a few plans, but we also think that the message issued by the
DB _XML optimizer, warning us that the performance of the query might be suboptimal, may
have impacted the observed behavior. This warning persisted even when the optimization level
was lowered and the heap space was sufficiently increased (upto 3GB). However, when the
template was simplified by removing some constructs, the message went away and the resulting

diagram in fact featured quite a few more plans than those seen with QTX2.

5.5.5 Selectivity Computation Problems

As pointed out earlier, selectivity estimation in DB_XML seemed to be aberrant when the con-
stants used in the predicate were negative numbers or of the string data type. An example for

both of them is presented in this section.

5.5.5.1 Case: Negative Numbers

An extract of the Selectivity log in the case of negative numbers is given in Figure 5.21(a). The

XQuery template for which the selectivity log was obtained is shown in Figure 5.22(a) and this

CHAPTER 5. XML PLAN DIAGRAMS

94

Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 19.70 0.19 10.52% 0.02 0.19
0.50 56.50 0.52 3.84% 0.02 0.52
0.83 93.29 0.86 3.48% 0.03 0.86
1.17 130.09 1.19 1.68% 0.02 1.19
1.50 166.88 1.53 1.96% 0.03 1.53
98.50 10842.98 | 98.57 0.07% 0.07 50.00
98.83 10871.64 | 98.83 0.00% 0.00 50.00
99.17 10905.05 | 99.13 0.04% 0.04 50.00
99.50 10947.84 | 99.52 0.02% 0.02 50.00
99.83 10983.63 | 99.85 0.01% 0.02 50.00
(a) VSX: /Suppliers/Supplier/AcctBal

Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 17.43 0.16 6.25% 0.01 0.16
0.50 52.98 0.48 4.16% 0.02 0.48
0.83 90.02 0.82 1.21% 0.01 0.82
1.17 126.47 1.15 0.86% 0.02 1.15
1.50 163.59 1.49 0.67% 0.01 1.49
98.50 10836.41 | 97.24 1.29% 1.26 50.00
98.83 10871.71 | 97.24 1.63% 1.59 50.00
99.17 10907.94 | 97.24 1.98% 1.93 50.00
99.50 10945.37 | 97.24 2.32% 2.26 50.00
99.83 10981.93 | 97.24 2.66% 2.59 50.00

(b) VSX: /Customers/Customer/AcctBal

Figure 5.19: Selectivity Logs (QTXS)

CHAPTER 5. XML PLAN DIAGRAMS 95

#VSX /Parts/Part/RetailPrice PARTS PART1 PARTS
#VSX /Parts/Part/PartSupp/SupplyCost PARTS PART2 PARTS
#—#
XQUERY
for $part in db2-fn:xmlcolumn("PARTS.PARTS”)/Parts/Part
[RetailPrice :varies])/PartSupp,
$sup in db2-fn:xmlcolumn(”"SUPPLIERS.SUPPLIERS”)/Suppliers/Supplier,
$nat in db2-fn:xmlcolumn("NATIONS.NATIONS”)/Nations/Nation,
$reg in db2-fn:xmicolumn(’REGIONS.REGIONS”)/Regions/Region
where xs:double($sup/@Key)=xs:double($part/Suppkey)
and $sup/NationKey/xs:double(.)=$nat/@key/xs:double(.)
and $nat/RegionKey/xs:double(.)=$reg/@key/xs:double(.)
and $reg/Name =" EUROPE”
and $part/SupplyCost <=(let $reg := db2-fn:xmlcolumn("REGIONS.REGIONS”)
/Regions/Region[Name=" EUROPE],
$nat := db2-fn:xmlcolumn("NATIONS.NATIONS”)
/Nations/Nation[xs:double(RegionKey)=$reg/@key/xs:double(.)],
$sup := db2-fn:xmlicolumn("SUPPLIERS.SUPPLIERS”)
/Suppliers/Supplier[$nat/@key/xs:double(.) = xs:double(NationKey)],
$partsupp := db2-fn:xmicolumn("PARTS.PARTS”)
/Parts/Part[xs:double(PartKey)=$part/../PartKey/xs:double(.)]/PartSupp[
($sup/@Key/xs:double(.)=xs:double(Suppkey)) and (SupplyCost :varies)]
return min($partsupp/SupplyCost))
order by $sup/AcctBal descending, $nat/Name, $sup/Name, $part/../PartKey
return <final>
{$sup/AcctBal}
{$sup/Name}
{$nat/Name}
{$part/../Partkey}
{$part/../Mfgr}
{$part/SupplyCost}
{$sup/Address}
{$sup/Phone}
{$sup/Comment}
</final>

Figure 5.20: XQuery template for TPCH X (QTX2)

template corresponds to the TPCH_X database environment. It can be seen that in the Predicate
Selectivity column, a constant of 0.26 appears in the first 5 rows. In fact this appears till the
numbers in the Constant column of the Selectivity log are in the domain of negative values,

and, changes to correct estimation values when the positive domain is entered. This seems to

CHAPTER 5. XML PLAN DIAGRAMS

96

Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 -968.17 | 0.26 34.61% 0.09 0.50
0.50 -941.68 | 0.26 92.30% 0.24 0.50
0.83 -906.37 | 0.26 219.23% | 0.57 0.50
1.17 -871.05 | 0.26 350.00% | 0.91 0.50
1.50 -835.74 | 0.26 476.92% 1.24 0.50
98.50 9836.67 | 98.89 0.39% 0.39 0.50
98.83 9872.95 | 99.22 0.39% 0.39 0.50
99.17 9909.24 | 99.55 0.38% 0.38 0.50
99.50 9945.52 | 100.00 0.50% 0.50 0.50
99.83 9981.80 | 100.00 0.17% 0.17 0.50

(a) Selectivity Log: Negative Numbers
Expected | Constant | Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Selectivity
0.17 18.55 0.17 0.00% 0.00 0.17
0.50 55.21 0.50 0.00% 0.00 0.50
0.83 91.87 0.84 1.00% 0.01 0.84
1.17 128.53 1.17 0.00% 0.00 1.17
1.50 165.19 1.50 0.00% 0.00 1.50
98.50 10832.62 | 98.48 0.02% 0.02 50.00
98.83 10866.25 | 98.78 0.05% 0.05 50.00
99.17 10904.91 | 99.14 0.03% 0.03 50.00
99.50 10942.93 | 99.48 0.02% 0.02 50.00
99.83 10980.96 | 99.83 0.00% 0.00 50.00

(b) Selectivity Log: Positive Values

Expected | Constant Predicate | Relative Absolute | Plan
Selectivity Selectivity | Difference | Difference | Sel.
0.17 “AAKSOCX” | 0.01 1600.00% | 0.16 0.01
0.50 “ABGOBJVG” | 0.03 1566.66% | 0.47 0.03
0.83 “ABXSKUN” | 0.03 2666.66% | 0.80 0.03
1.17 “ACGYEIN” 0.04 2825.00% | 1.13 0.04
1.50 “ACVFJ” 0.04 3650.00% | 1.46 0.04
98.50 “WMQFUMK” | 87.90 12.05% 10.60 0.00
98.83 “WPOUFSO” | 87.94 12.38% 10.89 0.00
99.17 “WTDAICW” | 88.00 12.69% 11.17 0.00
99.50 “XMATHH” 91.11 9.20% 8.39 0.00
99.83 “ZAUTV” 91.11 9.57% 8.72 0.00

(c) Selectivity Log: String Data Type

Figure 5.21: Selectivity Log Errors

CHAPTER 5. XML PLAN DIAGRAMS 97

XQUERY
for $x in db2-fn:xmlcolumn(“CUSTOMERS.CUSTOMERS”)
/Customers/Customer/AcctBal
where $x :varies
return $x

(a) XQuery template: Negative Numbers

XQUERY
declare default element namespace
“http://www.fixprotocol.org/FIXML-4-4";
declare namespace
c="http://tpox-benchmark.com/custacc”;

for $x in db2-fn:xmlcolumn(“ORDER.ODOC”)
/FIXML/Order/Instrmt/@Sym

where $x :varies

return $x

(b) XQuery template: String Data Type

Figure 5.22: XQuery Templates for Selectivity error

be an error since there are quite a few elements in the negative domain. This fact is confirmed
by the observation that the errors in Predicate Selectivity estimation disappeared when the data
values were linearly translated without affecting their distribution (a constant was added to all
the data values, so that all values reside only in the positive domain). The Selectivity log for
the linearly translated data is shown in Figure 5.21(b). Data sets corresponding to the case of
negative numbers and to the linearly translated version can be downloaded from [53]. In fact,
in a test scenario, where all the values of a certain VSX were situated in the negative domain,
erroneous selectivity estimation was observed throughout the range. As a case in point, 100%

selectivity was erroneously reported as 0.0%.

5.5.5.2 Case: String Data Type

An extract of the Selectivity log for this case and its corresponding XQuery template are shown
in Figures 5.21(c) and 5.22(b), respectively. This particular scenario was stumbled upon in the

TPoX database environment. In this case, the Predicate selectivity estimation values, as seen

CHAPTER 5. XML PLAN DIAGRAMS 98

Benchmark | No of | No. of
plans | join-orders
TPoX 14 2

XBench 42 2

TPCH_X 25 3

Table 5.2: Join Order Statistics for XML plan diagrams

in the Predicate Selectivity column in Figure 5.21(c) were explicitly verified with the statistical

summaries obtained through a server side utility and were found to be inconsistent.

5.6 Structure-based Reduction of XML Plan Diagrams

We have discussed in detail the various features of the XML plan diagrams, including the join
orders present, in the previous sections. Here, we present in brief, the results obtained when
structure-based reduction techniques of Chapter 3 are applied to these XML plans diagrams
Table 5.2 lists the results obtained for all three benchmarks which were used for the study.
We can see that in the case TPoX and XBench, where the QTs have only 2 relations, both
possible join orders are present in the plan diagram. It is surprising is that there are 42 plans
with just 2 relations. In the case of TPCH_X, only 3 different join orders are present with the
plan cardinality being 25. This join order cardinality is rather low in comparison to its SQL

counterpart, which had 18 join orders among 54 plans in the plan diagram.

5.7 Semantic Coloring of XML Plan Diagrams

We present in this section semantically colored XML plan diagrams using MDS techniques
elaborated in the previous chapter.

A plot of the frequency vs Jaccard distances for all these three benchmarks is given in Fig-
ure 5.23. Figures 5.24(a), 5.24(b) and 5.24(c) are the MDS colored plan diagrams for the TPoX,
XBench and TPCH_X benchmarks’ XQuery templates given in Figures 5.8, 5.13 and 5.16(b),

respectively. Finally, the statistics regarding the quality of coloring obtained in all three bench-

CHAPTER 5. XML PLAN DIAGRAMS 99

B TPoX
B ¥Bench
TPCH_X
0.85 0595 1.05

Figure 5.23: Jaccard Distribution in XML Plan Diagrams

350

300
250
200
150
100 -
50 -
0 i
E 0.15 0.25 0.35 0.45 0.65

0.0 0.55 0.75

No. of plan pairs

Jaccard Distance

marks is tabulated in Table 5.3.

If we look at the distribution of Jaccard distances in Figure 5.23, we can see that the plot
for the XBench benchmark has highly conspicuous peaks across its dissimilarity range. The
XBench benchmark has the highest number of plans, and the highest maximum Jaccard distance
(1.066) among the three benchmarks. TPCH_X, on the other hand has the lowest maximum
Jaccard distance of 0.48. The plots for TPoX and XBench have breaks in between, like in the
range of 0.15-0.25, with no pair of plans having dissimilarities in this range.

The coloring of the plan diagram of TPCH_X reflects its short dissimilarity range, with
similar colors throughout the diagram. The biggest color distance is between plans P14 and
P21 (0.53), which also have the maximum Jaccard dissimilarity between them (0.48). The
location of these plans are hard to point out since they occupy very less area. In the case of
TPoX, it is easy to observe that more than 96% of the plan diagram is occupied by the top two
plans which are colored green and black.

In the plan diagram corresponding to XBench, the maximum Jaccard dissimilarity is be-

CHAPTER 5. XML PLAN DIAGRAMS

100

ORDER SFTMUICrerOrd bWl Cash [0.0,100.08D 300

Gini Coeff: 0.39

B 75
B 20
B o
e o788
B oo
|
e oas
e o o
Wz oo
: | EERE

= -

20 40 60 L 160
CUSTACC.i6:C ountuleActount/cBal kingBalance [0.0.100.04@ 300 .P14 0.001
(a) TPoX
(=
2 Gini Coeff; 0.89
2
g P1 20414
S 19.142
s ‘%\
5 . 9.440
F I mw
| |||| I||I||| [l ?.304
€ Ll |Ilﬂ il
E r ‘ | ‘ 7.269
3 m 6.538
g
E 5.269
"
E . . .
E . P40 0.004
3 , : : : : P41 0.001
) 20 a0 80 80 100
ORDERJordertotal (0.0,100.0 300 . P42 0.001
(b) XBench
Gini Coeff: 0.79
. P1 35.660
. P2 22959

GUSTOMERS ACustom ers/Customen/AcctBal [0.0,160.0)@ 300

. P3 11.118
. P4 9.383
. P5 7.601
. P& 3.499
. P7 2.883

L] L
. P23 0.004

] 20 40

(c) TPCH.X

T
60 100
SUPPLIERS.Suppliers SupplierAcciBal (0.0 100.0}@ 300 . P25 0.001

, . P24 0.002

Figure 5.24: Semantically Colored XML Plan Diagrams

CHAPTER 5. XML PLAN DIAGRAMS 101
Benchmark | No of | % of point pairs | % of plan pairs | Lowest | Highest | Objective Objective
plans | treated well treated well Ratio ratio with weights | w/o weights
TPoX 14 99.97% 95.6% 1.32 1.34 1.16E —5 1.7E -3
XBench 42 98.95% 85.5% 0.09 314.17 | 13E -3 69EF — 3
TPCH_X 25 98.45% 92.0% 0.55 34.65 42F —4 1.3E -3

Table 5.3: Statistics for XML-QTs with weights

tween plans P2 and P8, corresponding to the dark-green sine wave like pattern in middle of

the plan diagram and the bottom purple horizontal patch, respectively. The maximum color

distance is between plans P9 and P42 (1.09), which also happen to be another pair having the

maximum Jaccard dissimilarity of 1.06 in the diagram.

Finally, the statistics for the coloring obtained is as given in Table 5.3. We have achieved

a very low objective in all three cases. Also, in the third column - ‘% of point pairs treated

well’, we can see that more than 90% of the point pairs are treated well in all three cases. Even

the ‘% of plan pairs treated well’ given in the fourth column, shows that a majority of the plan

pairs are colored well in all three benchmarks. Thus, the coloring obtained reflects the plan

dissimilarities with satisfactory visual accuracy.

Chapter 6

Conclusions

We have investigated in this thesis, three new semantic features of plan diagrams, a popular and
powerful tool used in the analysis of modern database query optimizers. As the first feature, we
introduced and discussed a structure-based reduction scheme, as an alternative to the cost-based
reduction strategies that had been previously proposed in the literature. In this new reduction
scheme, we coalesced all plans with the same join order into one entity, leaving the diagram
with as many colors as the number of unique join orders. Structure-based reduction has useful
applications in join order caching, when the join order cardinalities of plan diagrams are low or
moderate. With join order caching, we always provide the best plan as would have been chosen
by the optimizer, in far less time than required for fresh optimization. Additionally, we provide
stable plan choices, i.e., we always choose the same best plan for a given query point, which is
an important requirement in industrial settings. Also, when values of certain parameters cannot
be predicted at compile time, but can be known at run-time, join order caching can be used as
part of a run-time plan refinement strategy to provide better plan choices. Experimental results
obtained by employing structure-based reduction on a suite of plan diagrams, in industrial-
strength environments, showed that many plan diagrams feature low and moderate join order
cardinalities, thus making join order caching an immediate potent application.

To facilitate join order caching even for plan diagrams with high join order cardinalities,
we presented the SRE (Small Relation Elimination) heuristic, which brings down the join order

cardinalities by removing smaller sized relations from the join orders. While the plan optimality

102

CHAPTER 6. CONCLUSIONS 103

is no longer guaranteed with the heuristic, we experimentally evaluated the heuristic on the
same suite of plan diagrams and observed that the per-query cost-increase was less than 30%
for over 90% of the query locations in the plan diagram and even for the remaining 10%, the
cost-increase was within acceptable thresholds. Also, we studied the occurrence of common
join orders in the plan diagrams produced by different commercial engines. We found the
intersection to be surprisingly sparse, and in fact disjoint in most cases.

Structure-based reduction provides a bird’s eye view of the differences between plans in
the plan diagram. In our second piece of work, we investigated a deeper comparison between
plans, based on their complete plan tree structures. Specifically, we developed techniques to
color plan diagrams in a semantically richer way, so that the differences in colors between any
pair of plans, reflected the differences found in their structures. With this new approach to col-
oring, the plan diagram itself provides a first-cut reflection of the plan-tree differences without
having to go through the details of every plan. Towards achieving this goal, we first described
methods to quantitatively assign differences between plans and then developed techniques to
transform these differences to color space. Specifically, we adapted Kruskal’s Iterative Steep-
est Descent (ISD) method, a multidimensional scaling (MDS) technique, to solve our problem.
The adaption involved placing algebraic constraints during the scaling process to accommodate
geometric restrictions inherent in the output color space. We provided a detailed experimental
evaluation by coloring a suite of plan diagrams using the adapted ISD technique. We found the
quality of coloring obtained to be visually satisfactory with more than 85% of the point pairs
being treated well (within 30% error threshold) in most plan diagrams. Also, we observed that
plans, which are structurally similar to each other generally occupy spaces away from the axes.

As our last semantic feature, we re-engineered the plan diagram notion to the flexibly
structured world of XML. We elaborated on the various complexities involved in achieving the
goal, which included determination of granularity at which statistics are to be collected (node
level or document level) and identifying the validity constraints for an XQuery template. We
presented representative plan diagrams for a variety of XML data benchmarks — TPoX, XBench
and TPCH_X (XML version of TPC-H benchmark) — on an industrial-strength commercial

database engine. The results indicate that XML plan diagrams often feature complicated plan

CHAPTER 6. CONCLUSIONS 104

geometries that remain in the plan diagram even after both cost and structure-based reductions.
In fact, for both TPoX and TPCH_X, a very high cost-increase threshold was required to
remove the complex plan geometries (to obtain a “cleaner” plan diagram) using cost-based
reduction. With respect to applying structure-based reduction on XML plan diagrams, we
found the resulting join order cardinalities to be very sparse (in single digits), even when the
query templates contained more than 5 relations. This fact along with the observation that
more than half of the plans were structurally very similar to each other were reflected in the

semantically colored versions of the XML plan diagrams.

In summary, we explored in this thesis a variety of semantic features in plan diagrams, which

can aid in the informed analysis and understanding of query optimizer behavior.

6.1 Future Work

1. The empirical performance of the current plan tree differencing metric suits the semantic
coloring application for which it is used. It would be interesting and useful to come up
with a theoretically sound formulation of a plan tree differencing metric which takes into

account ‘“database semantics”.

2. As part of the adaption of Kruskal’s Iterative Steepest Descent, we enforce the required
geometric constraints before moving the vertices in each iteration. However, convergence
guarantees are provided when such enforcements are done after moving the vertices in
each iteration. This alternative approach could be employed to color plan diagrams and

compared with the previous approach.

3. We investigated in this thesis, a new coloring scheme for plan diagrams, where the differ-
ences in colors between any pair of plans, reflected the differences found in their struc-
tures. A useful alternative would be to color in a visual friendly manner, wherein the plan
colors are assigned to maximize their visual separation from their neighbours. That is,
the goal is to solve a graph coloring problem wherein the objective is to match proximity

in selectivity space to distance in (normalized) RGB color space.

CHAPTER 6. CONCLUSIONS 105

4. The semantic coloring technique explored in this thesis works on ab initio colorings,
where the coloring for all plans is done from scratch. However, in practice, given a pair
of plan diagrams, it is often found useful to color the plans such that matching plans have
identical colors in both diagrams. We intend to devise an efficient algorithm for organi-
cally integrating the color consistency requirement while retaining good visualization of

the semantic differences.

5. Currently, VSX predicates are defined only on fully enumerated paths. In our future work,
we propose to provide support for predicates that include wild cards in their element

paths.

6. Our analysis of XML plan diagrams was on the DB_XML engine, an early supporter of
storing and querying XML data. In recent times, other engines have also extended their
support to XML. It would be insightful to obtain and analyze XML plan diagrams on

these engines as well.

Bibliography

[1] S. Abiteboul, D. Quass, J. Mchugh, J. Widom and J. Wiener, “The Lorel Query Lan-
guage for Semistructured Data”, Intl. Journal on Digital Libraries 1(1), September

1997.

[2] A. Aboulnaga, A. Alameldeen and J. Naughton, “Estimating the Selectivity of XML
Path Expressions for Internet Scale Applications”, Proc. of 27th Intl. Conf. on Very
Large Data Bases (VLDB), September 2001.

[3] G. Antonshenkov, “Dynamic Query Optimization in Rdb/VMS”, Proc. of 9th IEEE
Intl. Conf. on Data Engineering (ICDE), April 1993.

[4] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. Lohman, D. Simmen, M. Wang and
C. Zhang, “Cost-based optimization in DB2 XML”, IBM Systems Journal 45(2), Jan-
uary 2006.

[5] R. Bamford, V. Borkar, M. Brantner, P. Fischer, D. Florescu, D. Graf, D. Kossmann,
T. Kraska, D. Muresan, S. Nasoil and M. Zacharioudakis, “XQuery Reloaded”, Proc.
of the VLDB Endowment (PVLDB) 2(2), August 2009.

[6] D. Barbosa, A. Mendelzon, J. Keenleyside and K. Lyons, “ToXgene: An extensible
template-based data generator for XML”, Proc. of 5th Intl. Workshop on the Web and
Databases (WebDB), June 2002.

[7] 1. Borg and P. Groenen, Modern Multidimensional Scaling: theory and applications”
(2nd ed.), Springer, 2005.

106

CHAPTER 6. CONCLUSIONS 107

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Chamberlin, J. Robie and D. Florescu, “An XML Query Language for Heteroge-
neous Data Source”, WebDB (Informal Proceedings), May 2000.

S. Chaudhuri, “An Overview of Query Optimization in Relational Systems”, Proc. of
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of Database
Systems (PODS), June 1998.

Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”,

Proc. of 33rd Intl. Conf. on Very Large Data Bases (VLDB), September 2007.

Pooja N. Darera, “Reduction of Query Optimizer Plan Diagrams™, Master’s Thesis,
Dept. of SERC, Indian Institute of Science, http://dsl.serc.iisc.ernet.

in/publications/thesis/pooja.pdf, August 2007.

G. Das and J. Haritsa, “Robust Heuristics for Scalable Optimization of Complex SQL
Queries”, Proc. of 23rd IEEE Intl. Conf. on Data Engineering (ICDE), April 2007.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu, “XML-QL: A query
language for XML”, Proc. of 8th Intl. World Wide Web Conf., May 1999.

A. Dey, S. Bhaumik, Harish D. and J. Haritsa, “Efficiently Approximating Query Op-
timizer Plan Diagrams”, Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB),
August 2008.

P. Gassner, G. Lohman and K. Schiefer, “Query optimization in the IBM DB2 fam-
ily”, IEEE Data Engineering Bulletin 16(4), December 1993.

K. Geng, G. Dobbie and Y. Meng, “Survey of XML Semantic Query Optimization”,
Proc. of 2009 Fourth Intl. Conf. on Internet Computing for Science and Engineering
(ICICSE), December 2009.

A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selection based on Query Clus-
tering”, Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB), August 2002.

G. Gou and R. Chirkova, “Efficiently Querying Large XML Data Repositories: A
Survey”, IEEE Trans. on Knowledge and Data Engineering 19(10), October 2007.

CHAPTER 6. CONCLUSIONS 108

[19] G. Gou and R. Chirkova, “XML Query Processing: A Survey”, ftp://ftp.
ncsu.edu/pub/tech/2005/TR-2005-22.pdf, May 2005.

[20] G. Graefe, “Query Evaluation Techniques for Large Databases”’, ACM Computing
Surveys 25(2), June 1993.

[21] J. Haritsa, “Query Optimizer Plan Diagrams: Production, Reduction and Applica-
tions”, Proc. of 27rd IEEE Intl. Conf. on Data Engineering (ICDE), April 2011.

[22] S. Haw, and G. Rao, “Query Optimization Techniques for XML Databases”, Inter-
national Journal of Information Technology 2(1), 2005.

[23] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piece-
wise Linear Cost Functions”, Proc. of 28th Intl. Conf. on Very Large Data Bases
(VLDB), August 2002.

[24] Y. loannidis, “Query Optimization”, ACM Computing Surveys 28(1), March 1996.

[25] Y. Ioannidis, R. Ng, K. Shim and T. Sellis, ‘“Parametric Query Optimization”, Proc.
of 18th Intl. Conf. on Very Large Data Bases (VLDB), August 1992.

[26] H. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan, A. Nierman, S. Paparizos,
J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu, “TIMBER: A Native
XML Database”, The VLDB Journal 11(4), December 2002.

[27] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal
Query Execution Plans”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
May 1998.

[28] D. Kossmann and K. Stocker, “Iterative dynamic programming: a new class of query

optimization algorithms”, ACM Trans. on Database Systems 25(1), March 2000.

[29] J. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis”, Psychometrika 29, 1964.

CHAPTER 6. CONCLUSIONS 109

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

J. Kruskal, “Nonmetric multidimensional scaling: A numerical method”, Psychome-

trika 29, 1964.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass and J. Widom, “Lore: A
Database Management System for Semistructured Data”, ACM SIGMOD Record
26(3), September 1997.

J. McHugh and J. Widom, “Query Optimization for XML”, Proc. of 25th Intl. Con.
on Very Large Data Bases (VLDB), September 1999.

P. Michiels, “XQuery Optimization”, Proc. of VLDB 2003 PhD Workshop, September
2003.

G. Moerkotte and T. Neumann, “Analysis of Two Existing and One New Dynamic
Programming Algorithm for the Generation of Optimal Bushy Join Trees with-
out Cross Products”, Proc. of 32nd Intl. Conf. on Very Large Data Bases (VLDB),
September 2006.

M. Nicola, I. Kogan and B. Schiefer, “An XML Transaction Processing Benchmark
(TPoX)”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June 2007.

M. Nicola and B. Linden, “Native XML support in DB2 universal database”, Proc.
of 31st Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

K. Ono and G. Lohman, “Measuring the complexity of join enumeration in query
optimization”, Proc. of 16th Intl. Conf. on Very Large Data Bases (VLDB), August
1990.

N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”,
Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

F. Reiss and T. Kanungo, “A Characterization of the Sensitivity of Query Optimiza-
tion to Storage Access Cost Parameters”, Proc. of ACM SIGMOD lIntl. Conf. on Man-
agement of Data, June 2003.

CHAPTER 6. CONCLUSIONS 110

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

P. Roy, S. Seshadri, S. Sudarshan and S. Bhobe, “Efficient and Extensible Algorithms
for Multi Query Optimization”, Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, May 2000.

A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu and R. Busse, “XMark:
A Benchmark for XML Data Management”, Proc. of 28th Intl. Conf. on Very Large
Data Bases (VLDB), August 2002.

P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Se-
lection in a Relational Database System”, Proc. of ACM SIGMOD Intl. Conf. on

Management of Data, June 1979.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt and J. Naughton, “Re-
lational Databases for Querying XML Documents: Limitations and Opportunities”,

Proc. of 25th Intl. Conf. on Very Large Data Bases (VLDB), September 1999.

A. Silberschatz, H. Korth and S. Sudarshan, Database System Concepts, McGraw-
Hill , 1997.

M. Simalango, “XML Query Processing and Query Languages: A Survey”, Comput-
ing Research Repository (CORR) abs/1010.1, December 2010.

M. Steyvers, “Multidimensional Scaling”, Encyclopedia of Cognitive Science, 2002

P. Tan, M. Steinbach and V. Kumar, “Introduction to Data Mining”, Addison-Wesley,
2005.

S. Valluri, K. Karlapalem and A. Hulgeri, “Towards Empirically Driven Query
Optimization”, Technical Report, IlIT Hyderabad, http://web2py.iiit.ac.
in/publications/default/view_publication/techreport/55,
September 2009.

F. Waas and C. Galindo-Legaria, “Counting, enumerating, and sampling of execu-
tion plans in a cost-based query optimizer”, Proc. of ACM SIGMOD Intl. Conf. on
Management of Data, May 2000.

CHAPTER 6. CONCLUSIONS 111

[50] P. Walmsley, XQUERY, O’Reilly Publications, 2007.

[51] B. Yao, M. Ozsu and N. Khandelwal, “XBench Benchmark and Performance Testing
of XML DBMSs”, Proc. of 20th Intl. Conf. on Data Engineering (ICDE), March
2004.

[52] http://dsl.serc.iisc.ernet.in/projects/PICASSO

[53] http://dsl.serc.iisc.ernet.in/projects/PICASSO_XML/

index.html
[54] http://en.wikipedia.org/wiki/Bellman_equation
[55] http://en.wikipedia.org/wiki/Level_of_measurement
[56] http://en.wikipedia.org/wiki/Multidimensional_scaling

[57] http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

index. jsp

[58] http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
index.jsp?topic=/com.ibm.db2.luw.admin.cmd.doc/doc/

r0024085.html

[59] http://tpox.svn.sf.net/viewvc/*checkout*/tpox/TPoX/

documentation/TPoX_ DataGeneration_v2.0.pdf
[60] http://www.ibiblio.org/xgl/xgl-proposal.html
[61] http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf
[62] http://www.tpc.org/tpch
[63] http://www.w3.0rg/TandS/QL/QL98/pp/maier.html
[64] http://www.w3.0rg/TR/xpath/

[65] http://www.w3.0rg/TR/xquery/

CHAPTER 6. CONCLUSIONS 112

[66] http://www.w3.0rg/XML/Query/

Appendix A

SQL templates

113

APPENDIX A. SQL TEMPLATES

114

select
s_acctbal,
S_nhame,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment
from
part,
supplier,
partsupp,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_retailprice :varies
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’'EUROPE’
and ps_supplycost <= (
select
min (ps_supplycost)
from

partsupp, supplier, nation, region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’'EUROPE’
and ps_supplycost :varies

)
order by
s_acctbal desc,
n_name, s_name, p_partkey

Figure A.1: QT2

APPENDIX A. SQL TEMPLATES

115

select
n_name,
sum(l_extendedprice » (1 — 1_discount))
from
customer,
orders,
lineitem,
supplier,
nation,
region
where
c_custkey = o_custkey
and 1_orderkey = o_orderkey
and 1_suppkey = s_suppkey

and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = "ASTIA’

and o_orderdate >= 71994-01-01"
and o_orderdate < 71995-01-01"
and c_acctbal :varies
and s_acctbal :varies

group by
n_name

order by
revenue desc

revenue

Figure A.2: QTS

APPENDIX A. SQL TEMPLATES 116

select
o_year,
sum (case
when nation = "BRAZIL’ then volume
else 0
end) / sum(volume)
from
(
select
YEAR (o_orderdate) as o_year,
1_extendedprice x (1 - 1_discount) as volume,
n2.n_name as nation
from
part,
supplier,
lineitem,
orders,
customer,
nation nl,
nation n2,
region
where
p_partkey = 1_partkey
and s_suppkey = 1_suppkey
and 1_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = "AMERICA’
and s_nationkey = n2.n_nationkey
and p_type = ’'ECONOMY ANODIZED STEEL’
and s_acctbal :varies
and 1_extendedprice :varies
) as all_nations
group by
o_year
order by
o_year

Figure A.3: QT8

APPENDIX A. SQL TEMPLATES

117

select
n_name,
o_year,
sum (amount)
from
(
select
n_name,
YEAR (o_orderdate) as o_year,
1_extendedprice x (1 - 1_discount) -
ps_supplycost = 1_quantity as amount
from
part,
supplier,
lineitem,
partsupp,
orders,
nation
where

s_suppkey = 1_suppkey

and ps_suppkey = 1_suppkey
and ps_partkey = 1_partkey
and p_partkey = 1_partkey
and o_orderkey = 1_orderkey

and s_nationkey = n_nationkey

and p_name like ’S%green%’
and s_acctbal :varies
and ps_supplycost :varies
) as profit
group by
n_name,
o_year
order by
n_name,
o_year desc

Figure A.4: QT9

Appendix B

XQuery templates

118

APPENDIX B. XQUERY TEMPLATES 119

#NAMESPACE declare default element namespace
"http://www.fixprotocol.org/FIXML-4-4";
#NAMESPACE declare namespace
c="http://tpox-benchmark.com/custacc";

#PSX /c:Customer/c:Accounts/c:Account/
c:Balance/c:WorkingBalance CUSTACC CUSTACC CADOC
#PSX /FIXML/Order/OrdQty/@Cash ORDER ORDER ODOC

¥ — #

XQUERY

declare default element namespace

"http://www.fixprotocol.org/FIXML-4-4";

declare namespace c="http://tpox-benchmark.com/custacc";

for Scust in db2-fn:xmlcolumn ("CUSTACC.CADOC")
/c:Customer/c:Accounts/c:Account [
c:Balance/c:WorkingBalance :varies]

for $Sord in db2-fn:xmlcolumn ("ORDER.ODOC") /FIXML/Order
[@Acct=Scust/Q@id/fn:string(.) and OrdQty/Q@Cash :varies]

order by S$cust/c:AccountTitle/text ()

return
$<$Customers$>$
{$cust/c:AccountTitle}
{$cust/c:Currency}
$<$/Customers$>s

Figure B.1: XQuery Template for TPoX (QTX _SEC)

APPENDIX B. XQUERY TEMPLATES

120

#PSX /order/total ORDER ORDER ORDER
#PSX /customers/customer/address_id CUSTOMER
CUSTOMER CUSTOMER
#——#
XQUERY
for Sorder in db2-fn:xmlcolumn ("ORDER.ORDER") /order,
Scust in db2-fn:xmlcolumn
("CUSTOMER.CUSTOMER") /customers/customer
where S$Sorder/customer_id = S$cust/Q@id
and S$Sorder/total :varies
and S$cust/address_id :varies
order by S$order/order_date
return
<Output>
{$order/@id}
{$Sorder/order_status}
{$cust/address_id}
{$cust/first_name}
{$cust/last _name}
{$cust/phone_number}
</Output>

Figure B.2: XQuery Template for XBench (QTX19)

APPENDIX B. XQUERY TEMPLATES 121

#VSX /Suppliers/Supplier/AcctBal
SUPPLIERS SUPPLIERS SUPPLIERS
#VSX /Customers/Customer/AcctBal
CUSTOMERS CUSTOMERS CUSTOMERS
——
XQUERY
for $reg in db2-fn:xmlcolumn ("REGIONS.REGIONS")
/Regions/Region [Name="AFRICA"]
for $nat in db2-fn:xmlcolumn ("NATIONS.NATIONS")
/Nations/Nation[xs:double (RegionKey)=Sreg/
Qkey/xs:double (.)]

let $sup := db2-fn:xmlcolumn ("SUPPLIERS.SUPPLIERS")
/Suppliers /Supplier|[(xs:double (NationKey)=Snat/
@key/xs:double(.)) and (AcctBal :varies)],

Scust := db2-fn:xmlcolumn ("CUSTOMERS.CUSTOMERS")
/Customers/Customer | (xs:double (NationKey)=S$sup/
NationKey/xs:double(.)) and (AcctBal :varies)],

Sline := db2-fn:xmlcolumn ("ORDERS.ORDERS") /Orders/
Order [xs:double (CustKey) = S$cust/Qkey/xs:double(.)

and OrderDate[. > "1994-01-01" and
< "1997-01-01"]]/LinelItem[xs:double (SuppKey)
= S$sup/@Key/xs:double (.)]
let $summand :=(for $x in $line
return $x/ExtendedPricex (1l —-$x/Discount))
order by sum($summand)

return
<result> {$nat/@key} {$nat/Name}
<revenue> {sum($summand)} </revenue>
</result>

Figure B.3: XQuery Template for TPCH_X

Appendix C

Sample TPCH _X documents

122

APPENDIX C. SAMPLE TPCH_X DOCUMENTS 123

<Nations>
<Nation key="0">
<Name> ALGERIA </Name>
<RegionKey> 0 </RegionKey>
<Comment> ruthlessly bold dinos across </Comment>
</Nation>
</Nations>

(a) NATIONS

<Regions>
<Region key="0">
<Name> AFRICA </Name>
<Comment> sly, fluffy somas within the daringly thin
warhorses sublat </Comment>
</Region>
</Regions>

(b) REGIONS

<Customers>
<Customer key="000000001" >
<Name> Customer#000000001 </Name>
<Address> eCDWmkYrnh5pTZhNEoZbPq </Address>
<NationKey> 23 </NationKey>
<Phone> 33-716-804-6669 </Phone>
<AcctBal> 8409.98 </AcctBal>
<MktSegment> MACHINERY </MktSegment>
<Comment> fluffily silent hockey </Comment>
</Customer>
</Customers>

(c) CUSTOMERS

<Suppliers>
<Supplier Key="0000000001">
<Name> Supplier#0000000001 </Name>
<Address> hONA5x_e(lg# AgJ{Bb+Pi$hM </Address>
<NationKey> 21 </NationKey>
<Phone> 31-551-967-3671 </Phone>
<AcctBal> 4167.78 </AcctBal>
<Comment> waters x-ray platelets—dare </Comment>
</Supplier>
</Suppliers>

(d) SUPPLIERS

APPENDIX C. SAMPLE TPCH_X DOCUMENTS 124

<Parts>
<Part>
<PartKey> 1 </PartKey>
<Name> cream sandy forest misty papaya </Name>
<Mfgr> Manufacturer#3 </Mfgr>
<Brand> Brand#33 </Brand>
<Type> STANDARD PLATED BRASS </Type>
<Size> 4 </Size>
<Container> MED PACK </Container>
<RetailPrice> 901.00 </RetailPrice>
<P_Comment> ironic epita </P_Comment>
<PartSupp>
<Suppkey> 2 </Suppkey>
<Avail> 4625 </Avail>
<SupplyCost> 90.48 </SupplyCost>
<PS_Comment> sheaves toward the blithe, thin frays
promise doggedly final, final dugouts;
ironic </PS_Comment>
</PartSupp>
<PartSupp>
<Suppkey> 252 </Suppkey>
<Avail> 6437 </Avail>
<SupplyCost> 965.89 </SupplyCost>
<PS_Comment> regular escapades behind the
thin, silent patterns may boost ruthlessly for
the clos </PS_Comment>
</PartSupp>
<PartSupp>
<Suppkey> 502 </Suppkey>
<Avail> 9158 </Avail>
<SupplyCost> 454.60 </SupplyCost>
<PS_Comment> Tiresias would kindle regularly even
dugoutsl!fluffy, busy gifts on the somas might sleep
around the ironically furious dependencies.busy, sly
patterns along t </PS_Comment>
</PartSupp>
</Part>
</Parts>

(e) PARTS

APPENDIX C. SAMPLE TPCH_X DOCUMENTS 125

<Orders>
<Order>
<OrderKey> 1 </OrderKey>
<CustKey> 1</CustKey>
<OrderStatus> F </OrderStatus>
<TotalPrice> 68113.8155 </TotalPrice>
<OrderDate> 1996-02-16 </OrderDate>
<OrderPriority> 3-MEDIUM </OrderPriority>
<Clerk> Clerk#000000994 </Clerk>
<ShipPriority> 0 </ShipPriority>
<0O_Comment> ruthless dependencies </O_Comment>
<Lineltem>
<PartKey> 1 </PartKey>
<SuppKey> 502 </SuppKey>
<LineNumber> 1 </LineNumber>
<Quantity> 38 </Quantity>
<ExtendedPrice> 34238.0000 </ExtendedPrice>
<Discount> 0.0992 </Discount>
<Tax> 0.0393 </Tax>
<ReturnFlag> R </ReturnFlag>
<LineStatus> F </LineStatus>
<ShipDate> 1996-03-09 </ShipDate>
<CommitDate> 1996-05-06 </CommitDate>
<ReceiptDate> 1996-03-11 </ReceiptDate>
<Shiplnstruct> NONE </Shiplnstruct>
<ShipMode> SHIP </ShipMode>
<L_Comment> ironically brave theodoli </L_Comment>
</Lineltem>
<Lineltem>
<PartKey> 2 </PartKey>
<SuppKey> 753 </SuppKey>
<LineNumber> 2 </LineNumber>
<Quantity> 2 </Quantity>
<ExtendedPrice> 1804.0000 </ExtendedPrice>
<Discount> 0.0923 </Discount>
<Tax> 0.0144 </Tax>
<ReturnFlag> A </ReturnFlag>
<LineStatus> F </LineStatus>
<ShipDate> 1996-04-22 </ShipDate>
<CommitDate> 1996-04-07 </CommitDate>
<ReceiptDate> 1996-05-03 </ReceiptDate>
<Shiplnstruct> DELIVER IN PERSON </ShiplInstruct>
<ShipMode> SHIP </ShipMode >
<L_Comment> final, permanent warho </L_Comment>
</Lineltem>
</Order>
</Orders>

(f) ORDERS

Figure C.1: Sample XML Documents for TPCH_X Schema

