
Exploring the Semantics of Plan Diagrams

A Thesis

Submitted for the Degree of

Master of Science (Engineering)

in the Faculty of Engineering

By

Bruhathi HS

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE
BANGALORE – 560 012, INDIA

February 2012



Abstract

Database Management Systems (DBMS) are popular software packages for storing and man-

aging enterprise data. Modern DBMS typically store data in the form of tables, called relations,

and query the information using the Structured Query Language (SQL), which is declarative in

nature. The number of candidate strategies, called “plans”, by which the query can be processed,

is exponential in the number of relations. Database systems therefore incorporate a “query opti-

mizer” module, which explores this exponential space using dynamic programming techniques,

to find the best query execution strategy. Query optimizers are especially critical for efficiently

processing the complex queries that characterize current decision-support applications.

In recent times, a fresh perspective on the behavior of query optimizers has been introduced

through the concept of “plan diagrams”. A plan diagram is a color-coded pictorial enumeration

of the optimizer’s plan choices over a query parameter space. In this thesis, we investigate a

variety of issues related to the semantics of plan diagrams, covering the structural characteristics

of parametric-optimal plans, the diagram coloring paradigm and the underlying database model.

Our specific contributions are the following:

The join order of an execution plan tree of a query is the order in which its relations are

joined and finding the optimal join order is one of the most crucial tasks in query optimization,

with any savings in this front being extremely beneficial. In this thesis, as our first contribution,

we develop and discuss a structure-based reduction scheme as a potent alternative to the popular

cost-based reduction schemes that have been explored in the past. In this new reduction scheme,

we merge all plans that have identical join orders into a single entity, leaving us with a diagram

that has as many colors as there are unique join orders. We discuss join order caching as

an immediate application of structure-based reduction that provides the “best” plan at every
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point along with savings in query optimization time, when the join order cardinality is low or

moderate. While experimental results indicate that the resulting join order cardinalities are low

or moderate in many cases, we also encounter situations wherein the cardinality is high. For

the latter case, we present the SRE (Small Relation Elimination) heuristic, that removes small

sized relations in the join orders to bring down the join order cardinality. Even though the plan

optimality is no longer guaranteed now, experimental evaluation of the heuristic shows that the

cost-increase of any query point is within acceptable limits. Finally, we study the occurrence

of common join orders in the plan diagrams produced in two different engines. Experimental

results show that this intersection is surprisingly very sparse.

Structure-based reduction provides an overview of the differences between plans in a plan

diagram. As our second contribution, we investigate a deeper comparison between plans that

is based on their complete plan tree structures. Specifically, we semantically color the plan di-

agrams such that the differences in colors between any pair of plans, reflects the differences in

their structures. With this approach, the plan diagram intrinsically reflects the diversity in the

parametric-optimal space. The challenges here include designing a quantitative metric for as-

sessing plan differences, and developing transformation techniques for accurately representing

these differences in the three-dimensional color model. In particular, we adapt Kruskal’s Iter-

ative Steepest Descent multidimensional scaling technique, and test its representational quality

through coloring a rich diversity of plan diagrams on benchmark database environments over a

suite of commercial database engines. Our experimental results indicate that the vast majority

of plan distances can be represented with satisfactory visual accuracy. Given this, we found

that, in most of the plan diagrams, more than half the space is colored with shades of the same

color, implying that large areas of plan diagrams are occupied by plan trees that are structurally

similar.

As our last contribution, we reengineer the plan diagram notion to the flexibly structured

world of eXtensible Markup Language (XML), which is the de facto standard for information

transfer on the Internet. Since XML queries are founded on monadic second-order logic, as

opposed to the first order logic of relational DBMS, they possess significantly more expressive

power than their relational counterparts, in the process exacerbating the query optimization
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challenge. We analyze, through the production of XML plan diagrams, the behavior of a hybrid

commercial optimizer that optimizes both SQL and XML queries in a unified framework.

Our experiments cover a variety of XML database benchmarks, including TPoX, XBench and

TPCH X (XML version of the TPC-H benchmark), using a set of complex XQuery templates.

The results indicate that XML plan diagrams often feature complicated plan geometries that

remain in the plan diagram even after reduction. In fact, for both TPoX and TPCH X, an

extremely high cost-increase threshold is required in order to remove the complex plan spatial

layouts from the plan diagram. Also, we found that more than three-quarters of the plans were

structurally very similar, implying that the optimizer makes extremely fine grained choices

with small changes in input parameters.

All the three semantic features discussed above have been incorporated in the publicly-

available Picasso optimizer visualization tool.
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Chapter 1

Introduction

Modern DBMS (Database Management Systems) typically model data in the form of tables,

called relations, and query the information using the Structured Query Languages (SQL). SQL

is declarative in nature and hence specifies what has to be done, and not how to do it. An

example SQL query is listed in Figure 1.1. This SQL query lists the mode of shipping for all

items whose quantity is less than or equal to 26, and forms part of an order of price 21394 or

less.

select l shipmode

from orders, lineitem

where o orderkey = l orderkey

and o totalprice ≤ 21934

and l quantity ≤ 26

group by l shipmode

order by l shipmode

Figure 1.1: Sample SQL Query

The number of candidate strategies, called “plans” by which the query can be processed is

exponential in the number of relations. The quality of a plan is measured in terms of its “cost”,

usually an estimate of its expected response time. Since the difference in cost between the best

execution plan and a randomly chosen one can be very high, database systems incorporate a

1
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Figure 1.2: Sample SQL Query Execution Plan

“query optimizer” module to explicitly and automatically find the best query execution strat-

egy. This objective is achieved by exhaustively exploring the exponential search space using

dynamic programming techniques.

The best query execution plan as chosen by an optimizer for the SQL query listed in Fig-

ure 1.1, is shown in Figure 1.2. The query execution plan for this query uses the Merge Join

algorithm to join the relations ORDERS and LINEITEM, and these relations are accessed through

Clustered Index Scan.

The importance of query optimizers has elevated in recent times due to the high degree

of complexity in queries, operating on large data stores, typically found in data warehousing

applications. This is evident in benchmarks like TPC-H [62].

1.1 Query Templates

The cost of a given query execution plan is a function of many parameters, including the

database structure and contents, the engine settings, the system configuration, etc. For a query

on a given database and system configuration, the optimizer’s plan choice is primarily a function

of the selectivities of the base relations participating in the query – that is, the estimated number
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select o year, sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)
from (select YEAR(o orderdate) as o year, l extendedprice * (1 - l discount) as volume,

n2.n name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where p partkey = l partkey and s suppkey = l suppkey and l orderkey = o orderkey

and o custkey = c custkey and c nationkey = n1.n nationkey and n1.n regionkey =
r regionkey and s nationkey = n2.n nationkey and r name = ’AMERICA’ and p type
= ’ECONOMY ANODIZED STEEL’ and
s acctbal :varies and l extendedprice :varies

) as all nations

group by o year
order by o year

Figure 1.3: Example SQL Query Template (QT8)

of rows of each relation relevant to producing the final result. Varying the selectivities of one or

more of the base relations produces the selectivity space w.r.t. these relations. A “parameterized

query template” is a query with additional predicates that produce queries across this selectivity

space.

For example, consider QT8, the parameterized 2-D query template shown in Figure 1.3,

based on Query 8 of the TPC-H benchmark. This query determines the market share of a nation

within a given region for a given part type when the s acctbal of the SUPPLIER relation and

the l extendedprice of the LINEITEM relation are within their respective parametrized values.

Here, selectivity variations on the SUPPLIER and LINEITEM relations are specified through the

s acctbal :varies1 and l extendedprice :varies predicates, respectively.

1.2 Optimizer Diagrams

In recent times, a fresh perspective on the behavior of query optimizers has been introduced

through the concept of “optimizer diagrams” [38, 10, 14]. Primary among them is the plan

diagram, which is a visual representation of the execution plan choices made by the optimizer

1To implement :varies, we use one-sided range predicates of the form Relation.attribute <= constant
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over an input parameter space, whose dimensions may include database, query and system-

related features. In a nutshell, plan diagrams visually capture the geometries of the optimality

regions of the parametric optimal set of plans (POSP) [23]. Currently, we support parameter

spaces whose dimensions are comprised of relational selectivities.

The plan diagram for QT8 (produced with the Picasso [52] optimizer visualization tool on

a popular commercial database engine) is shown in Figure 1.4(a). In this picture2, each colored

region represents a specific plan, and a set of 128 different optimal plans (from the optimizer’s

perspective), P1 through P128, cover the selectivity space. The value associated with each plan

in the legend indicates the percentage area covered by that plan in the diagram – the biggest, P1,

for example, covers 18.59% of the region, whereas the smallest, P128, is chosen in only 0.001%

of the space. Just above the plan legend we display the Gini coefficient, which measures the

skew in the volumes of the regions covered by the various plans featuring in the plan and reduced

plan diagrams. It is a number between 0 and 1, where 0 corresponds to no skew (i.e. all plans

cover approximately the same area) and 1 corresponds to extreme skew (i.e. one plan covers

almost the entire space).

The mode of plan diagram production is the following [52]: Given a d-dimensional query

template and a plot resolution of r, rd queries that are uniformly distributed over the selected

selectivity space are generated. Then, for each of these query locations, based on the associated

selectivity values, a query with the appropriate constants is instantiated – the constants are

determined by carrying out an “inverse-transform” of the statistical meta-data available from

the optimizer, typically in the form of histograms. This query is then submitted to the query

optimizer to be “explained”, that is, to have its optimal plan computed and returned.

After the plans corresponding to all the query points are obtained, a different color is associ-

ated with each unique plan, and each point is colored with its associated plan’s color. Then, the

rest of the diagram is filled in by painting the hyper-rectangle around each point with the same

color. For example, in a 2-D plan diagram with a uniform grid resolution of 10, there are 100

real query points, and around each such point a square of dimension 10x10 is painted with the

point’s associated plan color. Plans are colored based on a pre-defined coloring scheme, with

2The figures in this thesis should ideally be viewed from a color copy, as the grayscale version may not clearly
register the features.
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(a) Plan Diagram

(b) Cost Diagram (c) Card Diagram

(d) Reduced Plan Diagram (λ = 20%)

Figure 1.4: Optimizer Diagrams for QT8 (X-Axis: SUPPLIER S ACCTBAL, Y-Axis: LINEITEM L EXTENDEDPRICE)
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the biggest sized plan (size is measured in terms of volume coverage in the n-D space) being

colored red, the second biggest being colored blue and so on.

In conjunction with the plan diagram, we have two additional diagrams, the Cost Diagram

and the Card Diagram. The cost diagram quantitatively depicts the optimizer’s (estimated)

query processing costs of the plans shown in the plan diagram, while the cardinality diagram

displays the optimizer’s (estimated) query result cardinalities. The cost and card diagrams for

the QT8 example are shown in Figures 1.4(b) and 1.4(c), respectively.

Plan diagrams are often found to have high plan cardinalities, with many plans occupying

complex and non-convex boundaries. This can be observed in the plan diagram of Figure 1.4(a),

which features a lot of complex plans with also a large skew in the areas of the regions covered

by the various plans. This skew is captured by the 0.90 value of the Gini coefficient.

Given this complexity in plan diagrams, it is natural to investigate the possibility of making

the plan diagrams simpler in terms of their plan cardinalities, that is, to obtain a reduced plan

diagram. Recently, a cost-based approach to the reduction problem has been explored [10],

where given a plan diagram and a cost-increase-threshold (λ) specified by the user, the plan

diagram is recolored to a simpler picture, featuring only a subset of the original plans, such that

the cost of any recolored query point does not increase by more than λ percent, relative to its

original cost. That is, some of the original plans are “completely swallowed” by their siblings,

leading to a reduced number of plans in the diagram, without materially affecting the query

processing quality. Experimental evaluation with this approach has shown that the complex

plan diagrams are often reduced to be “anorexic” (small absolute number of plans) with only a

marginal increase in query processing costs. For example, the QT8 plan diagram (Figure 1.4(a))

can be reduced with λ =20% to the diagram shown in Figure 1.4(d), where only eight of the

original 128 plans are retained.

1.3 Structure-based Reduction of Plan Diagrams

As the first contribution in this thesis, we present and analyze a different plan diagram reduction

scheme that is based on the structure of plans present in the diagram, rather than cost. The struc-
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ture of a plan is largely determined by its join order, which represents the sequence in which

its base relations are joined, and its determination is considered to be the most challenging task

in optimizing a query. So, in our structure-based reduction scheme, we coalesce all plans that

have identical join orders into a single entity. Therefore, after the reduction process, there are

as many colors in the diagram as the number of distinct join orders.

Structure-based reduction has applications in join order caching of plans when the join order

cardinality is low or moderate. Here, when a query located in the plan diagram is issued, the

query is not optimized from scratch. Instead, the join orders are used as plan skeletons, using

which complete plans are fleshed out and evaluated to find the best plan, thus saving consid-

erable computational effort. An attractive feature of the structure-based reduction scheme is

that it makes no assumptions on the underlying cost model, and hence is applicable to all kinds

of queries – unlike cost-based reduction where PCM (Plan Cost Monotonicity) is required to

hold [10]. Yet another advantage is that it functions solely through the standard “hint” mech-

anism provided by optimizers, and does not require advanced features such as Foreign Plan

Costing (FPC) [10] – this makes it applicable in generic database engines.

Experimental evaluation on plan diagrams obtained from two industrial-strength commer-

cial optimizers, one being top-down and the other a bottom-up optimizer, in benchmark envi-

ronments indicate that the number of distinct join orders is typically in the range of 10 to 60.

This is true even for dense plan diagrams that have hundreds of plans. Since fresh optimization

of a query typically takes considerably more time (by about a factor of 20) than constructing

its best plan from the given join order, it is evident that join order caching is desirable for plan

diagrams whose join order cardinality is low. Moreover, even the factor of 20 is conservative

due to including overheads such as query validation and re-writing – if join order caching were

to be organically internalized in the optimizers, the expansion time is likely to come down even

further, making it also viable for plan diagrams with medium-scale join order cardinalities.

Further, if faced with high join order cardinalities, we could take recourse to the SRE (Small

Relation Elimination) heuristic-based solution: We remove from the join orders obtained, the

relatively smaller sized relations, thereby obtaining a pruned set of partial join orders. This step

is based on the hypothesis that the number of join orders is large because of the variations in the
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joins of these smaller relations and that the change in the join order with respect to them does

not have a huge impact on the join order cost. For each unique partial join order, we assign a

representative complete join order, chosen randomly from among the complete join orders that

are built from the partial join order. When a new query has to be optimized, we evaluate the

representative join orders corresponding to each unique partial join order and choose the one

yielding the least cost.

We evaluated the above heuristic experimentally on some sample complex queries, and

found that after applying the heuristic, the number of join orders in the reduced diagram came

down to around 20 in most cases, with the per-query cost increase less than 30% over most

of the diagram. Further, even for the remaining queries, the cost-increase was less than 100%,

generally considered to be the acceptable deviation from optimality, in the database community.

Thus, structure-based reduction provides a potent mechanism to implement join order caching

for complex queries, either directly or through the heuristic.

Finally, we study the number of common join orders present in the plan diagrams of the two

engines. Surprisingly, we found the intersection to be null in most cases. This can be because

of various reasons including different cost models, variations in the implementation of different

join algorithms and employment of different heuristics to prune the search space.

1.4 Semantic Coloring of Plan Diagrams

Structure-based reduction scheme provides a bird’s eye view of the differences found between

plans in a plan diagram. In order to determine how different any two specific plans are, in

terms of their join orders or more generally, their complete plan tree structures, we need to drill

down into the plans. This process is cumbersome when more than a handful of plans have to be

analyzed. Our second contribution in this thesis alleviates the problem by semantically coloring

plan diagrams as opposed to the current plan-agnostic coloring scheme, wherein the largest plan

(in terms of volume) is assigned red, the second largest is assigned blue, and so on.

Specifically, we color the plan diagrams such that the differences in color between any pair

of plans reflects the differences in their structures. For instance, if the biggest and second-
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biggest plans are very similar, they would both be assigned close shades of the same color, say

red. With this new approach to coloring, the plan diagram itself provides a first-cut reflection

of the plan-tree differences without having to go through the details of every plan. To assign

differences to every pair of plans, we adopt the plan differencing strategy from [14, 52], where

quantification of plan differences is done using the Jaccard distance metric, making all plan

differences to be in the interval (0, 1]. Given this framework, the modelling of the problem is as

follows:

Problem Statement: Consider an undirected complete graph G(V,E) with m vertices, where

each vertex vi ∈ V represents a POSP (Parametric Optimal Set of Plans) plan. A vertex vi

has an associated weightwvi , representing the fractional volume covered by the plan in the

plan diagram. Each edge eij ∈ E has an associated weight pij representing the structural

distance between the plans at its vertices vi and vj . Also, each vertex pair (vi, vj) is

assigned a weight wij . The objective now is to come up with an efficient algorithm that

assigns a unique color to all the vertices in V such that, given any pair of vertices (vi, vj),

their color distance cij is as close as possible to the weight pij of the edge joining them.

Further, if a choice has to be made, vertex pairs that are assigned higher weights (wij)

receive preferential treatment in obtaining a more accurate coloring for their distances.

That is, our aim is to minimize (as close to 0 as possible) the following objective function:

m−1∑
vi=1

m∑
vj=vi+1

wij(pij − cij)2

A variety of assignments are possible for the weights wij: For example, they can be

wvi + wvj , giving preference to plan pairs with larger total area; or 1, which treats all

vertex pairs equally; or,
1

wvi + wvj

, where small sized plans are preferentially colored

better.

We choose the RGB range as our color space, hence constraining the output space to a cube.

So, in order to utilize the output space completely, we scale all the plan-pair differences by

the length of the cube’s diagonal. It is important to note that an ideal solution which gives an



CHAPTER 1. INTRODUCTION 10

objective value of zero may not always exist, since scaling down distances to lower dimensions

is an inherently lossy procedure.

As our optimization strategy, we consider methods from the family of multidimensional

scaling (MDS) techniques. We first evaluate the metric SMACOF [7] (Scaling by Majorizing a

Complicated function) approach, but the output of this iterative algorithm is in R3 and scaling

down the values into the color cube leads to material deterioration in the quality of coloring.

However, through a quick analysis we observe that the non-metric SD (Steepest Descent) algo-

rithm [29, 30], can be easily modified to accommodate the cube constraint and hence adapted

it to suit our requirements. A downside of the adaption is that the convergence rate guarantees

provided by classical SD may no longer hold, but our empirical experience is that even for plan

diagrams with hundreds of plans, convergence is achieved within a few minutes.

We test the representational quality of our SD-based technique by coloring a rich diversity

of plan diagrams produced from benchmark database environments. Our results indicate that

sufficiently low objective function values (< 0.1) were always obtained, with the vast majority

of the plan-pairs being colored well (ratio of color distances to their plan distances is within

30% of the ideal). This indicates that most of the plan diagram is represented with satisfactory

visual accuracy. Further, these results closely match those from the unconstrained SMACOF

algorithm with respect to the average case behavior.

When we analyzed the semantically colored diagrams, we found that typically more than

half the space is colored with shades of the same color, implying that large areas of plan dia-

grams are occupied by structurally similar plan trees. Also, we found that these similar plans

generally occupy interior regions, away from the axes.

1.5 XML Plan Diagrams

In recent years, data represented in the hierarchically-structured XML document format has

found its way into mainstream database technology. Querying of this XML data is largely done

through an XML query language called XQuery [66]. An example XQuery taken from the

DCMD (Data Centric Multiple Documents) workload of the XBench benchmark [51] is shown
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XQUERY
for $a in db2-fn:xmlcolumn(“ORDER.ORDER”)/order

where $a/total <= 975
return
<Output>
{$a/@id}
{$a/order date}
{$a/ship type}

</Output>

Figure 1.5: Example XQuery

in the Figure 1.5. The XQuery has been modified to conform to the XQuery optimizer’s syntax.

This query lists the orders (order id, order date and ship date), with total amount larger than or

equal to a certain number (975.0).

The optimal plan for the XQuery of Figure 1.5 chosen by the XQuery optimizer is shown

in Figure 1.6. This plan accesses the ORDER relation using the XML index on the order total

attribute through the XISCAN operator. It then uses the XSCAN operator to navigate the XML

fragments, evaluate predicates and to extract the document fragments to provide the required

set of XML elements in the result.

As a final contribution of this thesis, we re-engineer the plan diagram notion to the flexi-

bly structured world of eXtensible Markup Language (XML), which is the de facto standard

for information transfer on the Internet. Since XML queries are founded on monadic second-

order logic, as opposed to the first order logic of relational DBMS, they possess significantly

more expressive power than their relational counterparts, in the process exacerbating the query

optimization challenge. We analyze, through the production of XML optimizer diagrams, the

behavior of a XML query industrial-strength optimizer that optimizes XQuery [65], the W3C

recommended standard for querying XML data. The challenges involved in obtaining the XML

plan diagrams include identifying the validity constraints on XQuery templates and determin-

ing the granularity at which the statistics need to be collected (document level or node level) for

selectivity computation. After obtaining the XML plan diagrams, we conduct experiments that

cover a variety of XML database benchmarks, including TPoX [35], XBench [51] and TPCH X
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Figure 1.6: Example XQuery Execution Plan

(XML version of the TPC-H [62] benchmark), using a set of complex XQuery templates. The

results indicate that XML plan diagrams often feature complicated plan geometries that remain

in the plan diagram even after both cost and structure-based reductions. In fact, for both TPoX

and TPCH X, a very high cost-increase threshold is required in order to remove the complex

plan geometries using cost-based reduction. With respect to structure-based reduction, how-

ever, we find that the number of final join orders is very sparse (in single digits), even when the

query contained more than 5 relations. This fact along with the observation that more than half

of the plans were structurally very similar to each other are reflected in the semantically colored

versions of the XML plan diagrams.
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1.6 Contributions

In this thesis, we explore a variety of semantic features in plan diagrams. We first investigate

a structure-based reduction strategy as a complementary method to the cost based reduction

schemes. In structure-based reduction, all plans that have identical join orders are merged into a

single entity. As one of its potent applications, we propose join order caching for plan diagrams

that is very useful when the join order cardinality is low or moderate. Join order caching pro-

vides the “best” plan for every query location along with savings in optimization time. Among

the many pros of structure-based reduction in comparison to cost-based reduction strategies,

we make no assumptions on the underlying cost model, and hence can apply structure-based

reduction to all kinds of query templates. We present experimental results obtained by applying

structure-based reduction on a suite of plan diagrams. While the results indicate that the re-

sulting join order cardinalities are low or moderate in many cases, we also encounter situations

wherein the cardinality may be high. For the latter case, we present the SRE (Small Relation

Elimination) heuristic, that removes small sized relations in the join orders to bring down the

join order cardinalities. Even though the plan optimality is no longer guaranteed, we present

experimental results, which show that the cost-increase of any query point is within acceptable

limits. Finally, we study the occurrence of common join orders in the plan diagrams produced

in two different engines, for the same set of plan diagrams as used in structure-based reduction

experiments. We surprisingly found that there are no common join orders between the plan

diagrams in most cases.

While structure-based reduction provides a broad overview of the differences between plans

present in plan diagrams, for analysis of differences between specific plans, it is necessary to

manually look into the details of the various plans. As a second contribution in this thesis, we

facilitate such analysis of plans by developing techniques to semantically color plan diagrams

- to color plans in the plan diagrams such that the difference in color between any two plans

reflects the differences in their plan structures. We first adopt the plan tree differencing methods

from [52, 14], for assigning quantitative differences between any two plans. Then, we adapt

Kruskal’s Iterative Steepest Descent method, a multidimensional scaling (MDS) technique to

solve our coloring problem. Through extensive experimentation on a host of plan diagrams
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we found that the adapted technique represents the plan tree differences in color space with

reasonable visual accuracy. Also, we found that large areas in the plan diagrams are colored

with similar shades, implying that plans occupying larger areas have structurally similar plan

trees.

As the last contribution of our thesis, we extend the plan diagram notion to the flexibly

structured world of XML. We discuss the complexities involved in the process, which include

determining the granularity at which the statistics have to be collected, and identifying the nec-

essary conditions for a valid XQuery template. We provide experimental results obtained over

a variety of benchmark environments. The benchmark environments include TPoX [35] and

XBench [51], which are native XML benchmarks, as well as TPCH X, our XML equivalent of

the classical TPC-H [62] relational benchmark. With respect to results, we found that the XML

plan diagrams produced, often feature patterns that merit further investigation and that there

are considerable differences between the plan diagrams produced between equivalent relational

and XML database environments. Finally, through structure-based reduction of XML plan dia-

grams, we show that the join order cardinalities of plan diagrams are low, and by semantically

coloring these XML plan diagrams, we show that many plans are often structurally very similar.

All the above-mentioned semantic features have been incorporated into the publicly-

available Picasso optimizer visualization tool [52].

1.7 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides an overview of re-

lated research. Structure-based reduction is elaborated in Chapter 3, followed by a detailed

description of the techniques developed for semantic coloring of plan diagrams in Chapter 4.

Further, we discuss the methods and complexities involved in obtaining XML plan diagrams in

Chapter 5. Finally, we conclude in Chapter 6 with a discussion of promising avenues for further

investigation.



Chapter 2

Survey of Related Research

Over the past few decades, a lot of research has been done in the field of declarative SQL query

optimization. There are excellent surveys such as [9] and [20] which give a comprehensive

view of the progress achieved over the years and an interested reader can refer the same. For

a survey of work on query optimization related to optimizer diagrams, we refer the reader to

[21]. In this chapter, we first give an overview of the basic concepts of query optimization.

We then motivate our study of join orders by the importance of join order enumeration and

provide details about the recent research advances. Further, we provide a short description of

the available MDS techniques and their applicability to our semantic based coloring problem.

Finally, we elaborate on the challenges in optimizing XML queries and briefly describe the

XQuery optimizer we have worked with in our study.

2.1 Challenges of SQL Query Optimization

The job of the SQL query optimizer is to take parsed SQL as input and generate an efficient

execution plan. It is computationally very challenging to produce an efficient plan for a given

query, since the search space of possible plans can be of the order of Ω(3n) [44], where n is the

number of base relations in the given query.

There are some important considerations in the design of an optimizer, some of which are

elaborated below.

15
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2.1.1 Strategies for Plan Selection

There are different plan selection strategies including randomized algorithms and use of set of

heuristic rules. One of the important strategies which is widely incorporated in commercial

optimizers is the exhaustive enumeration of search space using a cost based approach. The

seminal paper by Selinger et al. [42] (System-R project) was one of the key contributors in cost

based query optimization. They considered only the search space of left deep trees, but the

general idea of their algorithm can be used to explore the space of other tree spaces (right-deep,

zig-zag and bushy) as well.

System-R’s cost based optimizer uses dynamic programming to efficiently find a good plan.

In this approach, optimal solutions to sub-problems are combined to form the optimal solution

of the main problem. This is the principle of optimality [54]. The dynamic programming

approach performs well for queries which do not have more than around a dozen base relations,

after which it becomes infeasible due to the exponential increase in the search space complexity.

2.1.2 Join Orders

As discussed previously, dynamic programming techniques are extensively used to efficiently

find a good plan. One of the most crucial tasks in this process is to find the optimal join order

and significant attention has been given to studies on join order enumeration in the past.

Ono and Lohman [37] have elaborated on the computational complexity of enumerating

join orders for a single select-project-join query block for a variety of join graphs. Further,

more recently in 2006, Moerkotte and Neumann [34] showed that traditional bottom-up join

enumeration algorithms are far worse than than the lower bound given by Ono and Lohman and

went on to describe a new bottom-up enumeration algorithm that is optimal (conforms to the

lower bound given by Ono and Lohman) over any join graph.

Thus, join order enumeration being very important, but computationally expensive, any

savings during optimization would be highly beneficial. So, if the number of join orders in any

plan diagram turns small, the join order templates can be fed as skeletons to the optimization

process, thus saving a lot of optimization cost.

To our knowledge no prior work has been done on join order analysis with respect to plan
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diagrams. However, the concept of plan reuse was used extensively in [17], even though not in

the plan diagram setting. Another closely related work is by Satyanarayana et al. [48], where

they re-use plans as in [17], but they characterize the plans in the form of join trees and join

order templates, gather statistics of the join trees and join order templates, and use them to

discover the optimal plan of a new query.

2.1.3 Refinements of Plan Choices at Run-time

Inaccurate estimates of various parameters, lead to poor plan choices by the cost based query

optimizer. When moderately accurate values of some of these parameters are available at run

time and if their values remain constant throughout the execution time, then certain strategies

have been proposed. One of them is to find the best execution plan for all possible values

of the parameters and lookup the best plan for the current parameter values at runtime. With

the help of structure-based reduction, we can find the best join order for all possible values

of the parameters, flesh out the join orders at runtime and find the best plan among them. If

the join order cardinalities of plan diagrams turn out to be low, this can reduce much more

optimization time as compared to costing hundreds of plans at run-time. So, structure-based

reduction provides an intermediate strategy between fresh optimization of a query and costing

all POSP (Parametric Optimal Set of Plans) plans.

2.2 Industrial Strength SQL Optimizers

In order to study the cost distribution of query plans in industrial strength SQL optimizers Waas

and Galindo [49] have devised various algorithms. From the observations made using these

algorithms, they found that only 1% of the plans in the entire search space of plans, have cost

within twice the optimum cost. Also, they found that for queries having more than 4-5 relations,

the distributions “correspond to Gamma-distributions with shape parameter close to 1”. On a

different note, Reddy and Haritsa [38] have studied the optimality space of industrial strength

optimizers using the “plan diagram” notion. They observed that optimizers make extremely fine

grained choices with changes in the query plan chosen, with minute changes in selectivity. They
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also observed that optimal plans often have irregular boundaries and highly intricate patterns,

indicating strong non-linear cost models. In the follow up of this work [10], Harish et al.

investigated the plan reduction issue from the theoretical, statistical and empirical perspectives.

They explored a cost-based approach to the reduction problem where given a plan diagram and

a cost-increase-threshold (λ) specified by the user, the plan diagram was recolored to a simpler

picture, featuring only a subset of the original plans, such that the cost of any recolored query

point does not increase by more than λ percent, relative to its original cost. In our work, we take

a different tack of reducing plan diagrams from a structure-based perspective. We coalesce all

plans that have the same join order into a single entity, and so after the reduction, there are as

many plans in the diagram as the number of unique join orders. If the join order cardinalities

turn out to be low, then join order caching is an immediate application. Among the many

benefits of structure-based reduction as opposed to the cost-based approach is that we always

provide the optimal plan at every query location and that it is applicable for all types of queries,

since we do not make any assumptions about the underlying cost model.

2.3 Multidimensional Scaling

Multidimensional Scaling (MDS) comprises a family of techniques and has been researched

extensively. MDS has been broadly classified into metric MDS and non-metric MDS [46]. The

basic distinction between the two is the level of their input data. If only the rank-order of the

input dissimilarities is considered informative, then non metric MDS has to be considered and if

the input dissimilarities are related to the output proximities by a specific continuous function,

then metric MDS techniques need to be employed. But it is important to note that Non-Metric

MDS techniques can work on higher level data as well.

Among the various techniques developed, one of the more popular techniques for Met-

ric Multidimensional techniques is the SMACOF [7] (Scaling by majorizing a complicated

function) algorithm which has guarantees on the rate of convergence. Also, one of the old-

est and well known techniques for non-metric MDS is the Steepest Descent approach by

Kruskal [29, 30]. There are various other techniques and many other features of MDS which
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have been thoroughly investigated in [7].

MDS has been used extensively for various purposes, primarily for visualization of data, but

from a database perspective, it is used for visualizing semantic differences in plan trees for the

first time.

2.4 XML Query Processing

XML has become the de facto standard for information interchange. With this being the case,

databases are now being largely used to store and query the XML documents. There are many

approaches to storing XML data

1. Shredding the XML documents to be stored in relational columns. This implies that the

user given XML query will have to be converted to its equivalent SQL and also the results

returned will be converted to their equivalent XML format if needed.

2. Store the XML as BLOB (Binary large object) or CLOB (Character large object) data

types in relational columns. With this approach, it is generally not feasible to have in-

dexes and very often, all documents may need to be processed in their entirety with either

XQuery or SQL, whichever the engine supports.

3. Develop specialized data management for XML, also known as native XML databases.

4. A hybrid approach where XML is stored natively along with relational data.

Regarding the querying of XML documents in databases, the desired characteristics of an

XML query language were outlined in [63]. The development of some XML query languages

are highly influenced by his criteria. Some of the important issues addressed in his proposal

include XML output of the query, independence of schema, schema exploitation if possible,

and optimized query operations.

XQuery [65] has been established as the W3C recommendation in 2007 for querying XML.

However, prior to the establishment of the W3C standard, there had been several studies propos-

ing query languages for XML, including XML-QL [13], Lorel [1], Quilt [8] and XQL [60].
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As given in [45], XQuery semantics are highly influenced by Quilt and XPath [64]. XQuery

uses XPath for path expressions and FLWOR structure for describing the whole query. Also, it

embodies many of the desired characteristics elaborated in [63].

There are several challenges in querying XML data. They include XML data being het-

erogeneous and hierarchical in nature as opposed to homogeneous relational data which has

flat schemas, NULL values in XML being indicated by the absence of certain elements, with

no need to be specified explicitly and the varying of XML schemas from document to doc-

ument, and sometimes within the same column. Also, XQuery, and in general XML query-

ing languages are founded on monadic second order logic, as opposed to the first order logic

of relational DBMS and hence have significantly more expressive power than their relational

counterparts. This adds to the challenges of optimizing XML queries. The presence of such

complexities enforces the need for the analysis of XML query optimizers, which motivates our

work to extend the plan diagram notion to the XML world.

The first cost-based XML optimizer was designed and implemented for the Lore system [31,

32]. The query language used in this system is Lorel which is an extension of OQL. They

developed new indexing schemes and database statistics which describe the shape of the data

graph. They also described plan enumeration strategies with numerous access methods using

logical and physical query plans and a cost model.

Following this, a lot of research has been done in XQuery optimization with the development

of several XML compliant database systems. [19], [22], [18], [45] and [16] provide surveys on

XML query languages and XML query processing. Also, an overview of XQuery optimization

techniques and its implementation is given in [5]. We now briefly describe the optimization

techniques and implementation details of the XQuery processing system in DB XML, which is

our optimizer of interest. DB XML has Native XML support along with relational data and so

now supports XQuery along with SQL. This hybrid characteristic naturally brings support for

SQL/XML language. They even have a hybrid optimizer where XQuery and SQL optimization

is done in a unified framework. Given this, XQuery optimization largely reuses the already in-

place relational optimization techniques. They use holistic algorithms and heuristics to process

complex path expression within a single operator. These algorithms were designed to reduce
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the search space without compromising on the quality of plans. They also use structural and

value indexes in a combined fashion during plan generation. To this effect, they have introduced

new operators such as XSCAN, XANDOR and XISCAN. An excellent in-detail description of the

cost based optimization done in DB XML is given in [4].



Chapter 3

Structure-based Reduction of Plan

Diagrams

As highlighted in Chapter 1, Section 1.2, plan diagrams often feature non-convex and compli-

cated patterns along with high plan cardinalities. One of the approaches to simplify the plan

diagram is through a cost-based process, which was investigated in [10], where plans were

swallowed by sibling plans without increasing the cost of any individual query point in the plan

diagram by more than a user-specified threshold. In this chapter, we approach the plan simpli-

fication process through an alternative structure-based procedure, where all plans that have the

same join order are merged into a single entity. We adopt this merging procedure since deter-

mining the join order is one of the most crucial tasks of optimization and join order caching

is a potential application, which provides the “best” plan along with savings in optimization

time when the join order cardinality is low or moderate. We first elaborate on the structure-

based reduction process. Then, we discuss the benefits of structure-based reduction relative

to cost-based reduction along with the applications of structure-based reduction. Further, we

present experimental results obtained by applying structure-based reduction on a suite of plan

diagrams. While the results indicate that the resulting join order cardinalities are low or mod-

erate in many cases, we also encounter situations wherein the cardinality is high. For the latter

case, we present the SRE (Small Relation Elimination) heuristic, that removes small sized rela-

tions in the join orders to bring down the join order cardinality. Even though the plan optimality

22
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is no longer guaranteed, we present experimental results, which show that the cost-increase of

any query point is within acceptable limits. Finally, we study the occurrence of common join

orders in the plan diagrams produced by different commercial engines.

3.1 Join Orders

We now provide the formal definition of a join order for a query execution plan.

DEFINITION 1 Join Order.

The join order of a query execution plan is the order in which the relations of the query are

joined, with each join being annotated by the join-type and the join predicate(s) applied at that

join.

The join-type can be any of the various joins possible, including Natural Join, Left Outer

Join, Right Outer Join and Full Outer Join.

Given a query execution plan tree, its join order is determined by an inorder traversal of the

tree. Consider, for example, the plan tree shown in Figure 3.1. The annotated join-order for this

plan obtained after its inorder traversal would be:

(CUSTOMER1(c custkey=o custkey)ORDERS))1(l orderkey=o orderkey)LINEITEM

Here, CUSTOMER and ORDERS relations are first joined together using the join predicate

c custkey = o custkey, the result of which is joined with the relation LINEITEM using l orderkey

= o orderkey as the join predicate. Both the joins are Natural joins as indicated by the 1 symbol.

3.2 Overview of Structure-based Reduction

It is well known that determining the optimal join order is the most computationally challenging

task during the query optimization process and that this decision has a very profound effect

on the quality of the plan chosen. So, in the structure-based reduction process, we merge all

plans with the same annotated join order into a single entity. By same join order, we mean

that the annotated join orders of the plans are the same. Thus, after the reduction process,

there would be as many colors in the plan diagram as the number of unique join-orders. If the

resulting diagram turns out to be anorexic, then structure-based reduction is a potent alternative
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Figure 3.1: Example Plan Tree for Join Order

to cost-based reduction, but without the cost increase overheads that are inherent in cost-based

reduction techniques.

As an example, consider the plan diagram of Figure 3.2(a) consisting of 31 plans. A cost-

based reduction of this plan diagram at a cost increase threshold of 20% is shown in Fig-

ure 3.2(b). The number of plans has reduced to 14, but most of the geometries of the plans

in the plan diagram remain intact. But the structure-based reduction of the same plan diagram,

which is shown in Figure 3.2(c), brings down the number of plan skeletons to 9, and addition-

ally, the diagram is much “cleaner”, with the complicated plan boundaries being now removed.
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(a) Plan Diagram (b) Cost-based Reduction (λ = 20%)

(c) Structure-based Reduction

Figure 3.2: Example for Structure-based Reduction
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Some of the join orders found in this plan diagram are listed below. Their tree representa-

tions are shown in Figure 3.3.

J1 - (SUPPLIER 1(s nationkey=n nationkey,s suppkey=l suppkey) ((((NATION

1(n regionkey=r regionkey) REGION) 1(n nationkey=c nationkey) CUSTOMER) 1(c custkey=o custkey)

ORDERS) 1(l orderkey=o orderkey) LINEITEM))

J2 - (REGION 1(n regionkey=r regionkey) (NATION 1(s nationkey=n nationkey) (CUS-

TOMER 1(c custkey=o custkey,c nationkey=s nationkey) (SUPPLIER 1(s suppkey=l suppkey) (ORDERS

1(l orderkey=o orderkey) LINEITEM)))))

J11 - ((((REGION 1(n regionkey=r regionkey) (NATION 1(s nationkey=n nationkey)

SUPPLIER)) 1(s suppkey=l suppkey) LINEITEM) 1(l orderkey=o orderkey) ORDERS)

1(c custkey=o custkey,c nationkey=n nationkey) CUSTOMER)

J25 - (((((NATION 1(n regionkey=r regionkey) REGION) 1(n nationkey=c nationkey)

CUSTOMER) 1(c custkey=o custkey) ORDERS) 1(l orderkey=o orderkey) LINEITEM)

1(s nationkey=n nationkey,s suppkey=l suppkey) SUPPLIER)

Even though the join order cardinality of the plan diagram is just 9, it covers a spectrum of

disjoint join orders, consisting of left-deep (Figure 3.3(d) corresponding to J25), zig-zag, where

each join has at least one input to be a base relation, and the tree is neither left-deep nor right-

deep (J1 and J11 corresponding to Figures 3.3(a) and 3.3(c)) and right-deep trees (J2 shown

in Figure 3.3(b)). While no bushy trees were found in this particular case, they were found in

many other plan diagrams, some of which are discussed later. Also, all three tree-types that are

exhibited in the plan diagram are also present in the cost-based reduced diagram that has only

14 plans.
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(a) J1 (b) J2

(c) J11 (d) J25

Figure 3.3: Example Join Orders
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3.3 Benefits and Applications of Structure-based Reduction

We now discuss the benefits of structure-based reduction as compared to cost-based reduction,

which makes it very useful.

• No assumptions about the underlying cost model are made, thus making it suitable for

all kinds of query templates. Cost-based reduction, on the other hand requires plan cost

monotonicity to hold.

• Works solely through the standard “hint” mechanism supported by most engines. Some

cost-based reduction schemes require advanced features like foreign plan costing (FPC)

for their functioning.

• If it is known that the database instance and the optimizer/engine have not changed since

the time of plan diagram generation, structure-based reduction when used for join order

caching, modulo the SRE heuristic (Section 3.4.1), provides the plan as would have been

chosen by the optimizer (“optimal plan”). However, cost-based reduction procedures

provide plans that are within a cost-increase threshold of the optimal plan. On the other

hand, if either the database instance or the engine has changed, structure-based reduction

provides consistent join orders (i.e., as was chosen previously by the optimizer), which

is sometimes an important requirement in many industrial settings. Cost-based reduction

procedures, however, could suggest a new plan.

• When values of certain parameters cannot be predicted at compile time, but can be known

at run-time, join order caching can be used as part of a run-time plan refinement strategy

to provide better plan choices along with savings in optimization time.

Applications. As an immediate application of the structure-based reduction scheme, we discuss

join-order caching. Here, when a new query corresponding to a location in the plan diagram is

issued, we do not carry out a fresh optimization of the query. Instead, the join-orders are used as

“skeletons” that are fed to the optimization process to be fleshed out into complete plans, which

are in turn costed to find the best plan. This process of feeding of just the join-orders to the

optimization process is achieved through the “hinting” mechanism provided by most database
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engines. Among the functionalities provided by the hinting mechanism, users are typically

allowed to specify access methods (such as Index Scan and Table Scan), join orders and join

operators (such as Hash-Join, Merge-Join and NestedLoop-Join). For our purposes we need to

specify only the join orders.

We have empirically found that fresh optimization of a query requires about a factor of 20

more time than fleshing out a complete plan from a given join-order. This observation implies

that join order caching is certainly beneficial for plan diagrams whose join-order cardinality

is low – around 10. For the plan diagram in Figure 3.2(a) that has 31 plans, the structure-

based reduced diagram, which is shown in Figure 3.2(c) has only 9 join orders. Join order

caching would be highly beneficial in this case. Further, the time required for fleshing out the

skeletons includes overheads such as unnecessary query re-writing and hint validation, which if

eliminated, by incorporating join-order caching into the optimizer, would reduce the time taken

even further. This makes join-order caching viable even for plan diagrams with moderately

high cardinalities - around 40. Finally, when faced with very high join-order cardinalities, we

propose a heuristic-based solution – SRE (Small Relation Elimination) – to reduce it to anorexic

levels, which is outlined later in the chapter.

One more interesting use case is when we fail to get anorexic diagrams using cost based

reduction schemes. Structural reduction can be applied on top of the cost based reduction,

giving us the desired results. The plan diagram of Figure 3.2(a), after cost-based reduction

yields 14 plans as shown in Figure 3.2(b) at λ = 20%. Application of structure-based reduction

on top of this leaves us with just 5 join orders as shown in Figure 3.4 with the bonus of obtaining

a “clean” diagram.

Also, extrapolating from the above idea, this two-level reduction scheme may prove to be

helpful in cases where we prefer λ to be less than 20%, generally required to get anorexia in

cost-based reduction techniques. In such scenarios, this two level application of reduction might

get us a low number of plans along with lesser cost-increase thresholds. As an example, consider

again the plan diagram of Figure 3.2(a). If we desire a λ of 5%, the number of plans remaining

after cost-based reduction is 23. After applying structure-based reduction on this result, we get

7 join orders and the diagram looks very similar to Figure 3.2(c). Considering plan costing takes
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Figure 3.4: Structure-based Reduction of a Cost-based Reduced diagram

far less time than fleshing out skeletons, this strategy can be very useful when the ratio of join

orders remaining after structure-based reduction of the cost reduced diagram to the number of

plans remaining after only cost-based reduction is less than the ratio of time required for plan

costing to the time required fleshing out a join order. If join order caching is internalized in the

optimizers, as discussed earlier, the second ratio would increase, thus providing more room for

the strategy to be helpful.

3.4 Experimental Evaluation of Structure-based Reduction

In this section, we present results obtained by applying structure-based reduction on plan dia-

grams that are produced on two industrial-strength commercial optimizers. These optimizers

are anonymously referred to as Opt A and Opt B 1, with Opt A being a top-down optimizer and

Opt B, a bottom-up one.

Our experimental setup consists of running the database engines and obtaining plan dia-

grams on an Intel Core 2 Duo machine having a clock speed of 2.10 GHz (T8100), with 4GB

1Note for review purposes only: The optimizers are Microsoft SQL Server 2008 and DB2 9.7.
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QT No. of No. of No. of pruned
plans join orders join orders

2 80 28 20
8 128 52 16
9 114 32 21

Table 3.1: Structure-based Reduction Statistics for Opt A

QT No. of No. of No. of pruned
plans join orders join orders

2 15 10 5
8 40 29 11
9 67 54 34

Table 3.2: Structure-based Reduction Statistics for Opt B

RAM (3GB usable), running a copy of Windows 7 Professional (32 bit).

Our results and analysis are based on our experiments using parameterized versions of three

queries from the TPC-H benchmark [62]. These three queries - 2, 8 and 9 of the TPC-H bench-

mark, are referred to as Query Templates (QT) 2, 8 and 9, respectively and are provided in

Figures A.1, A.3 and A.4, respectively. The templates for these queries were chosen as they

yield a fairly large number of plans as compared to the rest of the queries in both the engines.

Also, the templates are very complex as they involve a large number of tables and exhibit nest-

ing in the SELECT, FROM and WHERE clauses.

In Tables 3.1 and 3.2, we have enumerated the number of unique join-orders in QT2, QT8

and QT9 for Opt A and Opt B, respectively. We see that there is a substantial decrease in

the number of entities in the plan diagram in most cases. The plan diagrams and the respective

structure-based reduced diagrams corresponding to the three templates are shown in Figures 3.5

and 3.6 for Opt A and Opt B, respectively.

One characteristic feature in all the cases is that the structure-based reduced diagram looks

“cleaner” than the plan diagram. This is quite evident in the structure-based reduced diagram

of QT8 - Opt A, shown in Figure 3.5(d), where the complicated spatial layouts of the plan

optimality regions near the axes are replaced with relatively smoother boundaries.
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(a) Plan Diagram for QT2 (b) Structure-based Reduced Diagram
for QT2

(c) Plan Diagram for QT8 (d) Structure-based Reduced Diagram
for QT8

(e) Plan Diagram for QT9 (f) Structure-based Reduced Diagram
for QT9

Figure 3.5: Structure-based Reduction for Opt A
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(a) Plan Diagram for QT2 (b) Structure-based Reduced Diagram
for QT2

(c) Plan Diagram for QT8 (d) Structure-based Reduced Diagram
for QT8

(e) Plan Diagram for QT9 (f) Structure-based Reduced Diagram
for QT9

Figure 3.6: Structure-based Reduction for Opt B
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QT left-deep right-deep bushy zig-zag
2 1 0 15 12
8 7 0 14 31
9 1 0 9 22

Table 3.3: Tree-types found in Opt A

QT left-deep right-deep bushy zig-zag
2 0 0 10 0
8 1 0 11 17
9 0 0 15 39

Table 3.4: Tree-types found in Opt B

After drilling down to the plan structures, we tabulate in Tables 3.3 and 3.4, the tree-types

found in the all three QTs for Opt A and Opt B, respectively. We notice that there are no right-

deep join orders present in any of the three templates for both the optimizers. The one left-deep

join order of QT2 - Opt A, corresponding to J14, occupies around 2% of the diagram space and

is found to be the purple horizontal patch near the X-axis in Figure 3.5(b), while those of QT9

- Opt A (J86) and QT8 - Opt B (J28), shown in Figures 3.5(f) and 3.6(d), respectively, occupy

less than 0.05% of the space and are not visible to the naked eye.

All experimental results presented here are on two dimensional query templates, but the

techniques remain applicable to higher dimensional templates too.

3.4.1 Heuristic-based Solution

We discussed previously that structure-based reduction has useful applications to join order

caching. However, when the join order cardinalities of plan diagrams turn out to be very high, it

is not beneficial to directly use the structure-based reduction procedure. To overcome this draw-

back, we discuss a heuristic-based solution – SRE (Small Relation Elimination) – to structure-

based reduction that can be applied when the join order cardinality is substantially high, in order

to make join order caching feasible.

Analysis on the join-orders present in the plan diagrams showed that, in cases where the
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number of join-orders were high, there existed many join orders which differed only in the join

of smaller relations. So, based on the hypothesis that large number of join orders are because

of the variations in the joins of smaller relations and that the change in the join order with

respect to them does not have a huge impact on the join order quality, we propose the following

heuristic-based solution as a recourse when high join-order cardinality is encountered. From

the join orders initially obtained from the plans, we remove the relatively smaller sized

relations, thereby obtaining a pruned set of partial join-orders. Then, for each unique partial

join order, we assign a representative complete join order, chosen randomly from among the

complete join orders that are built from the partial join orders. As an example, let us look the

plan diagram of QT8 - Opt A, shown in Figure 3.5(c), which has 52 join orders. Consider the

set of join orders shown below – J27, J69, J116 – that are taken from the plan diagram. Their

join predicates are dropped for ease of presentation and their tree-representations are shown in

Figures 3.7(a), 3.7(b) and 3.7(c), respectively.

J27 - (PART 1 ((SUPPLIER 1 NATION) 1 ((((LINEITEM 1 ORDERS) 1 CUSTOMER) 1

NATION) 1 REGION)))

J69 - (PART 1 ((SUPPLIER 1 NATION) 1 (REGION 1 (NATION 1 ((LINEITEM 1 ORDERS)

1 CUSTOMER)))))

J116 - (PART 1 ((SUPPLIER 1 NATION) 1 (REGION 1 (((LINEITEM 1 ORDERS) 1

CUSTOMER) 1 NATION))))

After removing the relations NATION and REGION from all three join orders we get -

Pruned Join Order - (PARTS 1 (SUPPLIER 1 ((LINEITEM 1 ORDERS) 1 CUSTOMER)))

This is the partial join order to which any of the three complete join orders can be assigned as

the representative join order. Figure 3.7(d) shows the structure of the pruned join order.
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(a) J27 (b) J69

(c) J116 (d) Pruned Join Order

Figure 3.7: Example Join Orders of QT8 - Opt A
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Now, when a query located in the plan diagram has to be optimized, we evaluate the repre-

sentative join orders corresponding to each unique partial join order and choose the one yielding

the least cost.

Experimental evaluation of this heuristic using the experimental setup described previously

did yield favourable results. The number of pruned join orders remaining in the plan diagrams

of QT2, QT8 and QT9, after removing the smaller relations, are shown in the fourth columns of

Tables 3.1 and 3.2 for Opt A and Opt B, respectively. It can be seen that the number of pruned

join orders has come down to around 20 in most cases. It is important to note that, even after

removal of the smaller relations, there are around 4-5 relations left in each of the queries and

hence we still have hundreds of potential join orders in our search space. Also, it was sufficient

to remove only 2 relations in most cases to get reduced join order cardinalities. Finally, the

heuristic was evaluated by applying it to every query location in the plan diagram. We observed

that the per-query cost increase was less than 30% for over 90% of the query locations in the

plan diagram. Even for the remaining the 10% of query locations, the cost-increase was less

than 100%, which is generally considered to be the highest acceptable cost-increase threshold.

Currently, the evaluation of the heuristic was carried out only for QT8 and QT9 with Opt A.

QT2 was not considered because it involves nesting in the Where clause of the query template

and there is no readily available mechanism in Opt A to force join orders for such queries.

Also, join-order reduction followed by SRE and cost-based reduction followed by join-order

reduction might seem comparable at first sight, but are two very different ways in which plan

diagrams can be reduced. In particular,:

1. The time taken by cost-based reduction is directly proportional to the number of query

points in the plan diagram, whereas for structure-based reduction it is proportional to the

number of plans in the plan diagram. This makes SRE computationally less expensive

than cost-based reduction followed by join order reduction.

2. Cost-based reduction strategies require the user to provide a cost increase threshold λ,

and the recommended λ in order to obtain anorexic number of plans is around 20%.

We have experimentally verified that the effective cost increase percentage through SRE

is around 20%-30%. Thus, SRE is not materially worse than cost-based reduction in
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QT A ∩B A pruned ∩B pruned
2 0 1
8 0 0
9 0 0

Table 3.5: Inter Engine Join Order Statistics

practice. However, SRE provides no guarantee on the maximum cost-increase of any

point.

3. Also, if database engines provide mechanisms to “hint” only the partial join orders that are

gotten through SRE, then it is possible to get the optimizer’s optimal choice, while there

are cost increases that are always associated with the cost-based reduction algorithms for

the replaced set of points.

Equipped with the above results, we conclude that structure-based reduction scheme can be

fruitfully employed for join-order caching, either directly, or through the application of the SRE

heuristic.

3.5 Inter Engine Join Orders

In Section 3.4, we looked at the structure-based reduction process by enumerating the unique

join orders found in individual plan diagrams. We now move on to exploring the common join

orders between the two optimizers, Opt A and Opt B for the same three templates, QT2, QT8

and QT9.

In Table 3.5 we have listed down the inter engine join order statistics for QT2, QT8 and

QT9. The second column corresponds to number of common complete join orders, and the

third corresponds to common pruned join orders (join orders with smaller relations removed).

The results as we can see, are quite surprising with no intersection at all in most cases. Even

among the set of pruned join orders, with smaller relations being removed, the intersection still

remains 0 for QT8 and QT9 and is very sparse (1) for QT2.

This disjoint behavior can be because of various reasons including different cost models,
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variations in the implementations of different join algorithms and difference in the methods of

storing and using statistics. Further investigations of this puzzling behavior comprises interest-

ing future work.



Chapter 4

Semantic Coloring of Plan Diagrams

With the ever increasing complexity of SQL queries, there is an increase in the plan cardinalities

and intricacies of plan boundaries in plan diagrams, the details of which were discussed in Chap-

ter 1. So, analysis of the plan diagrams is certainly not easy. In the previous chapter, through

structure-based, we broadly looked into the differences found between plans. Structure-based

reduction provides a broad overview on the kinds of plans present, but in case we require to

analyze structural differences between many plans, we still need to go through the cumbersome

process of comparing plans manually. In this chapter, we alleviate this problem, by semantically

coloring the plan diagrams. Specifically, we color the plan diagrams such that the differences

in colors between any pair of plans, reflects the differences in their structure.

We begin with formally defining the semantic plan diagram coloring problem and then go

on to describe the plan tree differencing metric adopted from [14, 52] to capture the plan tree

differences quantitatively. We then develop a technique to achieve semantic coloring of plan

diagrams. Specifically, we adapt Kruskal’s Iterative Steepest Descent method, which is a mul-

tidimensional scaling (MDS) technique. Finally, we discuss the experimental results obtained

by employing the adapted technique to color a suite of plan diagrams. We also provide analysis

on the quality of coloring obtained by the proposed technique and the kind of plans present in

the plan diagrams.

40



CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 41

4.1 Problem Definition

The formal definition of the problem, which was provided in Chapter 1, is reiterated here.

Problem Statement: Consider an undirected complete graph G(V,E) with m vertices, where

each vertex vi ∈ V represents a POSP (Parametric Optimal Set of Plans) plan. A vertex vi

has an associated weightwvi , representing the fractional volume covered by the plan in the

plan diagram. Each edge eij ∈ E has an associated weight pij representing the structural

distance between the plans at its vertices vi and vj . Also, each vertex pair (vi, vj) is

assigned a weight wij . The objective now is to come up with an efficient algorithm that

assigns a unique color to all the vertices in V such that, given any pair of vertices (vi, vj),

their color distance cij is as close as possible to the weight pij of the edge joining them.

Further, if a choice has to be made, vertex pairs that are assigned higher weights (wij)

receive preferential treatment in obtaining a more accurate coloring for their distances.

That is, our aim is to minimize (i.e. as close to 0 as possible) the following objective

function:

m−1∑
vi=1

m∑
vj=vi+1

wij(pij − cij)2

A variety of assignments are possible for the weights wij: For example, they can be

wvi + wvj , giving preference to plan pairs with larger total area; or 1, which treats all

vertex pairs equally; or,
1

wvi + wvj

, where small sized plans are preferentially colored

better.

4.2 Plan Distance Metrics

To calculate plan tree differences, we employed the plan tree differencing strategy from [14, 52],

the details of which are revisited below.

Let the operator trees corresponding to a pair of plans pi and pj be denoted by Ti and Tj ,

respectively. Our comparison strategy is based on identifying and mapping similar operator

nodes in the two trees. In the following description, the term branch is used to refer to any
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directed chain of unary-input nodes between leaf and a binary node, or between a pair of binary-

input nodes, in these trees. Branches are directed from the lower node to the higher node,

modelling the direction of data propagation. The matching proceeds as follows:

1. First, all the leaf nodes (relations) and all the binary-input nodes (typically join nodes)

are identified for Ti and Tj .

2. A leaf of Ti is matched with a leaf of Tj if and only if they both have the same relation

name. In the situation that there are multiple matches available (that is, if the same re-

lation name appears in multiple leaves), an edit-distance computation is made between

the branches of all pairs of matching leaves between Ti and Tj . The assignments are then

made in increasing order of edit-distances.

3. A binary node of Ti is matched with a binary node of Tj if the set of base relations that

are processed is the same. If the node operator names and the left and right inputs are

identical (in terms of base relations), the nodes are made white. However, if the node

operator names are different, or if the left and right input relation subsets are different,

then the nodes are colored.

4. A minimal edit-distance computation is made between the branches arising out of each

pair of matched nodes, and the nodes that have to be added or deleted, if any, in order

to make the branches identical, are colored. Unmodified nodes, on the other hand, are

matched with their counterparts in the sibling tree and made white.

5. Finally, each pair of matched nodes is assigned the same unique number in both trees.

For example, the number 15 is assigned to the final join node, representing the composite

relation formed by the join of all the base relations, in each tree.

Plan Differencing Metric. We now describe the procedure to quantify plan-tree differences.

Our formulation uses |Ti| and |Tj| to represent the number of nodes in plan-trees Ti and Tj ,

respectively, and |Ti ∩ Tj| to denote the number of matching nodes between the trees. The

white nodes depict matching nodes, whereas the colored nodes represent distinct nodes. For
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Figure 4.1: Plan Tree Template for Differencing

our matching purposes, we do not consider the leaf nodes (relations) in the intersection, since

all the plan trees in a given plan diagram have the same set of base relations as their leafs.

Now, ρ is measured as the classical Jaccard Distance [47] between the trees of the two plans,

and is computed as

ρ(Ti, Tj) = 1− |Ti ∩ Tj|
|Ti ∪ Tj|

(4.2.1)

For example, consider the plan tree template in Figure 4.1. We construct 5 plan trees out of

this such that, in the ith tree, the nodes labelled HSJOIN(i) and TBSCAN(i) are re-labelled as

NLJOIN and INDEXSCAN, respectively. Other nodes labelled with HSJOIN(j) and TBSCAN(j),

where j 6= i are re-labelled to be HSJOIN and TBSCAN, respectively. With this setting, we can

see that between each pair of trees constructed, the value of ρ is 1− 7

15
= 0.53.

Consider the 1st (Figure 4.2(a)) and 4th (Figure 4.2(b)) tree instances of the template tree.

The colored nodes indicate the differences between the two trees, while white nodes indicate

similarity. The leaves of the tree, which are the relations, are not taken into consideration
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(a) 1st tree instance

(b) 4th tree instance

Figure 4.2: Plan tree Differences

while determining differences since they would be present in all plan trees of a plan diagram.

So, |Ti ∩ Tj| = 7 and |Ti ∪ Tj| = 15. Hence, the value of ρ for these two trees would be

1− 7

15
= 0.53.
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Using this method we calculated the plan distances between every two plans, resulting in a

matrix of dissimilarities. Note that the ρ values are normalized between 0 and 1, with values

close to 0 indicating that all the plans are structurally very similar to each other, and values

close to 1 indicating that the plans are extremely dissimilar. Also, the metric is symmetric, with

ρ(Ti, Tj) being equal to ρ(Tj, Ti).

We now go on to describe the techniques employed to convert the plan dissimilarities to

distances in color space.

4.3 Multidimensional Scaling

As our optimization strategy, we considered methods from the family of multidimensional scal-

ing (MDS) techniques. As described in [7],

MDS: “Multidimensional scaling (MDS) is a method that represents measurements of sim-

ilarity (or dissimilarity) among pairs of objects as distances between points of a low-

dimensional multidimensional space”.

The classifications of MDS are provided in [46, 56]. Depending on the level of the input

data, different techniques of MDS are recommended in [7]. It is given that if only the rank-order

of the dissimilarities (plan tree differences) is considered informative, then non metric MDS has

to be considered and if the dissimilarities are related to the proximities (color distances) by a

specific continuous function, then metric MDS techniques need to be employed. Since for

our input data (plan tree differences), the dissimilarities are related to the proximities, metric

multidimensional scaling is the technique suitable for our purposes.

One of the metric MDS methods discussed in [7] for computing solutions is an iterative

algorithm based on Stress Majorization called SMACOF (Scaling by majorizing a complicated

function). However, due to reasons elaborated later in this chapter, we could not successfully

employ this technique even though it has guarantees on the rate of convergence. Instead, we

adapt a non-metric MDS technique, which is Kruskal’s Iterative Steepest Descent [29, 30] (ISD)

approach to achieve our goal. The ISD approach is outlined below.



CHAPTER 4. SEMANTIC COLORING OF PLAN DIAGRAMS 46

4.3.1 Kruksal’s Iterative Steepest Descent

Iterative Steepest Descent: Given a function f for which the minima needs to be determined,

we initially assign a random value to kick start the iterative process. In any iteration, we

move along the direction of the negative gradient by a chosen step size h. We continue

this iterative process till the convergence criteria is met. Usually, the test is to check

whether the change in the objective value and/or the value assigned, is more than a small

value ε.

Choosing the step size (h) carefully is important to monotonically decrease the objective

function in every iteration and also for the algorithm to converge quickly. Also, starting at a bad

random value might end up in a local minima which is nowhere close to the global minima. To

reduce the possibility of this happening, it is recommended in [30] to run the method on a given

input with a variety of random positions. We have adopted the recommendation of optimizing

with many random inputs and have also carefully chosen h as elaborated in the next section.

4.4 Modelling the Coloring Problem as an MDS Problem

One of the first design considerations before employing MDS would be the number of dimen-

sions in the output space. Since our problem, as defined in Section 4.1 is to convert the dissimi-

larities into equivalent distances in color, we have the color space as our output. This being the

case, the RGB (Red, Green and Blue), and the CMYK (Cyan, Magenta, Yellow, Key - Black)

model are among the candidate choices for the output color space. If we choose the CMYK

model, when the percentage of the Key (Black) color is 100%, no change in any color by any

amount will change the resultant color. This will make a part of the output space redundant and

the colors of the vertices placed in that area by the MDS program will not reflect the dissimilar-

ities between them. So, to prevent such situations, we choose the RGB model which makes our

output space three dimensional. Thus, we have the mapping

g : D→ ([0, 1]3)n
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Figure 4.3: Output Color Space

where g represents the scaling function, D stands for the set of all symmetric matrices of the

type [0 − 1]n∗n (i.e., the set of all dissimilarity matrices), one of which is given to us as input,

n represents the number of vertices or equivalently, plans in the plan diagram and the three

co-ordinates of the [0, 1]3 space represent the colors Red, Green and Blue, respectively.

The next design issue is the variant of MDS to use - metric or non-metric, and along with

it, the specific technique to be employed. As already mentioned in Section 4.3, we choose a

non-metric MDS technique, the ISD approach, as opposed to the popular SMACOF strategy,

the reasons for which are elaborated as follows –

We know that all input dissimilarity values are in the range (0, 1] and that each of the color

values (Red, Green, Blue) are represented in the range [0, 1]. The latter part necessitates every

point in the output of our MDS program to lie in the [0, 1]3 range, thus making the output space

into an unit cube as shown in the Figure 4.3. But the output of the SMACOF algorithm is

in R3. Even after we translate the output, so that most points are accommodated inside the

cube, a large number points still remain outside. Also, if we scale down the values into the

cube, it leads to deterioration in the quality of coloring. However, the non-metric ISD (Steepest

Descent) algorithm [29, 30], can be easily modified to accommodate the cube constraint. A

downside of the adaption is that the convergence rate guarantees provided by classical ISD may

no longer hold, but our empirical experience is that even for plan diagrams with hundreds of

plans, convergence is achieved within a few minutes.
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There is another important feature specific to our coloring problem. As already men-

tioned, the output space is an unit cube with maximum and minimum values possible being

(0.0, 0.0, 0.0) and (1.0, 1.0, 1.0), respectively. The maximum possible distance between any

two points in any cube would be along its diagonal, which is shown by a red line joining the

vertices A and H in Figure 4.3. Hence in our unit cube, the maximum possible distance is
√

3.

But the maximum possible distance in our input space is limited to 1. This would prove to be a

handicap since we would confine the output colors to a smaller color space and this may lead to

inaccurate representation of distances in the color space. To overcome this drawback, we scaled

up all the dissimilarities by a factor of
√

3.

It is important to note that an ideal solution which gives an objective value of zero may not

always exist, since scaling down distances to lower dimensions is an inherently lossy procedure.

It may not be possible to embed all plans in 3D space, such that the distances between them sat-

isfy their respective dissimilarities. As an example, consider the example given in Section 4.2.

The dissimilarity matrix corresponding to these 5 plans – P1 to P5 is



0.0 0.53 0.53 0.53 0.53

0.53 0.0 0.53 0.53 0.53

0.53 0.53 0.0 0.53 0.53

0.53 0.53 0.53 0.0 0.53

0.53 0.53 0.53 0.53 0.0


In 3D space, we can have at most 4 points (P1 - P4), to be at equal distances (0.53) from

each other as shown in Figure 4.4. There is no means to place the fifth point P5, such that it

is at a distance of 0.53 from every point (P1 - P4) so as to obtain ideal coloring. This example

clearly shows the infeasibility of obtaining an optimal solution, no matter what the technique.

4.4.1 Iterative Steepest Descent Adapted to the Coloring Problem

The input to the ISD algorithm would be a matrix of dissimilarities, corresponding to every pair

of plans. We then compute the following steps iteratively till the change in the value assigned

to vertices, is more than a small value ε.
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Figure 4.4: Placement of Plans

Computing Slopes. This is done by taking the partial derivative of our objective function at

every co-ordinate of every vertex and by adding them up. If any of the co-ordinates of any point

is near the border of the unit cube (our output space), then we make its slope to be zero, so that

there is no movement along that co-ordinate.

Step Size. After the gradient is computed, we need to calculate the step size with which the

co-ordinates of the vertices should be moved. We choose the step size as the minimum of the

maximum distance any co-ordinate of any vertex can move inside the cube, along its negative

gradient.

Move the vertices. We move the vertices along their negative gradient (in all three dimensions)

with the step size decided. If the objective value increases, then we halve the step size and again

move the vertices. We continue this procedure till a step size that decreases the objective value

is found or no move can be made in this iteration.

As an example consider the following dissimilarity matrix for a set of 4 plans P1, P2, P3 and

P4, with ε = 0.01.
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(a) Initial Random Configuration


P1 P2 P3 P4

P1 0.0 0.825 0.913 0.820
P2 0.825 0.0 0.944 0.807
P3 0.913 0.944 0.0 0.270
P4 0.820 0.807 0.270 0.0


(b) Initial Dissimilarities: Objective =1.335

Figure 4.5: Initial Configuration and Dissimilarity Matrix



P1 P2 P3 P4

P1 0.0 0.730 0.240 0.550

P2 0.730 0.0 0.637 0.597

P3 0.240 0.637 0.0 0.333

P4 0.550 0.597 0.333 0.0


Figure 4.5(a) graphically shows the initial random locations that are assigned to the 4 plans.

The dissimilarity values, and the corresponding objective value obtained from this assignment

is given in Figure 4.5(b).

The working of Kruskal’s Iterative Steepest Descent method on these initial set of values

is shown graphically in Figure 4.6. Figures 4.6(a) and 4.6(b) correspond to the configuration

obtained after one iteration of the algorithm. We can see that the objective value has come

down to 0.714. After iteration 2, it further comes down to 0.139. After 10 iterations, which

corresponds to Figures 4.6(g) and 4.6(h), the algorithm converges with a low objective value of

3.4E-4, since no vertex (plan) moved by more than 0.01 units from its previous position. In any

given iteration, it can be observed that each vertex is moved by a value h (step-size), in one, two

or all three dimensions.
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(a) After 1 Iteration


P1 P2 P3 P4

P1 0.0 0.438 0.077 0.207
P2 0.438 0.0 0.393 0.358
P3 0.077 0.393 0.0 0.230
P4 0.207 0.358 0.230 0.0


(b) Dissimilarity Matrix: Objective = 0.714

(c) After 2 Iterations


P1 P2 P3 P4

P1 0.0 0.907 0.232 0.524
P2 0.907 0.0 0.719 0.676
P3 0.232 0.719 0.0 0.491
P4 0.524 0.676 0.491 0.0


(d) Dissimilarity Matrix: Objective = 0.139

(e) After 3 Iterations


P1 P2 P3 P4

P1 0.0 0.820 0.231 0.519
P2 0.820 0.0 0.621 0.597
P3 0.231 0.621 0.0 0.390
P4 0.519 0.597 0.390 0.0


(f) Dissimilarity Matrix: Objective = 0.02

(g) After 10 Iterations


P1 P2 P3 P4

P1 0.0 0.727 0.241 0.541
P2 0.727 0.0 0.630 0.593
P3 0.241 0.630 0.0 0.335
P4 0.541 0.593 0.335 0.0


(h) Dissimilarity Matrix: Objective = 3.4E-4

Figure 4.6: Working of Kruskal’s ISD
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4.5 Experimental Results and Analysis

In this section we color the plan diagrams by employing the technique developed in the previous

sections. Our test-bed is the same as that described in the previous chapter (Chapter 3), with

QT2, QT8 and QT9.

While experiments were conducted with a variety of weight assignments as discussed in

Section 4.1, in this section, we elaborate on the first case where wij = wvi + wvj , giving

preference to plan pairs with larger total area,

In the following discussion, we refer to ‘pairs of plans being treated well’, and by that

we mean that the ratio of the color distance between any two plans to the Jaccard dissimilarity

between them is between 0.7 and 1.3. (error tolerance level is 30%). We choose 30% as our error

threshold in order to utilize the coarseness of color perception in the human eye, which cannot

distinguish between two closely placed colors in the color spectrum. In the case of minimizing

our objective function with weights being wij = wvi +wvj , each of the plans is associated with

the area covered by the plan in the plan diagram. Hence, it is perhaps reasonable to look at the

weighted set of plan pairs treated well. The quantity ‘% of points pairs treated well’ gives the

sum of weights of the set of plan pairs treated well divided by the total sum of weights of the

plan pairs. Naturally, like the weights assigned in the objective function, the weight given to a

plan pair is the sum of the areas of the two plans.

4.5.1 Results

In the process of analyzing the semantically colored plan diagrams, let us first look at the dis-

tribution of Jaccard dissimilarities between plans in the plan diagrams of all three templates for

both engines. These graphs are shown in Figures 4.7 and 4.8 for Opt A and Opt B, respectively.

It is very evident that for Opt A, in all three templates, we have a large number of plans (80, 128,

114), along with conspicuous peaks at higher Jaccard dissimilarities (> 1), indicating that, with

our adopted metric, most plans are highly dissimilar from each other. This is in sharp contrast

to Opt B for the cases of QT2 and QT8, where we not only have few plans in comparison (15,

40), but also have peaks in the lower dissimilarity range, around 0.5 for QT2 and 0.75 for QT8.
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Figure 4.7: Distribution of Jaccard distances for Opt A (scaled to
√

3)

However, QT9 - Opt B does have high plan cardinality and a large dissimilarity range, along

with a peak at the Jaccard distance of 1.05.

Now with these numbers in mind, it would not be wrong to expect plan diagrams that are

largely differently colored for all templates of Opt A and for QT9 - Opt B, and with fewer colors

for QT2 and QT8 of Opt B. The semantically colored plan diagrams of Opt A and Opt B are

shown in Figures 4.9 and 4.10, respectively.

For the semantically colored plan diagram of QT2 - Opt A, shown in Figure 4.9(a), we ex-

pected a plan diagram with large color variations, and hence the coloring obtained is surprising.

A large part of the plan diagram has shades of red along with maroon and orange. The explana-

tion for this is that a large area of the diagram is occupied by very few plans, this being evident

by the high Gini co-efficient of 0.79. Also, large number of plans are found concentrated near

the axes, and these plans do have colors which are far apart in color space. We have plans P23

and P67, colored bright yellow and blue (color distance of 1.73), respectively, both being thin

strips near the axes. This would be one of the diagonals in our cube. Also, there is the (P21,
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Figure 4.8: Distribution of Jaccard distances for Opt B (scaled to
√

3)

P48) pair colored (bright green, pink) that are situated in the ends of another diagonal in the

cube. However, the maximum Jaccard distance found in this plan diagram corresponds to the

plan pair (P24, P44) with 1.66.

With respect to the semantically colored plan diagram of QT2 - Opt B, shown in Fig-

ure 4.10(a), the coloring approximately matches our prediction, with bluish-green shades in

the upper half of the diagram. The maximum difference in color in this plan diagram is seen

between P12 and P15 with 0.981 (actual dissimilarity is 0.356). These plans correspond to thin

vertical bars very close to Y-axis. The maximum Jaccard dissimilarity of 0.794 is found for

the pair (P3, P10). They correspond to the light orange squarish patch located in the centre of

the bottom part, and the dark green vertical strip, situated leftmost in the upper half of the plan

diagram. The color dissimilarity corresponding to this pair is 0.781.

Moving to QT8 - Opt A, we see behavior similar to what we saw in QT2 - Opt A. We have

a relatively large number of plans (128), and a rather flat peak in the dissimilarity range [1, 1.5]

indicating that there a large number of plans which are highly dissimilar from each other, but a
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(a) QT2 - Opt A

(b) QT8 - Opt A

(c) QT9 - Opt A

Figure 4.9: MDS Colored Plan Diagrams for Opt A
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(a) QT2 - Opt B

(b) QT8 - Opt B

(c) QT9 - Opt B

Figure 4.10: MDS Colored Plan Diagrams for Opt B
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QT No of % of point pairs % of plan pairs Lowest Highest Objective Objective
plans treated well treated well ratio ratio with weights w/o weights

2 80 89% 66.8% 0.0 776.5 0.03 0.22
8 128 87.9% 62% 0.02 381 0.06 0.27
9 114 93.1% 62.5% 0.0 722 0.01 0.15

Table 4.1: Statistics for ISD With Weights for Opt A

large part of the plan diagram is colored with cyan and light green – colors which are close to

each other. The maximum color and Jaccard distances are 1.73 and 1.70 corresponding to plan

pairs (P126, P127) and (P22, P117), respectively. Plans P126 and P127 are colored black and

white, respectively and occupy too small a area to be noticed by the eye in the plan diagram.

QT8 - Opt B, has a smaller dissimilarity range (0 - 1.1) as compared to QT8 - Opt A. We can

observe from Figure 4.10(b), the semantic colored plan diagram of QT8 - Opt B, that starting

from the origin, till about the middle of the plan diagram, plans are colored with similar shades

of green and blue. This suggests that the plans in the plan diagram are largely similar till the

selectivity crosses 25% along both X and Y axes. The maximum Jaccard distance is 1.15 (color

distance 1.18) between P1 and P23, P1 being colored pink at the top right and P23 being the

dark brown colored plan near the Y-axis. The maximum color distance is 1.47 between plans

P28 and P29, both of which are found very close to the axes, with Jaccard distance between

them being 0.001. They occupy less than 0.025% of the plan diagram space, which explains

why their color distance is very far apart from their actual dissimilarity value.

Inferences similar to the previous two cases can be drawn regarding the coloring of plan dia-

gram for both QT9 - Opt A and QT9 - Opt B. One observation regarding all plan diagrams is that

the maximum color distance achieved in each of them is slightly higher than the corresponding

maximum Jaccard distance found.

The accuracy of the interpretations that can be drawn from the MDS colored plan diagrams

do not seem far from reality when we look at the statistics of the generated coloring in Tables 4.1

and 4.2.

The objective values achieved in all the cases are sufficiently low to indicate that the plan

diagrams are reasonably well colored. Further, to justify this claim we can see that the ‘% of
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QT No of % of point pairs % of plan pairs Lowest Highest Objective Objective
plans treated well treated well ratio ratio with weights w/o weights

2 15 98.6% 84% 0.45 7.77 0.002 0.025
8 40 96.0% 76.0% 0.04 1362.0 0.01 0.044
9 67 92.5% 57.1% 0.01 173 0.02 0.124

Table 4.2: Statistics for ISD With Weights for Opt B

point pairs treated well’, shown in column 3, is more than 85% for all three templates. ‘% of

plan pairs treated well’, given in column 4, is considerably less in many cases (around 60%).

This low percentage can be attributed to the fact that we have tried to optimize the objective

function with weights being the areas of the plans. Because of this, plans with larger areas tend

to be colored well, and since we have a high skew (Gini Co-efficient of 0.79), a large part of the

plan diagram will be occupied by very few plans, and those few plans tend to be colored well at

the cost of many other plans (which occupy very less area) not being colored within our error

tolerance range.

Also, one can notice the increase in the percentage of ‘% of point pairs treated well’ as the

value of the objective function decreases. Even though our objective function directly does not

optimize the ‘% of point pairs treated well’, it has the necessary effect in our situation.

The objective function value calculated without weights is more than the value obtained

when it is calculated with weights, as we can see in columns 7 and 8. This is expected since the

optimization was carried out with weights. The columns highest ratio and lowest ratio provide

information about the worst case performance of the technique employed. We can see that the

ratios can get as bad as possible, like in the case of QT9 - Opt A, where the lowest ratio is as

low as 0.

4.5.2 Time Overheads of ISD

In Table 4.3, we have tabulated the time taken and the number of iterations required to run ISD

for numerous query templates. All values have been computed with a convergence criteria of

ε <= 1.0E − 5.

We observe here that, in general the average time taken increases with the increase in the
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QT No. of Avg. No. of Max. Min. Avg. Time
plans Iterations Iterations Iterations Taken (in seconds)

QT2-OptB 15 386 814 229 <1
QT8-OptB 40 4465 16807 2315 5.6
QT9-OptB 67 2669 6851 616 8
QT2-OptA 80 1927 3712 20 7.7
QT8-OptA 128 1435 3374 675 13
QT9-OptA 114 6426 16593 2668 59.4

Table 4.3: Time Overheads of ISD

cardinality of the plan diagram. For QT9-OptA, however, which has lower plan cardinality than

QT8-OptA, the average time taken is much higher than QT8-OptA. This is because QT9-OptA

requires larger number of iterations as compared to QT8-OptA in order to meet the convergence

criteria. These large number of iterations are because there are a set of plans that are equally

dissimilar from each other, and in the process of trying to maintain their dissimilarities in the

color space, the algorithm keeps moving the plans back and forth in successive iterations, with

very small changes in the objective value.

4.6 Representational Quality of Iterative Steepest Descent

From the discussion on experimental results in the previous section, a natural question that

would surface is whether we could do better in terms of the representational quality by the

use of a different technique. Representational quality includes ‘% of point pairs treated well’,

‘% of plan pairs treated well’ and the worst case ratios obtained. In this section, we compare

the results obtained through our adapted ISD with those obtained from SMACOF, and show

empirically that the performance is largely comparable.

The statistics obtained from coloring plan diagrams of the same three templates – QT2, QT8

and QT9, with SMACOF, under conditions similar to that of ISD are shown in Tables 4.4 and

4.5 for Opt A and Opt B, respectively.

We can see that the values in columns 3 and 4, corresponding to ‘% of point pairs treated

well’ and ‘% of plan pairs treated well’ are only slightly better than those obtained from ISD.
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QT No of % of point pairs % of plan pairs Lowest Highest No. of points
plans treated well treated well ratio ratio outside cube

2 80 96.3% 72.9% 0.05 321.5 45
After Scaling 23.12% 25.72% 0.0 294 0
8 128 92.8% 63.7% 0.03 634 81
After Scaling 51.3% 50.86% 0.0 634 0
9 114 94.71% 64.3% 0.007 906 66
After Scaling 59.77% 55.27% 0.003 588.9 0

Table 4.4: Statistics for SMACOF With Weights for Opt A

QT No of % of point pairs % of plan pairs Lowest Highest No. of points
plans treated well treated well ratio ratio outside cube

2 15 98.7% 86% 0.43 1.92 0
After Scaling 98.7% 86% 0.43 1.92 0
8 40 96.76% 77.4% 0.07 19.18 1
After Scaling 96.76% 77.4% 0.07 19.18 0
9 67 93.9% 62.2% 0.04 157 20
After Scaling 82.1% 55.22% 0.04 157 0

Table 4.5: Statistics for SMACOF With Weights for Opt B

However, the numbers corresponding to the lowest and highest ratios are better in SMACOF.

But, these results from SMACOF are currently not bounded to a cube, and the number of points

outside the cube, as given in the last column of the tables, is high in many cases. For the case

of Opt A, more than half the plans are outside the cube in the case of all three templates. The

statistics obtained after scaling down the values are given just below the ones obtained before

scaling. We can clearly see that both “% of plan pairs treated well” and “% of point pairs

treated well” deteriorate, sometimes by an order of magnitude. Armed with the above facts, we

conclude that the ISD technique colors plan diagrams satisfactorily.



Chapter 5

XML Plan Diagrams

In recent years, the hierarchically-structured XML document format has found its way into

mainstream database technology, and several popular database systems have been extended

and developed to support XML storage and XML query processing along with relational data.

To this effect, there has been considerable interest in the past decade for optimizing XML

queries and in particular XQuery, which has been the W3C recommended standard for querying

XML [65].

A lot of effort has been invested in the recent past for analyzing the behavior of SQL opti-

mizers. As discussed in Chapter 1, the notion of plan diagrams has become widely popular as

a tool for such analysis. In the previous two chapters we explored two new semantic features

of plan diagrams which help analyze the behavior of SQL optimizers better. In this chapter we

focus on analysing the behavior of one such XQuery optimizer, referred to as DB XML in the

way it handles XQuery, through the production of XML plan diagrams.

Generation of plan and other related diagrams for DB XML comprised of the following

main tasks:

XML Statistics Collection: Mechanisms for generation and storage of statistics on XML data

in DB XML had to be first identified. Then, methods had to be devised to access this

information.

XQuery Templates: The format of an XQuery template had to be defined and constraints for

a valid XQuery template had to be identified.

61
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XML Selectivity Computations: Mechanisms for identifying, interpreting and computing se-

lectivities from the statistical summaries and the optimizer’s plan output had to be de-

signed.

Execution Plan Parsing: All new operators introduced in DB XML to handle XQuery had to

be taken into account while identifying trees in the process of production of plan dia-

grams.

In this chapter, we first describe in detail each of the above steps. Then we provide exten-

sive experimental analysis on DB XML’s behavior using a set of three benchmarks. Further,

we discuss the results obtained by applying the structure-based reduction technique from Chap-

ter 3. Finally, we present and analyze XML plan diagrams that are semantically colored using

techniques developed in Chapter 4

5.1 XML Statistics Collection

In the relational world, statistics collection is at the granularity of individual attribute columns,

with all relevant information stored in internal system tables, which can be directly accessed

through SQL queries. For XML, however, statistical information is organized with respect

to element paths (e.g. /Customers/Customer/AccountBalance), and the storage and

access of the information is considerably more involved, as explained next.

We will hereafter use the term XML R to refer to a database relation that has one or more

XML columns (columns that have XML data). Given an XML R, executing the runstats util-

ity (an utility provided by the DB XML engine) on this relation provides the LOW2KEY and

HIGH2KEY values computed over all paths in the XML documents referenced by this relation,

as well as the total number of such instances. Further, to obtain distributional information, the

runstats utility has to be invoked using the “with distribution” option – a special requirement

in DB XML is that this option is effective only after an index has been created on the associated

path.

The statistics generated for the XML Rs corresponding to the element paths that define

the dimensions of the plan diagram, are dumped into a text file using another utility provided
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by the DB XML engine. Due to the lack of utilities for processing this file, we wrote our

own Perl parser to analyze the contents. The extracted information is stored in two tables,

XML SUMMARY and XML HIST, whose schemas are shown in Figure 5.1.

XML SUMMARY (colid bigint, tbname varchar(50), elementpath long varchar, card
bigint, high2key varchar(100), low2key varchar(100))

XML HIST (indexid bigint, indexpath long varchar, colid bigint, tbname varchar(50),
dtype varchar(32), value varchar(100), valcount bigint, distinctcount bigint)

Figure 5.1: Tables for storing statistics information

The XML SUMMARY table contains the low keys, high keys and cardinalities of the various

element paths, whereas the XML HIST table contains the histogram values and data types for

the terminating elements of the indexed paths. The information is separated over two tables

because the utility dumps statistics for all paths of XML documents stored in a XML column,

some of which may have an index, while others may not, in which case they would lack dis-

tributional information. Further, even in the presence of indexes, the information present in

XML SUMMARY would be repeated as many times as the number of buckets in the histogram

summary, violating normalization imperatives.

To make the above notions concrete, consider an example bank customer database, where

the XML nodes have the structure shown in Figure 5.2(a), consisting of the customer’s account

number, name and balance. Sample summary statistics and a snippet of the (equi-depth) his-

togram on the acct element path (/root()/customer/acct/text()), as produced by

DB XML, are shown in Figures 5.2(b) and 5.2(c), respectively.

5.2 XQuery Templates

The relational columns that form the dimensions of SQL-based optimizer diagrams are called

Variable Selectivity Predicates (VSP). These VSPs are easily specified using the :varies syntax

embedded in SQL, as previously shown in Figure 1.3. With XQuery, however, the specification

is more complicated since the dimensions of the optimizer diagrams are now element paths in
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<customer>
< acct> 1881 < /acct>
< name> Pablo Picasso < /name>
< bal> 1000 < /bal>

< /customer>

(a) XML node

PathID = /root()/customer/acct/text()
2nd Highest Key = 5:6059
2nd Lowest Key = 3:01
Sum Node Cnt = 3721

(b) Summary Stats

Value Count Distinct
Count

0 1 1
12 16 13
19 30 20
27 46 28
34 60 35
42 76 43
49 90 50
57 106 58
68 120 69
82 134 83
. . . . . . . . .

(c) Frequency Histogram

Figure 5.2: Example XML node and Statistics

the XML hierarchy, and it is difficult to directly infer these paths from the :varies predicate in

the query. In particular, the complete specification of an optimizer diagram dimension requires

information on the path structure, namespaces, table names, aliases and column names. We

will heareafter use the term VSX (Variable Selectivity XML element path)1 to denote these

dimensions and distinguish them from the relational VSP notation.

All information about a particular VSX is provided as a prologue to the query template,

as shown in Figure 5.3, where there are two VSXs corresponding to customer accounts and

orders. This XQuery template retrieves those accounts that have a working balance within a

parametrized value and, for each of these accounts, extracts the associated orders involving

cash transactions within a parametrized value.

Here, the namespaces corresponding to the XQuery template are enumerated in the begin-

1Our usage of the term element here denotes both XML elements as well as XML attributes.
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#NAMESPACE declare default element namespace
“http://www.fixprotocol.org/FIXML-4-4”;
#NAMESPACE declare namespace c=“http://tpox-benchmark.com/custacc”;

#VSX /c:Customer/c:Accounts/c:Account/c:Balance/c:WorkingBalance
CUSTACC CUSTACC CADOC
#VSX /FIXML/Order/OrdQty/@Cash ORDER ORDER ODOC
# – #

XQUERY
declare default element namespace “http://www.fixprotocol.org/FIXML-4-4”;
declare namespace c=“http://tpox-benchmark.com/custacc”;
for $acct in db2-fn:xmlcolumn(“CUSTACC.CADOC”)

/c:Customer/c:Accounts/c:Account[c:Balance/c:WorkingBalance :varies]
for $ord in db2-fn:xmlcolumn(“ORDER.ODOC”)

/FIXML/Order[@Acct=$acct/@id/fn:string(.)]
where $ord/OrdQty/@Cash :varies
return
<result>
{$acct}
{$ord}

</result>

Figure 5.3: Example XQuery Template

ning of the prologue followed by VSXs. Each VSX in turn consists of its element path, table

name (i.e. its XML R), alias and column name (i.e. the XML column), listed in that order. The

beginning of each namespace and each VSX is indicated through the use of #NAMESPACE

and #VSX, respectively, and the termination of the prologue is indicated through #–#. Note

that the :varies keywords are still embedded inside the Xquery template so as to unambigu-

ously determine where values would be substituted for varying the VSX. As a final point, the

order in which the VSX locations are listed in the prologue should match the lexical order of

the corresponding :varies predicates within the XQuery template.

Template Constraints. In order to meaningfully cover the full range of selectivities shown

in the various optimizer diagrams, an XQuery template should satisfy a variety of conditions,

which are enumerated below (for reference, the equivalent constraint in the SQL framework is
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also listed):

1. Each XML column of a relation can participate in at most one VSX. (In SQL templates,

each relation can participate in at most one VSP.)

2. The element path in a VSX predicate typically consists of a logical seg-

ment, denoted L, that defines the semantic object whose selectivity is de-

sired to be varied, and a physical segment, denoted P, which is downstream

of L and whose value is actually varied in the query template. To make

this concrete, consider the VSX /c:Customer/c:Accounts/c:Account/

c:Balance/c:WorkingBalance in the XQuery template of Figure 5.3. Here

L is the segment (/c:Customer/c:Accounts/c:Account), while P is

the downstream segment /c:Account/c:Balance/c:WorkingBalance – the

parametrized variation across Customer Accounts is achieved through the varying

of WorkingBalance values. Similarly, for the second VSX, the logical segment is

/FIXML/Order and the physical segment is /Order/OrdQty/@Cash. As a final

point, note that it is also acceptable to have templates where the logical segment itself

terminates with the variable element, and there is no distinct P segment.

For a VSX predicate with an explicit P segment, it should be ensured that many-to-one

relationships do not occur in this segment. That is, in the graphical representation of the

XML schema [43], there should be no ‘*’ node in the path corresponding to P. (In SQL

templates, there is no equivalent to these notions of logical and physical segments since

hierarchies are inherently not present.)

3. If along with the VSX predicate, other predicates are also specified, then it should be

ensured that the application of these additional predicates is deferred in the plan tree.

Specifically, these non-VSX predicates should not be applied in conjunction with the

VSX predicate, at the leaf level, in the plan tree. (In SQL templates, VSP relations can

feature in join predicates but not in any other equality or range predicates.)

4. The permissible data types for VSX element paths are integer, float, string and date. (The

same set of data types are supported in SQL templates.)
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5. The VSX element paths must have pre-generated statistical summaries. (The same con-

straint holds for VSPs in SQL templates.)

6. The VSXs should be on dense-domain paths in high cardinality XML columns. (The same

constraint holds for VSPs in SQL templates.)

To illustrate the constraints on XQuery templates, consider an XML database with CUS-

TOMER and ORDER documents adhering to the schema graphs shown in Figures 5.4(a) and

5.4(b), respectively. On this database, consider the XQuery template shown in Figure 5.4(c),

which returns the names and phone numbers of customers located within a parametrized address

value and whose orders feature item quantities within a parametrized value – this template is

compatible with respect to all of the above conditions.

However, if the query template were to be slightly altered as shown in Fig-

ure 5.4(d), it would become invalid as Condition 2 of the above requirements

would be violated – specifically, there is now a ‘*’ node in the physical segment

(order lines/(‘*’)order line/quantity of item).

5.3 XML Selectivity Computation

After the statistics are collected and the information regarding VSXs are retrieved from the

XQuery template, the next step in obtaining plan diagrams from DB XML is to determine the

constants that would result in the desired VSX selectivity values. In the following discussion,

we first explain the selectivity computation process in the relational environment, and then

describe its extension to the XML world.

5.3.1 Relational Selectivities

As mentioned earlier, in the process of producing the plan diagram, we estimate the constants

that would result in the desired selectivities through an “inverse-transform” of the VSP statis-

tical summaries. To verify that the estimates provided by us and the optimizer are mutually

consistent, three types of selectivities are computed: Expected Selectivity, Predicate Selectivity
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(a) CUSTOMER Schema Graph (b) ORDER Schema Graph

#PSX /customers/customer/address id CUSTOMER CUSTOMER CUSTOMER
#PSX /order/order lines/order line/quantity of item ORDER ORDER ORDER
#–#
XQUERY
for $cust in db2-fn:xmlcolumn(“CUSTOMER.CUSTOMER”)

/customers/customer[address id :varies]
for $order in db2-fn:xmlcolumn(“ORDER.ORDER”)

/order[customer id=$cust/@id]/order lines/order line[quantity of item :varies]
return <Output>
{$order}
{$cust/first name}
{$cust/last name}
{$cust/phone number}

</Output>

(c) Valid XQuery Template

#PSX /customers/customer/address id CUSTOMER CUSTOMER CUSTOMER
#PSX /order/order lines/order line/quantity of item ORDER ORDER ORDER
#–#
XQUERY
for $cust in db2-fn:xmlcolumn(“CUSTOMER.CUSTOMER”)

/customers/customer[address id :varies]
for $order in db2-fn:xmlcolumn(“ORDER.ORDER”)/order[customer id=$cust/@id

and order lines/order line/quantity of item :varies]
return <Output>
{$order}
{$cust/first name}
{$cust/last name}
{$cust/phone number}

</Output>

(d) Invalid XQuery Template

Figure 5.4: XQuery Template Constraints
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and Plan Selectivity. These selectivities, whose values are expected to be close to each other in

a valid execution, are defined as follows:

Expected Selectivity: This is the selectivity of the VSP as determined by us through the sta-

tistical summaries of the database engine.

Predicate Selectivity: This is the optimizer’s estimated selectivity for the VSP when the uni-

dimensional query

select * from Table T where VSP(T)

is optimized.

Plan Selectivity: This is the selectivity associated with the node containing the VSP in the

optimizer’s plan choice for the user’s query.

5.3.2 XML Selectivities

For the above computations in the relational world, selectivity is simply and consistently in-

terpreted as the fractional number of rows in a table that are relevant to processing the user’s

query. However, with XML data, the definition is not so straight-forward since information is

organized in the form of nodes and documents containing these nodes. Therefore, selectivities

can be computed at the granularity of nodes or documents. For example, consider the scenario

where 100 XML nodes are organized in a single document, and the other extreme where there

are 100 documents, each containing one of these nodes. In the former case, the document se-

lectivity will always be 0 (no node in the document satisfies the predicate) or 1 (at least one

node in the document satisfies the predicate), whereas in the latter, the document selectivity

will represent the fractional number of nodes satisfying the predicate.

From a query processing perspective, node selectivities constitute a more meaningful metric

than document selectivities since they essentially correspond to rows in tables. Unfortunately,

the current implementation of indexes in DB XML is such that although information to compute

node selectivities is available, only document selectivities are finally returned as outlined in [4].

As a further complication, the document selectivities computed at the leaves of the plan trees

later morph into node selectivities at the higher internal levels of the plan tree.
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5.3.3 Computation Methods

Modulo the above conceptual issues, the Predicate and Plan selectivities of the DB XML opti-

mizer are computed in the following manner:

Predicate Selectivity: The representative XQuery structure shown in Figure 5.5(a) is opti-

mized, with its place holders – NAMESPACES, TABLE NAME, COLUMN NAME, VSX and

constant-value – filled up using the data from the XQuery template under consid-

eration. The Predicate Selectivity is taken to be the estimated number of XML results in

the final output, i.e., the number present as output in the RETURN operator of the plan tree

returned by the optimization process.

XQUERY
NAMESPACES

for $x in
db2-fn:xmlcolumn(“TABLE NAME.COLUMN NAME”)VSX
where $x <= constant-value

return $x

(a) XQuery Structure

XQUERY
declare default element namespace

“http://www.fixprotocol.org/FIXML-4-4”;
declare namespace c=“http://tpox-benchmark.com/custacc”;
for $x in

db2-fn:xmlcolumn(“ORDER.ODOC”)/FIXML/Order/OrderQty/@Cash
where $x<=20000
return $x

(b) Example XQuery

Figure 5.5: Predicate Selectivity Computation

As a concrete example, consider the VSX /FIXML/Order/OrderQty/@Cash fea-

tured in the example XQuery template of Figure 5.3. For this VSX, predicate selectivities

are computed using the XQuery instance shown in Figure 5.5(b).

Plan Selectivity: Similar to the implementation in the relational world, the Plan Selectivity of

a VSX is extracted from the annotated plan tree produced by the optimization process. It
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is evaluated as the selectivity of the parent node of the XML relation associated with the

VSX in the plan tree – this parent node is typically a scan operator such as TBSCAN or

XISCAN.

5.3.4 Selectivity Estimation Errors

Apart from the above conceptual issue of document versus node selectivities, we have also

encountered what appear, within our limited understanding, to be bugs in the DB XML imple-

mentation of selectivity estimation. Specifically, when the constants used in the VSX are neg-

ative values, then the Predicate and Plan selectivity estimations are way off from what would

be expected from the statistical summaries. Secondly, when the VSX attribute is of type string,

as opposed to integer or float, the selectivity estimations again bear little relationship to the

expected values. These situations are explicitly shown later in Section 5.5.5 of the experimental

study.

5.4 Plan Parsing

To cater to the complex data processing requirements of XML, the DB XML engine has in-

corporated new XML-specific operators, which appear in the execution plan trees. These new

operators include XSCAN, XISCAN, XANDOR and XUNNEST, and a sample execution plan fea-

turing some of them is shown in Figure 5.6. All the operators have been taken into account

while identifying unique plan trees in the process of production of plan diagrams.

We briefly describe the operators below. For a detailed enumeration of the operators, we

refer the reader to [4, 57].

XSCAN: The XSCAN operator is employed to evaluate a single XPath expression. It takes

references to XML fragments as input and returns the XML elements that satisfy the

given XPath expression. The references to XML fragments that are processed by the

XSCAN operator are passed by a nested-loop join operator (NLJOIN), and hence XSCAN

always occurs in conjunction with the NLJOIN operator.
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Figure 5.6: Example Plan Tree

XISCAN: This operator is the XML equivalent of a relational index scan. It takes as input,

a single query predicate, which in this case is a XPath expression, scans the associated

index, and returns the row identifiers of the documents that qualify the search.

XANDOR: The XANDOR (XML index ANDing and ORing) is an n-ary operator that allows

evaluation of complex predicates by allowing ANDing and ORing of multiple index

scans.

XUNNEST: This operator is used to unnest an XML sequence from an XML data instance.

It takes the XML sequence as input and returns XML items along with their sequence

numbers.
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5.5 Experimental Results

In this section, we describe the experimental framework on which we evaluated the DB XML

optimizer, and the initial results obtained on this framework.

5.5.1 Experimental Setup

All our experiments were carried out on a vanilla hardware platform – specifically, a SUN

ULTRA 20 system provisioned with 4GB RAM running Ubuntu Linux 64 bit edition 9.10.

With respect to DB XML2, both EXTENDED OPTIMIZATION and HASH-JOIN were enabled.

The reason for having chosen a different engine and experimental setup from that of the previous

2 chapters is that DB XML provided a rich native support for XML data, and the latest version

supporting these features were made available to us for the Linux environment. Other popular

engines have also provided support for XML data and obtaining optimizer diagrams on these

engines would be interesting future work.

5.5.1.1 Databases

We worked with three different XML databases: TPoX, XBench and TPCH X. TPoX and

XBench are native XML benchmarks, while TPCH X is an XML equivalent of the classical

TPCH [62] benchmark used in SQL databases. TPoX models a transaction processing envi-

ronment, whereas XBench and TPCH X are representative of decision-support environments –

their construction details are given below.

TPoX. The TPoX benchmark database was populated with 50000 CUSTACC, 500000 ORDER

and 20833 SECURITY documents, corresponding to the XXS scale, which takes about 1GB of

space. The data in these documents follow a variety of distributions ranging from uniform to

highly skewed, as per the benchmark specifications [59]. The richest set of indexes recom-

mended by the benchmark was created and statistics were collected on all these paths.

XBench. The XBench benchmark [51] supports a choice of four different kinds of databases,

2Note for review purposes only: The optimizer is DB2 9.7 pureXML.
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namely TC/SD (Text centric, Single Document), TC/MD (Text centric, Multiple documents),

DC/SD (Data centric, Single Document) and DC/MD (Data centric, Multiple documents). In our

study, we chose the DC/MD flavor since it appeared to be the most challenging from the opti-

mizer’s perspective. Specifically, DB XML was populated with the “large” option for DC/MD,

resulting in a database size of around 1 GB with all data conforming to the uniform distribution.

For each of the XQuery templates, indexes were created for all paths appearing in the template

and statistics were collected on these paths.

TPCH X. The NATION, REGION, SUPPLIER and CUSTOMER relations of the TPCH benchmark

were converted to their equivalent NATIONS, REGIONS, SUPPLIERS and CUSTOMERS XML Rs.

Further, the ORDER and the LINEITEM relations were combined into the ORDERS XML R, while

the PART and PARTSUPP relations were merged into a single PARTS XML R. The schemas of the

documents stored in these XML Rs are shown in Figure 5.7. These schemas were constructed

and the data was generated using the examples provided with the Toxgene tool [6].

The database was populated with around 1GB of data, and indexes were created for all paths

present in the XQuery templates. For each of the 6 tables shown in the schema, multiple doc-

uments were loaded, with an entity per document i.e., the NATIONS, REGIONS, CUSTOMERS,

SUPPLIERS, PARTS and ORDERS tables were populated with one document per nation, region,

customer, supplier, part and order entity, respectively. Each order document in turn included its

corresponding lineitems and each part document had its supply information inlined. The num-

ber of documents populated in each of these tables is tabulated in Table 5.1 and a sample docu-

ment for each of the 5 tables is given in Appendix C. The database was made roughly equivalent

to the TPCH benchmark in terms of the cardinalities of the tables (except for ORDERS, which

was populated with only 300000 documents as opposed to a target value of 1500000 – this was

due to memory heap overflow problems occurring while generating data using Toxgene). Also,

the generated data was uniformly distributed over the associated domains.

5.5.1.2 Query Templates

We have considered only two-dimensional XQuery templates in this study. These templates

have been verified to be compatible with the constraints specified for legal XQuery templates
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create table nations (nations xml)
create table regions (regions xml)
create table customers (customers xml)
create table suppliers (suppliers xml)
create table parts (parts xml)
create table orders (orders xml)

Figure 5.7: Database Schema for TPCH X

Table Name Number of Documents
nations 25
regions 5
customers 150000
suppliers 10000
parts 200000
orders 300000

Table 5.1: Document Count for TPCH X

in Section 5.2. All the predicates are on floating-point element values. The plan diagrams

are produced at a resolution of 300 points in each dimension, resulting in almost a hundred

thousand queries being optimized over the space. The DB XML optimizer itself was run at its

default optimization level of 5.

As described in Section 5.3, the constants to be used in the query templates are estimated

through a linear-interpolation-based inverse transform of the histogram summaries obtained

through the server side utility. Using these constants, we explicitly output a Selectivity Log that

explicitly tabulates the three types of selectivities delineated in Section 5.3, namely, Expected,

Predicate and Plan selectivities. Additionally, the log also indicates the relative and absolute

differences between the Expected and Predicate selectivity values.

Also, the cost-increase threshold used for plan diagram reduction in all our experiments is

λ = 20%. The choice of this setting was based on the observations of [10], wherein anorexic

reduction was usually observed at this value for SQL-based query templates.



CHAPTER 5. XML PLAN DIAGRAMS 76

5.5.2 TPoX

We constructed a XQuery template from the cust sold security.xqr XQuery provided with

the TPoX benchmark, as shown in Figure 5.8. This template, which we will hereafter refer to

as QTX SEC, returns the customer accounts whose working balance is within a parametrized

value and which have been used to trade one or more securities, and, for each of these accounts,

the trading amounts of the associated orders being within a parametrized value, the result being

alphabetically sorted on Account titles.

#NAMESPACE declare default element namespace
“http://www.fixprotocol.org/FIXML-4-4”;

#NAMESPACE declare namespace c=“http://tpox-benchmark.com/custacc”;
#PSX /c:Customer/c:Accounts/c:Account/c:Balance/c:WorkingBalance

CUSTACC CUSTACC CADOC
#PSX /FIXML/Order/OrdQty/@Cash ORDER ORDER ODOC
# – #

XQUERY
declare default element namespace “http://www.fixprotocol.org/FIXML-4-4”;
declare namespace c=“http://tpox-benchmark.com/custacc”;

for $cust in db2-fn:xmlcolumn(“CUSTACC.CADOC”)
/c:Customer/c:Accounts/c:Account[c:Balance/c:WorkingBalance :varies]

for $ord in db2-fn:xmlcolumn(“ORDER.ODOC”)/FIXML/Order
[@Acct=$cust/@id/fn:string(.) and OrdQty/@Cash :varies]

order by $cust/c:AccountTitle/text()
return

<Customer>
{$cust/c:AccountTitle}
{$cust/c:Currency}

</Customer>

Figure 5.8: XQuery Template for TPoX (QTX SEC)

Optimizer Diagrams. The optimizer diagram suite for QTX SEC is shown in Figures 5.9(a)

through 5.9(d). The plan diagram consists of 14 plans with plan P1 occupying about three-

quarters of the space and plan P14 present in only 0.001% of the diagram, resulting in an

overall Gini co-efficient of 0.39. Further, the number of plans decreases to 6 when parameter

differences between plan trees are not considered. The low density of plans may perhaps be
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(a) Plan Diagram (b) Cost Diagram

(c) Card Diagram (d) Reduced Plan Diagram (λ = 20%)

Figure 5.9: Optimizer Diagrams for TPoX – QTX SEC (X-Axis: CUSTACC /Cus-
tomer/Accounts/Account/Balance/WorkingBalance, Y-Axis: ORDER /FIXML/Order/OrdQty/@Cash)

due to the queries being simpler, from an optimization perspective, in a transaction processing

environment. We also see that the plan diagram predominantly consists of vertical blue bands

(plan P2) on the red region (plan P1). Only close to the X and Y-axes do we find other plans,

such as the yellow horizontal stripe of plan P4, and the brown and orange vertical bands of plans

P3 and P6, respectively.

The operator trees for plans P1 (red) and P2 (blue) are shown in Figures 5.10(a) and 5.10(b),

respectively. We see here that while they both have the same join order (for ease of discussion,
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we have removed annotations from the join order), namely CUSTACC1ORDER, there is a struc-

tural difference between the two plans due to the re-positioning of an NLJOIN-XSCAN pair.

As is evident in the trees, the indexes ACCT BAL and ORDER ACCOUNTID are used to scan

the CUSTACC and ORDER relations, respectively. The purple vertical stripe (plan P5) also has

the same join order as that of plans P1 and P2, but uses the index ORDER CASH, instead of

ORDER ACCOUNTID, to access the ORDER relation.

In the region near and parallel to the X-axis, the join order changes to ORDER1CUSTACC

for plans P4, P7, P8, P9 and P14, with all five collectively occupying less than 2% of the area.

Finally, when the plan diagram is reduced with λ = 20%, the number of plans comes down

to 11, as shown in Figure 5.9(d). The blue vertical bands of plan P2 require a λ of 70% in order

to disappear due to swallowing by the red plan P1.

The cost and card diagrams are as shown in Figures 5.9(b) and 5.9(c). Interestingly, we

observe here that while the result cardinality has a simple affine relationship with the VSX

selectivities, the cost diagram in contrast exhibits a highly non-linear behavior.

Selectivity Logs. The first and last five entries of the selectivity logs for

the /Customer/Accounts/Account/Balance/WorkingBalance and

/FIXML/Order/OrdQty/@Cash VSXs are shown in Figures 5.11(a) and 5.11(b),

respectively.

We observe here that the Expected and Predicate selectivities are comparable throughout the

selectivity range. However, with regard to Plan selectivities, we observe certain discrepancies in

both the VSXs – for the WorkingBalance VSX, the selectivities are accurate till the 25.70%

mark but subsequently saturate and remain at this level, while with the @Cash VSX, they are

actually 0% for most of the range.

5.5.3 XBench

We now turn our attention to the XBench native XML benchmark. For this benchmark, a

representative XQuery template, QTX19, which is based on XQuery 19 of the queries listed

for the DC/MD database, is shown in Figure 5.13. It attempts to retrieve all orders within a

parametrized total value for which the associated customers are located within a parametrized
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(a) Plan P1 (Red)
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(b) Plan P2 (Blue)

Figure 5.10: Plan trees (QTX SEC)
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Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity
0.17 2624.68 0.16 6.25% 0.01 0.16
0.50 5808.76 0.48 4.16% 0.02 0.48
0.83 8758.70 0.78 6.41% 0.05 0.78
1.17 11986.19 1.10 6.36% 0.07 1.10
1.50 15340.54 1.44 4.17% 0.06 1.44
.. .. .. .. .. ..
98.50 985164.22 98.52 0.02% 0.02 25.70
98.83 988508.03 98.85 0.02% 0.02 25.70
99.17 991764.72 99.18 0.01% 0.01 25.70
99.50 995074.38 99.51 0.01% 0.01 25.70
99.83 998352.54 99.84 0.01% 0.01 25.70

(a) VSX: /Customer/Accounts/Account/Balance/WorkingBalance

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity
0.17 9.44 0.17 0.00% 0.00 0.17
0.50 26.33 0.51 1.96% 0.01 0.51
0.83 43.13 0.84 1.19% 0.01 0.00
1.17 59.34 1.17 0.00% 0.00 0.00
1.50 75.58 1.49 0.67% 0.01 0.00
.. .. .. .. .. ..
98.50 4925.19 98.48 0.02% 0.02 0.00
98.83 4941.99 98.82 0.01% 0.01 0.00
99.17 4958.95 99.16 0.01% 0.01 0.00
99.50 4975.97 99.50 0.00% 0.00 0.00
99.83 4992.69 99.83 0.00% 0.00 0.00

(b) VSX: /FIXML/Order/OrdQty/@Cash

Figure 5.11: Selectivity Logs (QTX SEC)

address value, the result being sorted by the order date.

Optimizer Diagrams. The optimizer diagram suite for QTX19 is shown in Figures 5.12(a)

through 5.12(d). We see here that the plan diagram consists of 42 plans, and the area distribution

of these plans is highly skewed, with the largest plan occupying a little over 20% of the space

and the smallest taking 0.001%, the overall Gini co-efficient being as high as 0.89. Most of the

differences between the plans are subtle, arising out of their operator parameters, rather than the

plan tree structures themselves – for example, a common parameter difference between plans
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(a) Plan Diagram (b) Cost Diagram

(c) Card Diagram (d) Reduced Plan Diagram (λ = 20%)

Figure 5.12: Optimizer Diagrams for XBench – QTX19 (X-Axis: ORDER /order/total, Y-Axis: /cus-
tomers/customer/address id)

is attributable to the TMPCMPRS parameter, which is present in the TEMP and SORT operators.

When such parameter differences are ignored, the number of plans comes down sharply to just

10.

In Figure 5.12(a), plan P2 (dark blue) blends into the plan P1’s region (red) in a wave-like

pattern. The plan trees for P1 and P2 are shown in Figures 5.14(c) and 5.14(b), respectively. We

see here that the plans have different join orders – P1 computes ORDER1CUSTOMER whereas

P2 evaluates CUSTOMER1ORDER – that is, they differ on which relation is outer and which is
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#PSX /order/total ORDER ORDER ORDER
#PSX /customers/customer/address id CUSTOMER

CUSTOMER CUSTOMER
#–#
XQUERY

for $order in db2-fn:xmlcolumn(“ORDER.ORDER”)/order,
$cust in db2-fn:xmlcolumn

(“CUSTOMER.CUSTOMER”)/customers/customer
where $order/customer id = $cust/@id

and $order/total :varies and $cust/address id :varies
order by $order/order date
return

<Output>
{$order/@id}
{$order/order status}
{$cust/address id}
{$cust/first name}
{$cust/last name}
{$cust/phone number}

</Output>

Figure 5.13: XQuery template for XBench (QTX19)

inner in the join. In addition, there are also a few other structural differences between the plans.

Near and parallel to the Y-axis, we see a yellow vertical strip (plan P4) which is sprinkled

with light orange spots (plan P16). Plan P4 is shown in Figure 5.14(a) and differs from P16

only in the positioning of an NLJOIN-XSCAN pair.

The cost and card diagrams are shown in Figures 5.12(b) and 5.12(c), respectively. We ob-

serve here a simple affine relationship for both cost and cardinality with regard to the selectivity

values.

When reduction with λ = 20% is applied to the plan diagram, the number of plans goes

down from 42 to 21, as shown in Figure 5.12(d). Interestingly, the wave pattern produced

by plan P2 remains intact – it is eliminated only when λ is increased to 30%. However, it

is possible that the P2-associated wave pattern would have been removed at a lower λ if our

reduction algorithm had supported partial swallowing, wherein a subset of the points associated

with a plan are replaced – currently, the reduction scheme used only supports total swallowing,

allowing a plan’s points to be replaced only if all its points are replaced.
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(a) Plan P4 (Yellow) (b) Plan P2 (Blue)
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(c) Plan P1 (Red)

Figure 5.14: Plan Trees (QTX19)
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Selectivity Logs. The first and last five entries of the selectivity logs corresponding to the

/order/total and /customers/customer/address id VSXs are shown in Fig-

ures 5.15(a) and 5.15(b), respectively. The Expected selectivities for /order/total show

marginal differences with regard to the Predicate selectivities for the initial entries and, with

increasing selectivity, eventually become close to these values. However, Plan selectivity val-

ues remain close to the expected values only until the 50% mark, after which they saturate

and remain the same irrespective of the constant used, similar to our observations in the TPoX

environment.

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity
0.17 53.78 0.21 19.05% 0.04 0.21
0.50 117.30 0.74 32.43% 0.24 0.74
0.83 180.82 1.27 34.65% 0.44 1.27
1.17 244.35 1.80 35.00% 0.63 1.80
1.50 307.87 2.33 35.62% 0.83 2.33
.. .. .. .. .. ..
98.50 11730.58 97.49 1.03% 1.01 50.00
98.83 11822.00 98.25 0.59% 0.58 50.00
99.17 11913.43 99.01 0.16% 0.16 50.00
99.50 12004.86 99.77 0.27% 0.27 50.00
99.83 12096.28 100.00 0.17% 0.17 50.00

(a) VSX: /order/total

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity
0.17 962.47 0.17 0.00% 0.00 0.00
0.50 2887.42 0.50 0.00% 0.00 0.00
0.83 4812.37 0.84 1.19% 0.01 0.00
1.17 6737.33 1.17 0.00% 0.00 0.00
1.50 8662.28 1.50 0.00% 0.00 0.00
.. .. .. .. .. ..
98.50 567229.38 98.48 0.02% 0.02 0.00
98.83 569177.96 98.60 0.23% 0.23 0.00
99.17 571126.54 98.60 0.58% 0.57 0.00
99.50 573075.12 98.60 0.91% 0.90 0.00
99.83 575023.70 98.60 1.25% 1.23 0.00

(b) VSX: /customers/customer/address id

Figure 5.15: Selectivity Logs (QTX19)
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On the other hand, for /customers/customer/address id, the Expected selectivi-

ties match the Predicate selectivities with tolerable deviations for most of the selectivity range

– however, the Predicate selectivities for the last four entries (98.83% through 99.83%) remain

static at a value of 98.60%. This is in spite of close to 3000 records being present between the

constants associated with 98.83% and 99.83%. Further, our plan selectivity extraction mecha-

nism does not work even partially in this case, returning a value of 0% throughout the selectivity

range.

5.5.4 TPCH X

In our earlier work on SQL databases [52], we had constructed a variety of TPCH-based

parametrized SQL query templates. For example, QT5, the template shown in Figure 5.16(a),

is based on TPCH Query 5. This query lists the revenue volume done through local suppliers,

when the c acctbal of the CUSTOMER relation and the s acctbal of the SUPPLIER relation

are within their respective parametrized values. XQuery templates similar to these SQL tem-

plates were created for evaluating DB XML – as a case in point, the QTX5 template shown in

Figure 5.16(b) is similar to QT5.

Optimizer Diagrams. The suite of optimizer diagrams for QTX5 is shown in Figures 5.17(a)

through 5.17(d). Further, for comparative purposes, we also show the plan diagram for the SQL

version, QT5, in Figure 5.17(e).

In Figure 5.17(a), we can see that there are 25 plans in the plan diagram with a wide variation

in the areas covered by these plans. The top three plans occupy more than 70% of the space,

and the last three occupy only 0.068% of the region – this skew in area coverage is captured

through the Gini coefficient, whose value is 0.78. When parameter differences between plan

trees are not considered, the number of plans reduces to 16 in the plan diagram.

The plan diagram is also characterized by a variety of intricate patterns, and has several

regions where many plans intermingle – the most prominent example is found in the upper

half region of the plan diagram where vertical bands of Plan P1 (red), Plan P2 (blue), Plan P3

(brown) and Plan P6 (orange) alternate with one another in a convoluted manner. Yet another

example is the intermingling of plan P1 (red), plan P3 (brown), plan P5 (purple) and plan P9
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select
n name, sum(l extendedprice * (1 - l discount)) as revenue

from
customer, orders, lineitem, supplier, nation, region

where
c custkey = o custkey and l orderkey = o orderkey and
l suppkey = s suppkey and c nationkey = s nationkey and
s nationkey = n nationkey and n regionkey = r regionkey
and r name = ’ASIA’ and o orderdate >= ’1994-01-01’
and o orderdate < ’1995-01-01’ and
c acctbal :varies and s acctbal :varies

group by n name
order by revenue desc

(a) SQL template for TPCH (QT5)

#VSX /Suppliers/Supplier/AcctBal SUPPLIERS SUPPLIERS SUPPLIERS
#VSX /Customers/Customer/AcctBal CUSTOMERS

CUSTOMERS CUSTOMERS
# – #
XQUERY for $reg in db2-fn:xmlcolumn(“REGIONS.REGIONS”)

/Regions/Region[Name=“ AFRICA”]
for $nat in db2-fn:xmlcolumn(“NATIONS.NATIONS”)

/Nations/Nation[xs:double(RegionKey)=$reg/@key/xs:double(.)]
let $sup := db2-fn:xmlcolumn(“SUPPLIERS.SUPPLIERS”)/Suppliers

/Supplier[(xs:double(NationKey)=$nat/@key/xs:double(.))
and (AcctBal :varies)],

$cust := db2-fn:xmlcolumn(“CUSTOMERS.CUSTOMERS”)/Customers
/Customer[(xs:double(NationKey)=$sup/NationKey/xs:double(.))

and (AcctBal :varies)],
$line := db2-fn:xmlcolumn(“ORDERS.ORDERS”)/Orders/Order

[xs:double(CustKey) = $cust/@key/xs:double(.)
and OrderDate[ . > ”1994-01-01” and . < ”1997-01-01”]]

/LineItem[xs:double(SuppKey) = $sup/@Key/xs:double(.)]
let $summand :=(for $x in $line

return $x/ExtendedPrice*(1 -$x/Discount))
order by sum($summand)
return

<result> {$nat/@key} {$nat/Name}
<revenue> {sum($summand)} </revenue>

</result>

(b) XQuery template for TPCH X (QTX5)

Figure 5.16: Query Templates
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(a) Plan Diagram (b) Cost Diagram

(c) Card Diagram (d) Reduced Plan Diagram (λ = 20%)

(e) Plan Diagram (QT5)

Figure 5.17: Optimizer Diagrams for TPCH X– QTX5 (X-Axis: SUPPLIERS /Suppliers/Supplier/AcctBal, Y-Axis:
CUSTOMERS /Customers/Customer/AcctBal
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(turquoise) in the lower half of the diagram.

Let us denote the XML Rs in the XQuery template of Figure 5.16(b), namely REGIONS,

NATIONS, SUPPLIERS, CUSTOMERS and ORDERS, as R, N, S, C and O, respectively. When we

drill down into the plan internals, we find that there are only three different join orders in the

whole plan space! Plans P1, P3, P13 and P17 have the left-deep join order (((R1N)1S)1C)1O,

plans P2, P5, P6, P9, P10, P11, P14, P15 and P20 have the bushy join order ((R1N)1(S1C))1O

and plans P4, P7, P8, P12, P16, P18, P19 and P21-P25 also have a bushy join order which is

((R1N)1S)1(C1O). The explicit trees for these plans are too large to include here, and have

therefore been made available at our project URL [53].

Turning our attention to the Cost Diagram (Figure 5.17(b)), we observe that the cost steadily

increases with the increase in selectivity of the CUSTOMERS XML R. The effect of the SUP-

PLIERS relation seems mild in comparison, perhaps because the CUSTOMERS relation is about

15 times the size of the SUPPLIERS relation. We also see that the cost plateaus out when ap-

proximately 50% selectivity is reached in the VSX dimensions. To analyze this behavior, we

looked into the annotated plan trees at different points in the selectivity space. Annotated plan

trees at roughly 40%, 60% and 98% selectivities in both dimensions are partially shown in Fig-

ures 5.18(a), 5.18(b) and 5.18(c). The total cost of these plans being 4.87e5, 6.08e5 and 6.10e5,

respectively, it can be inferred by looking at these subtrees that the overall costs are dominated

by the NLJOIN operator in the CUSTOMERS subtree. For a selectivity increase selectivity from

40% to 60%, a cost increase of 1.12e5 is observed in the NLJOIN operator corresponding to

the CUSTOMERS relation. However, on moving from 60% to 98%, the cost goes up by merely

0.01e5. It appears puzzling that the NLJOIN cost does not scale up at least linearly with increas-

ing selectivity and this issue needs further investigation.

Moving on to the cardinality diagram (Figure 5.17(c)), it shows a constant result set size of

1 throughout the space since the query computes an aggregate operation (sum) in the final step.

Now, when the plan diagram is subject to λ = 20% reduction, the original 25 plans come

down to 6, as shown in Figure 5.17(d). Further, several of the intricate patterns are eliminated

– for example, a part of the lower half region of rapidly alternating plans is singly dissolved by

the red plan (Plan P1).
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(a) 40% Selectivity

(b) 60% Selectivity
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(c) 98% Selectivity

Figure 5.18: Annotated Plan trees – Partial (QTX5)

Finally, when we compare the XML and SQL-based plan diagrams in Figures 5.17(a)

and 5.17(e), respectively, we notice that the XML diagram is significantly more complex in

comparison in terms of their spatial layouts even though the numbers of plans is the SQL-based

diagram is more than twice the number found in the XML diagram. This certainly merits further

investigation.

Selectivity Logs. The selectivity logs for the /Suppliers/Supplier/AcctBal and

/Customers/Customer/AcctBal VSXs are shown in Figures 5.19(a) and 5.19(b),

respectively – specifically, the first five and last five entries are extracted and shown

here. The Expected selectivities for /Suppliers/Supplier/AcctBal show tolera-

ble differences with regard to the Predicate selectivities for the initial entries and, with

increasing selectivity, eventually become close to these values. On the other hand, for

/Customers/Customer/AcctBal, the Expected selectivities match the Predicate selec-
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tivities with tolerable deviations for most of the selectivity range – however, for the last eight

Expected selectivity entries (97.50% through 99.83%), the Predicate selectivity stays put at

97.24%. This is in spite of the fact that there are more than 3500 records between the constants

associated with 97.50% and 99.83%. Again, this is an issue that needs to be investigated further.

Finally, the Plan selectivity values for both the VSXs show behavior similar to the previous

cases – the selectivity values saturate at the 50% mark.

5.5.4.1 Query Complexity Problem

Apart from the above issue with plan selectivities, we also ran into another problem when we

evaluated the XQuery template QTX2 shown in Figure 5.20, which is based on Query 2 of

TPCH. For this template, the plan diagram features only two very similar plans, the difference

being a slight variation in their join orders, with the first NLJOIN operator, which combines

the SUPPLIERS and PARTS relations, having SUPPLIERS as the outer relation in P1 (red), and

PARTS as the outer relation in P2 (blue). It is certainly in the realm of possibility that this plan

diagram genuinely features only a few plans, but we also think that the message issued by the

DB XML optimizer, warning us that the performance of the query might be suboptimal, may

have impacted the observed behavior. This warning persisted even when the optimization level

was lowered and the heap space was sufficiently increased (upto 3GB). However, when the

template was simplified by removing some constructs, the message went away and the resulting

diagram in fact featured quite a few more plans than those seen with QTX2.

5.5.5 Selectivity Computation Problems

As pointed out earlier, selectivity estimation in DB XML seemed to be aberrant when the con-

stants used in the predicate were negative numbers or of the string data type. An example for

both of them is presented in this section.

5.5.5.1 Case: Negative Numbers

An extract of the Selectivity log in the case of negative numbers is given in Figure 5.21(a). The

XQuery template for which the selectivity log was obtained is shown in Figure 5.22(a) and this
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Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity

0.17 19.70 0.19 10.52% 0.02 0.19
0.50 56.50 0.52 3.84% 0.02 0.52
0.83 93.29 0.86 3.48% 0.03 0.86
1.17 130.09 1.19 1.68% 0.02 1.19
1.50 166.88 1.53 1.96% 0.03 1.53
.. .. .. .. .. ..
98.50 10842.98 98.57 0.07% 0.07 50.00
98.83 10871.64 98.83 0.00% 0.00 50.00
99.17 10905.05 99.13 0.04% 0.04 50.00
99.50 10947.84 99.52 0.02% 0.02 50.00
99.83 10983.63 99.85 0.01% 0.02 50.00

(a) VSX: /Suppliers/Supplier/AcctBal

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity

0.17 17.43 0.16 6.25% 0.01 0.16
0.50 52.98 0.48 4.16% 0.02 0.48
0.83 90.02 0.82 1.21% 0.01 0.82
1.17 126.47 1.15 0.86% 0.02 1.15
1.50 163.59 1.49 0.67% 0.01 1.49
.. .. .. .. .. ..
98.50 10836.41 97.24 1.29% 1.26 50.00
98.83 10871.71 97.24 1.63% 1.59 50.00
99.17 10907.94 97.24 1.98% 1.93 50.00
99.50 10945.37 97.24 2.32% 2.26 50.00
99.83 10981.93 97.24 2.66% 2.59 50.00

(b) VSX: /Customers/Customer/AcctBal

Figure 5.19: Selectivity Logs (QTX5)
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#VSX /Parts/Part/RetailPrice PARTS PART1 PARTS
#VSX /Parts/Part/PartSupp/SupplyCost PARTS PART2 PARTS
#–#
XQUERY
for $part in db2-fn:xmlcolumn(”PARTS.PARTS”)/Parts/Part
[RetailPrice :varies]/PartSupp,
$sup in db2-fn:xmlcolumn(”SUPPLIERS.SUPPLIERS”)/Suppliers/Supplier,
$nat in db2-fn:xmlcolumn(”NATIONS.NATIONS”)/Nations/Nation,
$reg in db2-fn:xmlcolumn(”REGIONS.REGIONS”)/Regions/Region

where xs:double($sup/@Key)=xs:double($part/Suppkey)
and $sup/NationKey/xs:double(.)=$nat/@key/xs:double(.)
and $nat/RegionKey/xs:double(.)=$reg/@key/xs:double(.)
and $reg/Name =” EUROPE”
and $part/SupplyCost <=(let $reg := db2-fn:xmlcolumn(”REGIONS.REGIONS”)

/Regions/Region[Name=” EUROPE”],
$nat := db2-fn:xmlcolumn(”NATIONS.NATIONS”)

/Nations/Nation[xs:double(RegionKey)=$reg/@key/xs:double(.)],
$sup := db2-fn:xmlcolumn(”SUPPLIERS.SUPPLIERS”)

/Suppliers/Supplier[$nat/@key/xs:double(.) = xs:double(NationKey)],
$partsupp := db2-fn:xmlcolumn(”PARTS.PARTS”)

/Parts/Part[xs:double(PartKey)=$part/../PartKey/xs:double(.)]/PartSupp[
($sup/@Key/xs:double(.)=xs:double(Suppkey)) and (SupplyCost :varies) ]

return min($partsupp/SupplyCost))
order by $sup/AcctBal descending, $nat/Name, $sup/Name, $part/../PartKey
return <final>

{$sup/AcctBal}
{$sup/Name}
{$nat/Name}
{$part/../PartKey}
{$part/../Mfgr}
{$part/SupplyCost}
{$sup/Address}
{$sup/Phone}
{$sup/Comment}

</final>

Figure 5.20: XQuery template for TPCH X (QTX2)

template corresponds to the TPCH X database environment. It can be seen that in the Predicate

Selectivity column, a constant of 0.26 appears in the first 5 rows. In fact this appears till the

numbers in the Constant column of the Selectivity log are in the domain of negative values,

and, changes to correct estimation values when the positive domain is entered. This seems to



CHAPTER 5. XML PLAN DIAGRAMS 96

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity

0.17 -968.17 0.26 34.61% 0.09 0.50
0.50 -941.68 0.26 92.30% 0.24 0.50
0.83 -906.37 0.26 219.23% 0.57 0.50
1.17 -871.05 0.26 350.00% 0.91 0.50
1.50 -835.74 0.26 476.92% 1.24 0.50
.. .. .. .. .. ..
98.50 9836.67 98.89 0.39% 0.39 0.50
98.83 9872.95 99.22 0.39% 0.39 0.50
99.17 9909.24 99.55 0.38% 0.38 0.50
99.50 9945.52 100.00 0.50% 0.50 0.50
99.83 9981.80 100.00 0.17% 0.17 0.50

(a) Selectivity Log: Negative Numbers

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Selectivity

0.17 18.55 0.17 0.00% 0.00 0.17
0.50 55.21 0.50 0.00% 0.00 0.50
0.83 91.87 0.84 1.00% 0.01 0.84
1.17 128.53 1.17 0.00% 0.00 1.17
1.50 165.19 1.50 0.00% 0.00 1.50
.. .. .. .. .. ..
98.50 10832.62 98.48 0.02% 0.02 50.00
98.83 10866.25 98.78 0.05% 0.05 50.00
99.17 10904.91 99.14 0.03% 0.03 50.00
99.50 10942.93 99.48 0.02% 0.02 50.00
99.83 10980.96 99.83 0.00% 0.00 50.00

(b) Selectivity Log: Positive Values

Expected Constant Predicate Relative Absolute Plan
Selectivity Selectivity Difference Difference Sel.

0.17 “AAKSOCX” 0.01 1600.00% 0.16 0.01
0.50 “ABGOBJVG” 0.03 1566.66% 0.47 0.03
0.83 “ABXSKUN” 0.03 2666.66% 0.80 0.03
1.17 “ACGYEIN” 0.04 2825.00% 1.13 0.04
1.50 “ACVFJ” 0.04 3650.00% 1.46 0.04
.. .. .. .. .. ..
98.50 “WMQFUMK” 87.90 12.05% 10.60 0.00
98.83 “WPOUFSO” 87.94 12.38% 10.89 0.00
99.17 “WTDAICW” 88.00 12.69% 11.17 0.00
99.50 “XMATHH” 91.11 9.20% 8.39 0.00
99.83 “ZAUTV” 91.11 9.57% 8.72 0.00

(c) Selectivity Log: String Data Type

Figure 5.21: Selectivity Log Errors
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XQUERY
for $x in db2-fn:xmlcolumn(“CUSTOMERS.CUSTOMERS”)

/Customers/Customer/AcctBal
where $x :varies
return $x

(a) XQuery template: Negative Numbers

XQUERY
declare default element namespace

“http://www.fixprotocol.org/FIXML-4-4”;
declare namespace

c=“http://tpox-benchmark.com/custacc”;

for $x in db2-fn:xmlcolumn(“ORDER.ODOC”)
/FIXML/Order/Instrmt/@Sym

where $x :varies
return $x

(b) XQuery template: String Data Type

Figure 5.22: XQuery Templates for Selectivity error

be an error since there are quite a few elements in the negative domain. This fact is confirmed

by the observation that the errors in Predicate Selectivity estimation disappeared when the data

values were linearly translated without affecting their distribution (a constant was added to all

the data values, so that all values reside only in the positive domain). The Selectivity log for

the linearly translated data is shown in Figure 5.21(b). Data sets corresponding to the case of

negative numbers and to the linearly translated version can be downloaded from [53]. In fact,

in a test scenario, where all the values of a certain VSX were situated in the negative domain,

erroneous selectivity estimation was observed throughout the range. As a case in point, 100%

selectivity was erroneously reported as 0.0%.

5.5.5.2 Case: String Data Type

An extract of the Selectivity log for this case and its corresponding XQuery template are shown

in Figures 5.21(c) and 5.22(b), respectively. This particular scenario was stumbled upon in the

TPoX database environment. In this case, the Predicate selectivity estimation values, as seen
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Benchmark No of No. of
plans join-orders

TPoX 14 2
XBench 42 2
TPCH X 25 3

Table 5.2: Join Order Statistics for XML plan diagrams

in the Predicate Selectivity column in Figure 5.21(c) were explicitly verified with the statistical

summaries obtained through a server side utility and were found to be inconsistent.

5.6 Structure-based Reduction of XML Plan Diagrams

We have discussed in detail the various features of the XML plan diagrams, including the join

orders present, in the previous sections. Here, we present in brief, the results obtained when

structure-based reduction techniques of Chapter 3 are applied to these XML plans diagrams

Table 5.2 lists the results obtained for all three benchmarks which were used for the study.

We can see that in the case TPoX and XBench, where the QTs have only 2 relations, both

possible join orders are present in the plan diagram. It is surprising is that there are 42 plans

with just 2 relations. In the case of TPCH X, only 3 different join orders are present with the

plan cardinality being 25. This join order cardinality is rather low in comparison to its SQL

counterpart, which had 18 join orders among 54 plans in the plan diagram.

5.7 Semantic Coloring of XML Plan Diagrams

We present in this section semantically colored XML plan diagrams using MDS techniques

elaborated in the previous chapter.

A plot of the frequency vs Jaccard distances for all these three benchmarks is given in Fig-

ure 5.23. Figures 5.24(a), 5.24(b) and 5.24(c) are the MDS colored plan diagrams for the TPoX,

XBench and TPCH X benchmarks’ XQuery templates given in Figures 5.8, 5.13 and 5.16(b),

respectively. Finally, the statistics regarding the quality of coloring obtained in all three bench-
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Figure 5.23: Jaccard Distribution in XML Plan Diagrams

marks is tabulated in Table 5.3.

If we look at the distribution of Jaccard distances in Figure 5.23, we can see that the plot

for the XBench benchmark has highly conspicuous peaks across its dissimilarity range. The

XBench benchmark has the highest number of plans, and the highest maximum Jaccard distance

(1.066) among the three benchmarks. TPCH X, on the other hand has the lowest maximum

Jaccard distance of 0.48. The plots for TPoX and XBench have breaks in between, like in the

range of 0.15-0.25, with no pair of plans having dissimilarities in this range.

The coloring of the plan diagram of TPCH X reflects its short dissimilarity range, with

similar colors throughout the diagram. The biggest color distance is between plans P14 and

P21 (0.53), which also have the maximum Jaccard dissimilarity between them (0.48). The

location of these plans are hard to point out since they occupy very less area. In the case of

TPoX, it is easy to observe that more than 96% of the plan diagram is occupied by the top two

plans which are colored green and black.

In the plan diagram corresponding to XBench, the maximum Jaccard dissimilarity is be-
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(a) TPoX

(b) XBench

(c) TPCH X

Figure 5.24: Semantically Colored XML Plan Diagrams
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Benchmark No of % of point pairs % of plan pairs Lowest Highest Objective Objective
plans treated well treated well Ratio ratio with weights w/o weights

TPoX 14 99.97% 95.6% 1.32 1.34 1.16E − 5 1.7E − 3
XBench 42 98.95% 85.5% 0.09 314.17 1.3E − 3 6.9E − 3
TPCH X 25 98.45% 92.0% 0.55 34.65 4.2E − 4 1.3E − 3

Table 5.3: Statistics for XML-QTs with weights

tween plans P2 and P8, corresponding to the dark-green sine wave like pattern in middle of

the plan diagram and the bottom purple horizontal patch, respectively. The maximum color

distance is between plans P9 and P42 (1.09), which also happen to be another pair having the

maximum Jaccard dissimilarity of 1.06 in the diagram.

Finally, the statistics for the coloring obtained is as given in Table 5.3. We have achieved

a very low objective in all three cases. Also, in the third column - ‘% of point pairs treated

well’, we can see that more than 90% of the point pairs are treated well in all three cases. Even

the ‘% of plan pairs treated well’ given in the fourth column, shows that a majority of the plan

pairs are colored well in all three benchmarks. Thus, the coloring obtained reflects the plan

dissimilarities with satisfactory visual accuracy.



Chapter 6

Conclusions

We have investigated in this thesis, three new semantic features of plan diagrams, a popular and

powerful tool used in the analysis of modern database query optimizers. As the first feature, we

introduced and discussed a structure-based reduction scheme, as an alternative to the cost-based

reduction strategies that had been previously proposed in the literature. In this new reduction

scheme, we coalesced all plans with the same join order into one entity, leaving the diagram

with as many colors as the number of unique join orders. Structure-based reduction has useful

applications in join order caching, when the join order cardinalities of plan diagrams are low or

moderate. With join order caching, we always provide the best plan as would have been chosen

by the optimizer, in far less time than required for fresh optimization. Additionally, we provide

stable plan choices, i.e., we always choose the same best plan for a given query point, which is

an important requirement in industrial settings. Also, when values of certain parameters cannot

be predicted at compile time, but can be known at run-time, join order caching can be used as

part of a run-time plan refinement strategy to provide better plan choices. Experimental results

obtained by employing structure-based reduction on a suite of plan diagrams, in industrial-

strength environments, showed that many plan diagrams feature low and moderate join order

cardinalities, thus making join order caching an immediate potent application.

To facilitate join order caching even for plan diagrams with high join order cardinalities,

we presented the SRE (Small Relation Elimination) heuristic, which brings down the join order

cardinalities by removing smaller sized relations from the join orders. While the plan optimality
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is no longer guaranteed with the heuristic, we experimentally evaluated the heuristic on the

same suite of plan diagrams and observed that the per-query cost-increase was less than 30%

for over 90% of the query locations in the plan diagram and even for the remaining 10%, the

cost-increase was within acceptable thresholds. Also, we studied the occurrence of common

join orders in the plan diagrams produced by different commercial engines. We found the

intersection to be surprisingly sparse, and in fact disjoint in most cases.

Structure-based reduction provides a bird’s eye view of the differences between plans in

the plan diagram. In our second piece of work, we investigated a deeper comparison between

plans, based on their complete plan tree structures. Specifically, we developed techniques to

color plan diagrams in a semantically richer way, so that the differences in colors between any

pair of plans, reflected the differences found in their structures. With this new approach to col-

oring, the plan diagram itself provides a first-cut reflection of the plan-tree differences without

having to go through the details of every plan. Towards achieving this goal, we first described

methods to quantitatively assign differences between plans and then developed techniques to

transform these differences to color space. Specifically, we adapted Kruskal’s Iterative Steep-

est Descent (ISD) method, a multidimensional scaling (MDS) technique, to solve our problem.

The adaption involved placing algebraic constraints during the scaling process to accommodate

geometric restrictions inherent in the output color space. We provided a detailed experimental

evaluation by coloring a suite of plan diagrams using the adapted ISD technique. We found the

quality of coloring obtained to be visually satisfactory with more than 85% of the point pairs

being treated well (within 30% error threshold) in most plan diagrams. Also, we observed that

plans, which are structurally similar to each other generally occupy spaces away from the axes.

As our last semantic feature, we re-engineered the plan diagram notion to the flexibly

structured world of XML. We elaborated on the various complexities involved in achieving the

goal, which included determination of granularity at which statistics are to be collected (node

level or document level) and identifying the validity constraints for an XQuery template. We

presented representative plan diagrams for a variety of XML data benchmarks – TPoX, XBench

and TPCH X (XML version of TPC-H benchmark) – on an industrial-strength commercial

database engine. The results indicate that XML plan diagrams often feature complicated plan
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geometries that remain in the plan diagram even after both cost and structure-based reductions.

In fact, for both TPoX and TPCH X, a very high cost-increase threshold was required to

remove the complex plan geometries (to obtain a “cleaner” plan diagram) using cost-based

reduction. With respect to applying structure-based reduction on XML plan diagrams, we

found the resulting join order cardinalities to be very sparse (in single digits), even when the

query templates contained more than 5 relations. This fact along with the observation that

more than half of the plans were structurally very similar to each other were reflected in the

semantically colored versions of the XML plan diagrams.

In summary, we explored in this thesis a variety of semantic features in plan diagrams, which

can aid in the informed analysis and understanding of query optimizer behavior.

6.1 Future Work

1. The empirical performance of the current plan tree differencing metric suits the semantic

coloring application for which it is used. It would be interesting and useful to come up

with a theoretically sound formulation of a plan tree differencing metric which takes into

account “database semantics”.

2. As part of the adaption of Kruskal’s Iterative Steepest Descent, we enforce the required

geometric constraints before moving the vertices in each iteration. However, convergence

guarantees are provided when such enforcements are done after moving the vertices in

each iteration. This alternative approach could be employed to color plan diagrams and

compared with the previous approach.

3. We investigated in this thesis, a new coloring scheme for plan diagrams, where the differ-

ences in colors between any pair of plans, reflected the differences found in their struc-

tures. A useful alternative would be to color in a visual friendly manner, wherein the plan

colors are assigned to maximize their visual separation from their neighbours. That is,

the goal is to solve a graph coloring problem wherein the objective is to match proximity

in selectivity space to distance in (normalized) RGB color space.
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4. The semantic coloring technique explored in this thesis works on ab initio colorings,

where the coloring for all plans is done from scratch. However, in practice, given a pair

of plan diagrams, it is often found useful to color the plans such that matching plans have

identical colors in both diagrams. We intend to devise an efficient algorithm for organi-

cally integrating the color consistency requirement while retaining good visualization of

the semantic differences.

5. Currently, VSX predicates are defined only on fully enumerated paths. In our future work,

we propose to provide support for predicates that include wild cards in their element

paths.

6. Our analysis of XML plan diagrams was on the DB XML engine, an early supporter of

storing and querying XML data. In recent times, other engines have also extended their

support to XML. It would be insightful to obtain and analyze XML plan diagrams on

these engines as well.
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select
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

from
part,
supplier,
partsupp,
nation,
region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_retailprice :varies
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’
and ps_supplycost <= (

select
min(ps_supplycost)

from
partsupp, supplier, nation, region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’
and ps_supplycost :varies

)
order by

s_acctbal desc,
n_name, s_name, p_partkey

Figure A.1: QT2
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select
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue

from
customer,
orders,
lineitem,
supplier,
nation,
region

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’
and o_orderdate >= ’1994-01-01’
and o_orderdate < ’1995-01-01’
and c_acctbal :varies
and s_acctbal :varies

group by
n_name

order by
revenue desc

Figure A.2: QT5
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select
o_year,
sum(case

when nation = ’BRAZIL’ then volume
else 0

end) / sum(volume)
from

(
select

YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part,
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2,
region

where
p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and p_type = ’ECONOMY ANODIZED STEEL’
and s_acctbal :varies
and l_extendedprice :varies

) as all_nations
group by

o_year
order by

o_year

Figure A.3: QT8
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select
n_name,
o_year,
sum(amount)

from
(

select
n_name,
YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) -
ps_supplycost * l_quantity as amount

from
part,
supplier,
lineitem,
partsupp,
orders,
nation

where
s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like ’%green%’
and s_acctbal :varies
and ps_supplycost :varies

) as profit
group by

n_name,
o_year

order by
n_name,
o_year desc

Figure A.4: QT9
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#NAMESPACE declare default element namespace
"http://www.fixprotocol.org/FIXML-4-4";
#NAMESPACE declare namespace
c="http://tpox-benchmark.com/custacc";
#PSX /c:Customer/c:Accounts/c:Account/
c:Balance/c:WorkingBalance CUSTACC CUSTACC CADOC
#PSX /FIXML/Order/OrdQty/@Cash ORDER ORDER ODOC
# -- #

XQUERY
declare default element namespace
"http://www.fixprotocol.org/FIXML-4-4";
declare namespace c="http://tpox-benchmark.com/custacc";
for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")

/c:Customer/c:Accounts/c:Account[
c:Balance/c:WorkingBalance :varies]

for $ord in db2-fn:xmlcolumn("ORDER.ODOC")/FIXML/Order
[@Acct=$cust/@id/fn:string(.) and OrdQty/@Cash :varies]

order by $cust/c:AccountTitle/text()

return
$<$Customer$>$
{$cust/c:AccountTitle}
{$cust/c:Currency}

$<$/Customer$>$

Figure B.1: XQuery Template for TPoX (QTX SEC)
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#PSX /order/total ORDER ORDER ORDER
#PSX /customers/customer/address id CUSTOMER

CUSTOMER CUSTOMER
#--#
XQUERY
for $order in db2-fn:xmlcolumn("ORDER.ORDER")/order,
$cust in db2-fn:xmlcolumn
("CUSTOMER.CUSTOMER")/customers/customer
where $order/customer id = $cust/@id

and $order/total :varies
and $cust/address id :varies

order by $order/order date
return

<Output>
{$order/@id}
{$order/order status}
{$cust/address id}
{$cust/first name}
{$cust/last name}
{$cust/phone number}

</Output>

Figure B.2: XQuery Template for XBench (QTX19)
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#VSX /Suppliers/Supplier/AcctBal
SUPPLIERS SUPPLIERS SUPPLIERS
#VSX /Customers/Customer/AcctBal
CUSTOMERS CUSTOMERS CUSTOMERS
# -- #
XQUERY
for $reg in db2-fn:xmlcolumn("REGIONS.REGIONS")
/Regions/Region[Name="AFRICA"]
for $nat in db2-fn:xmlcolumn("NATIONS.NATIONS")

/Nations/Nation[xs:double(RegionKey)=$reg/
@key/xs:double(.)]

let $sup := db2-fn:xmlcolumn("SUPPLIERS.SUPPLIERS")
/Suppliers /Supplier[(xs:double(NationKey)=$nat/
@key/xs:double(.)) and (AcctBal :varies)],

$cust := db2-fn:xmlcolumn("CUSTOMERS.CUSTOMERS")
/Customers/Customer[(xs:double(NationKey)=$sup/
NationKey/xs:double(.)) and (AcctBal :varies)],

$line := db2-fn:xmlcolumn("ORDERS.ORDERS")/Orders/
Order[xs:double(CustKey) = $cust/@key/xs:double(.)
and OrderDate[. > "1994-01-01" and
. < "1997-01-01"]]/LineItem[xs:double(SuppKey)
= $sup/@Key/xs:double(.)]

let $summand :=(for $x in $line
return $x/ExtendedPrice*(1 -$x/Discount))

order by sum($summand)

return
<result> {$nat/@key} {$nat/Name}
<revenue> {sum($summand)} </revenue>
</result>

Figure B.3: XQuery Template for TPCH X
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<Nations>
<Nation key=”0”>

<Name> ALGERIA </Name>
<RegionKey> 0 </RegionKey>
<Comment> ruthlessly bold dinos across </Comment>

</Nation>
</Nations>

(a) NATIONS

<Regions>
<Region key=”0”>

<Name> AFRICA </Name>
<Comment> sly, fluffy somas within the daringly thin

warhorses sublat </Comment>
</Region>

</Regions>

(b) REGIONS

<Customers>
<Customer key=”000000001” >

<Name> Customer#000000001 </Name>
<Address> eCDWmkYrnh5pTZhNEoZbPq </Address>
<NationKey> 23 </NationKey>
<Phone> 33-716-804-6669 </Phone>
<AcctBal> 8409.98 </AcctBal>
<MktSegment> MACHINERY </MktSegment>
<Comment> fluffily silent hockey </Comment>

</Customer>
</Customers>

(c) CUSTOMERS

<Suppliers>
<Supplier Key=”0000000001”>

<Name> Supplier#0000000001 </Name>
<Address> hONA5x e(Iq# AqJ{Bb+Pi$hM </Address>
<NationKey> 21 </NationKey>
<Phone> 31-551-967-3671 </Phone>
<AcctBal> 4167.78 </AcctBal>
<Comment> waters x-ray platelets–dare </Comment>

</Supplier>
</Suppliers>

(d) SUPPLIERS
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<Parts>
<Part>

<PartKey> 1 </PartKey>
<Name> cream sandy forest misty papaya </Name>
<Mfgr> Manufacturer#3 </Mfgr>
<Brand> Brand#33 </Brand>
<Type> STANDARD PLATED BRASS </Type>
<Size> 4 </Size>
<Container> MED PACK </Container>
<RetailPrice> 901.00 </RetailPrice>
<P Comment> ironic epita </P Comment>
<PartSupp>

<Suppkey> 2 </Suppkey>
<Avail> 4625 </Avail>
<SupplyCost> 90.48 </SupplyCost>
<PS Comment> sheaves toward the blithe, thin frays

promise doggedly final, final dugouts;
ironic </PS Comment>

</PartSupp>
<PartSupp>

<Suppkey> 252 </Suppkey>
<Avail> 6437 </Avail>
<SupplyCost> 965.89 </SupplyCost>
<PS Comment> regular escapades behind the

thin, silent patterns may boost ruthlessly for
the clos </PS Comment>

</PartSupp>
<PartSupp>

<Suppkey> 502 </Suppkey>
<Avail> 9158 </Avail>
<SupplyCost> 454.60 </SupplyCost>
<PS Comment> Tiresias would kindle regularly even

dugouts!fluffy, busy gifts on the somas might sleep
around the ironically furious dependencies.busy, sly
patterns along t </PS Comment>

</PartSupp>
</Part>

</Parts>

(e) PARTS
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<Orders>
<Order>

<OrderKey> 1 </OrderKey>
<CustKey> 1</CustKey>
<OrderStatus> F </OrderStatus>
<TotalPrice> 68113.8155 </TotalPrice>
<OrderDate> 1996-02-16 </OrderDate>
<OrderPriority> 3-MEDIUM </OrderPriority>
<Clerk> Clerk#000000994 </Clerk>
<ShipPriority> 0 </ShipPriority>
<O Comment> ruthless dependencies </O Comment>
<LineItem>

<PartKey> 1 </PartKey>
<SuppKey> 502 </SuppKey>
<LineNumber> 1 </LineNumber>
<Quantity> 38 </Quantity>
<ExtendedPrice> 34238.0000 </ExtendedPrice>
<Discount> 0.0992 </Discount>
<Tax> 0.0393 </Tax>
<ReturnFlag> R </ReturnFlag>
<LineStatus> F </LineStatus>
<ShipDate> 1996-03-09 </ShipDate>
<CommitDate> 1996-05-06 </CommitDate>
<ReceiptDate> 1996-03-11 </ReceiptDate>
<ShipInstruct> NONE </ShipInstruct>
<ShipMode> SHIP </ShipMode>
<L Comment> ironically brave theodoli </L Comment>

</LineItem>
<LineItem>

<PartKey> 2 </PartKey>
<SuppKey> 753 </SuppKey>
<LineNumber> 2 </LineNumber>
<Quantity> 2 </Quantity>
<ExtendedPrice> 1804.0000 </ExtendedPrice>
<Discount> 0.0923 </Discount>
<Tax> 0.0144 </Tax>
<ReturnFlag> A </ReturnFlag>
<LineStatus> F </LineStatus>
<ShipDate> 1996-04-22 </ShipDate>
<CommitDate> 1996-04-07 </CommitDate>
<ReceiptDate> 1996-05-03 </ReceiptDate>
<ShipInstruct> DELIVER IN PERSON </ShipInstruct>
<ShipMode> SHIP </ShipMode>
<L Comment> final, permanent warho </L Comment>

</LineItem>
</Order>

</Orders>

(f) ORDERS

Figure C.1: Sample XML Documents for TPCH X Schema


