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Abstract

A “plan diagram” is a pictorial enumeration of the execution plan choices of a database query

optimizer over the relational selectivity space. These diagrams are often remarkably complex

and dense, with a large number of plans covering the selectivity space, showing that current

optimizer make extremely fine-grained plan choices. However, they can often be reduced to

much simpler pictures termed as “anorexic plan diagrams” with significantly fewer plans, with

bounded degradation in the query processing quality. This can be achieved by applying an

anorexic reduction technique to the plan diagram but the associated processing overheads may

hinder the practical relevance. There is a heuristic approach, known as AniPQO, that avoids

the brute force exploration of the selectivity space, and identifies a subset of plans (from plan

diagram) using geometric decomposition of selectivity space. Thus, it allows us to produce

an approximation to the plan diagram but does not ensure bounded degradation in query

processing quality. When evaluated on the top of small home-grown Volcano based optimizer,

AniPQO was found to identify anorexic set of plans, with significantly lesser overheads and

without significant (not bounded) degradation in the query processing quality.

This work aims to evaluate AniPQO on modern industrial-strength optimizer and to check

whether it can be used as “on the fly” technique to produce anorexic plan diagrams. We

have evaluated AniPQO using TPC-H and TPC-DS benchmarks on SQL Server 2008, which

provides plan forcing feature. Empirical results show that AniPQO also gives anorexic set of

plans on such industrial-strength optimizer and it can be used to directly produce anorexic plan

diagrams. We have also visualized anorexic plan diagrams associated with AniPQO, using tool

Picasso, as part of this work.
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Chapter 1

Introduction

1.1 Background

In modern database systems, data processing is done by executing SQL queries. These SQL

queries are declarative and query optimizer module is employed to consider different strategies,

called “plans”, to execute. It evaluates each plan by estimating its expected cost in terms of

query response time. Estimated cost of plan is generally function of Selectivity which is the

estimated number of rows of each relation relevant to producing the final result. In [7], a fresh

perspective is created on the behaviour of modern query optimizers by developing the notion of

a “plan diagram”. A plan diagram is a pictorial enumeration of the execution plan choices made

by a database query optimizer over the relational selectivity space. In a nutshell, plan diagrams

pictorially capture the geometries of the optimality regions of the “parametric optimal set of

plans” (POSP), which covers the whole selectivity space. Plan diagrams can be generated from

the visualization platform “Picasso” [7].

Plan diagrams are often remarkably complex and dense, with a large number of plans

covering the space, showing that current optimizers make extremely fine-grained plan choices.

However, if users were willing to tolerate a minor cost increase of at most λ% for any query

point in the diagram, plan diagram can be reduced to much simpler picture, termed as “anorexic

plan diagram” or “reduced plan diagram”, with significantly fewer plans, without materially

affecting the query processing quality [2]. The set of these fewer plans now covers the whole

selectivity space and the set of plans is termed as “Reduced-POSP”, with tolerance of λ. These

reduced plan diagrams can be produced by using anorexic reduction technique, CostGreedy

(CG), described in [2] and its variant CG-FPC described in [4]. But such reduction techniques

are post-processing techniques, which need plan diagrams beforehand and even plan diagram is

generated by making many “optimization calls” to the query optimizer. CG is very fast, where
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CG-FPC is extremely slow. But CG-FPC gives better reduction than CG.

Previously, a heuristic technique called as “Almost Non-Intrusive Parametric Query Opti-

mization” (AniPQO) was proposed in [6]. It takes user-defined threshold, λ, as a input and

outputs a subset of POSP, AniPOSP , where for every query point in the selectivity space, there

exists at least one plan in AniPOSP which is either optimal or co-optimal, with cost-increment

of atmost λ% threshold. AniPQO gives the guarantee, that the AniPOSP is actually a Reduced-

POSP with the user-defined threshold λ, in case of “Linear Cost Functions” (LCF) where plan

cost functions are linear with respect to selectivities. It doesn’t give this guarantees in case of

“Non-Linear Cost Functions” (NLCF). But empirical results show that cost-degradation is not

significantly large also in case of NLCF.

AniPQO utilizes “foreign plan costing” (FPC), in which query along with certain execution

plan is given to optimizer and optimizer returns the cost of a given plan. AniPQO was evaluated

on top of small home-grown Volcano based optimizer known as Pyro developed at IIT, Bombay.

This optimizer follows non-linear cost model [3] and supports FPC feature [6]. AniPQO does

more number of FPC calls than optimization calls, where optimization is the optimal-plan-

selection-process from the exponential search-space and FPC is the process of just estimating

the cost of a given plan. Hence, FPC calls are very cheap as compared to optimization calls [6],

which makes AniPQO to perform extremely fast as compared to brute-force approach.

1.2 Motivation

Pyro [9] is not an industrial-strength optimizer. At the time when this technique was proposed,

no commercial industrial-strength optimizer were supporting FPC feature and so, this technique

was not evaluated on such optimizers. Today, many such modern commercial industrial-strength

database engines support FPC feature. This work is to evaluate AniPQO on commercial

industrial-strength optimizer to check how well AniPQO performs. If AniPQO performs well on

commercial industrial-strength optimizer, that is, AniPOSP can be considered as a Reduced-

POSP, unlike post-processing techniques which need plan diagrams beforehand, reduced plan

diagrams can be generated more efficiently and on the fly without any need of plan diagrams.

1.3 Contributions

Current implementation of AniPQO1 is tightly coupled with Pyro. We divide our contributions

in two parts as follows:

1We are very thankful to Arvind Hulgeri for providing us AniPQO’s implementation

2



1.3.1 Implementation

We have developed following as part of this work:

• Interface with SQL Server: We have decoupled AniPQO’s module from Pyro and

developed an interface to connect with SQL Server by using ODBC.

• Flexible input: Current implementation of AniPQO works on fixed integer-parameter-

space generated by using metadata of database. We have modified its implementation to

work on grid of selectivity space of any resolution. Now, this grid has selectivity constants

which can be generated by user. We have used selectivity constants generated directly

from Picasso [7].

• Integration with Picasso: AniPQO returns AniPOSP , which is used at runtime to

find the best plan at a given query point. We have done the visualization of the reduced

plan diagram by selecting best plans only from AniPOSP at each query location. This

visualization is done using Picasso. We have also enhanced Picasso, latest version 2.1, by

integrating AniPQO with it. Reduced plan diagrams can now be directly generated using

Picasso with the help of AniPQO.

1.3.2 Evaluation

We have done following for evaluation of AniPQO:

• Error metrics: In [6], error metric considered for evaluation of AniPQO was “Maximum

degradation of cost”. But this metric doesn’t measure portion of selectivity space which is

actually harmed, that is, number of query points at which cost-degradation percentage is

greater than λ. We have introduced additional error metric, termed as “Harmed location

percentage”, refers to the percentage of selectivity space which is harmed. We considered

maximum and average degradation of cost only at harmed locations and termed them as

“Max harm” and “Average harm” respectively.

• Evaluation on TPC-H and TPC-DS: We have evaluated AniPQO on TPC-H bench-

mark database using benchmark query templates with two different physical designs of our

database engine, that is, PrimaryKey(PK) and AllIndex(AI). We have also evaluated

AniPQO on TPC-DS benchmark database with physical design PK.

• Comparison of AniPQO with CG-FPC: We have done comparison of AniPQO with

CG-FPC using their reduced plan diagrams. We have a strong claim with a lot of evidence,

that AniPQO is as fast as CG and as reductive as CG-FPC.
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• Scalability on higher dimensions: We have also checked scalability of AniPQO in

terms of number of optimization calls increased with the increase of dimension.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides the background which

includes brief outline of plan diagram, anorexic reduction and AniPQO. Problem identification

and definition are given in Chapter 3. In Chapter 4, implementation-side contributions of our

work are discussed. The various evaluation scenarios of AniPQO are discussed in Chapter 5.

In Chapter 6, conclusion of this work and the outline of future work are provided.
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Chapter 2

Background

In this chapter, we present necessary details of plan diagrams, reduction techniques and AniPQO.

2.1 PQO, POSP and Plan diagrams

The cost of a plan depends on various database and system parameters. The database param-

eters include selectivity of predicates and sizes of the relations. The system parameters include

available memory, disk bandwidth and latency. Exact values of these parameters may not be

known at compile time. Optimizing a query afresh each time it is executed can add substan-

tially to the cost of evaluation. To overcome this problem, “parametric query optimization”

(PQO) optimizes a query into a number of candidate plans, each optimal for some region of the

parameter space [6]. This set of optimal plans is termed as “parametric optimal set of plans”

(POSP) which covers whole selectivity space. This POSP can be found by querying optimizer

for every combination of parameters, which is a brute-force way, by using the notion of “plan

diagram”. Specifically, a plan diagram is a visual representation of the plan choices made by

the optimizer over an input parameter space, whose dimensions may include database, query

and system-related features. In a nutshell, plan diagrams pictorially capture the geometries of

the optimality regions of the POSP [5].

To make these notions clear, consider parametric query template, TPC-H QT8 [10], shown

in Figure 2.1, which is based on TPC-H Query 8. The template defines a relational selectivity

space on the SUPPLIER and LINEITEM relations, with the selectivity variations specified

through the s acctbal :varies and l extendedprice :varies predicates, respectively.

The associated plan diagram for QT81, with 300 × 300 resolution grid granularity and

uniform distribution, on SQL Server 2008 is shown in Figure 2.2. Here, grid granularity of

1The figure in this report should ideally be viewed from color copy to clearly register the feature
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select o year, sum(case when nation = ‘BRAZIL’ then volume else 0 end) / sum(volume)
from (select YEAR(o orderdate) as o year, l extendedprice * (1 - l discount) as volume,
n2.n name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where p partkey = l partkey and s suppkey = l suppkey and l orderkey = o orderkey
and o custkey = c custkey and c nationkey = n1.n nationkey and n1.n regionkey
= r regionkey and r name = ‘AMERICA’ and s nationkey = n2.n nationkey and
o orderdate between ’1995-01-01’ and ’1996-12-31’ and p type = ‘ECONOMY AN-
ODIZED STEEL’
and s acctbal :varies and l extendedprice :varies
) as all nations

group by o year
order by o year

Figure 2.1: Example Query Template: QT8

Figure 2.2: Plan diagram of QT8 (# plans 68)

resolution 300 × 300 means, 300 instances on each of 2 dimension of this query template are

distributed across the selectivity space. Two dimensions are varying predicates in QT8, those

are, SUPPLIER.S ACCTBAL and LINEITEM.L EXTENDEDPRICE. In this picture, each colored

region represents a specific plan and a set of 68 different optimal plans, P1 through P68, cover

the selectivity space. The value associated with each plan in the legend indicates the percentage
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area covered by that plan in the diagram – the biggest, P1, for example, covers about 25.710%

of the space, whereas the smallest, P68, is chosen in only 0.001% of the space.

2.2 Reduced plan diagrams and Reduced-POSP

These diagrams are often remarkably complex and dense, with a large number of plans covering

the space showing that modern optimizers make extremely fine-grained plan choices. However

these diagrams can be reduced to much simpler pictures by using anorexic reduction tech-

nique described in [2]. These simpler pictures are termed as “Anorexic plan diagrams” with

significantly fewer plans, without materially affecting the query processing quality.

For example, if user were willing to tolerate a minor cost increase of atmost 20% for any

query point in the diagram relative to its original (optimizer-estimated) cost, Figure 2.2 could

be reduced to that shown in Figure 2.3, where only 4 plans remain - that is, most of the

original plans have been “completely swallowed” by their siblings, leading to a highly reduced

plan cardinality.

Figure 2.3: Reduced Plan diagram of QT8 using CG (λ = 20%, # plans 4)

In this technique, POSP plans are allowed to “swallow” their sibling plans, that is, occupy

their regions in the selectivity space, if the sub-optimality introduced due to these swallowings

can be bounded to a user-defined threshold, λ. In [2], it was shown that even for complex

OLAP queries, a λ value of 20% was typically sufficient to bring the number of POSP plans

down to “anorexic levels”, that is, a small absolute number within or around 10. We term this

7



set of few plans, after reducing POSP, as “Reduced-POSP” with user-defined threshold λ, if

introduced sub-optimality due to swallowings is bounded by λ.

The technique described in [2], “CostGreedy” (CG), is based on a conservative upper-

bounding of plan costs. After generating a plan diagram, CG works on it extremely efficiently

to produce reduced plan diagram and so, Reduced-POSP. There is another variant of CG,

termed as CG-FPC mentioned in [4], which utilizes “foreign plan costing” (FPC) feature,

wherein plans can be costed outside of their native optimality regions. It costs every plan, in

plan diagram, on every query point and then does reduction. Hence, CG-FPC gives better

reduction than CG, but it has enormous computational overheads as compared to CG.

2.3 AniPQO and generating Reduced-POSP directly

AniPQO solves PQO problem for general case when the cost functions may be non-linear in

the given parameters. AniPQO has following interesting properties:

• AniPQO works with arbitrary non-linear and discontinuous cost functions.

• AniPQO works with arbitrary number of parameters.

• AniPQO is minimally-intrusive in the sense, that it does not need to modify the conven-

tional query optimizer, and can merely use it as a subroutine (invoking it with different

parameter values).

• AniPQO takes parameter space and user-defined threshold, λ, as a input and returns

AniPOSP ⊆ POSP as a output. This subset, AniPOSP , is indeed the Reduced-POSP

with λ, that is, user-defined threshold.

• AniPQO gives guarantee to get Reduced-POSP and exact decomposition of parameter

space for linear cost functions (LCF). It does not give guarantee for non-linear cost func-

tions (NLCF). But it is empirically shown in [6], that it still gives good subset of POSP

in case of NLCF, where maximum cost degradation is insignificantly larger than λ and

AniPOSP can still be considered as Reduced-POSP with given λ.

We have provided brief outline of AniPQO informally. One may refer the formal description

of AniPQO in [6].

The Algorithm 1 is an abstraction for the procedure for finding the vertices of the parameter

space decomposition induced by a plan set. It starts with empty “current set of plans” (CSOP )

and parameter space decomposition is the parameter space polytope itself. At each step, non-

optimized vertex of the decomposition is optimized. If the plan returned by optimizer is not in

8



Figure 2.4: Carving out region for a new plan in CSOP

CSOP , it is added in CSOP and the parameter space polytope is decomposed afresh on the

new CSOP . This procedure is repeated till all vertices of the decomposition are optimized.

Algorithm 1 AniPQO

Input: n (the number of parameters), parameter space polytope /* A polytope in Rn */
Output: AniPOSP ⊆ POSP

1: DecompositionV ertices = vertices of parameter space polytope
2: CSOP = ∅ /* Current set of optimal plans */
3: V erticesOptimized = ∅
4: while DecompositionV ertices− V erticesOptimized 6= ∅ do
5: v = a vertex from DecompositionV ertices− V erticesOptimized
6: p = ConventionalOptimizer(v) /* p is one the optimal plans at v */
7: V erticesOptimized = V erticesOptimized ∪ {p}
8: if p /∈ CSOP then
9: DecompositionV ertices = vertices of parameter space decomposition induced by
CSOP /* Done by using algorithm 2 */

10: CSOP = CSOP ∪ {p}
11: end if
12: end while

return CSOP

Optimality threshold (λ): If the cost of a plan at a point is within a small percent

(λ) of the optimal plan at the point then it is treated to be optimal plan. This threshold is

taken from user. Consider an intermediate parameter space decomposition. After optimizing

vertex v, a new plan p /∈ CSOP is found. If the cost of some plan p′ ∈ CSOP is within

threshold (λ) of the cost of p at v, then v is marked as optimized and CSOP along with the

intermediate parameter space decomposition continue to be the same. In the case of LCF, the

above procedure guarantees that at any point in the parameter space polytope, the best plan in

the approximate POSP is within λ% of the optimal plan. But this bound can not be guaranteed

9



for the case of NLCF, because of traversal intersection assumption between cost functions, and

it can only be used as a heuristic [6].

Algorithm 2 UpdateDecompositionVertices

Input: CSOP , V (the current set of decomposition vertices), p (a new plan)
Output: V (the updated set of decomposition vertices)

/* Update the set of decomposition vertices V when a new plan p is added to CSOP */
1: for each edge (u, v) in edge skeleton s.t.

p is optimal (w.r.t. CSOP ∪ {p}) at v and
p is not optimal (w.r.t. CSOP ∪ {p}) at u do

2: P = OCSOP
{u,v} ∪ {p}

/* OCSOP
{u,v} is set of plans in CSOP that are optimal (within CSOP ) at both u and v

*/
3: R = hyper-rectangle with u and v as diagonal vertices
4: w = FindEquiCostPoint(R,P )

/* Find vertex w in R, s.t. at w, plans in P are equi-cost; this may fail */
5: if previous step fails then
6: R = parameter space hyper-rectangle
7: w = FindEquiCostPoint(R,P )

/* This step too may fail */
8: end if
9: If vertex w is found, insert w in V

10: end for
Remove from V the vertices at which no plan other than p is optimal from CSOP

Representation and manipulation of the decomposition: Figure 2.4 illustrates the

operation of carving out the optimality region for a new plan added to CSOP . The regions are

non-linear; defining and manipulating them exactly even for 2 parameter case is not easy. That’s

why those are approximated with convex polytopes which can be represented and manipulated

efficiently.

An “edge skeleton” is representation of parameter space polytope by its edges and vertices.

Figure 2.4 is the example of edge skeleton. Procedure in Algorithm 1 needs only set of de-

composition vertices and not the complete decomposition. For each vertex in decomposition,

the set of plans from CSOP optimal (within CSOP ) at the vertex is stored. This information

is enough to find the edge skeleton and update the set of decomposition vertices when a new

plan is added to CSOP . Procedure of updating set of decomposition vertices is explained in

Algorithm 2
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The edges defining decomposition are of two types: those on the boundary of the rectangle

and those inside it. In each edge in former set, atleast one plan should be common between

its two vertices (e.g. ab-bc). In each edge in later set, atleast two plans should be common

between its two vertices (e.g. abe-bde). This is more formally defined in [6].

Algorithm 3 FindEquiCostPoint

Input: R (a hyper-rectangle), P (a set of plans)
Output: point c ∈ R at which plans in P are equi-cost

/* Find a point in hyper-rectangle R at which plans in P are equi-cost */
1: Let VR be the set of vertices of R
2: Let HR be the dimension of R
3: Label each vertex v ∈ VR by OP

v

/* OP
v is the set of plans from P that are optimal (within P ) at v */

4: Let UP
R = ∪v∈VR

OP
v

/* Each plan in UP
R is optimal (within P ) at least at one vertex of R */

5: if UP
R 6= P then return NULL
/* the desired point is not found in R */

6: end if
7: Let c be the centre of R
8: if {all the plans in P are equi-cost (within a threshold) at c } OR {R can not be partitioned

further} then return c
/* the desired point is found in R */

9: end if
Partition R into smaller 2HR rectangles and apply the same procedure till we find the desired
point

Updating the decomposition vertex set: When new plan is detected (not in CSOP ),

Algorithm 2 finds all “conflicting” edges in decomposition s.t. only new plan p is optimal

(within CSOP ∪ {p}) at one end v and not optimal at another end u. For example in Figure

2.4, abe-ab is conflicting edge. At each step, it creates hyper-rectangle s.t. conflicting edge as

its diagonal and finds equi-cost point in this hyper-rectangle by using Algorthm 3, at which

all common optimal plans at vertices of conflicting edge with p are equi-cost within threshold

λ. Algorithm may or may not find equi-cost point in non-linear case. If found, then it is

added to decomposition vertex set. Otherwise, it is found in whole parameter space polytope.

This too may fail. Hence, AniPQO may miss some vertices in decomposition and it results in

AniPOSP ⊂ POSP . But experimental results in [6] show that it still finds good subset of

POSP . Figure 2.4 is example of one iteration in AniPQO.
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Procedure of finding equi-cost point is given in Algorithm 3. Algorithm uses heuristic test,

explained more formally in [6], that whether each plan in P is optimal atleast at one vertex of

hyper-rectangle R. Algorithm starts with hyper-rectangle for which test evaluates positive; it

partitions it and picks a partition for which test evaluates positive. If test does not evaluate

positive for any partition, then it skips this hyper-rectangle. This is done recursively till the

plans are approximately equi-cost at the centre of the hyper-rectangle and takes the centre as

an approximation of the actual equi-cost point.
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Chapter 3

Problem Framework

In this chapter, we will summarize capabilities of techniques described in previous chapter to

identify problem and then we will state the problem formally.

3.1 Problem identification

Following table summarizes capabilities of CG, CG-FPC and AniPQO.

Metric CG CG-FPC AniPQO
Guarantee of bounded cost-degradation

on non-linear plan-cost-functions
Yes Yes No

Requires plan diagram beforehand Yes Yes No
API features required Opt Opt + FPC OPT + FPC

Reduction quality on industrial
benchmark query templates

Anorexic Better than CG ???

Computational overheads on industrial
benchmark query templates

RD RD + P ∗RD ???

Approach Brute-Force Brute-Force Not Brute-Force

Table 3.1: Summarizing capabilities of CG, CG-FPC and AniPQO

Table 3.1 shows that CG and CG-FPC give guarantee of bounded cost-degradation on

non-linear plan-cost-functions, behaviour observed on modern commercial industrial-strength

optimizers, where AniPQO doesn’t give such guarantee. CG and CG-FPC require plan dia-

grams beforehand for reduction, where AniPQO doesn’t require it. CG does not need FPC

feature for reduction, but still needs optimization when plan diagram is produced; where CG-

FPC, along with optimization, needs FPC feature for reduction. AniPQO also requires both

optimization and FPC feature, but difference between CG-FPC and AniPQO is that CG-FPC
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uses optimization and FPC in different phases, that is, optimization while producing plan dia-

gram and FPC while reduction; where AniPQO systematically uses optimization and FPC for

exploring selectivity space. It is shown that CG gives anorexic reduction on industrial bench-

mark (TPC-H and TPC-DS) query templates on industrial-strength optimizers and CG-FPC

gives even better reduction than CG. AniPQO was not evaluated on industrial-strength op-

timizer and not even “benchmark query templates”. So, reduction quality given by AniPQO

is unknown. Computational overheads of CG on industrial benchmark query templates are

RD, where R be resolution and D be dimension, as it needs to make RD optimization calls for

producing plan diagram before reduction; where CG-FPC makes P ∗RD FPC calls in reduction

phase, P is the cardinality of POSP, along with RD optimization calls like CG. It is still un-

known what are computation overheads of AniPQO on industrial benchmark query templates.

Finally, CG uses brute-force approach for producing plan diagram and CG-FPC costs all plans

in POSP on every query location for reduction, which is brute-force approach; where AniPQO

systematically explores selectivity space by making extremely less number of optimization calls

for directly giving Reduced-POSP.

As AniPQO doesn’t give guarantee of bounded cost-degradation on non-linear plan-cost-

functions, it needs to be evaluated on industrial-strength optimizer to find how much cost-

degradation bounds are violated by AniPQO. It also needs to evaluate AniPQO by comparing

with CG-FPC in terms of reduced plan diagrams, reduction quality and computational over-

heads.

Need of a new error metric: In [6], AniPQO has been evaluated by using error metric

Maximum degradation of cost over the selectivity space. This error metric measures whether the

maximum degradation of cost over the selectivity space is greater than user-defined threshold, λ.

If maximum degradation of cost is not greater than λ, then no query location is actually harmed

as cost-degradation percentage at every location is atmost λ%. But, if there are some query

locations which are harmed, then this error metric is not sufficient for evaluation as it doesn’t

measure the portion of selectivity space that is harmed. Hence, a new error metric needs to

be introduced called as Harmed location percentage formally defined in following section, which

measures the percent of selectivity space, at which cost of inferred plan is not within small

percent λ of cost of optimal plan. We can also replace error metric, maximum degradation

of cost, with two other error metrics those are Max Harm and Average Harm. These metrics

measure cost-degradation only at harmed locations, because we believe that cost-degradation

at other locations, which is lesser than λ, is acceptable by user.
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3.2 Problem definition

This work aims to evaluate AniPQO empirically on SQL Server 2008, an industrial-strength

database engine, using error metrics “Harmed Locations” along with “Max Harm” and “Average

Harm”.

Given a query point q on grid of selectivity space (SS), let ci(q) be the cost of inferred

plan, that is, the best plan in AniPOSP and co(q) be the cost of optimal plan at query point

q. Let λ be user-defined threshold, that is, maximum allowed cost-degradation percentage at

any query point, where λ > 0.

Now cost-degradation percentage, harmed location, harmed location percentage, max harm

and average harm are defined formally as follows:

Cost-degradation percentage: The cost of inferred plan is greater than or equal to the

cost of optimal plan and hence, there is some degradation of cost at query location q which is

measured as cost-degradation percentage as follows

CDP (q) =
[(

ci(q)

co(q)
− 1

)
∗ 100

]
Harmed location percentage: It is the percentage of all query points in the grid of

selectivity space, for which [CDP (q) > λ].

Max harm: Let QH be the set of all harmed query locations formally defined as

QH =
{
q
∣∣ q ∈ SS,CDP (q) > λ

}
Now, if there are some harmed locations, that is, harmed location percentage > 0, then max

harm is defined as follows:

MaxHarm = max
q∈QH

(CDP (q) − λ)

If harmed location percentage = 0, max harm is also 0.

Average harm: Same as max harm, it is defined when harmed location percentage > 0 as

follows:

AverageHarm =

∑
q∈QH

(CDP (q)−λ)∑
q∈QH

1

If harmed location percentage = 0, average harm is also 0.

This work also aims to integrate AniPQO with Picasso to produce reduced plan diagrams

directly, without generating plan diagrams beforehand.
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Chapter 4

Analysing AniPQO on SQL Server

2008

For evaluation of AniPQO on SQL Server 2008, which is industrial-strength optimizer, we have

developed an interface between AniPQO on SQL Server 2008, brought flexibility of providing

an input to AniPQO and enhanced AniPQO to generate log files, for further analysis, while

evaluating it. We have also integrated AniPQO with Picasso for generating reduced plan

diagrams directly. In this chapter, these contributions are discussed in more details.

4.1 Interface with SQL Server

The implementation of AniPQO is in C++ and it is tightly coupled with Pyro’s optimizer

module. We have decoupled AniPQO’s module and developed a new interface that operates as

a middleware between AniPQO and SQL Server 2008. Interface is developed in the perspective

of general use, that is, any other commercial optimizer can be used in the place of SQL Server

2008 with minor changes in the implementation. Now, AniPQO can also be evaluated on any

optimizer other than SQL Server 2008. We have used Open Database Connectivity (ODBC)

driver for developing this interface.

4.2 Flexible input

Current implementation works on the integer parameter space, that is, consider a parametric

query with 2 varying predicates from different relations. Range of attribute in first predicate

is from 1 to 1000 and range of second is from 1 to 500 (integer values), then the parameter

space is the grid of query points of resolution 1000 × 500. This parameter space is generated

by Pyro, which uses metadata of database. This parameter space is fixed and can not be set
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by user. When range of varying predicates is large, then parameter space will also have very

large number of query points.

We have brought the flexibility in providing the input, so that AniPQO now works on a grid

of selectivity space of any resolution and these selectivity constants for each dimension in query

template can be chosen by the user as per the required distribution of query instances. We

have used selectivity constants generated directly by Picasso. In experiments, we have tested

AniPQO on grid of resolution 300× 300 and 100× 100× 100 for various query templates with

both uniform and exponential distributions [7] for λ; like 1%, 5%, 10% and 20%.

4.3 Visualization of reduced plan diagram given by AniPQO

In [6], they have shown that quality of plans is very good, that is, degradation of cost is not

significantly larger than λ. But, this doesn’t give any idea about geometries of optimality

regions of plans in AniPOSP . Hence, it becomes very essential to visualize the results. For

this reason, we have done visualization of AniPQO’s results with the help of Picasso, version

2.1, using two different designs. One is the loose integration, that is, production of reduced

plan diagram after evaluating AniPQO and another is tighter integration with Picasso, that is,

production of on the fly reduced plan diagram using Picasso with the help of AniPQO.

4.3.1 Reduced plan diagram after evaluating AniPQO

In this design, we generate log files in the error computation phase, explained in more details

in Subsection 5.1, for analysis and for production of reduced plan diagrams. These log files

store various fields for every query location; including optimal plan number, optimal plan’s

cost, inferred plan number, inferred plan’s cost and cost-degradation percentage. We have used

this information to produce reduced plan diagrams with the help of Picasso.

Picasso produces plan diagram after two phases. In first phase, it makes optimization calls

to the query optimizer for each query location to get various information including optimal

plan and its cost. It stores all this information in the database to avoid redoing of this work for

production of the same plan diagram in the future. In the second phase, it reads back all that

stored information from the database and generates plan diagram by systematically assigning

colors to optimality regions [7].

We have generated reduced plan diagrams by exploiting the second phase. We modified

Picasso’s implementation to read plan numbers and their costs from these log files instead of

reading back from the database and rest of the procedure of generating plan digram by assigning

colors to the optimality regions is the same. We do not store information related to currently

generated reduced plan diagram in the database, as we already have this information locally in
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the log files.

4.3.2 Production of on the fly reduced plan diagrams

In this design, we have enhanced implementation of Picasso to directly produce reduced plan

diagram with the help AniPQO. We have introduced new panel, called as AniPQO diagram,

added next to the Plan diagram panel to display AniPQO’s reduced plan diagram. Users

can now select this panel after loading query template in the Query template panel. Picasso

asks user an “optimality threshold” which is given as a input, λ, to AniPQO. Picasso then

runs AniPQO, gets AniPOSP and estimates time for generating reduced plan diagram. This

estimated time along with the information including number of plans in AniPOSP , number

of optimization calls and FPC calls made by AniPQO is prompted to user and reduced plan

diagram is generated after confirmation from user.

Like plan diagram, reduced plan diagram is also produced after two phases. In first phase,

each plan in AniPOSP is costed at every query location to find best plan, that is, inferred

plan. An information including inferred plan number and inferred cost at every query location

is stored in the database to reproduce the same reduced plan diagram in the future. In the

second phase, all that stored information is read back from the database to generate reduced

plan diagram by assigning colors to the optimality regions.

Figure 4.1 and Figure 4.2 exemplify a reduced plan diagram generated by tight integration

of AniPQO with Picasso. Figure 4.1 shows that after giving QT8 and λ = 1% as a input,

Picasso runs AniPQO and shows estimated generation time of reduced plan diagram. After

getting confirmation from user, Picasso generates and displays reduced plan diagram as shown

in Figure 4.2.
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Figure 4.1: Estimated time for producing reduced plan diagram of QT8 with λ = 1%

Figure 4.2: Reduced plan diagram of QT8 produced by using AniPQO, # plans 7
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Chapter 5

Evaluation Scenarios

We have evaluated AniPQO to see how much cost-degradation bounds are violated and also

compared with CG-FPC in terms of reduced plan diagrams, reduction quality and computa-

tional overheads. We have also checked scalability of AniPQO with the dimension. In this

chapter, evaluation scenarios are discussed.

In SQL Server 2008, according to system workload, cost of execution plan varies with avail-

able memory, to get consistency in experimental results, we have fixed memory parameters

“minimum server memory” and “maximum server memory” to be 1792 MB (1.75 GB) and

“minimum memory per query” to be 200 MB. We have used query hinting feature of SQL

Server 2008 by using query option “USE PLAN” as a FPC feature. But this feature is very

limited, that is, SQL Server’s optimizer may or may not use suggested plan as it is and we may

get inflated cost of foreign plan. For example, suppose we got a plan p after optimizing one

query location, while costing the same plan p at same query location, optimizer may alter this

plan which results into inflated cost. We call this particular FPC-error as “self-FPC error”.

We have also used query option “MAXDOP 1” for avoiding parallelism to avoid FPC errors as

much as possible.

In experiments, we enhanced implementation to store application trace, error log and MAT-

LAB script in files. Application trace shows how AniPQO worked on a given query. Error log

is created at the time of error computation. This log has information for each query point

like cost-degradation percentage. Fields like optimal plan, optimal plan’s cost, inferred plan,

inferred plan’s cost for each harmed location is stored in error log for analysis. While we may

get some FPC error while costing inferred plan at query point, this is also logged in error log

file. To visualize harmed locations, we enhanced AniPQO to generate MATLAB scripts to plot

harmed locations. We assigned color codes to query points to identify error ranges, that is,

cost-degradation percentage.
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• Yellow: self FPC-error

• Green: λ to λ+ 10

• Blue: λ+ 10 to λ+ 20

• Red: λ+ 20 to λ+ 30

• Black: greater than λ+ 30

5.1 Evaluation on TPC-H and TPC-DS decision support

benchmarks

We have evaluated AniPQO on TPC-H benchmark database of 1 GB scale with two different

physical designs of our database engine, that is, PrimaryKey(PK) and AllIndex(AI). PK

represents the physical design, wherein a clustered index is created on primary key of each

relation. AI, on the other hand, represents an “index-rich” situation wherein (single-column)

indices are available on all query-related schema attributes. For evaluation, we have considered

physical design AI, which was not considered in [6], because AI has richer schema in which query

optimizer has many options to choose indexes in an execution plan. We have also evaluated

AniPQO on TPC-DS [8] benchmark database of 100 GB scale with the physical design PK.

We have done evaluation of AniPQO on query templates based on benchmark queries as

follows:

1. Optimization: We find optimal plans and their costs at every query location to find

actual POSP. This is the brute-force way of finding POSP. This phase is required because

cost of optimal plan is required to calculate cost-degradation for calculation of harmed

location percentage

2. AniPQO: We run AniPQO on query template using various λ values, including 1%, 5%, 10%

and 20%, to get AniPOSP . In [6], if some plan in AniPOSP is already co-optimal with

new plan found by optimizing unoptimized vertex, this new plan is not used for further

decomposition instead of discarding it and still added in AniPOSP to improve quality

of plans AniPOSP for ensuring lesser harm. We have not added these new plans if some

co-optimal plans already exist in AniPOSP , to ensure anorexic level.

3. Error computation: We find best plan in AniPOSP at each query location by costing

every plan in AniPOSP , to get cost of inferred plan to calculate errors including harmed
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Query
Template

λ
(%)

# plans
Harmed

Locations
(%)

Max Harm
(%)

Avg Harm
(%)

Optimizer
calls

FPC
calls

POSP AniPOSP

QT3
(exp)

1

33

7 0.14 7.73 2.46 14 407
5 5 0.05 3.73 0.89 11 143
10 4 0 0 0 10 93
20 3 1.38 60.15 14.30 8 74

QT3
(uni)

1

14

6 1.46 2.82 1.67 8 125
5 5 0 0 0 7 91
10 3 0 0 0 6 42
20 3 0 0 0 6 31

QT4
(exp)

1

9

4 0 0 0 9 151
5 4 0 0 0 9 103
10 3 0 0 0 8 80
20 3 0 0 0 8 80

QT4
(uni)

1

5

3 0 0 0 6 48
5 2 0 0 0 6 32
10 2 0 0 0 6 28
20 2 0 0 0 6 26

QT8
(exp)

1

138

9 38.83 7.02 1.68 15 290
5 3 26.81 6.04 2.42 7 31
10 3 1.46 1.04 0.39 7 24
20 2 2.08 6.19 2.76 5 11

QT8
(uni)

1

68

9 39.35 7.23 2.86 20 666
5 5 10.90 3.23 0.96 7 52
10 3 1.49 1.07 0.37 5 12
20 3 0 0 0 5 10

Table 5.1: Evaluation results of TPC-H physical design PK with resolution 300× 300

location percentage, max harm and average harm. We also generate log files for further

analysis.

5.2 Evaluation results on TPC-H(PK)

Table 5.1 shows evaluation results on TPC-H benchmark with physical design, PK, with res-

olution 300 × 300. We have evaluated query templates QT3, QT4 and QT8, which found to

be less FPC error prone. Table shows that cardinality of POSP for exponential distribution is

greater than uniform distribution, because more number of optimal plans are found at lower

selectivities. As λ increases, cardinality of AniPOSP exponentially decreases and becomes

constant for 10% and 20%. Table 5.1 also shows harmed location percentage. Harmed location

percentage for QT4 is 0. Hence, AniPOSP for QT4 can be considered as Reduced-POSP.

Harmed location percentage for QT8 with λ = 1% is very high, but QT8 has more complex

plan diagram compared to other query templates, having dense and large number of plans
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in POSP. We have visualized these harmed locations of QT8 with uniform distribution and

λ = 1% shown in Figure 5.1. Figure shows harmed locations percentage is significantly high,

but all harmed locations have cost-degradation percentage lesser than λ+ 10 and even some of

them are due to self-FPC error; where optimal plan is present in AniPOSP and AniPQO also

inferred same plan as inferred plan, but the cost of same plan after doing FPC got inflated and

query location became harmed location.

Figure 5.1: Harmed locations for QT8 with uniform distribution and λ = 1%

Max harm indicates extra cost-degradation percentage beyond acceptable cost-degradation

percentage, that is, λ. Max harm in all cases is within 10%, except QT3 with exponential dis-

tribution. In this exceptional case, AniPQO missed one important plan which caused very high

cost-degradation at certain portion of selectivity space, this is because it is a heuristic technique

which assumes traversal intersection between cost functions [6], which may not hold always.

Although results show significant harmed location percentage, average harm is extremely low,

that is, within or around 3%, except QT3 with exponential distribution, which indicates

that most of the harmed locations are having extra cost-degradation lesser than 3%.

The table shows that the number of optimizer calls made by AniPQO are extremely less as

compared to number of query points in the selectivity space, that is, 300∗300. Even number of

FPC calls made by AniPQO are also very less. This shows that AniPQO identified AniPOSP

without exploring selectivity space extensively, like brute force approach. Hence, although
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Query
Template

λ
(%)

# plans
Harmed

Locations
(%)

Max Harm
(%)

Avg Harm
(%)

Optimizer
calls

FPC
calls

POSP AniPOSP

QT7
(exp)

1

43

18 12.83 11.97 5.18 31 503
5 12 1.07 7.97 5.19 24 463
10 10 0.01 2.97 6.10 23 940
20 9 0 0 4.53 20 651

QT7
(uni)

1

32

10 7.63 7.78 4.84 20 458
5 9 1.88 3.78 0.89 19 596
10 8 0.90 3.07 1.27 16 485
20 6 0.86 37.01 13.62 13 572

QT8
(exp)

1

38

11 0.03 1.20 8.99 22 330
5 9 0 0 0 18 262
10 9 0 0 0 18 240
20 8 0 0 0 13 168

QT8
(uni)

1

14

6 0 0 0 15 270
5 6 0 0 0 14 330
10 5 0 0 0 10 191
20 5 0 0 0 9 160

QT9
(exp)

1

50

12 0.16 32.51 8.53 24 369
5 12 0.06 9.51 2.78 26 1008
10 9 0.01 9.95 3.05 19 578
20 7 0 0 0 15 404

QT9
(uni)

1

19

5 32.12 7.71 2.94 8 249
5 5 9.89 3.71 1.32 8 393
10 4 0 0 0 8 160
20 3 0 0 0 7 53

Table 5.2: Evaluation results of TPC-H physical design AI with resolution 300× 300

AniPQO has given significant harmed location percentage with max harm, it should also be

noted that AniPQO has performed very efficiently with extremely less computation, because

FPC calls are very cheap as compared to optimization calls. As λ increases, number of FPC

calls also decreases exponentially.

5.3 Evaluation results on TPC-H(AI)

We have also done evaluation on TPC-H benchmark with physical design, AI, in which, query

optimizer has many options to choose indexes in an execution plan, which causes the cost of

the optimal plan to be very low. Now even if absolute cost-difference between foreign plan and

optimal plan is not significantly large, relative cost-difference in percentage may be very large.

Due to this, AniPQO may perform badly because it finds centre point of hyper-rectangle a lot

of times during its execution, where optimal plans in hyper-rectangle are equi-cost at this centre

point, that is, relative cost-difference of optimal plans is not larger than λ. This can be cleared
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with following example. In case of PK, if cost of optimal plan is 50 and cost of inferred plan is

55, relative cost-difference 10%. But in case of AI, if optimal cost is 5 and cost of inferred cost

is 10, relative cost-difference is 100%. Even though absolute cost-difference is 5 in both cases,

relative cost-difference looks very high in case of AI. For this reason, we have not considered

query points as harmed query locations where absolute costs of optimal plan and inferred plan

are lesser than 10.

Figure 5.2: Harmed locations for QT7 with uniform distribution and λ = 20%

Table 5.2 shows evaluation results for AI with resolution 300×300. We have evaluated query

templates QT7, QT8 and QT9. Table shows that FPC calls does not decrease as λ increases.

Reason of this interesting observation lies in explanation given in previous paragraph. This

happens for small λ, like 1% and 5%, where centre points of some hyper-rectangles may not be

found during execution of AniPQO, because it considers cost-difference relatively and as costs

of plans happen to be very small in AI, equi-cost points may not be found. This affects further

execution and some important optimal plans may be missed by AniPQO. Hence, Table 5.2

shows that harmed location percentage for small λ is significantly high as compared to large λ,

because AniPQO missed some optimal plans.

Table 5.2 shows that max harm in AI is very high, for some cases, as compared to PK. This

is again because of relative cost-difference. As costs are very low in AI as compared to PK,

relative cost-difference will be very high in case of AI. Table shows that for all query templates,

except QT7 with uniform distribution and QT9 with exponential distribution, average harm is
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Query
Template

λ
(%)

# plans
Harmed

Locations
(%)

Max Harm
(%)

Avg Harm
(%)

Optimizer
calls

FPC
calls

POSP AniPOSP

DSQT18
(exp)

1

235

8 0.20 12.15 2.82 15 186
5 4 0.60 8.15 1.85 8 45
10 4 0.01 3.15 1.51 7 39
20 3 0 0 0 7 32

DSQT18
(uni)

1

66

11 0.60 7.60 1.86 18 157
5 7 0.11 3.76 1.25 13 150
10 4 0 0 0 8 37
20 3 0 0 0 6 20

DSQT19
(exp)

1

48

5 0.41 8.15 2.03 12 115
5 5 0.02 4.15 1.23 10 66
10 4 0.47 8.23 4.23 7 43
20 4 0 0 0 7 39

DSQT19
(uni)

1

44

6 0.46 2.04 0.72 13 186
5 5 0 0 0 8 52
10 5 0 0 0 8 50
20 4 0 0 0 7 37

DSQT61
(exp)

1

89

12 3.37 20.15 7.53 22 584
5 11 0 0 0 15 597
10 10 0 0 0 13 619
20 8 0.01 1.14 0.46 12 422

DSQT61
(uni)

1

61

10 2.81 2.75 1.12 15 464
5 8 0 0 0 13 473
10 6 4.45 1.10 0.58 10 104
20 2 39.51 11.64 4.45 5 18

Table 5.3: Evaluation results of TPC-DS physical design PK with resolution 100× 100

not significantly large, which indicates that degradation of cost for most of the harmed locations

is within or around average harm. Even in exceptional case of QT7 with uniform distribution,

harmed location percentage is very less which is shown in Figure 5.21. Figure shows that some

query locations are severely harmed harmed shown as red and black markers, but those are in

very less number as compared to green and blue markers.

5.4 Evaluation results on TPC-DS

We have also done evaluation of AniPQO on TPC-DS benchmark database, scale 100 GB,

of physical design PK using query templates DSQT18, DSQT19, DSQT61; results shown in

Table 5.3. Similar to Table 5.1, cardinality of AniPOSP also decrease exponentially as λ

increases. Harmed location percentage is not significant for all query templates, except DSQT61

with uniform distribution and λ = 20% where AniPQO missed some optimal plans due to the

1The figure in this report should ideally be viewed from color copy to clearly register the feature
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assumption of traversal intersection between cost functions. For λ = 1%, max harm looks

significantly large for some query templates, but average harm shows that most of the harmed

locations have extra cost-degradation beyond λ% within and around 5%, except DSQT61 with

exponential distribution and λ = 1%. Table shows that AniPQO explored significantly less

portion of selectivity space as compared to brute force approach giving very less harmed location

percentage for most of the cases. Harmed locations of DSQT61 with uniform distribution and

λ = 20% are shown in Figure 5.3. Figure shows that although harmed location percentage is

significantly high, most of the harmed locations have cost-degradation percentage within λ+10.

Figure 5.3: Harmed locations for DSQT61 with uniform distribution and λ = 20%

5.5 Evaluation results on 3-D query templates

We have also done evaluation of AniPQO on 3-D query templates on TPC-H benchmark of

physical design PK. Table 5.4 shows results of evaluation. Table shows that cardinality of

POSP also increases drastically as dimension of query template increases. Table shows that

AniPQO still gives cardinality of AniPOSP to anorexic level for even 3-D query templates

having large number of plans in POSP. Similar to Table 5.1, cardinality of AniPOSP and

number FPC calls also decrease exponentially as λ increases. Harmed locations for QT8 with

λ = 10% and 20% is 0, which shows that AniPQO returns Reduced-POSP with extremely

less computation. For QT8 with λ = 1%, max harm looks significantly large, but average
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Query
Template

λ
(%)

# plans
Harmed

Locations
(%)

Max Harm
(%)

Avg Harm
(%)

Optimizer
calls

FPC
calls

POSP AniPOSP

QT8(uni)

1

268

13 32.23 7.31 2.49 37 2186
5 7 5.22 3.31 0.86 30 1354
10 6 0 0 0 26 920
20 5 0 0 0 14 100

QT9(uni)
10

421
9 6.86 13.86 4.09 23 365

20 5 1.14 12.57 2.29 13 134

Table 5.4: Evaluation results of TPC-H physical design PK with resolution 100× 100× 100

harm shows that most of the harmed locations have extra cost-degradation percentage beyond

λ within and around 2.49%. It shows that Max harm for QT9 is very high as compared to

QT8, but again average harm shows that cost-degradation is not high for most of the harmed

locations. In spite of significantly very high max harm for QT9, AniPQO made extremely less

number of FPC calls as compared to the number of query points, that is, 100 ∗ 100 ∗ 100; which

shows that AniPQO still gives significantly less max harm and average harm by exploring very

small portion of selectivity space, which is not even 0.01% of total selectivity space.

5.6 Comparison AniPQO and CG-FPC

As mentioned before, CG-FPC is the anorexic reduction technique, variant of CG, which utilizes

FPC feature. CG-FPC gives better reduction quality than CG. But, CG-FPC costs every plan

in the POSP at every query locations, which makes it extremely time-consuming with enormous

computations. On the other hand, reduced plan diagrams can also be generated by using

AniPQO. As AniPQO directly gives Reduced-POSP (heuristically), reduced plan diagrams can

directly be generated by costing each plan in AniPOSP , to find the best plan, at each query

location. We have compared AniPQO and CG-FPC using reduced plan diagrams, reduction

quality and computational overheads.

5.6.1 Comparison using reduced plan diagrams

We compare reduced plan diagrams produced by using AniPQO and CG-FPC on QT8, on PK

design, with uniform distribution and λ = 10%. The reduced plan diagram produced by using

AniPQO is shown in Figure 5.5a and Figure 5.5b shows reduced plan diagram, reduced by using

CG-FPC. The number of plans in AniPOSP are just 3 (at anorexic level) as compared to size

of POSP, that is, 68 and number of plans after reduction using CG-FPC are only 2. Figures

show that reduced plan diagrams using AniPQO and CG-FPC look quite similar; AniPQO

has just one extra plan in AniPOSP , but it covers only 0.081% of the selectivity space and rest
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(a) QT8 plan diagram (# plans 68) (b) Harmed locations of QT8 with λ = 10%

Figure 5.4: Plan diagram and harmed locations of QT8

(a) AniPQO (λ = 10%, # plans 3) (b) CG-FPC (λ = 10%, # plans 2)

Figure 5.5: Reduced plan diagrams of QT8 given by AniPQO and CG-FPC

of the optimality regions are nearly similar. Figure 5.4b shows harmed locations of QT8 given

by AniPQO with λ = 10%. The harmed location percentage looks slightly high, but Table 5.1

shows that max harm is just about 1% which is not significant and it is still acceptable. The

rest of the selectivity space is not harmed which shows that AniPQO has violated bounded

cost-degradation for small portion of the selectivity space.

We further compare reduced plan diagrams of QT7, on AI design, with uniform distribution

and λ = 10%. The original plan diagram of QT7 with uniform distribution is shown in Fig-

ure 5.6a, plan diagram has 32 plans. The reduced plan diagrams produced by using AniPQO

and CG-FPC are shown in Figure 5.7a and Figure 5.7b respectively. The number of plans in
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(a) QT7 plan diagram (# plans 32) (b) Harmed locations of QT7 with λ = 10%

Figure 5.6: Plan diagram and harmed locations of QT7

(a) AniPQO (λ = 10%, # plans 8) (b) CG-FPC (λ = 10%, # plans 7)

Figure 5.7: Reduced plan diagrams of QT7 given by AniPQO and CG-FPC

AniPOSP are just 8 (at anorexic level) and number of plans after reduction using CG-FPC

are only 7. Figures show that reduced plan diagrams using AniPQO and CG-FPC look al-

most same; AniPQO has just one extra plan in AniPOSP , but it covers only 0.060% of the

selectivity space and rest of the optimality regions are nearly same. We are getting such a close

match because in [6], a technique of approximate indexing (by using AniPOSP ) is suggested

to quickly infer optimal plan from AniPOSP at the run-time and this technique can be used

in a scenario when cardinality of AniPOSP is very high. As we have found that cardinality

of AniPOSP is at the anorexic level, we are finding the best plan from AniPOSP (by costing

each plan) while producing reduced plan diagram.
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Figure 5.6b shows harmed locations of QT7 given by AniPQO with λ = 10%. The harmed

location percentage looks slightly high, but Table 5.2 shows that max harm is just about 3%

which is not significantly high and it is still acceptable. The rest of the selectivity space is not

harmed which shows that AniPQO has not violated bounded cost-degradation for 99% of the

total selectivity space.

λ
(%)

AniPQO/
CG-FPC

QT-7 QT-8 QT-9

Exp Uni Exp Uni Exp Uni

1
AniPQO 18 12 11 6 12 5

CG-FPC 27 16 15 6 18 7

5
AniPQO 12 9 9 6 12 5

CG-FPC 17 10 11 5 7 5

10
AniPQO 10 8 9 5 9 4

CG-FPC 12 7 10 4 9 4

20
AniPQO 9 6 8 5 7 3

CG-FPC 10 6 8 3 6 3

Table 5.5: Comparing reduction quality of AniPQO with CG-FPC

5.6.2 Comparison using reduction qualities

We now compare AniPQO and CG-FPC in terms cardinality of AniPOSP and Reduced-POSP

given by CG-FPC shown in Table 5.5. Table shows cardinality of AniPOSP and Reduced-POSP

given by CG-FPC for query templates on AI physical design. As explained in Section 5.3,

AniPQO may miss some optimal plans for small λ, like 1% and 5%. Table 5.5 shows the same,

where AniPQO has given less number of plans as compared to CG-FPC for λ = 1% and 5%,

except QT9 with exponential distribution and λ = 5%. In this exceptional case, AniPQO

added more number of plans in AniPOSP by exploring selectivity space significantly more

than other query templates with the same distribution and λ. Table 5.2 shows that harmed

location percentage, max harm are also very less and number of FPC calls made by AniPQO

are significantly high. But in case of λ, like 10% and 20%, cardinalities are almost equal. This

shows that for λ = 10% and 20%, AniPQO gives the Reduced-POSP; because max harm,

average harm and harmed location percentage is not significantly large.

Reduction quality of AniPQO and that of CG-FPC is almost same for λ = 10% and 20%.

Hence, AniPOSP can be considered as Reduced-POSP for these λ values.

31



5.6.3 Comparison using computational overheads

We have shown reduced plan diagrams of QT8 with uniform distribution, 300 × 300 resolu-

tion and λ = 10%; produced by using AniPQO and CG-FPC in Figure 5.5a and Figure 5.5b

respectively. AniPQO returned AniPOSP having 3 plans. After reducing the original plan

diagram with 68 plans, CG-FPC reduced to only 2 plans, where AniPOSP also has only 3

plans. Though reduced plan diagrams of AniPQO and CG-FPC looks very similar, plans in

AniPOSP and CG-FPC are not same. In case of CG-FPC, degradation of cost is at most 10%.

But, in case of AniPQO, some harmed locations have found with max harm as 1%, that is, 1%

more than the acceptable degradation, which is not significantly large.

CG-FPC AniPQO CG
Optimization

Calls
300*300 5 300*300

FPC
Calls

68*300*300 12+(3*300*300) -

We subsequently compare computational overheads in both ways. AniPQO made 5 opti-

mization calls and 12 FPC calls in its execution to find out AniPOSP . Subsequently, it made

3 ∗ 300 ∗ 300 FPC calls to produce reduced plan diagram. On the other side, CG-FPC needs

plan diagram beforehand, which is produced after making 300 ∗ 300 optimization calls. Then

CG-FPC costed all 68 plans on all 300∗300 query locations for reduction. As compared to CG-

FPC, AniPQO produced plan diagram with extremely less computation, because optimization

calls are very costly as compared to FPC calls. If we consider CG, it doesn’t make FPC calls,

but it still needs plan diagram to be produced for reduction, where AniPQO doesn’t need it.

We compare number of FPC calls made in both reduction techniques as follows.

Let cardinality of POSP and AniPOSP be P and A respectively. Let resolution be R

and dimension be D. Number of FPC calls made by AniPQO and CG-FPC are (A ∗ RD)

and (P ∗ RD) respectively. In this chapter, we have shown results of evaluation on various

query templates, which shows that the cardinality of AniPOSP is very small, at anorexic level,

as compared to the cardinality of POSP, that is, A � P . This shows that FPC calls made

by AniPQO for any query template are extremely small as compared to CG-FPC. We have

compared AniPQO with CG-FPC on many TPC-H query templates on both physical designs.

With a lot of evidence we have a strong claim that AniPQO is as fast as CG and as reductive

as CG-FPC.
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5.7 Scalability with dimension

Time complexity of producing plan diagram, that is, brute-force approach is exponential with

respect to the dimension. Hence, production of plan diagram becomes impractical after 4 di-

mensions even for resolution 100. But while increasing dimension, AniPQO can still produce

AniPOSP on such higher dimension making extremely less number of optimization calls as

compared to brute-force approach. Hence, it becomes essential to check how AniPQO scales

with the dimension. We have tested AniPQO on QT8 and QT9 with uniform and exponen-

tial distribution respectively. We have found that the number of optimization calls and FPC

calls increase exponentially, but this rate of increase is significantly lesser than that of brute-

force approach, that is, AniPQO still explores very less portion of selectivity space on higher

dimensions.

We have run AniPQO on query templates QT8 and QT9 with resolution 100, results are

shown in the Table 5.6. Table shows the increase of number of optimization calls and FPC calls

made by AniPQO to explore selectivity space for returning AniPOSP . As dimension increases,

optimization and FPC calls also increase exponentially. This exponential growth is expected,

because vertices and edges of the decomposition space also increase exponentially.

Query
Template

Dimension AniPOSP Opt calls FPC calls

QT8
(uni)

1 2 2 2

2 5 9 97

3 10 32 1003

4 14 51 5639

5 19 143 19354

QT9
(exp)

1 4 6 32

2 7 14 141

3 12 28 1012

4 23 61 9207

5 25 126 17322

Table 5.6: Scalability with dimension, resolution 100 and λ = 10%

Figures 5.8 and Figure 5.9 show the scalability of AniPQO with the increase of dimension

for QT8 and QT9 respectively using log scale. The overhead ratio of FPC and optimization
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Figure 5.8: Scalability on AniPQO on QT8 with uniform distribution

Figure 5.9: Scalability on AniPQO on QT9 with exponential distribution
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for commercial optimizers is 1:10 [1]. Hence, we have combined the number of FPC calls in

optimization calls to compare efforts made by AniPQO and brute-force approach. Though we

have used λ = 10% in case of AniPQO, CG will still need plan diagram, generated by brute-

force approach, for the reduction using threshold λ = 10%. The graphs in figures show that

AniPQO also increases exponentially. But as compared to brute-force approach, AniPQO still

saves the time in an order of magnitude and scales very well with the increase of dimension.
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Chapter 6

Conclusions and Future Work

After evaluating AniPQO using various evaluation scenarios, we have found that with very less

number of optimization calls, AniPQO gives Reduced-POSP and this heuristic technique also

performs very well (giving significantly less harmed location percentage and max harm) on such

industrial-strength optimizer. We conclude that AniPQO can be used to produce on the fly

anorexic plan diagrams which can give a rough idea that how will the reduced plan diagram look

after the reduction. These plan diagrams can also be used in scenarios where time required to

produce reduced plan diagram matters and not bounded cost-degradation. We have evaluated

AniPQO upto 3 dimensions, because evaluation will not be practical for higher dimensions. As

the future work, AniPQO can be evaluated on other commercial industrial-strength optimizers

which support perfect FPC feature and also for higher dimensions by simulating plan-cost-

functions.
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