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Abstract

Performance of a database system depends on the efficiency of its optimizer. Query opti-
mizers of distributed databases are designed to process complex queries over distributed
data and need to explore opportunities of parallelism in query execution while choos-
ing an optimal plan for a given query. This makes overall design of these optimizers
complex as compared to centralized optimizers. But with complex functionalities, high
performance is also desirable. Therefore it is important to analyze their behavior. In
this work, we have done analysis of a distributed database query optimizer COM_OPT
using the tool Picasso [1], which using metadata statistics stored in database catalogs
shows a suite of diagrams that captures the behavior of optimizer. With our analysis
over these diagrams we have shown that the behavior of COM_OPT deviates from the
expected behavior, i.e. it often makes fine grained plan choices across the selectivity
space, does not follows the assumptions of PQO [2] and also shows non monotonically
increasing cost behavior with increasing selectivities of the base relations.

There are various other testing applications also which works solely with metadata statis-
tics. But effective testing needs alternative metadata scenarios. A tool “The CODD
Metadata Processor” provides an interface for ab-initio construction of such futuristic
metadata scenarios. Since distributed databases are designed to handle huge data, testing
of their optimizers should also be done using alternative metadata scenarios correspond-
ing to big data. But generating such metadata scenarios by constructing corresponding
data scenarios and then collecting statistics is infeasible. Therefore, to make the con-
struction of these futuristic metadata scenarios feasible and simpler, we have engineered

the tool CODD [5], which provides an interface for constructing alternative metadata

i
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scenarios, to support COM_OPT. Since COM_OPT supports construction of statistics
over group of columns along with individual columns, we have also included multi-column

histogram support in the tool. Also, we have redesigned CODD with 3-tier client-server

architecture.
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Chapter 1

Introduction

Query optimizer is an integral part of relational database system that tries to identify
best execution plan for efficient execution of declarative SQL queries. The performance
of a database system depends on the effectiveness of its query optimizer and is measured
in terms of “cost” which indicates the total execution time of the queries. An efficient
optimizer should ideally come up with the minimum cost execution plan. The role of
query optimizers has become especially critical due to high degree of query complexity
characterizing current data warehousing and mining applications, as exemplified by the
TPC-H decision support benchmark [10]. Thus, analysis of optimizer’s behavior is ex-
tremely important. Specifically, distributed database systems are designed to process
complex queries over large amount of data which is distributed across various nodes.
Also, data may be replicated across the nodes. Optimizers in these systems face the
highly complex problem of determining the best execution plan in the presence of mul-
tiple possible parts of relation copies located at different nodes. The execution site for
each operator has to be determined and the cost of transferring relations between sites
has to be included in the cost model of the optimizer in addition to the I/O’s performed.
The optimizer must be able to recognize the opportunities of parallelism that arise as
a result of distributed settings and adjust its cost model to recognize plans that utilize
these possible concurrent execution opportunities. Despite complex functionalities, the

optimizer must provide efficient execution plans. Thus, analysis of distributed database
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Figure 1.1: Overview

query optimizers is extremely important. The tool “Picasso Query Optimizer Visualizer”
introduced in [8] helps in visualizing the behavior of optimizers. With the help of this
tool, analysis of query optimizers of leading commercial centralized database systems
has been done in past. It was shown that their optimizers often violates the expected
behavior. This has motivated us to analyze the behavior of a distributed database query
optimizer. So, as a part of this work, we have done the analysis of query optimizer of a

distributed database system. We will call this optimizer as COM_OPT.

Picasso analyzes the behavior of optimizer using metadata statistics only. There exists
other testing applications also for which inputs are solely based on metadata statistics
stored in the database. But creating one such metadata scenario requires creation of
corresponding data, loading it into the database and then collecting statistics over it.
But time and space overheads involved in this process makes it infeasible. Distributed
databases are designed to handle huge amount of data. So, their testing should also
be done on metadata scenarios corresponding to big data. For effective testing of their
optimizers, one needs to create alternative metadata scenarios corresponding to big data.
But creating various such big data scenarios is infeasible and thus testing process becomes
restricted. Recently developed tool “The CODD Metadata Processor” [6] attempts to al-
leviate these difficulties through the construction of “Dataless Databases”. Using CODD,
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metadata can be easily constructed within a matter of minutes, including the desired
attribute-value distribution through visual histogram construction. Thus for construct-
ing alternative futuristic metadata scenarios for a distributed database COM_OPT, we
have engineered the tool CODD to support COM_OPT. In addition to this, we have also
done an architectural enhancement to the tool by redesigning it with 3-tier client-server

architecture. The tool was initially implemented as a 2-tier application.

1.1 Organization

Rest of the report is organized as follows: Chapter 2 gives a brief overview of the opti-
mizer diagrams and their utilization. Chapter 3 provides introduction to the distributed
database COM_OPT and also desceibes how to extract required metadata statistics
from the database. Chapter 4 provides implementation details and visual analysis of
COM_OPT using optimizer diagrams. Chapter 6 gives a brief introduction to the tool
CODD. Chapter 7 describes the 3-tier architecture of the tool. Chapter 8 contains the
details of engineering CODD for supporting COM_OPT.



Chapter 2

Visualizing the behavior of query

optimizers

For a given database and a system configuration, the query optimizer’s execution plan
choices are primarily a function of the selectivities of the base relations in the query. The
selectivity of a relation is the estimated fraction of rows of the relation that are relevant
for producing the final result. In [4], the concept of optimizer diagrams was introduced
to denote the color-coded pictorial enumerations of the plan choices of the optimizer
for parameterized SQL queries over the relational selectivity space. For example, con-
sider Query Template 2 shown in Figure 2.1, a two-dimensional query template based
on Query 2 of TPC-H benchmark, with selectivity variations on PART and PARTSUPP
relations through p_retailprice <= cl and ps_supplycost <= c2 range predicates, re-
spectively. Given a query template, Picasso captures the behavior of the optimizer over
the selectivity space in a suite of diagrams, which are collectively known as “optimizer
diagrams”. Picasso uses metadata statistics stored in database catalogs to produce these
diagrams. These diagrams helps in visually analyzing the behavior of the optimizer. The
visual analysis of the behavior of optimizer across the selectivity space provides various

insights, mainly including the following:

e Granularity of Plan choices: It is expected that the plans chosen by the opti-

mizer will not change frequently with small changes in the selectivities of relations

4



Chapter 2. Visualizing the behavior of query optimizers )

select
s_acctbal, s_name, n_name, p_partkey, pmfgr,
s_address,s_phone, s_comment
from
part, supplier, partsupp, nation, region
where
p-partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_retailprice <= ci
and s_nationkey = n_nationkey
and n_regionkey = r_reigonkey
and r_name = ’EUROPE’
and ps_supplycost <= (
select
min (ps_suppcost)
from
partsupp, supplier, nation, region
where
p-partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and r_name = ’EUROPE’
and ps_supplycost <= c2
)
order by
s_acctbal desc,
n_name,
s_name,
p-partkey

Figure 2.1: Query Template 2 of TPC-H Benchmark

involved in the query.

e Validity of Parametric Query Optimization (PQO): The concept of PQO
2] tries to identify a set of optimal plans at compile time, which can subsequently
be used at run time to identify best plan when the actual parameter values are
known. The expectation is that this would be much faster than optimizing query
from scratch. But the assumption is that the plan regions should be unique, ho-
mogeneous and convex and from implementation perspective the number of plans
across the selectivity space obtained at compile time must be less. In the diagrams

we will see if the optimizer follows the assumptions of PQO or not.
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e Plan Cost Monotonicity (PCM): With a cost based query optimizer having
linear cost model, it is expected that costs will increase along with the increasing
selectivities. With the help of diagrams we will analyze the cost behavior of the

optimizer.

Analysis of various leading centralized database query optimizers was done in [4]. Tt
was observed that the behavior of optimizer often deviates from the expected behavior.
The optimizers often makes fine grained plan choices across the selectivity space. It was
also shown that the assumptions of PQO do not hold in practice. Various instances were
shown where PCM violation takes place across the plans and surprisingly within the
plans as well. While analyzing the behavior of COM_OPT we will see if it shows the
expected behavior or not by observing above mentioned features. Also, we will see if it

is showing some anomalous behavior.

Following section provides a brief introduction to the optimizer diagrams produced by

Picasso. Detailed implications of the diagrams will be discussed in Chapter 4.

2.1 Optimizer Diagrams

For capturing the plan choices, cost and cardinality estimation, etc. of the optimizer,
Picasso produces a suite of optimizer diagrams. Figures in this section show a representa-
tive set of optimizer diagrams produced by Picasso (for COM_OPT) for Query Template
2 with exponentially distributed query points (300 Resolution).

Plan Diagram: Plan diagram denotes a color-coded pictorial enumeration of the execu-
tion plan choices of a database query optimizer for a query template over the selectivity
space. The plan diagram for QT 2 is shown in Figure 2.2, where X and Y axis determine
the percentage selectivities of PART and PARTSUPP relations respectively, and each
color-coded region represents a particular plan that has been determined by the optimizer

to be the optimal choice in that region. Plan diagram shows that a set of 137 plans, P1
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Figure 2.2: Plan Diagram

through P137, covers the entire selectivity space. The value associated with each plan
in the legend indicates the percentage area coverage of that plan in the diagram. And
the Gini coefficient represents the skew in the plan areas. In this plan diagram the Gini
Coefficient [7] of 0.78 shows that there are very less number of plans which are covering

a major portion of the selectivity space, while most of the plans are having very less area.

Compilation Cost Diagram: Complementary to the plan diagram is the cost diagram.
Cost diagram for Query Template 2 is shown in Figure 2.3. It gives a visualization of
the estimated plan execution costs over the relational selectivity space. X axis and Y
axis represent the selectivity variations of the relations while the Z axis represents cost
(normalized with respect to the maximum cost over the space). This diagram helps in
understanding the variation of cost within a plan and across plans for a query template
over the selectivity space. The cost diagram here shows non monotonically increasing
cost behavior (PCM violation) with increasing selectivities near low selectivity region,

which is not expected from a cost based optimizer.

Compilation Cardinality Diagram: It is similar to compilation cost diagram except
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Figure 2.5: Reduced Plan Diagram

that it shows the variation of optimizer’s estimation for cardinality of result set over the
selectivity space instead of cost of execution. The cardinality diagram for QT 2 is shown
in Figure 2.4. The estimated cardinality result here increases along with increasing se-

lectivities as expected.

Reduced Plan Diagram: It shows the extent to which the original plan diagram may
be simplified (by replacing some of the plans with their siblings in the plan diagram)
without increasing the cost of any individual query by more than a user specified thresh-
old. One such strategy is “cost greedy reduction” which we have used here. In this
reduction, for any point x, only the plans which lies in its first quadrant are considered
as candidates for swallowing the plan at that point, since it is expected that these points
will have cost greater than that of query point x as they have to process more number
of tuples. Figure 2.5 shows the reduced plan diagram for QT2 at 20% cost increase
threshold. The number of plans are now 15, which is much less than that in original
plan diagram (137 plans). The reduced plan diagram is near to anorexic plan diagram
(having around 10 plans) and thus for this diagram the concept of PQO is feasible from

implementation point of view.
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Plan Tree: It is a tree representation of execution plan chosen by the optimizer for
given selectivities of the relations. A sample plan tree for Query Template 2 is shown
in Figure 2.6. Picasso also shows Compiled Plan Tree which additionally shows the cost

and/or cardinality associated with each operator in the plan tree.

Plan Tree Difference: It highlights the schematic differences between a selected pair
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Figure 2.7: Plan Tree Difference (Plan P1 and Plan P4)

of plans in the plan diagram. Plan tree difference between plan P1 and P4 is shown in

Figure 2.7.



Chapter 3

Introduction to COM _OPT: A
distributed database query

optimizer

In a distributed database, data is distributed across various nodes. To keep track of
the data, it stores schema and metadata information about data of relations spread
across various nodes. This chapter describes how the schematic information is stored in
COM_OPT, how to extract distribution statistics corresponding to an attribute and the
way to extract a query execution plan from COM_OPT.

3.1 Schematic Information Storage in COM_OPT

The database system maintains various catalogs which act as containers for schema’s. A
schema contains a collection of database objects like tables, views and indexes. The user
defined tables are stored in their respective user catalogs and schemas. Along with user
defined tables, within the same schema histogram tables are also stored which contains
metadata statistics for the relations stored in that schema. The database also maintains

a system catalog which contains six schemas within them. One such schema is DEFINI-

TION_SCHEMA _VERSION_

12
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vernum, which stores additional metadata (e.g. schema information, constraints, etc.)
associated with each object in the catalog. SYSTEM_SCHEMA table resolves object
names given object identifier. SYSTEM_DEFAULTS_SCHEMA table stores system de-
fault settings. Users can change the default settings for externalized attributes in the
SYSTEM_DEFAULTS table in the system catalog. OBJECTS and COLS tables in this
schema stores the structural details of relations and their columns respectively. The
datatype of each column of a relation is stored in COLS table. A thing to note here is
that the system metadata tables are not user updatable.

The optimizer works at Optimization levels O(minimum), 2, 3(default) or 5(maximum).
The default value of the OPTIMIZATION _LEVEL can be changed for the current session
using the CONTROL QUERY DEFAULT statement.

3.2 Histogram Statistics

The optimizer uses histograms to estimate the number of tuples that come out of each
operator in a query execution plan and uses these estimates to calculate the total cost
of a plan. In COM_OPT, histogram statistics for the entire table and columns are
stored in the HISTOGRAMS and HISTOGRAM_INTERVALS user metadata tables,
which are stored in user catalog. HISTOGRAMS table stores relation level (e.g. relation
cardinality) and column level (e.g. number of unique values, High Value, Low Value,
etc.) metadata information’s while HISTOGRAM_INTERVALS table stores the interval
information for the data distribution of a column or a group of columns. An interval
represents a range of values for the column. The range of values for each interval is
selected such that every interval represents approximately the same number of rows in
the table. This is known as “equi height” distribution of the values over the histogram
intervals.

It is important to note that the histogram tables are not automatically updated when
you update a relation for which statistics are stored or when a new relation is created.

To keep the histogram statistics current, UPDATE STATISTICS statement has to be
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executed after creating or updating the relations.

3.3 Extracting Query Execution Plans

COM_OPT generates alternative plans and chooses the best execution plan for the query
by using its cost model. The optimizer computes the cost of each alternative and chooses
the one with the lowest cost as the optimal query execution plan. EXPLAIN function

can be used for extracting the execution plan information for a given query.

EXPLAIN function: The EXPLAIN function is a table-values stored function that re-
turns information about execution plans for SQL DML statements. One can query and
display certain columns or all columns of information about execution plan. Two steps

are required to get the execution plan for a query:

1. Prepare Statement:

Prepare label from query

2. EXPLAIN function:
select * from EXPLAIN(label, NULL);

3.4 INFORMATION EXTRACTION FROM COM OPT

For producing the diagrams which characterizes optimzier’s behavior, Picasso needs fol-

lowing things from the optimizer:

1. Extraction of distribution statistics for varying predicates of the query template
for finding out the constants for them at each selectivity point to form queries with

it

2. Extraction of relevant portions of execution plans for each query in the selectivity

space.
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3.5 Accessing metadata statistics

The statistics used for producing various diagrams are cardinality of relation, attributes
of the table with their types and distribution of data in a column. Metadata statis-
tics information is stored in HISTOGRAMS and HISTOGRAM_INTERVALS tables
which can be extracted using the schematic information stored in system metadata ta-
bles. HISTOGRAMS table stores the relation level and column level statistics, while
HISTOGRAM_INTERVALS table stores distribution of values in a column of group of

columns. These information are extracted as follows:

1. Corresponding to each TABLE_UID which is a unique identifier for a relation, HIS-
TOGRAMS table stores ROWCOUNT which is the cardinality of the relation. The
DEFINITION_SCHEMA _VERSION _vernum.OBJECTS table stores the mapping

of the relation names to their unique id’s.

2. The datatype of an attribute can be extracted from the table DEFINITION_SCHEMA
_VERSION _vernum.COLS using column name and the unique identifier for the cor-

responding relation to which the attribute belongs.

3. The distribution statistics for an attribute or group of attributes can be extracted

from HISTOGRAM_INTERVALS table.

3.6 Extracting Plan information

EXPLAIN function can be used for extracting the relevant information about the query

execution plan for a given query.
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Result Analysis

4.1 Implementation Details

Picasso is written in JAVA. It follows 3-tier client server architecture where the client
provides a vendor neutral interface to the users while for each database engine there
is a separate module for extracting information’s discussed in above section. So, for
engineering Picasso for COM_OPT, along with some additions in few portions of the
code on client side, we have added a new engine specific module on the server side. The
step by step procedure of porting, given in the Picasso user manual, was followed for this
purpose. We have written approximately 2K lines of code for the purpose of engineering

Picasso for supporting COM_OPT.

4.2 Testbed Environment

1. Database: TPC-H (1 GB scale) representing a manufacturing environment with
statistics collected on all columns of all relations. Indexes were created on attributes

of the relations.
2. Query Set: Query Templates based on TPC-H benchmark queries.

3. Computational Platform: Non Stop operating System, Intel Itanium Quad Core

16
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select
s_name, count(*) as numwait
from
supplier, lineitem 11, orders, nation
where
s_suppkey = 11.1 suppkey
and o_orderkey = 11.1_ orderkey
and o_orderstatus = ’F’
and exists (
select * from lineitem 12
where
12.1 orderkey = 1l1.1_orderkey
and 12.1 _suppkey <> 11.1_suppkey
) and not exists (
select * from lineitem 13
where
13.1_orderkey = 11.1 orderkey
and 13.1_suppkey <> 11.1_suppkey
and 13.1 receiptdate > 13.1l_commitdate

and s_nationkey = n_nationkey
and s_acctbal <= cl

and 11.]1_extendedprice <= c2
and n_name = ’SAUDI ARABIA’

group by
S_name
order by
numwait desc, s_name

Figure 4.1: Query Template 21 of TPC-H Benchmark

processor 1.6 GHz, 16GB RAM.

4. Picasso Settings: Diagram resolution was set to 300 and the distribution of query

points was set to exponential.

Most importantly the data was physically distributed across various nodes. The parti-

tioned DDL’s of the relations can be found in Appendix.
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Figure 4.2: Plan Diagram
4.3 Analysis of diagrams for Query Template 21

Figure 4.1 shows Query Template 21 based on query 21 of TPC-H Benchmark with
selectivity variation on SUPPLIER and LINEITEM relations through s_acctbal <= cl
and [_extendedprice <= ¢2 range predicates respectively. In this section we will focus

our analysis over the various diagrams produced by Picasso for this query template.

4.3.1 Plan Diagram

Figure 4.2 shows the plan diagram for Query Template 21. A set of 131 different optimal
plans, P1 through P131, covers the entire selectivity space. The legend shows that plan
P1 is covering 19% of the space, whereas plan P5 onwards have less than 5% area each.
Also from the diagram it can be seen that the optimizer has made extremely fine grain
choices near the low selectivity region. Towards high selectivity regions also the plans
are not covering very large areas. There are plan areas which are not homogeneous and
convex. For example, plan P7 and P9 are occurring alternatively in region near the
vertical axis. The plans here violates the assumption of PQO that plan regions must be

convex.
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Figure 4.3: Compilation Cost Diagram

4.3.2 Compilation Cost Diagram

The compilation cost diagram for Query Template 21 is shown in Figure 4.3. The cost
diagram shows that the overall cost of query execution increases along with increasing
selectivities across the selectivity space. But there are regions where the plan cost is not
monotonically increasing with increasing selectivities. This behavior can be seen within
the plan and across the plans as well. Such behavior is not expected from a cost based

optimizer.

4.3.3 Reduced Plan Diagram

The reduced plan diagram for above plan diagram is shown in Figure 4.4. The reduction
was done using cost greedy reduction algorithm by setting the cost increase threshold
A, to 20% . Here we got a significant reduction but survival of 27 plans shows the lack
of anorexic reduction. This is due to violations in the Plan cost monotonicity principle

in the plan diagram. It can be seen that many small sized plans are still retained near
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Figure 4.4: Reduced Plan Diagram

low selectivity region, as there were cost monotonicity violations in this region. Here we
could have got an anorexic reduced plan diagram, if the reduction was done using the
concept of foreign plan costing, i.e. by calculating the cost of each plan (which occurs
in first quadrant of the point) at the query point and allowing the replacement of plan
only if the new plan is able to swallow full region of the plan corresponding to the query

point.

4.3.4 Plan Tree

COM_OPT has a richer set of operators as compared to centralized database optimiz-
ers. It has some special operators which are indicative of parallelism in the execution
plan. Some of these special operators can be seen in the plan tree for plan P2 shown in
Figure 4.5. While executing, the operators will be evaluated in bottom up fashion. Here
we will give an overview of the special operators which represents parallelism in the ex-
ecution plan. Such operators are not available in centralized database query optimizers

and are of interest of our study.
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Figure 4.5: Plan Tree for Plan P2

1. PARTITION_ACCESS: It is a unary node that appears in parallel plans but does
not signify parallelism. All disk access within a PARTITION_ACCESS node are

serial, i.e. it provides access to single data partition of a relation at a time.

2. SPLIT_TOP: This operator occurs above PARTITION_ACCESS operator in plan
tree and signifies parallelism in execution plan. It is an N-ary operator that provides
access to more than one PARTITION_ACCESS nodes and as a result it facilitates

Data Access Manager parallelism.

3. ESP_EXCHANGE: This operator can occur anywhere in the plan tree. It describes
the portion of plan that redistributes the input data stream. It generates multiple

ESP’s (Executor Server Processes) which performs parallel operation over the input
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data stream.
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4. Partial group by operators: For reducing the amount of data that must be relocated

for a query, HASH PARTIAL_GROUPBY _LEAF operator executes a partial group

by operation close to where the data is read. When executed in DAM (Data Access

Manager), the group by operation is limited to a small amount of memory. Any

group that does not fit in memory is passed on ungrouped, with the full grouping

occurring at the HASH_PARTTAL_GROUPBY_ROOT.

4.4 Interesting Picasso Art Gallery

While analyzing the optimizer diagrams for COM_OPT we came across a plan diagram,

shown in Figure 4.6, which has gained our special attention because of its extreme

density. This diagram was produced for query template 8 which corresponds to query

8 of TPC-H benchmark which is a fairly complex query with dynamic base relations

in form of a sub-query and consists of group by and order by operations as well. The

sub-query contains two varying predicates and involves joins of 8 relations. The plan
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Figure 4.7: Plans differing in the position of EXP_EXCHANGE operator

diagram consists of 2041 plans. Such a highly dense plan diagram was never seen before
during the analysis for centralized optimizers. Here the optimizer seems to be making
extremely fine grained choices throughout the selectivity space. The plan boundaries
are highly irregular. There are several plans (e.g. plan P1, P2) which are occurring in
duplicate locations. On closer analysis it was observed that the neighboring plans were
not having very significant cost difference.

On further analyzing this plan diagram we found that the total number of different join
orders among these plans were 681, which itself is a very high number (much greater than
the plan diagram cardinality of any other optimizer). Apart from the join orders, the

differences in the plans were also found mainly because of parallelism operators. The plan
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difference here is only on operator basis. Parameter level information associated with
each operator is not taken into consideration for plan difference. As ESP_EXCHANGE
operator can occur anywhere in the plan tree, we have seen that in the plan diagram
the differences in the plans were sometimes because the optimizer has chosen to put the
EXP_EXCHANGE operator at a different level in the tree. Figure 4.7 highlights the
EXP_EXCHANGE operator’s position difference in plan trees of two adjacent plans.

Apart from this difference, some of the trees were differing because of the choice of partial
group by as opposed to full group by operation. Figure 4.8 highlights the difference in
the plan tree because of partial group by operation. It shows that for plan P6 it has

chosen to do full group by operation while for plan P1 it is performing partial group
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Query OPTA OPTB OPTC OPTD COM_OPT
Template P R P R P R P R P R
2 23 7 21 10 74 13 3 2 137 | 15
3 12 3 8 4 25 11 9 5 28 8
4 7 7 2 12 4 1 1 15 7
8 62 3 12 3 33 8 14 4 |2041| 17
9 49 5 3 3 31 1 2 52 15
21 16 8 3 47 13 5 2 131 | 27

P: Cardinality of Plan Diagram
R: Cardinality of Reduced Plan Diagram
(Cost Greedy Reduction algorithm with 20% cost
increase threshold)

Figure 4.9: Comparison with centralized optimizers

by. Partial grouping is again one of the special feature of COM_OPT. Also, surprisingly
plan P6 was found to occur as a footprint pattern within the optimality region of plan

P1 thus violating the assumption of PQO.

4.5 Comparison with centralized db optimizers

Figure 4.9 shows the logical comparison of cardinality of plan diagram and reduced plan
diagram of COM_OPT with that of other centralized database optimizers which have
already been analyzed in past using Picasso [4]. The results for centralized optimizers
were taken from [8]. The cardinality of plan diagram for COM_OPT is order of magni-
tudes higher than that of other optimizers. Also, on reducing the plan diagram using
cost greedy reduction (point wise reduction) technique with 20% cost increase threshold,
the reduction in number of plans is significant as compared to original plan diagram as
we can see the case for Query Template 8 where 2041 plans got reduced to 17 plans. This
shows that optimizer could have produced less number of plans without compromising

much on the cost of plans. After reduction it does not reaches anorexic level (around 10
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plans) for some of the queries, while in case of other optimizers any complex diagram
reaches anorexic level at this cost increase threshold. The reason for less reduction rate

is violation of plan cost monotonicity across the selectivity space.

The analysis over the diagrams shows that there is a lot of scope in improving the

optimizer’s design.



Chapter 5

Making construction of futuristic

metadata scenarios easier

In previous chapters we have discussed the analysis of behavior of the optimizer COM_OPT.
The analysis of the behavior of current optimizer’s design was done using the metadata
statistics stored. There exists similar applications for testing and analysis of optimiz-
ers which uses only metadata statistics for their purpose. But for effective testing the
optimizer must be analyzed for various alternative futuristic metadata scenarios. For
creating one such metadata scenario, first corresponding data needs to be constructed,
then data must be loaded into the database and then we need to collect statistics over
the data. The process is shown in Figure 5.1. Time and space overheads involved in
this process makes it infeasible to construct various alternative metadata scenarios for

testing (shown in Figure 5.2).

For solving this problem recently a tool “The CODD Metadata Processor” was developed

Load into Collect Vetadata
Generate Data > > L —>
database Statistics .
Scenario

Figure 5.1: Conventional Method for Generating Metadata

27
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Figure 5.3: CODD for Constructing Metadata Statistics

which provides graphical interface to users for creating alternative metadata scenarios
without the need of corresponding data. Figure 5.3 shows the role of CODD in solving
this problem. With the help of this tool alternative metadata scenarios can be con-
structed in minutes. Distributed database systems are designed to handle large amount
of data and therefore must be ideally testing using metadata scenarios corresponding to
big data. But creating such scenarios using conventional method is totally infeasible.
The tool CODD can be extremely helpful for such databases. Therefore, in this work we
have engineered CODD for supporting COM_OPT which corresponds to a distributed

database system.

Chapter 6 provides a brief introduction to the tool CODD and rest of the chapters in

the thesis describes our contributions towards this tool.



Chapter 6

The CODD Metadata Processor

CODD, is a JAVA based graphical tool that supports the ab initio creation of metadata.
It provides a graphical user interface through which databases with the desired metadata
characteristics can be efficiently simulated without persistently generating and /or storing
their contents. This makes the construction of futuristic metadata scenarios feasible and
therefore helps in effective testing of optimizers. For construction of various alternative

metadata scenarios, CODD provides the following modes of operations:

1. Metadata Construction: This mode provides engine specific graphical interface
wherein user can input the metadata statistics for the desired scenario. Figure 6.1
shows the overview of utility of construct mode. It also provides a graphical editing
interface in the form of graphical histograms to visually alter the attribute-value
distributions. It also incorporates a graph based validation algorithm that en-
sures that the input metadata values are both legal (valid range, correct type) and
consistent (compatible with other metadata values). After validation of inputted
metadata statistics, the metadata statistics in the database catalogs are updated
to complete the construction of desired scenario. The whole process of metadata
input including visual alteration of histograms, validation and catalog updates can
be completed in few minutes. In short, this mode lets the user construct various al-
ternative scenarios ranging from empty to Big-Data (for instance, yottabyte [10%])

sized relational tables, uniform to skew attribute-value distribution, etc. without

29
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requiring the presence of any prior data instance.

2. Metadata Retention: There are scenarios when metadata statistics are required
to be generated only from the actual data. In such cases, with retention mode
of CODD the raw data can be dropped subsequently to get the raw data storage
space back without affecting the metadata statistics. This facilitates the testers to
temporarily load the real-world database scenarios without incurring storage and
maintenance overheads of data during the testing process. Figure 6.2 shows the

overview of retain mode.
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3. Metadata Scaling: In practice, testing of database engines is usually done on
scaled versions of original databases. CODD provides the facility of scaling the
metadata instances as shown in Figure 6.3. It performs follwing two types of

scaling over metadata:

e Size scaling: Given a baseline metadata instance and a user-specified scaling
factor, it produces the scaled metadata instance. For example, given a meta-
data instance corresponding to 1GB database and scaling factor 100, CODD
produces the scaled metadata instance corresponding to 100GB database as
shown in Figure 6.3. But the underlying data (if exists) will remains same as

before scaling.

e Time Scaling: Given a query workload, a baseline metadata instance and a
user-specified scaling factor, the metadata instance is scaled such that the
overall estimated execution time of the query workload is scaled by the user-

specified scaling factor.

In a nutshell, CODD is an easy-to-use graphical tool for the automated creation, verifi-

cation, retention and scaling of database metadata configurations.
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6.1 Our Contributions

In this work, we have done following two enhancements to the tool:

e Architectural Changes: Redesigned CODD with 3-tier architecture

e Database Addition: We have engineered the tool CODD to support construction
of alternative metadata scenarios for distributed database COM_OPT

Chapter 7 describes the new client-server architecture of CODD and Chapter 8 describes
the engineering of CODD for supporting COM_OPT.



Chapter 7

Redesigning CODD Architecture

The tool CODD was initially implemented as a 2-tier application as shown in Figure 7.1,
with the application running on client system and making connection to a database which
can run on same or a different system. All the processing is done by the application on
client side. The client side application sends request to database for query processing. In
this work, we have converted the architecture of tool CODD to 3-tier architecture where
CODD client, CODD Server and databases forms the three tiers of the application. Rest
of the Chapter provides the motivation behind the re-architecture of the tool followed

by description of the new design architecture.

7.1 Motivation

Sequential inserts and updates in a database are computationally expensive operations

since they require lot of CPU time and memory resources. Thus they needs systems

CODD -

Application
(GUI)

Figure 7.1: Earlier 2-tier CODD Architecture
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with high processing capabilities. To increase the performance, the application perform-
ing database operations should run on the same system on which database exists. But
there exists some non GUI compliant operating systems on which some of the leading
commercial database engines run. In such case, the applications with separate user
interaction modules and database processing modules are beneficial, and serves both
purposes i.e. provides graphical interface to users and improved performance by execut-
ing the part of application that interacts with the database servers on the machine on
which the database resides. COM_OPT was one of the database systems that runs on a
Non-GUI complaint operating system. Thus, before engineering CODD over COM_OPT

we have redesigned the tool CODD with 3-tier client-server architecture.

7.2 Architectural Overview

The new architecture of the CODD tool as shown in Figure 7.2 follows a 3-tier archi-
tecture, where CODD client, CODD server and databases forms the three tiers of the
application. With this architecture a client can connect to the server which in turn can
connect to a database using JDBC driver depending on the clients request.

The applications requires communication between two different host systems. In JAVA,
sockets are the basic communication mechanism for such applications. However, sockets
just enables you to send bytes from one machine to the other, and nothing more. They do
not provide a way to call methods on other machine. Some application level protocols are
required to be implemented for encoding and decoding the messages exchanged between
the client and the server applications, which can be error-prone and makes the application
complex. JAVA Remote Method Invocation (RMI) [9] is a solution for such problems.
It performs the object oriented equivalent of remote procedure calls, with support for
direct transfer of serialized JAVA objects. Thus, we have used RMI for client server
communication.

Following is the description of the two components of the application.

e CODD Client: CODD client provides an interface to the users for inputting or



Chapter 7. Redesigning CODD Architecture 35

JDBC driver ————
RMI | Connection
Client 1
Client 2 CODD Server
[}
[}
[}
[}
Clientn
CODD Clients Databases

Figure 7.2: CODD 3-tier architecture

modifying metadata statistics of a database. It performs light weight operations
on the inputted information like validating the information, optimization of a func-

tion, etc. Apart from this, all the query processing tasks are done by server side.

e CODD Server: CODD server is implemented for various databases, which imple-
ments a common database interface. This common database interface is provided
as a stub on client side. RMI registry required for RMI communication with client
runs on server side. All the query processing work is done by CODD server. It

uses JDBC driver to interact with the database.

Figure 7.3 gives a breif overview of how the 3-tier architecture of CODD is implemented
along with its working. On client side there is a client program that provides interface to
the users. While at server side there is a server program that performs query processing
tasks for all the databases. For invoking the methods on server side, a common interface

has been provided which resides on both sides. The whole application now works as
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follows: First client sends the database settings to the server. Accordingly server connects
to the required database and registers its object in RMI registry. Then for further
processing client looks for the server object in RMI registry and gets a server stub. This
stub gives an illustration to the client that all methods are present on the same site, but

actually it makes remote communication with the server for the method execution.



Chapter 8

Engineering CODD for COM_OPT

CODD is currently available for constructing metadata scenarios for leading commercial
centralized databases. In this work, we have engineered the tool CODD to support
COM_OPT which is a distributed database system.

Major task in implementation is to extract the schema information and metadata statis-
tics for relations. Since the data in distributed database system is distributed across
various nodes, therefore in database system also the schema and data distribution in-
formation needs to be stored. In COM_OPT these information’s are stored in system
metadata tables in highly normalized form. Thus, to get the schema information or meta-
data statistics, multiple system metadata tables needs to be joined. Also, COM_OPT
maintains data distribution statistics for group of columns along with individual columns
i.e. it supports multi-column histograms. Thus, we have engineered the tool CODD to
support multi-column histograms. In this chapter we will describe the implementation

details of various modes of CODD for COM_OPT.

8.1 Metadata Construction

Metadata Construction mode allows user to create metadata statistics without presence
of any prior data instance. This section provides the details about implementation of

statistics creation and validation in this mode.

37
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Relation Name : |TEMP_PART -
Please Input Values
Cardinality .0000000000 UPDATE

Attribute Name : :PART_KEY -

Please Input Values
Total UEC: 10000000000 Low Value: |0 High Value: 10000000000

Bucket Required

Press ‘Create’ button to populate below table with number of buckets/rows given : 21
Please enter values in table OR browse file containing values
File for Histogram Information: UPLOAD
INTERVAL_NUMBER INTERVAL_ROWCOUNT INTERVAL_UEC INTERVAL_BOUNDARY _PART_KEY
0 0 0 500000000 -
1 500000000 500000000 500000000
2 500000000 500000000 1000000000
3 500000000 500000000 1500000000
4 500000000 500000000 2000000000
5 500000000 500000000 2300000000 E
6 500000000 500000000 3000000000
7 500000000 500000000 3500000000
8 500000000 500000000 4000000000
9 500000000 500000000 4500000000
10 500000000 500000000 5000000000
1 500000000 500000000 5500000000
12 500000000 500000000 6000000000
13 500000000 500000000 6500000000
14 i
SHOW GRAPH l l RESET l UPDATE COLUMN l CONSTRUCT

Figure 8.1: Construct Mode interface for COM_OPT

8.1.1 Ab-Initio metadata construction

The relations (logical schema) are created first and the statistics are updated using
UPDATE statics command to create an entry for the relation and its attributes in HIS-
TOGRAMS and HISTOGRAM _INTERVALS table. Then the metadata construction
procedure is started. Figure 8.1 shows the construct mode interface for COM_OPT. The
metadata statistics are grouped into two categories: relation level and column level. In-
dex level metadata information (e.g. index level of last statistics update, number of non
empty blocks at last statistics update, etc.) is also available with COM_OPT but are
stored in system metadata tables which cannot be modified by users. Therefore, index

level statistics are excluded from construct mode interface.
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Relation level metadata statistics includes relation cardinality. Apart from relation car-
dinality, COM_OPT stores the RECORD_SIZE (number of bytes in each logical record),
BLOCK_SIZE (number of bytes for disk blocks), etc. But these information’s are stored
in system metadata tables which cannot be modified by users, thus we have not included
these in the construct mode interface. Column level metadata statistics for a column or
group of columns includes number of distinct values, High Value (highest value in the
column/ highest value of each column in a group of columns) and Low Value (lowest
value in the column/ lowest value of each column in a group of columns).

For each relation, user inputs the relation level metadata statistics, followed by column
level statistics for each column and group of columns for which entry exists in HIS-
TOGRAMS table. After each update (relation level or column level), CODD validates
the input metadata statistics and if there is a validation error it reports it to the user
with the appropriate error message. For example, if the entered High Value is less than
Low Value, then an error message appears asking user to re-enter the correct values.

In COM_OPT, equi-width histograms are created which summarizes the data distribu-
tion with a set of buckets. Construct mode interface allows user to input the histogram
statistics either manually or from a file. Subsequently, with the Graphical Histogram
feature of CODD these values can be viewed graphically and its layout can be visually
altered to get the desired data distribution by simply reshaping the bucket boundaries.
After inputting the required metadata statistics, actual construction of metadata in-

stance takes place by updating the database catalogs with the entered metadata values.

8.1.2 Metadata Validation

In metadata construction, user inputs the metadata statistics. Before updating these
values to the database catalogs, we need to ensure that each of the input metadata value

satisfies the following two types of constraints:

e Structural Constraints: Input metadata value must be of specified type and it
must fall in the specified range of values. For example, cardinality of a relation

must be of integer type and the value must be greater than or equal to zero.
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Figure 8.2: Constraint Graph

e Consistency Constraints: Input metadata value must be compatible with other
metadata values. For example, number of distinct values must be less than or equal

to the cardinality of that relation.

The validation process in CODD first constructs a directed acyclic constraint graph,
which represents all the metadata entities along with its structural and consistency con-
straints. The details can be found in [3]. Figure 8.2 shows the constructed directed
acyclic constraint graph for COM_OPT. The nodes of the graph are populated with the
corresponding entries on the construct mode interface. For example, node CARD is pop-
ulated with cardinality of the relation. One of the structural constraint over this node
specifies that the value should be a whole number. The graph edges are added based on
the consistency constraints between metadata entities. Table 8.1 lists all the validation

constraints.

After constructing the constraint graph G(V,E), CODD runs a topological sort on G. The
sort provides a linear ordering of the nodes. A sample linear ordering is shown through
the numbers associated with the nodes. After getting the input from the user through

CODD metadata construct mode interface, the input values are validated by traversing
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Figure 8.3: Frequency Value Histogram

through the linear ordering and at each node validating the structural and consistency
constraints. If any of the constraint is not satisfied then it is reported to the user. After
validating all the user input metadata values, they are updated into the database cata-

logs to complete the metadata construction.

8.1.3 Implementation Details

Here, we present the mechanism by which the input metadata statistics are added or

updated into the user metadata tables of COM_OPT.
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Constraint | Description

1 The cardinality of column (ROWCOUNT) cannot be greater than
the cardinality of its corresponding table (CARDINALITY)

2 The number of distinct values in a column (TOTAL_UEC) cannot
be greater than the cardinality of the column (ROWCOUNT)

3 The sum of the values in INTERVAL_ ROWCOUNT must be equal
to the number of rows in the column (ROWCOUNT)

4 The sum of the values in INTERVAL_UEC must be equal to the
number of distinct rows in the column (TOTAL_UEC)

D High Value is greater than Low Value whenever there are more than

three distinct values in the corresponding column. In case of multi-
column histograms, the High value and Low Value of each columns
must match with the High Value and Low Value of corresponding
single column histograms over those columns

6,7 INTERVAL_BOUNDARY values should lie between High Value
and Low Value. The last value for INTERVAL_.BOUNDARY
should be equal to High Value. And the values in INTER-
VAL_BOUNDARY must be increasing

Table 8.1: Consistency Constraints

HISTOGRAMS table, which is stored in same schema in which relation is stored, con-
tains the relation level statistics. Column level metadata statistics are stored in HIS-
TOGRAMS and HISTOGRAM_INTERVALS table. HISTOGRAMS table stores num-
ber of unique rows in the table for the column, Low Value and High Value for the
column. The data distribution for columns is stored in HISTOGRAM_INTERVALS ta-
ble. COM_OPT supports direct INSERT and UPDATE commands over these table.

CODD performs metadata construction in following steps (also shown in Figure 8.4):
o Create relation schemas.

e Then populate the catalog tables by executing UPDATE STATISTICS command

to make empty entries corresponding to the relations in them.

e Then it updates them with the user provided input metadata statistics or inserts

new entries in the catalog tables using INSERT command.

For tables without user-defined clustering key, COM_OPT automatically adds an addi-

tional column SYSKEY (system defined clustering key) to the relation, which then acts as
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Figure 8.4: Construct Mode Implementation Overview

a clustering key. Whenever a record is inserted in the relation, the system automatically
generates a value for the SYSKEY column. During metadata construction, the statistics
for SYSKEY column are handled explicitly by the tool. A random value is generated as
a LOW_VALUE for this column. HIGH_VALUE is obtained by adding relation cardi-
nality to LOW_VALUE. Rest of the column distribution statistics for SYSKEY column
are then automatically generated by the tool accordingly.

Using the construct mode interface for COM_OPT, we were able to construct metadata
instance with relation cardinality of 10'®, which is the maximum supported cardinality

by the database system.

8.2 Metadata Retention

Metadata retention mode of CODD drops the data of specified relations from database
and reclaims the raw data space back without affecting the metadata statistics of those

relations. Rest of the section provides the implementation details of this mode for

COM_OPT.
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8.2.1 Implementation Details

Referential integrity constraint does not allow a foreign key relation tuple to be present
without its corresponding primary key relation tuple. So if data of a relation has to be
dropped, all its dependent relations must be dropped before dropping the relation. For
example, in TPC-H benchmark, dropping REGION requires NATION to be dropped first
as NATION refers to REGION by N_REGIONKEY. Thus, given a set of relations to drop
the data, CODD first finds the dependent relations and adds them to the drop list. It

then performs following steps for carrying out Metadata Retention:-
1. Collection of following details about Foreign Key’s for all relations:

e Foreign key name
e Foreign key columns
e Corresponding primary key relations

e Corresponding primary key columns
2. Drop the Foreign key’s over the relation’s schema
3. Delete the data from the relations using DELETE command

4. Modify the relation’s schema by recreating the Foreign key constraints over them

using above collected statistics

In COM_OPT, the metadata statistics for a relation are updated only when user issues
an UPDATE STATISTICS command for the relation, therefore the metadata statistics

are retained after deleting the data from relations.

8.3 Metadata Scaling

CODD provides two types of metadata scaling: Size Scaling and Time Scaling. Im-
plementation of the two scaling models of CODD for COM_OPT are explained in this

section.
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Figure 8.5: Time Scaling Overview

8.3.1 Size-based Scaling

For a given baseline metadata instance and a user specified scaling factor «, the scaling
mode of CODD produces a scaled metadata instance such that the space (size in Bytes)

occupied by the scaled metadata instance is a times of the baseline metadata instance.

Cardinality scaling on metadata is implemented at relation and column level. At the
relation level, we scale the cardinality of relations by «. At the column level, cardinality
scaling is implemented differently for key columns and non-key columns. For key columns
domain scaling (data distribution domain is scaled) is implemented and the distinct count
is scaled by a. For non key columns, we keep the relative frequency distribution same
as baseline metadata. In case of multicolumn histograms, distinct count is scaled by « if
the columns contains a key column and values corresponding to the key column is scaled

in the data distribution.

8.3.2 Time-based Scaling

For a given baseline metadata M, query workload Q and a user specified scaling fac-
tor «, the Time Scaling mode of CODD produces a scaled metadata instance M such
that the total optimizer’s estimated cost (measure of time) of executing Q on the scaled
version is « times the total optimizer’s estimated cost of executing Q on the baseline

metadata instance.

The Time Scaling algorithmic details of CODD can be found in [3]. Figure 8.5 shows
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Query/ Cost before scaling | Cost after scaling Obtained scaling
Cost

Q1 61.01 182.43 2.99

Q14 38.84 110.88 2.85

Q17 134.32 430.91 3.20

Table 8.2: Cost of queries before and after scaling

the overview of the time scaling. Following steps are performed for time scaling a given

query workload:

1. Read the metadata statistics corresponding to the relations involved in the query

workload.

2. Extracts the execution plan for the input queries.

3. Performs time scaling to get scaling factors for individual relations.

4. Performs size based scaling over the relations involved in the query workload with

the scaling factors obtained for them.

Example: Consider a 1GB TPC-H workload consisting of queries Q1, Q14 and Q17
that operates on relations PART and LINEITEM with probabilities (0.5, 0.48, 0.02) and

scaling factor of 3. With time scaling of this query workload on COM_OPT, we have

obtained a scaling factor (1,3) for the two relations respectively. Relation LINEITEM

was scaled three times and the cost of queries before scaling and after scaling is given in

Table 8.2. The cost of query workload was scaled by the scaling factor of 3.09.
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Conclusions

e We have engineered the tool Picasso to support a query optimizer of a distributed
database COM_OPT. The analysis of the behavior of COM_OPT using optimizer
diagrams produced by Picasso has shown deviation from the expected behavior by
a optimizer. The optimizer makes fine grained plan choices across the selectivity
space. Plan diagrams shows that the assumptions of PQO does not holds here. We
have also shown PCM violations in cost diagrams. This shows that there is a lot

of scope for improving the optimizer’s design.

e COM_OPT being a distributed database is used for dealing with huge amount of
data. For making the futuristic testing using alternative metadata scenarios, cor-

responding to large data, feasible and effective for COM_OPT we have engineered
the tool CODD to support COM_OPT.

e For saving the performance degradation of CODD for the databases which runs on
Non-GUI complient operating systems due to network overheads in query process-
ing we have also redesigned the tool CODD with 3-tier client-server architecture.

The new architecture is simpler and scalable as well.

47



Appendix A

Following are the DDL’s of the TPCH relations which we have used for producing Picasso

Diagrams.

e REGION
CREATE TABLE REGION
( R.-REGIONKEY INTEGER NOT NULL, R.NAME CHAR(25) NOT NULL, R.COMMENT VAR-

CHAR(152));

e NATION
CREATE TABLE NATION
( N.NATIONKEY INTEGER NOT NULL, N.NAME CHAR(25) NOT NULL, N.REGIONKEY INTE-
GER NOT NULL,

N_.COMMENT VARCHAR(152));

e SUPPLIER
CREATE TABLE SUPPLIER
(S.SUPPKEY INT PRIMARY KEY NOT NULL , SSNAME CHAR(25) , SSADDRESS VARCHAR(40)
, S_.NATIONKEY INT , SSPHONE CHAR(15), SSACCTBAL DECIMAL(15, 2), SS.COMMENT VAR-

CHAR(101)

);

e CUSTOMER

CREATE TABLE CUSTOMER

48
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( C.CUSTKEY INTEGER PRIMARY KEY NOT NULL, C.NAME VARCHAR(25) NOT NULL,

C_ADDRESS VARCHAR(40) NOT NULL, C_.NATIONKEY INTEGER NOT NULL,

C_PHONE CHAR(15) NOT NULL, C.ACCTBAL DECIMAL(15,2) NOT NULL,

C_MKTSEGMENT CHAR(10) NOT NULL, C_.COMMENT VARCHAR(117) NOT NULL)
RANGE PARTITION BY (C.CUSTKEY)

(ADD FIRST KEY 1 LOCATION $DATA1 NAME PARTNC1 EXTENT (4096, 4096) MAXEXTENTS
512,

ADD FIRST KEY 50000 LOCATION $DATA1 NAME PARTNC2 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 100000 LOCATION $DATA2 NAME PARTNC3 EXTENT (4096, 4096) MAXEX-

TENTS 512);

e PART
CREATE TABLE PART
( P.PARTKEY INTEGER PRIMARY KEY NOT NULL, P.NAME VARCHAR(55) NOT NULL,
P_MFGR CHAR(25) NOT NULL, P_.BRAND CHAR(10) NOT NULL,
P_TYPE VARCHAR(25) NOT NULL, P_SIZE INTEGER NOT NULL,
P_CONTAINER CHAR(10) NOT NULL, P_.RETAILPRICE DECIMAL(15,2) NOT NULL,
P_COMMENT VARCHAR(23) NOT NULL )
RANGE PARTITION BY (P_PARTKEY)
( ADD FIRST KEY 1 LOCATION $DATA1 NAME PARTN1 EXTENT (4096, 4096) MAXEXTENTS
512
., ADD FIRST KEY 50000 LOCATION $DATA1 NAME PARTN2 EXTENT (4096, 4096) MAXEX-
TENTS 512
, ADD FIRST KEY 100000 LOCATION $DATA2 NAME PARTN3 EXTENT (4096, 4096) MAXEX-
TENTS 512
., ADD FIRST KEY 150000 LOCATION $DATA2 NAME PARTN4 EXTENT (4096, 4096) MAXEX-

TENTS 512);

e PARTSUPP
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CREATE TABLE PARTSUPP

( PS_.PARTKEY INTEGER NOT NULL, PS_SUPPKEY INTEGER NOT NULL,

PS_AVAILQTY INTEGER NOT NULL, PS_SUPPLYCOST DECIMAL(15,2) NOT NULL,

PS_.COMMENT VARCHAR(199) NOT NULL, PRIMARY KEY(PS_PARTKEY, PS_SUPPKEY))
RANGE PARTITION BY (PS_PARTKEY)

(ADD FIRST KEY (1) LOCATION $DATA1 NAME PARTNPS1 EXTENT (4096, 4096) MAXEXTENTS
512,

ADD FIRST KEY (20000) LOCATION $DATA1 NAME PARTNPS2 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (30000) LOCATION $DATA1 NAME PARTNPS21 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (40000) LOCATION $DATA1 NAME PARTNPS3 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (50000) LOCATION $DATA1 NAME PARTNPS31 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (60000) LOCATION $DATA1 NAME PARTNPS4 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (70000) LOCATION $DATA1 NAME PARTNPS41 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (80000) LOCATION $DATA1 NAME PARTNPS5 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (90000) LOCATION $DATA1 NAME PARTNPS51 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (100000) LOCATION $DATA1 NAME PARTNPS6 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (110000) LOCATION $DATA1 NAME PARTNPS61 EXTENT (4096, 4096) MAX-
EXTENTS 512,

ADD FIRST KEY (120000) LOCATION $DATA2 NAME PARTNPS7 EXTENT (4096, 4096) MAXEX-

TENTS 512,
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ADD FIRST KEY (130000) LOCATION $DATA2 NAME PARTNPS71 EXTENT (4096, 4096) MAX-
EXTENTS 512,

ADD FIRST KEY (14000) LOCATION $DATA2 NAME PARTNPS8 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (15000) LOCATION $DATA2 NAME PARTNPS81 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (160000) LOCATION $DATA3 NAME PARTNPS9 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY (170000) LOCATION $DATA3 NAME PARTNPS10 EXTENT (4096, 4096) MAX-
EXTENTS 512,

ADD FIRST KEY (180000) LOCATION $DATA4 NAME PARTNPS11 EXTENT (4096, 4096) MAX-

EXTENTS 512);

e ORDERS
CREATE TABLE ORDERS
( O.ORDERKEY INTEGER PRIMARY KEY NOT NULL, O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL, O_TOTALPRICE DECIMAL(15,2) NOT NULL,
O_ORDERDATE DATE NOT NULL, O_.ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL, O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMENT VARCHAR(79) NOT NULL)
RANGE PARTITION BY (O_-ORDERKEY) (
ADD FIRST KEY 1 LOCATION $DATA1 NAME PARTNO1 EXTENT (4096, 4096) MAXEXTENTS
512,
ADD FIRST KEY 500000 LOCATION $DATA1 NAME PARTNO2 EXTENT (4096, 4096) MAXEX-
TENTS 512,
ADD FIRST KEY 1000000 LOCATION $DATA1 NAME PARTNO3 EXTENT (4096, 4096) MAXEX-
TENTS 512,
ADD FIRST KEY 1500000 LOCATION $DATA1 NAME PARTNO4 EXTENT (4096, 4096) MAXEX-

TENTS 512,
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ADD FIRST KEY 2000000 LOCATION $DATA1 NAME PARTNO5 EXTENT (4096,
TENTS 512,

ADD FIRST KEY 2500000 LOCATION $DATA2 NAME PARTNO6 EXTENT (4096,
TENTS 512,

ADD FIRST KEY 3000000 LOCATION $DATA2 NAME PARTNO7 EXTENT (4096,
TENTS 512,

ADD FIRST KEY 3500000 LOCATION $DATA2 NAME PARTNO8 EXTENT (4096,
TENTS 512,

ADD FIRST KEY 4000000 LOCATION $DATA3 NAME PARTNOY EXTENT (4096,

TENTS 512,

ADD FIRST KEY 4500000 LOCATION $DATA3 NAME PARTNO10 EXTENT (4096,

TENTS 512,

ADD FIRST KEY 5000000 LOCATION $DATA3 NAME PARTNO11 EXTENT (4096,

TENTS 512,

ADD FIRST KEY 5500000 LOCATION $DATA3 NAME PARTNO12 EXTENT (4096,

TENTS 512);

e LINEITEM
CREATE TABLE LINEITEM
( L.ORDERKEY INTEGER NOT NULL, L_.PARTKEY INTEGER NOT NULL,

L_SUPPKEY INTEGER NOT NULL, L.LINENUMBER INTEGER NOT NULL,

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

L_.QUANTITY DECIMAL(15,2) NOT NULL, L.LEXTENDEDPRICE DECIMAL(15,2) NOT NULL,

L_DISCOUNT DECIMAL(15,2) NOT NULL, L_.TAX DECIMAL(15,2) NOT NULL,
L.RETURNFLAG CHAR(1) NOT NULL, L_.LINESTATUS CHAR(1) NOT NULL,
L_SHIPDATE DATE NOT NULL, L.COMMITDATE DATE NOT NULL,
L_RECEIPTDATE DATE NOT NULL, L_.SHIPINSTRUCT CHAR(25) NOT NULL,
L_SHIPMODE CHAR(10) NOT NULL, L.COMMENT VARCHAR(44) NOT NULL,
PRIMARY KEY (L.ORDERKEY, L_.LINENUMBER))

RANGE PARTITION BY (I.ORDERKEY) (

ADD FIRST KEY 1 LOCATION $DATA1 NAME PARTNL1 EXTENT (4096, 4096) MAXEXTENTS
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512,

ADD FIRST
TENTS 512,

ADD FIRST
TENTS 512,

ADD FIRST
TENTS 512,

ADD FIRST
TENTS 512,

ADD FIRST
TENTS 512,

ADD FIRST
TENTS 512,

ADD FIRST
TENTS 512,

ADD FIRST

TENTS 512,

ADD FIRST KEY 900000 LOCATION $DATA1 NAME PARTNL10 EXTENT (4096,

TENTS 512,

ADD FIRST KEY 1000000 LOCATION $DATA2 NAME PARTNL11 EXTENT (4096,

TENTS 512,

KEY 100000

KEY 200000

KEY 300000

KEY 400000

KEY 500000

KEY 600000

KEY 700000

KEY 800000

LOCATION $DATA1

LOCATION $DATA1

LOCATION $DATA1

LOCATION $DATA1

LOCATION $DATA1

LOCATION $DATA1

LOCATION $DATA1

LOCATION $DATA1

NAME

NAME

NAME

NAME

NAME

NAME

NAME

NAME

PARTNL2 EXTENT (4096,

PARTNL3 EXTENT (4096,

PARTNL4 EXTENT (4096,

PARTNL5 EXTENT (4096,

PARTNL6 EXTENT (4096,

PARTNL7 EXTENT (4096,

PARTNL8 EXTENT (4096,

PARTNL9 EXTENT (4096,

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

4096) MAXEX-

ADD FIRST KEY 1100000 LOCATION $DATA2 NAME PARTNL12 EXTENT (4096, 4096) MAXEX-

TENTS 512,

ADD FIRST KEY 1200000 LOCATION $DATA2 NAME PARTNL13 EXTENT (4096, 4096) MAXEX-

TENTS 512,

ADD FIRST KEY 1300000 LOCATION $DATA2 NAME PARTNL14 EXTENT (4096, 4096) MAXEX-

TENTS 512,

ADD FIRST KEY 1400000 LOCATION $DATA2 NAME PARTNL15 EXTENT (4096, 4096) MAXEX-

TENTS 512,
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ADD FIRST KEY 1500000 LOCATION $DATA2 NAME PARTNL16 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 1600000 LOCATION $DATA2 NAME PARTNL17 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 1700000 LOCATION $DATA2 NAME PARTNL18 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 1800000 LOCATION $DATA2 NAME PARTNL19 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 1900000 LOCATION $DATA2 NAME PARTNL20 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2000000 LOCATION $DATA3 NAME PARTNL21 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2100000 LOCATION $DATA3 NAME PARTNL22 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2200000 LOCATION $DATA3 NAME PARTNL23 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2300000 LOCATION $DATA3 NAME PARTNL24 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2400000 LOCATION $DATA3 NAME PARTNL25 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2500000 LOCATION $DATA3 NAME PARTNL26 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2600000 LOCATION $DATA3 NAME PARTNL27 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2700000 LOCATION $DATA3 NAME PARTNL28 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 2800000 LOCATION $DATA3 NAME PARTNL29 EXTENT (4096, 4096) MAXEX-

TENTS 512,
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ADD FIRST KEY 2900000 LOCATION $DATA3 NAME PARTNL30 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3000000 LOCATION $DATA3 NAME PARTNL31 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3100000 LOCATION $DATA4 NAME PARTNL32 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3200000 LOCATION $DATA4 NAME PARTNL33 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3300000 LOCATION $DATA4 NAME PARTNL34 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3400000 LOCATION $DATA4 NAME PARTNL35 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3500000 LOCATION $DATA4 NAME PARTNL36 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3600000 LOCATION $DATA4 NAME PARTNL37 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3700000 LOCATION $DATA4 NAME PARTNL38 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3800000 LOCATION $DATA4 NAME PARTNL39 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 3900000 LOCATION $DATA4 NAME PARTNLA40 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4000000 LOCATION $DATA4 NAME PARTNL41 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4100000 LOCATION $DATA4 NAME PARTNLA42 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4200000 LOCATION $DATA4 NAME PARTNL43 EXTENT (4096, 4096) MAXEX-

TENTS 512,
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ADD FIRST KEY 4300000 LOCATION $DATA4 NAME PARTNLA44 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4400000 LOCATION $DATA4 NAME PARTNLA45 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4500000 LOCATION $DATA4 NAME PARTNL46 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4600000 LOCATION $DATA4 NAME PARTNLA7 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4700000 LOCATION $DATA4 NAME PARTNL48 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4800000 LOCATION $DATA4 NAME PARTNL49 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 4900000 LOCATION $DATA4 NAME PARTNL50 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5000000 LOCATION $DATA4 NAME PARTNL51 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5100000 LOCATION $DATA4 NAME PARTNL52 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5200000 LOCATION $DATA4 NAME PARTNL53 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5300000 LOCATION $DATA4 NAME PARTNL54 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5400000 LOCATION $DATA4 NAME PARTNL55 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5500000 LOCATION $DATA4 NAME PARTNL56 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5600000 LOCATION $DATA4 NAME PARTNL57 EXTENT (4096, 4096) MAXEX-

TENTS 512,
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ADD FIRST KEY 5700000 LOCATION $DATA4 NAME PARTNL58 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5800000 LOCATION $DATA4 NAME PARTNL59 EXTENT (4096, 4096) MAXEX-
TENTS 512,

ADD FIRST KEY 5900000 LOCATION $DATA4 NAME PARTNL60 EXTENT (4096, 4096) MAXEX-

TENTS 512);
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