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Abstract

A common requirement of database vendors is to test their database engine on client data.

Getting access to client data may not always be possible due to privacy concerns and high

transfer cost. Therefore, vendors rely on generating synthetic version of customers database

that can preserve the data characteristics that are relevant for testing purposes. Hydra is a

data generation tool that tries to achieve this by using the concept of cardinality constraints.

It formulates these constraints as a linear program (LP) and processes its solution to generate

the data. As part of this work, firstly, we have optimized the algorithms used for formulating

the LP. As a result, we have an improved version, Hydra++, which helps us in getting better

efficiency. We have also extended the existing prototype solution of Hydra to create an end

to end application software. Finally, we have widened the scope of cardinality constraints to

include support for projection constraints (under certain assumptions), which are cardinality

constraints containing projection relational algebraic operator.
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Chapter 1

INTRODUCTION

Database engine testing is a common requirement by the database vendors when upgrading

their database engine or when a client is facing some problem with the current engine. For

this, the database vendors may need the client’s data at their site, which may not always be

possible because of privacy of client’s data or high data transfer cost. In these cases, vendors

rely on taking minimal information from client site and generating data locally such that it

closely mimics the properties of client’s data.

Hydra [7] is a tool which allows generating synthetic database at vendor site using minimal

information obtained from client’s database such that the database generated at vendor’s site

is volumetrically similar to the client’s database. That is, for a query from the predefined

workload of the client and with a common query execution plan at the client and vendor sites

for that query, the output row cardinalities of individual operators in these plans are very similar

in the original and synthetic databases. This similarity helps to achieve similar performance

on the clients workload at the client and vendor site.

In Hydra’s pipeline of creating synthetic database, it uses linear programming as a tool. The

techniques used by Hydra to formulate the LPs is a lot dependent on brute-force techniques

because of which they are very inefficient and have a high time complexity.

We propose Hydra++ which uses efficient algorithms to formulate the LPs which is also

reflected in our experiments. Note that the LPs formulated by Hydra++ are the same as Hydra

and only the algorithms for their formulation are different.

A prototype of Hydra was built by its authors. We have extended that prototype into an

end to end application software [8] which can be downloaded from [1].

Hydra uses the concept of Cardinality Constraints (CCs) to achieve the property of volu-

metric similarity (CCs are explained in Section 1.1). Projection Constraints (PCs) are CCs

which have projection operator in them. These type of constraints are not handled by Hydra.
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We give an algorithm to handle these type of constraints and empirically show its correctness.

1.1 Cardinality Constraints

R (R pk, S fk, T fk)
S (S pk, A, B)
T (T pk, C)

(a) Schema

SELECT *
FROM R
JOIN S ON (R.S fk = S.S pk)
JOIN Region ON (R.T fk = T.T pk)
WHERE S.A >= 20 AND S.A < 60
AND T.C >= 2 AND T.C < 3

(b) Query

./
R.T fk = T.T pk

40000

σC∈[2,3)

800

./
R.S fk = S.S pk

70000

σA∈[20,60)

500

R
size = 90000

90000

S
size = 800

T
size = 1800

(c) AQP

| R |= 90000 | R |= 800 | T |= 1800
| σS.A∈[20,60)(S) |= 500 | σT.C∈[2,3)(T ) |= 800
| σS.A∈[20,60)(R ./ S) |= 70000 | σS.A∈[20,60)∧T.C∈[2,3)(R ./ S ./ T ) |= 40000

(d) CC

Figure 1.1: CC example

The CCs are extracted from annotated query plans (AQPs) [5] which are query execution

plans with the output edge of each operator annotated with the associated row cardinality (as

evaluated during the clients execution).

Consider a set of Relations R1,R2, ..Rm. A Cardinality Constraint (CC) is of the form

| πAσP (R1 ./ R2 ./ .. ./ Rm) |= k

2



where P is the selection predicate on the attributes of R1,R2, ..Rm; A is the set of attributes

over which the set of resultant tuples are projected while removing duplicates, and k is a

non-negative integer. For example: Considering the schema given in Figure 1.1a, the AQP

corresponding to query in Figure 1.1b, is given in Figure 1.1c and the CCs extracted are given

in Figure 1.1d. A database instance is said to satisfy a CC if evaluating the left side expression

on the database produces k tuples in the output.

Hydra can handle CCs corresponding to queries having multiple relations in its FROM

clause. Since our work is independent of whether queries have single table or multiple in their

FROM clause, hence we define everything in this report in context of single table.

We begin by considering CCs with selection predicates only. The general constraints with

projections is discussed in Section 6.

Organization: Chapter 2 briefly explains the working of Hydra and introduce the problem

associated with its technique of LP formulation. Hydra++ which tackle those problems is

explained in Chapter 3. Comparison of Hydra and Hydra++ is presented in Chapter 4. Chapter

5 gives a brief overview of the functionalities of the Hydra Software. Algorithm for handling

projection constraints is discussed in Chapter 6 and its performance evaluation is given in

Chapter 7. Conclusions and future work are presented in Chapter 8.
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Chapter 2

Hydra

2.1 Architecture

The CCs corresponding to the client’s database and workload are created at client’s site which

are then transferred to the vendor site. Using these CCs, Hydra creates an LP for every relation

and the solution of this LP is used to generate data for that relation.

2.2 Creating LP for Relation

The complexity of an LP depends on the number of variables in the LP which, as we’ll see later,

depends on the number of attributes in the relation. Hence, to optimize the LP, [4] proposed

the following optimization which Hydra uses to decompose the relations into sub-views :

1. For every relation, a “relation-graph” is created by creating a node for each attribute in

that relation and inserting an edge between a pair of nodes if they appear together in

some CC.

2. The maximal cliques of this relation-graph are the sub-views for that particular relation.

A sub-view V with set of attributes {A1, A2, .., AN} can be visualized as an N dimensional space

where every dimension corresponds to some Ai and every point in the space is a possible tuple

from V. A CC C is applicable on a sub-view V if the set of all attributes appearing in literals

of C is a subset of the attributes of V. For a particular relation, the set of sub-views obtained

from the above steps along with the set of CCs applicable on them are given to the partitioning

algorithm which divides the space corresponding to sub-views into regions as follows:

Consider a sub-view V with set of attributes {A1, A2, .., AN} and consider a set of CCs C
applicable on V. The partitioning algorithm divides the space corresponding to V into regions

4



such that for any two tuples ti and tj, they are in the same region if and only if they satisfy the

same subset of constraints from C. The set of regions thus obtained corresponding to sub-view

V is called the Partition of V.

After getting partitions from the above partitioning algorithm, LP is created. Each region of

the partitions acts as a variable for the LP. For each CC applicable on a sub-view, an LP condi-

tion is created as follows: Let us denote the regions of jth sub-view, Vj, by Regj1, Reg
j
2, .., Reg

j
m,

and variables corresponding to ith region of Vj by xji . Then the LP condition created corre-

sponding to Vj and some CC | σP (R) |= k will be∑
Regji satisfies P

xji = k

The solution of the LP assigns a non-negative integer to every such variable. The value of xji
determines how many tuples from Regji must be added into the solution for Vj. The solutions

of the different sub-views are then merged to obtain the synthesized database.

The above LP conditions ensure that the cardinality of tuples which satisfy the selection

predicate of a certain CC in original database is same in the synthesized database also. But

since the relation was divided into sub-views which may share common attributes, hence extra

constraints known as Consistency Constraints are added into the LP to make sure that the

distribution of values of common attributes in solutions of the different sub-views is same. The

need of consistency constraints can be understood using the following example.

Alias
Employee E
Age A
Bonus B
Salary S

Table 2.1: Schema

Consider the schema given in Table 2.1 and let the CCs be:

C1 :| σA<45∧B<5000(E) |= 150
C2 :| σA∈[20,60)∧S∈[30000,60000)(E) |= 100
C3 :| (E) |= 400

Since B and S never appear together in any CC, hence two sub-views (A,B) and (A, S)

will be created. Note that attribute A is common in the two sub-views. The partitions of the

5



two sub-views are shown in Figure 2.1.

(a) Sub-view (A,B) (b) Sub-view (A,S)

Figure 2.1: Partitions of sub-views

The green region in Figure 2.1a corresponds to C1 and the blue region in Figure 2.1b corre-

sponds to C2. The LP solver will assign the following values to the regions: Green = 150, Red

= 250, Blue = 100 and Yellow = 300. (Note that the solution in general may not be unique)

This implies that for the regions green, red, blue and yellow, 150, 250, 100 and 300 tuples

have to be generated from them respectively. If all the 150 and 250 tuples of green and red

region respectively are generated from the area where A ∈ [0, 20), then, it’s not possible to

generate any tuples in sub-view (A, S) because the region of sub-view (A, S) which intersects

with A ∈ [0, 20) is yellow region and it is assigned only 300 tuples by LP solver.

In general, if any two sub-views Vi and Vj share common attributes Ai,j
common, then the

distribution of values of Ai,j
common must be consistent in Vi and Vj. For our above example, the

LP solution can be made consistent along attribute A by splitting the regions along dashed

lines as shown in Figure 2.1, and adding the following (consistency) constraints into the LP

x
(A,B)
I = x

(A,S)
I

x
(A,B)
II = x

(A,S)
II + x

(A,S)
III

x
(A,B)
III + x

(A,B)
IV = x

(A,S)
IV + x

(A,S)
V

x
(A,B)
V + x

(A,B)
V I = x

(A,S)
V I
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2.3 Hydra’s approach to make LP consistent

The process of creation of consistency constraints in Hydra can be divided into two parts. In

the first part, the partitions obtained from partitioning algorithm (as discussed in Section 2.2)

are given to Algorithm 1 which further splits those partitions such that for any two sub-views

Vi and Vj sharing some set of common attributes Ai,j
common, Vi and Vj have consistent region

boundaries along Ai,j
common, i.e. when the regions of Vi and Vj are projected along Ai,j

common then

for any two regions r and s chosen from the projected space, either r ∩ s = ∅ or boundary of r

= boundary of s. For the example in Figure 2.1, this was obtained by splitting the sub-views

along the dashed lines i.e. along A = 20, A = 45 and A = 60.

Algorithm 1: Split partitions for consistency

Input: Set of all sub-views V, Partition vector P
Output: Partition vector after splitting

1 SplittingForConsistency (V,P)
2 foreach distinct sub-views Vi,Vj ∈ V do
3 Ai,j

common = Attribs(Vi) ∩ Attribs(Vj)
4 if Ai,j

common = ∅ then continue ;
5 Pboth ← SplitAll(P(Vi) ∪ P(Vj),A

i,j
common)

6 foreach r ∈ P(Vi) and s ∈ Pboth do
7 Refine r into (r − s) and (r ∩ s)
8 foreach r ∈ P(Vj) and s ∈ Pboth do
9 Refine r into (r − s) and (r ∩ s)

10 return P
1 SplitAll (P,Acommon)
2 foreach r, s ∈ P do
3 if Proj(r,Acommon) ∩ Proj(s,Acommon) 6= ∅ then
4 Refine r and s into (r − s), (s− r) and (r ∩ s)

5 return P

1 Proj (r,Acommon)
2 return Projection of r along Acommon

Algorithm 1 takes as input the set of all the sub-views and the partition vector which

has the partitions corresponding to every sub-view. The call to subroutine SplitAll splits all

the regions in its input such that no two regions have inconsistent region boundaries along

common attributes and return these newly formed regions. It can be seen that the for-each

loop in subroutine SplitAll is a brute-force technique which tries to refine regions until their

7



boundaries are consistent.

Algorithm 2: Create LP conditions for consistency constraints

Input: Set of all sub-views V, Partition vector P
1 CreateLPeqsForConsistency (V,P)
2 foreach distinct sub-views Vi,Vj ∈ V do
3 Ai,j

common = Attribs(Vi) ∩ Attribs(Vj)
4 if Ai,j

common = ∅ then continue ;
5 Pboth ← SplitAll(P(Vi) ∪ P(Vj),A

i,j
common)

6 foreach s ∈ Pboth do
7 LHS ← ∅
8 foreach r ∈ P(Vi) do
9 if r ∩ s 6= ∅ then

10 LHS ← LHS + xr

11 RHS ← ∅
12 foreach r ∈ P(Vj) do
13 if r ∩ s 6= ∅ then
14 RHS ← RHS + xr

15 Add condition LHS = RHS in solver

In the second part, the partitions obtained from Algorithm 1 are given to Algorithm 2 which

creates LP equations for consistency constrains.

In Algorithm 2 also SplitAll is called further adding inefficiency to the brute-force nature of

the complete process.

2.4 Adversarial Workload

To stress test the consistency constraint creation part of Hydra, we created a workload of 10

adversarial queries as follows:

Consider a relation R with 15 attributes {U1, U2, U3, U4, U5, Z1, Z2, .., Z10}. The ith query of

our workload is of the form

SELECT * FROM R

WHERE U1 >= i AND U1 < (i+10)

AND U2 >= i AND U2 < (i+10)

AND U3 >= i AND U3 < (i+10)

AND U4 >= i AND U4 < (i+10)

AND U5 >= i AND U5 < (i+10)

8



AND Zi >= i AND Zi < (i+10)

There are 6 attributes in selection predicate of every query. The Zi attribute is different in

every query so that a new sub-view has to be created per query. For ith query, the sub-view

corresponding to it will have the attribute set {U1, U2, U3, U4, U5, Zi}. Every sub-view will be

divided into 2 regions by the partitioning algorithm, one which satisfies the selection predicate of

the query corresponding to that sub-view and the other which does not. The range in selection

predicate of the 5 U attributes is slid by 1 in every consecutive query so that the 2 regions in all

the 10 sub-views have inconsistent region boundaries along all 5 U attributes hence requiring a

lot of splitting to make the LP consistent. When the above workload was tested on Hydra, it

was observed that the time taken to formulate consistency constraints was orders of magnitude

more than the time taken for other workloads of larger sizes. Specifically, Hydra took 8 hours

to formulate LP for adversarial workload while it took only 13 seconds to formulate LP for a

standard benchmark workload with close to 200 queries. This motivated us to create a better

algorithm for creating consistency constraints.

9



Chapter 3

Hydra++

To tackle the problems specified in above sections, we created Hydra++. For a particular

relation, the input to partitioning algorithm in Hydra was the set of sub-views and the set of

CCs applicable on those sub-views. In Hydra++, we have modified the pipeline for creating

consistency constraints. Instead of just applicable CCs, we now pass the union of applicable

CCs and applicable Consistency Filters (CFs) to the partitioning algorithm alongside sub-

views. The CFs are formulated in such a way that the partitions obtained after partitioning

algorithm are same as the partitions obtained after Algorithm 1 of Hydra.

For a particular relation R a CF is of the form:

σP (R)

where P is the selection predicate on the attributes of R. For creating the set of CFs we first

define Acommon as

Acommon = {Ai,j
common | Ai,j

common = Attribs(Vi) ∩ Attribs(Vj) ∧Ai,j
common 6= ∅}

∀i, j such that i 6= j

The algorithm to create CFs is given in Algorithm 4. Before explaining Algorithm 4, we first

present Algorithm 3 which is an intuitive but incomplete algorithm (it fails when disjunctions

are present in CCs) to create CFs, but helps in understanding Algorithm 4.

The intuition behind Algorithm 3 is that, for any CC C and two sub-views Vi and Vj

having common attributes Ai,j
common, when the filter made by the literals of C whose attributes

are present in Ai,j
common is given to the partitioning algorithm, then, the partitioning algorithm

separates those tuples of Vi and Vj into different regions which do not lie in same range along

10



Algorithm 3: Intuitive algorithm for creating CFs

Input: All cardinality constraints C, Acommon

Output: List of CFs
1 IntuitiveCreateCF (C,Acommon)
2 LCF ← ∅
3 foreach Acommon ∈ Acommon do
4 foreach C ∈ C do
5 Create a filter of all literals in C whose attribute is present in Acommon, and if

this filter is non empty then add it to LCF

6 return LCF

Ai,j
common. This makes the resultant regions of Vi and Vj to have consistent region boundaries.

For example, consider the setup corresponding to Figure 2.1. The CF corresponding to C1 and

C2 will be CF1 : σA≤45(E) and CF2 : σA∈[20,60)(E) respectively. Note that C1 was applicable

only on sub-view (A,B) and C2 was applicable only on sub-view (A, S) while both CF1 and

CF2 are applicable on both the sub-views. When these CFs are given to partitioning algorithm

alongside CCs, apart from normal splitting which was done because of CCs, the partitioning

algorithm will also split both the sub-views along A = 20, A = 45 and A = 60 as was done by

Algorithm 1.

To understand why Algorithm 3 will fail in presence of disjunctions, let’s consider the

following example: Consider the schema from Table 2.1 and let the CCs be:

C1 :| σ(A∈[20,30))∨(A∈[40,50)∧B∈[4000,8000))(E) |= 90
C2 :| σ(A∈[60,70)∧S∈[30000,60000))(E) |= 160
C3 :| (E) |= 400

Since B and S never appear together in any CC, hence two sub-views (A,B) and (A, S) will

be created. Acommon for this setup will be {{A}}. CFs created by Algorithm 3 will be:

CF1 : σ(A∈[20,30))∨(A∈[40,50))(E)
CF2 : σA∈[60,70)(E)

The partitions of the two sub-views when the union of CCs and CFs are given to the

partitioning algorithm are shown in Figure 3.1 To check if the two sub-views have consistent

region boundaries, we project the two sub-views along common attribute (A). It can be observed

that after projection, blue region and red region of sub-view (A,B) will intersect but their

boundaries will not be the same. Same will be the case with red and orange regions of sub-view

11



(a) Sub-view (A,B) (b) Sub-view (A,S)

Figure 3.1: Partitions of sub-views

(A,B) and sub-view (A, S) respectively. One important point is that, this type of scenario

will happen only when a region have disjoint components, which will happen only when the

selection predicate of a constraint contains clauses separated by disjunction. The two clauses

of C1 (A ∈ [20, 30) and (A ∈ [40, 50) ∧ B ∈ [4000, 8000))), which are separated by disjunction,

have different attribute set in their literals, allowing the part of blue region where A ∈ [40, 50)

to span completely along attribute B but restricting the part where A ∈ [20, 30) to only span

across attribute B where B ∈ [4000, 8000). CF1, which was based on C1, created the red region

but did not create a corresponding red region where A ∈ [40, 50) resulting in regions being

inconsistent. Hence, if a CC Ci have clauses separated by disjunction, then the clauses of the

CF created from Ci must be separated into different CFs if the attribute set of the literals

that were dropped from the clauses of Ci are different. For our running example, for C1, the

set of attributes appearing in the literals which are dropped from the clauses A ∈ [20, 30) and

(A ∈ [40, 50)∧B ∈ [4000, 8000)) are ∅ and {B} respectively, hence the clauses of CF1 must be

separated into two different CFs.

In Algorithm 4, for every CC C (which is in DNF) we iterate over its clauses as shown in

line 6. A clause of C is denoted by SC (Sub Constraint). We split each SC into two sets which

we call Kept Part and Dropped Part using subroutine BreakSC. Then we find the set Adropped

which is the set of attributes appearing in literals of Dropped Part. We keep all the Kept Parts

which correspond to same Adropped in a single list using map M. Each list is then converted to

a CF by subroutine CreateCF which essentially creates disjunction of Kept Parts in that list.

After getting CFs from Algorithm 4, the union of CFs and CCs is given to the partitioning

algorithm which returns the partitions of sub-views along with a map Mi for every sub-view
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Algorithm 4: Create Consistency Filters

Input: All cardinality constraints C, Acommon

Output: List of CFs
1 CreateConsistencyFilters (C,Acommon)
2 LCF ← ∅
3 foreach Acommon ∈ Acommon do
4 foreach C ∈ C do
5 M← ∅
6 foreach SC ∈ C do
7 (kp, dp)← BreakSC(SC,Acommon)
8 Adropped ← {Attrib(l) | l ∈ dp}
9 M[Adropped]←M[Adropped] ∪ kept

10 foreach (Adropped,Lkp) ∈M do
11 LCF ← LCF ∪ CreateCF(Lkp)

12 return LCF

1 BreakSC (SC , Acommon)
2 kept ← ∅
3 dropped ← ∅
4 foreach literal ∈ SC do
5 if Attribute(literal) ∈ Acommon then
6 kept← kept ∪ literal
7 else
8 dropped← dropped ∪ literal

9 return (kept, dropped)

Vi. Mi maps every region of Vi to the set of CFs it satisfies i.e. Mi : Regions of Vi 7→ {CF}.
For every map Mi, it’s inverted map M′i is created which maps from the set of CFs to the set

of regions which satisfy all CFs in key set i.e. M′i : {CF} 7→ {Regions}. If Ti and Tj are the

values of M′i and M′j where key is same, the following condition is added to LP:∑
Regik∈Ti

xik =
∑

Regjk∈Tj

xjk (3.1)

The above steps essentially equates the sum of the variables corresponding to the regions of the

two sub-views that satisfy the same set of CFs.
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Chapter 4

Comparison of Hydra and Hydra++

4.1 On Adversarial Workload

We tested Hydra and Hydra++ on the adversarial workload described in Section 2.4. The exe-

cution time taken by different components of Hydra and Hydra++ are given in Table 4.1. For

Partitioning LP Formulation
Hydra 5 minutes 8 hours
Hydra++ 7 seconds Less than 1 second

Table 4.1: Execution time split-up - Adversarial workload

Hydra, the first column (Partitioning) shows the total time taken up by the partitioning algo-

rithm and Algorithm 1. For Hydra++, it’s the time taken up by Algorithm 4 and partitioning

algorithm.

It can be seen that Hydra took 5 minutes for partitioning and 8 hours for LP formulation.

Since there were a lot of regions with inconsistent boundaries and the subroutine SplitAll

compares every pair of regions for inconsistency, creating new regions in the process, hence

blow-up in time was observed during LP formulation. On the other hand, Hydra++ took only

a total of less than 8 secs to complete partitioning and formulate the same LP as Hydra.

The adversarial workload is a comparatively very small workload when compared to industry

workloads. Hydra took 8 hours for adversarial workload which does not look problematic

since data generation is a one time process. But, for an industry workload as complex as our

adversarial workload and with hundreds of relations and thousands of queries, it may take years

to generate data, and hence Hydra++ is required.
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4.2 On JOB Benchmark

The adversarial workload and the database corresponding to it was created synthetically be-

cause of which it may not have been able to capture the aspects of real-world databases. To

compare Hydra and Hydra++ on a real-world database, we executed them on the Join Order

Benchmark (JOB) [6] which is based on the IMDB dataset. The workload was modified to fit

the assumptions of Hydra (or Hydra++).

The size of database was 6 GB with 21 relations where the maximum sized table was 2.3

GB.

Figure 4.1 shows the number of constraints per relation.

Figure 4.1: Count of constraints per relation in JOB benchmark

Figure 4.2 shows the number of variables in the LP corresponding to each relation. Note

that the number of variables in LP formed by Hydra and Hydra++ will be same as Hydra++

produces the same LP as Hydra. In Figure 4.1 we saw that the number of CC applicable

on “movie companies” is almost equal to that of “cast info” but Figure 4.2 shows that the

number of LP variables for “cast info” is 7 times that of “movie companies”. This is because
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Figure 4.2: Number of variables in LP for JOB benchmark

“cast info” has sub-views with a lot of regions with inconsistent region boundaries. This again

is a motivation for us to have a better algorithm for creating consistency constraints because

we believe that real-world workloads will usually show a similar type of behavior.

The execution time statistics for Hydra and Hydra++ on JOB benchmark are given in Table

4.2. The split up of time for the first column is same as was described for Table 4.1. In this

Partitioning LP Formulation
Hydra 3 seconds 10 seconds
Hydra++ 3 seconds 1 second

Table 4.2: Execution time split-up - JOB benchmark

case also Hydra++ proved to be faster than Hydra, specifically, with a 3 times speedup.
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Chapter 5

Hydra Software

The Hydra prototype was a tool which generated the database with encoded values for attributes

of tuples and also a changed schema than the original schema of clients workload because of

which the original workload of client could not be used with the generated database. It also

facilitated a very basic GUI with a lot of hard coded parameters.

We extended the prototype of Hydra into an end to end software which implements an intu-

itive interface that facilitates modeling of enterprise database environments, delivers feedback

on generated data, and tabulates performance reports on the quality of regeneration.

Hydra is completely written in Java, running to over 15K lines of code. It is currently

operational on PostgreSQL engine but requires some changes inside the engine for which the

required files are provided with the Hydra package.

At client site, Hydra provides an input panel to acquire connection details of client database

and its workload and using this information, generates the set of CCs. Figure 5.1 displays the

panel shown after generating CCs. It allows visualizing the plans and CCs corresponding to the

queries of client’s workload. It also displays the metadata corresponding to the client’s database.

On clicking the Finish button, the CCs and other necessary data required for generating the

synthetic database at vendor site is saved which can be then transferred to the vendor site.

At the vendor site, Hydra reads the data files provided by the client. It then formulates the

data generation problem as an LP and solves it using Z3 Theorem Prover [3]. During the LP

solving stage, a window is shown that tabulates the complexity of the various LPs in terms of

their number of variables and their actual run times. After solving the LPs, Hydra creates a

small summary of the database. This summary is used to either dump the synthetic database

or dynamically generate database when a query is executed. Figure 5.2 shows the panel which

allows visualizing the summary corresponding to the queries of the client workload and allows

dumping static database.
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Figure 5.1: Hydra software client site

Figure 5.2: Hydra software vendor site
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Chapter 6

Handling 1-D Projection Constraints

FC1: | σB∈[2000,8000)(E) |= 200
PC1: | πAσB∈[2000,8000)(E) |= 40
FC2: | σB∈[4000,8000)(E) |= 130
PC2: | πAσB∈[4000,8000)(E) |= 25

Figure 6.1: Projection example 1 constraints

Figure 6.2: Partition for constraints of Figure 6.1

The CCs considered so far were formed out of selection operator only. We now consider CCs

which include projection operator alongside selection operator as was introduced in Section 1.1.
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Projection operator is introduced in CCs when “GROUP BY” or “DISTINCT” clause is used

in SQL queries. It also removes duplicate tuples from the output of a query.

We’ll use the term Filter Constraints (FC) for CCs which don’t have a projection operator.

Handling of projection constraints (PCs) is different from FCs in the sense that in FCs we were

only concerned about how many tuples must be created from a region while in case of PCs

apart from how many tuples, care must be taken about which tuples to create.

To understand this, let’s consider an example with the constraints given in Figure 6.1 whose

partition is given in Figure 6.2. If only FCs are considered then a possible solution to the above

problem is to generate 70 instances of tuple (0, 2000) and 130 instances of tuple (0, 4000) where

the first value in the tuple is for A and the second for B (The same convention will be used

for the rest of this section). When PCs are also considered along with FCs, then according

to constraint PC1, projecting the union of all the tuples generated from the region II and the

region III along dimension A must give 40 unique values. Similarly for PC2, projecting all the

tuples generated from region III along dimension A must give 25 unique values. A possible

solution is to generate 56 instances of tuple (0, 2000) and tuples {(1, 2000), (2, 2000), (.., 2000),

(14, 2000)} from region II; and 106 instances of tuple (15, 4000) and 14 tuples {(16, 4000),

(17, 4000), (.., 4000), (39, 4000)} from region III.

Our algorithm for handling PCs only handles 1-D projections on a single table i.e. in all

the queries, there must be at most one attribute present in GROUP BY or DISTINCT clause

(Although that single attribute may be different in different queries) and the queries having

GROUP BY or DISTINCT clause must have a single table in their FROM clause.

The algorithm is an addition to Hydra (or Hydra++) and hence follows the same architec-

ture as was described in Section 2.1. The only addition is that now PCs are also transferred to

vendor site along with FCs.

6.1 Algorithm

The algorithm given in this section don’t support sub-view optimization which was described

in Section 2.2. So, in all the cases the relation itself is the one and only sub-view.

We incrementally build the algorithm by showing various cases. For each case, we show the

algorithm and its shortcomings also.

6.1.1 Projection is performed on a common attribute across all

queries and there is no filter on projected attribute

Let A denote the attribute on which projection is performed and QA the set of all regions that

satisfy the filter of any PC.
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Recall that for handling FCs, Hydra used to create an LP variable (xi) corresponding to

every region Regi in the partition. Let’s call these LP variables as selection variables. The

value of those selection variables in the LP solution gave the number of tuples to be generated

from their corresponding regions.

For handling PCs, alongside selection variables, projection variables are created as fol-

lows: For n regions Reg1, Reg2, .., Regn in QA, the power set B of QA is taken. For every

set {Regi, Regj, .., Regk} in B except ∅, a projection variable y(i,j,..,k) is created. The value of

y(i,j,..,k) in LP solution gives the number of unique common values which must be used for A

while generating tuples from every region in {Regi, Regj, .., Regk}.
The following 4 types of LP conditions are created:

1. For handling FCs : These are the ones which are created by Hydra.

2. For handling PCs : For every PC PC an LP condition is created: LHS of condition is

the sum of all projection variables whose at least one of the corresponding regions satisfy

filter of PC. RHS of condition is the RHS value of PC.

3. Upper bounding count of unique values : These make sure that the number of

unique values in the tuples generated from a region does not exceed the total tuples

generated from that region. For each region Regi in QA the following condition is added

to the LP: xi ≥ Sum of all projection variables corresponding to Regi.

4. Constructibility check : These conditions ensure that for a region Regi in QA if at

least one tuple has to be generated from Regi i.e. xi > 0 then at least one unique value

must be generated for A from Regi. For each region Regi in QA the following condition

is added to the LP: Sum of all projection variables corresponding to Regi ×N ≥ xi

After solving the LP, a set of values for A are associated with every projection variable. The

values associated to every projection variable are disjoint i.e. for two projection variables yi

and yj with values 8 and 5 respectively in LP solution, if values (1, 2, .., 8) are associated to yi,

then, to yj, values can be associated only from (DA − [1, 8]) where DA is the domain of A. It

is because of this requirement of assigning disjoint values to projection variables that we have

taken the power set of regions to create projection variables so that if two regions have to have

values which are common, the projection variable which corresponds to both the regions will

be assigned the common values. We associate the values sequentially i.e. to the first projection

variable yi, values 0 to yi − 1 are associated, to the next projection variable yj, values yi to

yi + yj − 1 are associated, and so on. The values associated to projection variables are used to
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generate tuples from their corresponding regions present in QA. For regions not present in QA,

the usual method of Hydra is used to generate tuples from them.

Let’s take the constraints given in Figure 6.1 to understand the above algorithm. A is A

and QA is {RegII , RegIII}. The set of selection and projection variables are {xI , xII , xIII} and

{y(II), y(III), y(II,III)} respectively. Following are the LP conditions:

1. xII + xIII = 200

xIII = 130

2. y(II) + y(III) + y(II,III) = 40

y(III) + y(II,III) = 25

3. xII ≥ y(II) + y(II,III)

xIII ≥ y(III) + y(II,III)

4. (y(II) + y(II,III))×N ≥ xII

(y(III) + y(II,III))×N ≥ xIII

A solution of the LP is xII = 70, xIII = 130, y(II) = 15 and y(II,III) = 25. Values 0 to

14 are associated to y(II) and values 15 to 39 are associated to y(II,III). Hence, tuples with

values 0 to 14 for A must be generated from RegII and tuples with values 15 to 39 for A must

be generated from both RegII and RegIII . For generating tuples for a region, each value of

A associated to that region is used at least once and then the first value is repeated for the

leftover tuples (although any associated value can be repeated). This gives the following tuples

for the different regions: 31 instances of tuple (0, 2000) and tuples {(1, 2000), (.., 2000), (39,

2000)} for RegII ; and 106 instances of tuple (15, 4000) and tuples {(16, 4000), (17, 4000), (..,

4000), (39, 4000)} for RegIII .

6.1.2 Projection is performed on a common attribute across all

queries and there are filters on projected attribute

FC1: | σA∈[20,60)∧B∈[2000,8000)(E) |= 180
PC1: | πAσA∈[20,60)∧B∈[2000,8000)(E) |= 33
FC2: | σA∈[20,45)∧B∈[4000,8000)(E) |= 110
PC2: | πAσA∈[20,45)∧B∈[4000,8000)(E) |= 21

Figure 6.3: Projection example 2 constraints

Consider the constraints given in Figure 6.3 with their partition given in Figure 6.4a. Sup-

pose after creating an LP using the algorithm from previous section, we get the following
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solution: xII = 70, xIII = 110, y(II) = 8, y(III) = 21,and y(II,III) = 0. Since the domain of A

for regions RegII and RegIII start from 20, hence values for A will be associated to RegII and

RegIII from 20. If values 20 to 27 are associated to y(II) and values 28 to 48 are associated to

y(III), then, it creates a problem because values (45, 46, 47, 48) associated to y(III) are outside

the domain of RegIII which leads to generation of incorrect tuples for RegIII .

(a) Original partition (b) After intervalization

Figure 6.4: Partition for constraints of Figure 6.3

This problem is solved using intervalization. In intervalization, the regions of QA are further

refined such that no two regions span across the split points of A. The split points are the

constants present in literals conditioned on A. For example: For the constraints given in

Figure 6.3, the split points of A are 20, 45 and 60, and the effect of intervalization is shown in

Figure 6.4b where RegII of Figure 6.4a is refined into RegII and RegIV . After intervalization,

QA is updated by removing the old regions which were split and adding the new refined regions.

The selection variables are also updated according to the newly formed regions.

The set of regions of QA which fall between two consecutive split points make up a Split Point

Interval (SPI). Since the regions of two different SPIs can never share common values of A as

their domains are separated because of intervalization, for creating projection variables, instead

of taking the power set of all the regions in QA, the power set of regions in QA intersection SPI

is taken for every SPI. Also, the following 5th type of LP condition is added to our original 4

LP conditions of the above algorithm:

5. Domain size constraint : For each SPI I, the following condition is added to LP : Sum

of set of all projection variables corresponding to all regions in I ≤ DI where DI is the

domain size of any region in I along A.
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Also, because of intervalization, projection variables can be associated values for A SPI-wise.

For each SPI I with first value in it’s domain D1
I , associate to the first projection variable y(T1),

the values D1
I to (D1

I +y(T1)−1), to the second projection variable y(T2), the values (D1
I +y(T1))

to (D1
I + y(T1) + y(T2) − 1), and so on.

To understand the modifications in the algorithm, let’s consider the constraints given in

Figure 6.3 along with their intervalized partition given in Figure 6.4b. QA is {RegII , RegIII ,
RegIV }. There are two SPIs {RegII , RegIII} and {RegIV }. The set of selection variables

is {xI , xII , xIII , xIV }. The set of projection variables for regions in first SPI is {y(II), y(III),
y(II,III)} and for region in second SPI is {y(IV )}. Following are the LP conditions:

1. xII + xIII + xIV = 180

xIII = 110

2. y(II) + y(III) + y(II,III) + y(IV ) = 33

yIII + y(II,III) = 21

3. xII ≥ y(II) + y(II,III)

xIII ≥ y(III) + y(II,III)

xIV ≥ y(IV )

4. (y(II) + y(II,III))×N ≥ xII

(y(III) + y(II,III))×N ≥ xIII

y(IV ) ×N ≥ xIV

5. y(II) + y(III) + y(II,III) ≤ 45− 20

y(IV ) ≤ 60− 45

A possible solution to the above LP is xII = 40, xIII = 110, xIV = 30, y(II) = 2, y(III) = 21,

y(II,III) = 0 and y(IV ) = 10. Values 20 and 21 are associated to y(II), values 22 to 42 are

associated to y(III) and values 45 to 54 are associated to y(IV ). The tuples generated are: 39

instances of tuple (20, 2000) and tuple (21, 2000) from RegII ; 90 instances of tuple (22, 4000)

and tuples {(23, 4000), (24, 4000), (.., 4000), , (42, 4000)} from RegIII ; and 21 instances of

tuple (45, 2000) and tuples {(46, 2000), (47, 2000), (.., 2000), (54, 2000)} from RegIV .

6.1.3 Projection is performed on different attributes across queries

Let the different attributes on which projection is performed be A = {A1,A2, ..,Am} and let

QAi
denote the set of all regions that satisfy filter of any PC having projection on Ai.

The following steps are performed for each Ai ∈ A:
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1. Intervalization is performed i.e. QAi
is refined along the split points of Ai.

2. Set of SPIs IAi
is created where each SPI is a set of regions of QAi

which fall between two

consecutive split points of Ai.

3. For each SPI I ∈ IAi
, the power set of the regions in I is taken and a projection variable

yAi
T is created corresponding to each set T in the power set.

The selection variables are created as usual i.e. a selection variable xi per region Regi of

partition.

Let’s denote the set of all projection variables corresponding to Ai by VAi
The changes in

the creation of the 5 types of LP conditions are as follows:

1. Will remain same

2. For every PC PC with projection on Ai an LP condition is created: LHS of condition is

the sum of all projection variables of VAi
whose at least one of the corresponding regions

satisfy filter of PC. RHS of condition is the RHS value of PC.

For each Ai ∈ A: For each region Regj in QAi
the following two conditions are added to

LP:

3. xj ≥ Sum of all projection variables in VAi
corresponding to Regj

4. Sum of all projection variables in VAi
corresponding to Regj ×N ≥ xj

5. For each Ai ∈ A: For each SPI I ∈ IAi
, the following condition is added: Sum of set of all

projection variables corresponding to all regions in I ≤ DI where DI is the domain size of

any region in I along Ai.

FC1: | σA<45∧B∈[2000,4000)(E) |= 60
PC1: | πBσA<45∧B∈[2000,4000)(E) |= 18

Figure 6.5: Projection example 3 constraints

Let’s consider the constraints given in Figure 6.3 and Figure 6.5 together to understand

the algorithm. The partition after intervalization for this case is given in Figure 6.6. It can

be noted that since RegIV does not satisfy filter of any PC which have projection on B, hence

region RegIV is not split along split point 4000 of B.

A = {A,B}
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Figure 6.6: Partition for constraints from Figure 6.3 and 6.5 taken together

QA = {RegII , RegIII , RegIV }
QB = {RegII , RegV }
IA = {{RegII , RegIII}, {RegIV }}
IB = {{RegII , RegV }}
The projection variables corresponding to A, VA, are {yA(II), yA(III), yA(II,III), yA(IV )}
The projection variables corresponding to B, VB, are {yB(II), yB(V ), y

B
(II,V )}

Following are the LP conditions:

1. xII + xIII + xIV = 180

xIII = 110

xII + xV = 60

2. yA(II) + yA(III) + yA(II,III) + yA(IV ) = 33

yAIII + yA(II,III) = 21

yBII + yBV + yB(II,V ) = 18

3. xII ≥ yA(II) + yA(II,III)
xIII ≥ yA(III) + yA(II,III)
xIV ≥ yA(IV )

xII ≥ yB(II) + yB(II,V )

xV ≥ yB(V ) + yB(II,V )
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4. (yA(II) + yA(II,III))×N ≥ xII

(yA(III) + yA(II,III))×N ≥ xIII

yA(IV ) ×N ≥ xIV

(yB(II) + yB(II,V ))×N ≥ xII

(yB(V ) + yB(II,V ))×N ≥ xV

5. yA(II) + yA(III) + yA(II,III) ≤ 45− 20

yA(IV ) ≤ 60− 45

yB(II) + yB(V ) + yB(II,V ) ≤ 4000− 2000

A possible solution to the above LP is xII = 21, xIII = 110, xIV = 49, xV = 39, yA(II) = 0,

yA(III) = 0, yA(II,III) = 21, yA(IV ) = 12, yB(II) = 0, yB(V ) = 0 and yB(II,V ) = 18. Values 20 and 40

are associated to yA(II,III), values 45 to 56 are associated to yA(IV ) and values 2000 to 2017 are

associated to yB(II,V ). The tuples generated are: Tuples {(20, 2000), (21, 2001), (.., ..), (37,

2017)} and tuples {(38, 2000), (39, 2000), (40, 2000)} from RegII ; 90 instances of tuple (20,

4000) and tuples {(21, 4000), (22, 4000), (.., 4000), (40, 4000)} from RegIII ; 38 instances of

tuple (45, 2000) and tuples (46, 2000), (47, 2000), (.., 2000), , (56, 2000) from RegIV ; and 22

instances of tuple (0, 2000) and tuples {(0, 2001), (0, 2002), (0, ..), (0, 2017)} from RegV .

6.2 Sub-view optimization with Projection Constraints

The algorithm in Section 6.1 didn’t used sub-view optimization which lead to the following two

problems:

1. The projection variables were created by taking the power set of the regions of partition.

Since the number of regions in a partition depends on the number of attributes in that

partition, it became infeasible in our experiments to compute the power set of the regions

if sub-view optimization was not used.

2. The complexity of partitioning algorithm depends on the number of attributes in a sub-

view. A blow up in the time and memory required by the partitioning algorithm was

observed when the sub-view optimization was not used.

The requirement for using sub-view optimization, as explained in Section 2.2, is that for

any two sub-views Vi and Vj the distribution of values corresponding to the common attributes

must be same. In absence of PCs, this was achieved using consistency constraints which made

sure that the sum of selection variables corresponding to regions of Vi and Vj which satisfy the

same set of CFs is equal (Equation 3.1). Then, while creating tuples from those regions the
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least values of common attributes in those regions was chosen, which was actually same in all

the regions. The least value cannot always be chosen in presence of PCs because there may be

requirement of multiple unique values for common attributes.

Following are the changes in pipeline of hydra for handling PCs alongside sub-view opti-

mization:

1. All the operations done in Hydra up to the formation of sub-views is same.

2. After forming sub-views, an LP is formed per sub-view using the algorithm of Section

6.1.3.

3. Consistency constraints are created using algorithms of Section 3 and added to the LP.

4. Phase 1 of Projection Consistency

5. Phase 2 of Projection Consistency

6.2.1 Phase 1 of Projection Consistency

Let Ai,j
p−common denote the set of all common attributes of the two sub-views Vi and Vj, on

which projection is performed in some PC applicable on any or both of the sub-views. Also, let

Qj
Ai

denote the set of all regions of sub-view Vj which satisfy filter of some PC applicable on

Vj having projection on attribute Ai. Define Consistent Pair (CP) as a pair 〈{Reg}, {Reg}〉
of set of regions of two sub-views which satisfy the same set of CFs. Let the list of all CPs

corresponding to two sub-views Vi and Vj be denoted by Gi,j.

In this phase, LP conditions are created which make sure that for any two sub-views Vi

and Vj, the number of unique values which can be used to generate tuples from the two sets of

regions in pairs of Gi,j, is same for every attribute in Ai,j
p−common.

Consider the schema of Table 2.1 along with an extra attribute Years Remaining with alias

Y , and the constraints given in Figure 6.8. We’ll use this setup as a running example to explain

the concepts presented in this section. There are two sub-views (A,B, S) and (A,B, Y ). The

partitions of the two sub-views are given in Figure 6.7. Since there are no constraints on regions

where A < 25 or A ≥ 60, hence we have not shown the axis corresponding to attribute A and

only shown the slice where A ∈ [25, 60). We’ll use V1 and V2 to denote sub-views (A,B, S) and

(A,B, Y ) respectively. The values of different variables explained till now will be:

A1,2
p−common = {A}

Q1
A = {Reg1III , Reg1V }; Q2

A = {Reg2IV }
G1,2 = {〈{Reg1IV , Reg1V }, {Reg2III , Reg2IV }〉,
〈{Reg1II , Reg1III}, {Reg2II}〉}
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(a) Sub-view (A,B, S) (b) Sub-view (A,B, Y )

Figure 6.7: Partitions for constraints of Figure 6.8

FC1: | σA∈[25,60)∧B∈[4000,8000)∧S∈[30000,60000)(E) |= 60
PC1: | πAσA∈[25,60)∧B∈[4000,8000)∧S∈[30000,60000)(E) |= 20
FC2: | σA∈[25,60)∧B∈[2000,8000)∧S∈[30000,60000)(E) |= 90
PC2: | πAσA∈[25,60)∧B∈[2000,8000)∧S∈[30000,60000)(E) |= 27
FC3: | σA∈[25,60)∧B∈[4000,8000)∧Y ∈[20,40)(E) |= 50
PC3: | πAσA∈[25,60)∧B∈[4000,8000)∧Y ∈[20,40)(E) |= 15

Figure 6.8: Projection example 4 constraints

For an attribute A and some CP 〈Ri,Rj〉 in Gi,j corresponding to sub-views Vi and Vj, it

might be possible that not all the regions of Ri are contained in Qi
A and not all the regions of

Rj are contained in Qj
A i.e. there might be regions in Ri and Rj which do not satisfy filter of

any PC having projection on A. Any value of A can be used for generating tuples from those

regions.

Let’s denote the set of regions of Ri which are also present in Qi
A by RA

i and those which

are not present in Qi
A by RA

i . The number of unique values which are to be used for A for

generating tuples from regions of RA
i are given by the projection variables corresponding to

those regions. Let the sum of projection variables corresponding to regions of RA
i and RA

j be

di and dj respectively, and let di > dj. Then, di − dj unique values for A, which are different

from those used in creating tuples from regions of RA
i , must be mandatorily used for generating

tuples from regions of RA
j . This is possible only if the sum of selection variables of RA

j is greater

than di − dj. To ensure that this requirement is met, slack variables are used that are created

using Algorithm 5. The partitioning of Step 4 of Algorithm 5 is required because it makes the
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elements of L′ to be disjoint because of which the slack variables created are independent of

each other. The requirement for having independent slack variables is explained later when the

tuples are generated. Note that, the values which had been used for generating tuples from

region of RA
j can be reused to generate tuples from regions of RA

j if required.

For our running example, for first pair in G1,2:

RA
1 = {Reg1V }; RA

1 = {Reg1IV }
RA

2 = {Reg2IV }; RA
2 = {Reg2III}

For second pair:

RA
1 = {Reg1III}; RA

1 = {Reg1II}
RA

2 = ∅; RA
2 = {Reg2II}

For V1, L = [{Reg1IV }, {Reg1II}]. L′ will be same as L and a slack variable will be created for

each set {Reg1IV } and {Reg1II}. If suppose L was [{Reg1IV , Reg1II}, {Reg1II}], then, L′ would

have been [{Reg1IV }, {Reg1II}] because Reg1IV is present only in first element of L while RegII

is present in both the elements of L. For V2, L = [{Reg2III}, {Reg2II}] and L′ will be same as

L.

Algorithm 5: Create Slack Variables

1 foreach Sub-view Vi do
2 foreach Attribute A of Vi do

3 Let L be the list of all possible RA
i across all the Gi,js where j corresponds to all

the other views except Vi.
4 The regions contained in the elements of L are partitioned into sets of regions L′

such that all the regions of each set L′ ∈ L′ are present in exactly the same
elements of L.

5 A slack variable zk which corresponds to attribute A is created for every L′k ∈ L′

and the following condition is added to LP:
6 zk ≤ Sum of selection variables corresponding to regions in L′k

The LP conditions for phase 1 are created as follows: For every pair 〈Ri,Rj〉 ∈ Gi,j and

attribute A ∈ Ai,j
p−common corresponding to every pair Vi and Vj, the following condition is added

to LP: Sum of projection variables corresponding to regions of RA
i + sum of slack variables

corresponding to regions of RA
i = Sum of projection variables corresponding to regions of RA

j

+ sum of slack variables corresponding to regions of RA
j .

The objective function of the LP is set to minimize the sum of all slack variables. The

reason for the choice of the objective function is explained in the next section. We now solve

the LP.
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6.2.2 Phase 2 of Projection Consistency

In this phase, first we assign values to the projection variables, and then determine frequency

of every unique value such that the sub-view solutions can be merged.

For a pair 〈Ri,Rj〉 in some Gi,j and an attribute A, if the sum of projection variables

corresponding to regions of RA
i and RA

j is not same, then Phase 1 ensures that we are able

to generate tuples with unique values equal to the difference of their sum from RA
i or RA

j

appropriately. Let 〈Si, Sj〉 be another pair from Gi,j, such that some region Ri of RA
i and some

region Si of SA
i share a common projection variable yi1 having value 5 in LP solution and all

the other shared projection variables have value 0 in LP solution. Similarly, suppose same is

the case with RA
j and SA

j where the shared common projection variable having value 5 is yj1

and the regions are Rj of RA
j and Sj of SA

j . Also, suppose there are projection variables yi2 and

yj2 corresponding to regions Ri and Rj each having value 5 in LP solution, and all the other

projection variables have value 0. Let the values assigned to yi1 are 1 to 5 and to yi2 are 6 to

10, but in SA
i , values 1 to 5 are assigned to yj2 and values 6 to 10 are assigned to yj1. This

makes pair 〈Ri,Rj〉 to have same unique values, but creates inconsistency for the pair 〈Si,Sj〉
as the values which regions Si and Sj get are 1 to 5 and 6 to 10, respectively, because of yi1 and

yj1. Because of this inconsistency the values 6 to 10 have to be used in tuples generated from

SA
i and the values 1 to 5 have to be used in tuples generated from SA

j . This might not always

be possible as the size of slack (SA
i and SA

j ) might not be enough. In that case, we we have to

backtrack and assign values 1 to 5 to yj1 and values 6 to 10 to yj2.

In general, this problem of assignment of values to the projection variables in the context

of sub-view optimization is non-trivial and we suspect that it is NP hard. We use the following

heuristic algorithm to assign values to projection variables.

Consistent Tuples (CTs) are created using CPs. Consider three sub-views Vi, Vj and Vk

such that attribute A and B are common in all of them and attribute E is common in Vi and

Vj. Consider a pair 〈Ri,Rj〉 from Gi,j and a pair 〈R′j,Rk〉 from Gj,k where Rj and R′j is same.

Then the tuple 〈Ri,Rj,Rk〉A forms a CT which corresponds to attribute A i.e. the frequency

distribution of values of attribute A must be same in regions of Ri, Rj and Rk. Similarly

CTs 〈Ri,Rj,Rk〉B and 〈Ri,Rj〉E are formed. When we talk about projection variables or slack

variables in context of a CT, they correspond to the attribute that the CT corresponds to. In a

CT there is at least one element (set of regions) such that sum of slack variables corresponding

to regions of that element has a sum 0 in LP solution. This happens because of the LP’s

objective function. We create all the possible CTs using existing CPs.

For each CT which corresponds to attribute A, one element (set of regions) R whose cor-
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responding slack variables have sum 0 is selected and values for A are assigned to projection

variables corresponding to regions of RA. The values are assigned sequentially i.e. the next

available values are assigned. Some projection variables which are shared with other regions

may already have been assigned so they are not reassigned. Then, for every other element S
of the CT, an attempt is made to assign those values to the projection variables of SA which

already have been assigned to the projection variables of RA. It may be possible that some

value which had been assigned to some projection variable of RA can’t be assigned to projection

variables of SA because it has already been assigned to some other projection variable. In that

case, we assume that the value which was not available will be used to generate tuples from

SA and assign the next available values to the leftover projection variables of SA. It might also

be possible that we need to assign values to projection variables of SA which were not assigned

to any projection variable of RA. In that case, we assume that these values will be used to

generate tuples from regions of RA. The above assumptions might not always hold while gener-

ating tuples and we might not be able to make the frequency distribution of common attributes

same across sub-views in which case the heuristic algorithm has failed. Our heuristic algorithm

doesn’t work for every case but our empirical study indicates that it works for most of the cases.

For our example from previous section, since there are only two sub-views, hence the CPs

themselves will be the CTs and they will correspond to attribute A. Let, after solving the LP,

the values of different projection variables be:

In V1, y
A
(III,V ) = 20, yA(III) = 7

In V2, y
A
(IV ) = 15

Then, for CT {〈{Reg1IV , Reg1V }, {Reg2III , Reg2IV }〉, the element whose corresponding slack vari-

ables have sum 0 is {Reg1IV , Reg1V }. So, Reg1IV will be assigned values 0 to 19. Now the

algorithm attempts to assign the same values to Reg2IV and hence assigns it values 0 to 14 and

assumes that values 15 to 19 will be used to generate tuples from Reg2III . Suppose in V2 the

values 0 to 9 were already assigned to some other projection variable, then, our algorithm will

assign values 10 to 24 to Reg2IV and assumes that values 0 to 9 will be used in generating tuples

from Reg2III . Since values 20 to 24 were not assigned to Reg1V , the algorithm also assumes that

these values will be used in generating tuples from Reg1IV .

Now, the frequency of every unique value is determined such that the sub-view solutions

can be merged. For the regions which do not appear in any CT, at least one tuple is created

corresponding to every unique value assigned to its projection variables and then any value can

be repeated for creating remaining tuples. For the case of CTs, an LP is created for each CT

and the solution of that LP is used to create tuples from the regions contained in the elements

of CT. For a CT which corresponds to the attribute A the LP is created using Algorithm 6.

32



Algorithm 6: Create LP for CT

1 H = set of all values which are assigned to the projection variables corresponding to
regions contained in the elements of the CT.

2 foreach R ∈ CT do
3 foreach R ∈ RA do
4 An LP variable n R v is created for each value v assigned to the projection

variables corresponding to R which represents the frequency of value v to be
used while creating tuples from R.

5 Since the frequency of every LP variable n R v must be at least 1, the condition
n R v ≥ 1 is added to the LP.

6 Then, the following condition is added to the LP: Sum of all LP variables created
in above step = Value of selection variable of R

7 foreach Slack variable z corresponding to RA do
8 An LP variable n z v is created for each value v ∈ H which represents the

frequency of value v to be used while creating tuples from regions corresponding
to z.

9 The non-negativity condition n z v ≥ 0 is added to the LP for each v ∈ H.
10 Then, the following condition is added to the LP: Sum of all LP variables created

in above step = Sum of values of selection variables of regions corresponding to
z.

11 Let R be the first element of CT
12 foreach S ∈ CT, S 6= R do
13 foreach v ∈ H do
14 The following condition is added to the LP: The sum of all LP variables created

corresponding to v and R = The sum of all LP variables created corresponding
to v and S

Once the LP is solved, the LP variables corresponding to the regions and the slack variables

give the exact frequency for every value that must be used for generating tuples from that

region and the regions corresponding to the slack variables respectively. The n R v tuples are

generated from region R having the value v for the attribute the LP variable corresponds to.

Since the regions corresponding to any two slack variables are always disjoint, for an LP variable

n z v corresponding to slack variable z, the value v can be used to generate tuples from any

region corresponding to z. So, we iterate over the regions corresponding to z and generate as

many tuples as possible with value v till either n z v exhausts or the size of the region exceeds.

If n z v exhausts then we move to the next variable, else if the size of the region exhausts then

we move on to the next region.
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Chapter 7

Evaluation of 1-D Projection

Algorithm

The experiments for 1-D Projections were done on 10 GB database of TPC-DS benchmark

[2]. Workloads for two fact tables, catalog sales and store sales, were created by modifying the

original workload such that it fits into assumptions of Hydra and our algorithm. Since our

algorithm handles only 1-D projections, hence, queries having projections on multiple columns

were split into different queries having single column projection each.

Table 7.1 shows the statistics of different workloads generated for tables catalog sales and

store sales. The columns # FCs and # PCs are the number of filter constraints and projection

constraints extracted from the corresponding workload, and the column # A is the number of

attributes on which projection has been performed.

Name of workload # FCs # PCs # A

CS 1 15 9 7
CS 2 20 13 9
CS 3 37 24 19

(a) catalog sales

Name of workload # FCs # PCs # A

SS 1 8 4 3
SS 2 18 11 5
SS 3 48 32 20

(b) store sales

Table 7.1: Workload statistics

Table 7.2 shows the execution statistics of our algorithm on different set of workloads when

sub-view optimization is not used. The different columns of the table are as follows: Parti-

tioning is the time taken in seconds by the partitioning algorithm, # S Vars is the number

of selection variables required, # P Vars is the number of projection variables required, F &

S is the sum of time taken in seconds to formulate and solve the LP.
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Name Partitioning # S Vars # P Vars F & S

CS 1 1 26 303296 405
CS 2 1 38 > 230 -
CS 3 OOM - - -

(a) catalog sales

Name Partitioning # S Vars # P Vars F & S

SS 1 1 36 274428 308
SS 2 1 432 >2144 -
SS 3 84 10992 >2576 -

(b) store sales

Table 7.2: Without sub-view optimization

It can be seen that the number of required projection variables blow up very rapidly with

increase in number of constraints. For cases where the number of projection variables were

more than 220, it was impossible to create it’s power set. OOM at Partitioning column for

workload CS 3 of catalog sales statistics is OutOfMemory error. Our experiments were done

on a machine with 32 GB RAM. Since the complexity of the partitioning algorithm depends

on the number of attributes in a sub-view, An OutOfMemory error motivates that the tables

need to be divided into sub-views.

Name Part. # S Vars # P Vars F & S P1 & P2

CS 1 1 48 59 1 1
CS 2 1 74 191 1 1
CS 3 1 568 2678 3 2009

(a) catalog sales

Name Part. # S Vars # P Vars F & S P1 & P2

SS 1 1 13 4 1 1
SS 2 1 24 33 1 1
SS 3 1 358 29939 10 1

(b) store sales

Table 7.3: With sub-view optimization

Table 7.3 shows the execution time statistics on the workloads when sub-view optimization

is used. The last column, P1 & P2, is the sum of time in seconds taken by Phase 1 and

Phase 2. It can be seen that the number of variables required for solving projections has
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drastically reduced. But since we are taking power set of regions to create projection variables,

the number of projection variables still increase very rapidly. Time required by P1 & P2 for

workload corresponding to CS 3 is significantly more than workload corresponding to SS 3.

This is because the variables required for the largest LP corresponding to Phase 2 of CS 3 was

1.7 million while for SS 3 it was 1.5 thousand.

Although using sub-view optimization with our heuristic algorithm do not guarantee a

solution, we hasten to add that it works in most of the cases and reduces time and space

requirement significantly over the counterpart.

Our algorithm for 1-D projections achieve complete volumetric similarity with no loss of

quality, i.e., all the constraints are satisfied by generated synthetic database and the AQPs at

vendor site are exactly the same as the ones obtained at client site.
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Chapter 8

Conclusions and Future Work

We provided an end to end application software of Hydra. We then introduced Hydra++,

an enhanced version of Hydra. By empirical evaluations over our adversarial workload and

the JOB benchmark we showed that Hydra++ take less time to create consistency constraints

than Hydra. We also gave an algorithm for handling 1-D Projection Constraints. We saw that

the algorithm requires computing power set of a set of variables for creating the projection

variables. Also, the heuristic algorithm which we used for handling 1-D projections alongside

sub-view optimization handles most of the cases but not all.

Hence our future work includes reducing the number of projection variables by devising effi-

cient techniques for creating projection variables, and creating an algorithm which can replace

heuristic algorithm and guarantee solution in every case.
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