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Abstract

Modern database systems typically use a dynamic-programming-based search strategy to

identify optimal execution plans for SQL queries. However, due to its exhaustive nature,

resulting in exponential time and space overheads, this approach does not easily scale to

complex queries with a large number of base relations, such as those found in current

decision-support and enterprise management applications. To address this problem, a

variety of heuristics to prune the search space to a manageable size have been proposed in

the literature. However, as we will empirically demonstrate in this paper, even the best

heuristics currently available can often result in either extremely poor choices of execution

plans, or an inability to sufficiently control the overheads.

Accordingly, we revisit the search-space issue in dynamic programming here, and

present a new pruning strategy. The strategy is based on (a) selectively applying pruning

to only local segments of the join graph that are expected to be difficult to optimize,

and not to the entire join graph; and (b) adopting a skyline-based pruning heuristic on a

feature vector that incorporates sub-plan costs, cardinalities and selectivities. Through a

detailed study, running to millions of complex queries on rich relational schemas imple-

mented on an industrial-strength database system, the new strategy is shown to always

efficiently produce high-quality plans, oftentimes the optimal itself – that is, it is robust

unlike its predecessors. Further, this improvement is achieved with comparable or re-

duced optimization overheads. Finally, the strategy is easily amenable to implementation

in current database systems.
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Chapter 1

Introduction

1.1 Introduction

Modern database systems use a query optimizer to identify the most efficient strat-

egy, called “query plan”, to execute the declarative SQL queries that are submitted by

users. A key component of this computationally intensive process is to use a dynamic-

programming-based approach to exhaustively enumerate the combinatorially large search

space of plan alternatives and, using a cost model, identify the optimal choice. While

dynamic programming (DP) works very well for moderately complex queries with up to

around a dozen base relations, it usually fails to scale beyond this stage in current sys-

tems due to its inherent exponential space and time complexity. Therefore, DP becomes

practically infeasible for complex queries with a large number of base relations, such as

those found in current decision-support and enterprise management applications.

To address the above problem, a variety of approaches have been proposed in the lit-

erature. Some completely jettison the DP approach and resort to alternative techniques

such as randomized algorithms (e.g. [3, 9]) or genetic techniques (e.g. [6]), whereas oth-

ers have retained DP by using heuristics to prune the search space to computationally

manageable levels. In the latter class, the best strategy currently available is “Iterative

Dynamic Programming” (IDP) [4, 8] wherein DP is employed bottom-up until it hits

its feasibility limit, and then iteratively restarted with a significantly reduced subset of

1



CHAPTER 1. INTRODUCTION 2

the execution plans currently under consideration. An experimental study over a variety

of queries and datasets demonstrated that by appropriate choice of algorithmic parame-

ters, it was possible to almost always obtain, as per the characterization in [10], “good”

(within a factor of twice of the optimal) plans, and in the few remaining cases, mostly

“acceptable” (within an order of magnitude of the optimal) plans, and rarely, a “bad”

plan.

Robustness of IDP

While IDP is an innovative and powerful approach, we will show in detail in this paper

that there are a variety of common query frameworks wherein it can fail to consistently

produce good plans, let alone the optimal choice. This is especially so when star or

clique components are present, increasing the complexity of the join graphs. Worse, this

shortcoming is exacerbated when the number of relations participating in the query is

scaled upwards.

Example. To make the above concrete, consider the 15-relation “Star-Chain” join graph

shown in Figure 1.1, where relation R1 star-joins with relations R2 through R11, and R11

through R15 join in a chain formation – this join graph is structurally similar to Queries 8

and 9 of the TPC-H benchmark [11]. A hundred different instances of the Star-Chain join

graph (generated by using various combinations of relations for R1 through R15 from a

25-relation schema) were implemented on the PostgreSQL engine [5], and optimized with

DP and IDP (for a representative IDP parameter setting of k = 7, where k determines

the number of DP levels executed in each iteration). 1

The relative performance results are shown in Table 1.1. Here, the classification of

Good (G), Acceptable (A), and Bad (B) plans [10], is refined with the addition of Ideal

(I), meaning the recommended plan is either identical to that produced by DP, or within

1% of this optimal. Additionally, the Worst-case (W) plan-cost increase ratio w.r.t. DP

is given, and an overall plan-quality factor, ρ, defined as the Geometric Mean of the

1The IDP implementation is the best variant [4], described in Section 3.1.
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Figure 1.1: Star-Chain Join Graph

plan-costs normalized to the same metric w.r.t. DP, is tabulated.

Query Join Tech- Plan-Quality
Graph nique I G A B W ρ

DP 100 0 0 0 1 1
Star-Chain-15 IDP 2 44 54 2 10.96 2.83

SDP 80 20 0 0 1.22 1.02

Table 1.1: Plan Quality (DP, IDP, SDP)

In this table, we see that, relative to DP, for which all plans are Ideal by definition, a

sizeable fraction of the plans delivered by IDP are rather inefficient – totally, 56% plans

are beyond a factor of 2 with regard to the optimal, and 2% are beyond a factor of 10.

Further, IDP produces the ideal plan only for a very few (2%) queries. In the worst-case,

the IDP plan is about 11 times slower than the optimal plan, and the ρ overall plan-quality

metric is close to 3, way above the ideal value of 1.

Skyline Dynamic Programming

We attempt here to address the above problem of consistency in plan quality, by proposing

a new pruning strategy for the DP search space. Our heuristic, hereafter referred to as

“Skyline Dynamic Programming” (SDP), is based on two novel premises: (a) Selectively

applying pruning to only local segments of the join graph that are expected to be difficult

to optimize, and not to the entire join graph; and, (b) Adopting a multi-way skyline-based

pruning strategy on a sub-plan feature vector that incorporates costs, cardinalities and

selectivities.

Through a detailed study, running to millions of complex queries on rich relational
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schemas implemented on the PostgreSQL engine, we show that SDP is comparatively very

robust with regard to consistently providing high-quality plans – in fact, for a large fraction

of the queries, it produces ideal plans. A quantitative instance is shown in Table 1.1,

where SDP gives the ideal plan in 80% or more of the cases for Star-Chain-15, while the

remaining sub-optimal choices are all good plans – in fact, very good plans since in the

worst-case, the plan selected by SDP is only 22% slower than the optimal. Finally, the ρ

value is 1.02, very close to the ideal of 1.

Equally important, SDP’s improvement is not achieved at the cost of increasing the

optimization time and space overheads – on the contrary, due to its aggressive pruning

strategy, SDP is able to complete the optimization process with overheads that are per-

ceptibly lower than that of IDP. This is quantitatively shown in Table 1.2 where the space

and time overheads of SDP are at least a third lower than that of IDP. Another point

to note is that the overheads of IDP and SDP are an order of magnitude lower than DP,

and this is due to the effect of pruning, which is quantified by calibrating the number of

plans costed in each strategy, which is also shown in Table 1.2 – the heuristics cost only

around 10% of DP’s search space.

Query Join Tech- Memory Time Costing
Graph nique (in MB) (in sec) (in plans)

DP 32.39 1.00 8.3E5
Star-Chain-15 IDP 7.39 0.20 1.3E5

SDP 4.33 0.10 0.5E5

Table 1.2: Optimization Overheads

To put the above results in perspective, Figure 1.2 shows a plot of the plan-quality ρ

against the the optimization overhead, for DP, IDP (for both k = 4 and k = 7) and SDP.

We see here that SDP produces a much better “knee-of-the-tradeoff” between input effort

and output quality, as compared to IDP.

Effect of Scaling. When the Star-Chain join graph is scaled up to 23 relations, DP

becomes computationally infeasible, due to running out of physical memory. However,
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Figure 1.2: Plan Quality (ρ) vs. Effort Tradeoff

both IDP and SDP are able run to completion and in Table 1.3, we show for this query

IDP’s performance relative to SDP, that is, treating SDP as ideal. We see there that

the quality gap between SDP and IDP increases, with close to 90% of the IDP plans

falling in the bad category relative to SDP. Further, with regard to the overheads, shown

in Table 1.4, we see that the differences between SDP and IDP are about an order of

magnitude.

Query Join Tech- Plan-Quality
Graph nique I G A B W ρ

DP ∗ ∗ ∗ ∗ ∗ ∗
Star-Chain-23 IDP 0 0 12 88 25.3 16.2

SDP 100 0 0 0 1 1

Table 1.3: Scaled Join Graph: Plan Quality

Query Join Tech- Memory Time Costing
Graph nique (in MB) (in sec) (in plans)

DP ∗ ∗ ∗
Star-Chain-23 IDP 460.37 54.7 4.5E6

SDP 55.33 1.08 0.4E6

Table 1.4: Scaled Join Graph: Overheads

In a nutshell, SDP consistently and efficiently produces high-quality query execution

plans, as compared to prior pruning approaches. Moreover, like IDP, it can be easily



CHAPTER 1. INTRODUCTION 6

integrated with current optimizers – in fact, as mentioned earlier, all our experiments

have been conducted through direct implementation on the PostgreSQL engine.

Organization

The remainder of this paper is organized as follows: In Section 2.1, we present our new

SDP pruning approach. The experimental framework is described in Section 3.1, and the

results are presented in Section 3.2. Finally, in Section 4.1, we summarize our results and

outline future research avenues.



Chapter 2

The SDP Algorithm

2.1 The SDP Algorithm

In this section, we present the salient features of the SDP algorithm, closing with the

rationale for its design. Broadly, SDP augments the classical DP approach with an ad-

ditional localized pruning filter that is brought into play in some of the levels of the DP

iteration to minimize the subsequent search space.

Definitions. To aid in the presentation, we start with the following definitions:

Hub Relation: Any relation that joins with three or more relations in the join graph

is defined to be a “hub relation”. For example, in Figure 2.1, featuring a nine

relation join, the hub relations are 1 and 7. The identification of hub relations is

not restricted only to the original join graph, but is computed afresh in each iteration

of SDP with the current version of the join graph. For example, in Figure 2.1, if

after the first iteration, a combination 12 is retained for further expansion, then in

the second iteration this combination is treated as a single relation, and it turns out

to be a hub relation since it has 3 join edges (to relations 3, 4 and 5).

Where necessary to make a distinction, the hub relations that occur in the original

join graph are referred to as root hubs, while those that appear in the intermediate

levels are referred to as composite hubs.

7
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Figure 2.1: Hub Relations in Join Graph

Join Composite Relation: A Join-Composite-Relation (JCR) is defined, similar to [7],

as any group of relations that are joined together during the optimization process.

For example, 12, 13, 156, etc. are all JCRs in Figure 2.1. Each JCR is associated

with a set of plans – the lowest cost plan for producing the JCR and also the

incomparable plans that produce “interesting orders” [7] which could be used in

subsequent joins or for ordering the query result.

Skyline: Given a set O of objects O1, ..., On characterized by a feature-vector FV =

f1, ..., fp, where each fi is from an ordered domain, the skyline [1] of this set consists

of objects that are not completely dominated by other objects in the data-set. That

is, the skyline is the set of objects Ok such that 1

6 ∃Oi ∈ O s.t. ∀j fj(Oi) ≤ fj(Ok)

2.1.1 Selective Pruning Locations

A common characteristic of the previous approaches to limiting the DP search space was

to apply the pruning universally over the entire join graph. However, in practice, only

some segments of the join graph turn out to be responsible for high overheads, and by

selectively pruning only in such regions, we do not run the risk of unnecessarily and

adversely impacting the high-quality of the DP approach on the simpler regions.

Our observation has been that, given a generic query graph, it is the presence of hub

1Assuming scoring function is for minimization.
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relations that are primarily responsible for the high overheads of DP in the optimiza-

tion process, whereas the remaining segments can be handled relatively efficiently. This

observation is quantified in Table 2.1, which shows DP completing optimization (on Post-

greSQL) of a 28-relation chain query (where there are no hubs) in less than a second using

only about 6 MB of memory, whereas, in marked contrast, a much smaller 16-relation star

query requires close to two minutes of processing time and over 300 MB of memory.

Number Chain Star
of Time Memory Time Memory

Relations (in sec) (in MB) (in sec) (in MB)

4 0.0016 0.02 0.0016 0.02

8 0.0050 0.14 0.0200 0.67

12 0.0240 0.45 0.8000 16.15

16 0.0550 1.10 111.1000 326.03

20 0.0900 1.85 – –

24 0.1700 3.10 – –

28 0.3300 6.20 – –

Table 2.1: DP Overheads (Chain and Star)

Based on the above observation, in our SDP approach, we apply pruning selectively

only to JCRs containing hub relations, leaving the remaining JCRs to be optimized under

the aegis of the traditional exhaustive DP.

2.1.2 SDP Iterations

We will explain the operation of the SDP algorithm through the pictorial overview shown

in Figure 2.2 for the example join graph of Figure 2.1.

In its first iteration (Level 1), SDP applies the standard DP algorithm, identifying the

best access plan for each individual relation. Then, in the second iteration (Level 2), all

pair-wise join-composites (excluding, of course, cartesian products) of the base relations

are enumerated, as in standard DP. These JCRs are split into two sets: PruneGroup

(PG) and FreeGroup (FG), with the splitting based on whether or not the JCR includes

a complete hub from the immediately previous level – i.e. a “hub-parent”. Subsequently
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the pruning strategy (described later in this section) is applied, and the output is the

set of length-2 “survivor JCRs”. These survivor JCRs, along with all the survivor JCRs

of previous levels (in this case, Level 1), then form the input to DP of Level 3, and the

process continues in this manner until we complete Level 7, where the length-7 survivor

JCRs have been identified. At this stage, there are only two additional relations to be

joined for each composite, which means that, by definition, there cannot be any hub-

relations present (recall that a hub relation has to be connected to at least 3 relations).

Therefore, we employ the standard DP algorithm in levels 8 and 9. Generalizing the

above, given a query graph of N relations, the SDP algorithm utilizes standard DP in

Level 1 and Levels N − 2 and N − 1, whereas in all the other levels the pruning function

comes into play if and only if there is at least one hub available in that level. Further,

the input to the DP algorithm in each level is composed of not just the survivor JCRs

of the immediately preceding level, but also the survivor JCRs of all prior levels, thereby

supporting the identification of bushy joins.

2.1.3 Pruning Strategy

The pruning strategy in SDP has two steps: First, the JCRs in the PruneGroup are

partitioned into sub-groups within which the pruning function is employed. Plausible

alternatives for the partitioning are the following:

Parent-Hub Partitioning: Here, the partitioning is based on the “hub-parents” rela-

tive to the current level. For example, in Level 3 of Figure 2.2, the partitioning

would be based on the hubs 12 and 13.

Root-Hub Partitioning: Here, the partitioning is based on the root hubs, that is, the

hubs of the original join graph in Level 1. For example, in Figure 2.2, the root-hub

partitioning will be based on 1 and 7 at all levels.

A point to note here is that with either Parent-Hub or Root-Hub partitioning, if a JCR

happens to have multiple hub-parents, then it appears in all the associated partitions.



CHAPTER 2. THE SDP ALGORITHM 11

For example, in Figure 2.2, the JCR 123 will appear (with Parent-Hub partitioning) in

the partitions corresponding to both parent-hubs 12 and 13.

After partitioning, the second step is to apply the function, described next, within

each partition, to prune a subset of the JCRs present in the partition.

Skyline Pruning Function

In the evaluation of IDP [4], the basic plan evaluation functions that were considered

included: (a) MinCost (choose subplan with the cheapest result cost); (b) MinRows

(choose subplan with the fewest result rows); and (c) MinSel (choose subplan with the

lowest result selectivity). They also mentioned that they evaluated several combinations

of these functions, but did not find any combination to perform noticeably better than

the best among the basic functions, which turned out to be MinRows.

However, our experience has been rather different – as described below, we find that

a carefully constructed multi-way function that takes all three parameters (cost, rows

and selectivity) into account can provide extremely robust performance as opposed to

considering only MinRows.

We characterize JCRs with a feature-vector comprised of the following attributes:

[Rows(R), Cost(C), Selectivity(S)], corresponding to the number of rows output

by the JCR, the lowest cost of producing this output, and the output selectivity of the

JCR relative to the product of the sizes of its base relations, respectively. For exam-

ple, consider the JCR 12345 shown in Figure 2.3, whose feature-vector is FV(12345) =

[184736,57726,2.54E-10] since it is estimated by the optimizer to produce 184736 rows at

a cost of 57726, with the selectivity being 184736

242223∗100∗200∗300∗500
= 2.54E − 10.

We now use the skyline concept on the above feature vector for pruning JCRs. Specif-

ically, we compute a disjunctive multiway skyline on pairwise combinations of the RCS

attributes in the feature vector. That is, we first find the skyline set of JCRs based on

their RC values, then the skyline set on the CS values, and finally the skyline set on the

RS values. The JCRs featured in the three skylines are unioned, and all remaining JCRs

are pruned. That is, we retain only those JCRs that are able to survive in at least one of
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the three skylines.

An example of the pruning process is shown in Table 2.2, where from the Prune Group’s

partition on root hub 1, which consists of JCRs {123,125,135,145,156}, the survivor JCRs

are 123, 125, 145 and 156 (Y indicates that the JCR is part of the skyline), while 135 is

pruned.

Prune Feature Vector Skylines

Group1 [R,C,S] RC CS RS

123 [187638, 49386, 3.9E-5] Y Y -

125 [122879, 52132, 1.0E-5] Y Y Y

135 [242620, 56021, 1.0E-5] - - -

145 [241562, 55388, 6.65-6] - - Y

156 [385375, 52632, 4.5E-6] - Y Y

Table 2.2: Multi-way Skyline Pruning

As mentioned earlier, it is possible that a JCR may contain multiple parent-hubs in

which case it is present in all the associated PruneGroup partitions. Given this, it is

possible that a given JCR may survive in only some of its parent-hub partitions, but

not all – in SDP, such JCRs are pruned since they are not universally considered, by all

parent-hubs, to be JCRs that are worth pursuing further.

2.1.4 Handling Interesting Orders

It has been well-established that an important factor in choosing an efficient execution

plan is accounting for “interesting orders” [7]. This property arises when

1. The query output is explicitly required to be sorted by the user (through Order-By

or Group-By statements); or

2. When there are “shared join columns” – that is, relational attributes participating

in multiple joins – in the join graph.

The reason for its importance is that costlier sub-plans that happen to provide interesting

orders may reduce the cost of later operations as compared to the lowest-cost sub-plan,

and should therefore be retained for further processing.
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The ordering arising out of shared join columns is beneficial to SDP since such columns

result in additional edges being introduced in the join-graph. For example, the presence of

R.a on S.b and R.a on T.c in the join-graph, where R, S and T are relations with attributes

a, b and c, respectively, directly implies S.b on T.c. In most industrial-strength query

optimizers, including PostgreSQL, the optimizer rewriter itself performs the inclusion of

these additional edges. The presence of the extra edges has the potential to create new

hubs, and therefore provides additional opportunity for SDP to determine the choice of

survivor JCRs. With respect to user-specified orders, only those that are on join columns

are of relevance to our context. To ensure that the skyline pruning does not inadvertently

remove JCRs that could subsequently utilize the benefits of such interesting orders, we

modify the partitioning function described previously to include additional partitions in

the PruneGroup at each level. Specifically, a separate partition is formed for each relation

that has an interesting join column, and all JCRs that do not contain this relation are

included in the partition. This is because we then retain the ability to combine these

JCRs, at a later point in the optimization process, with join relations that can produce

interesting orders. The skyline pruning function is applied as before, individually to these

additional partitions, and the survivors are included in the Survivor JCR group output

at that level.

2.1.5 Rationale for SDP Design Choices

We have described above the mechanics of the SDP algorithm. In the remainder of this

section, we explain the rationale behind our design choices.

Localized Pruning

The standard DP algorithm considers all meaningful JCRs (i.e. excluding cartesian prod-

ucts), and for each JCR identifies the optimal choices (lowest-cost plan plus interesting

order plans). In SDP, our goal is to raise the level of comparison from plans associated

with a JCR, to JCRs themselves. Specifically, given a hub relation, all “spokes” of the

hub are treated as being in the same equivalence class since they have to eventually join
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with the rest of the relations connected to the hub. Further, as we have already seen,

it is the optimization of hub regions in the query graph that are the most complex, and

therefore applying pruning to the equivalent-class JCRs in this region will have maximum

impact on the optimizer performance.

Note that with SDP, there is no pruning at all for a chain or cycle query, whereas for

star and clique queries, there is a strong pruning effect.

Feature Vector

The attributes chosen in our JCR feature vector are [Rows(R),Cost(C),Selectivity(S)],

for the following reasons: Firstly, these attributes are already available from virtually all

industrial-strength query optimizers, and are also easy to compute. Secondly, and more

importantly, Rows is a measure of the output of the JCR, whereas Cost is a measure of

the join sequence of the inputs to the JCR, while Selectivity is a measure of the trans-

fer function between the output and inputs. Therefore, it seems natural to use these

attributes to characterize a JCR.

Pruning Function

In addition to characterizing a JCR, the three attributes of the feature vector are also

related with regard to their cumulative effect on query optimization: The Rows attribute

is a measure of the future impact that the JCR will have in the optimization process,

since it forms the input to the next join level, whereas the Cost attribute is a measure of

the current impact of the JCR with regard to the plan efficiency, and the Selectivity is a

measure of the inherent power of the JCR, in terms of reducing the intermediate relation

cardinalities, a prime objective in query optimization. That is, the three attributes express

complementary facets of the optimization process, and ideally we would like to retain JCRs

that cheaply produce minimal output on the largest inputs. From the literature, we know

that the skyline function [1] provides a natural and elegant mechanism to identify the best

among a set of objects described by a feature vector that has attributes over orthogonal

ordered domains. We therefore use this concept to ensure that a “complete and precise”
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set of such JCRs are effectively retained. Fast techniques for computing skyline functions

have been presented in several papers (see [2] for a recent survey), and we assume the use

of such techniques. With regard to the specific skyline function employed in SDP, two

choices are available:

Option 1: Computing a single skyline set on the entire RCS vector; or

Option 2: Computing the (union of) pairwise skyline sets on RC, CS, and RS, respec-

tively.

Our experiments indicated that Option 1 produces high-quality plans but provides

very little pruning since most JCRs would survive in this skyline. In contrast, Option 2

produces “the best of both worlds”, simultaneously producing high-quality plans along

with strong JCR pruning. As a case in point, the number of JCRs processed across all

levels for the example query using Options 1 and 2, is shown in Table 2.3, as also their

associated plan-quality metrics. We see here that Option 2 provides virtually the same

plan-quality as Option 1 but processes only about half the number of JCRs.

Query Join Graph JCRs Processed Plan Quality (ρ)
Prune Option 1 1646 1.0148
Prune Option 2 862 1.0151

Table 2.3: Performance of Skyline Options
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Figure 2.2: SDP Iterations
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Figure 2.3: Feature-Vector for JCR



Chapter 3

Performance Framework

3.1 Performance Framework

We now move on in this section to describing the experimental framework under which

the relative performance of the three alternative approaches, namely, DP, IDP and SDP,

was evaluated. The experiments were conducted on vanilla Pentium-IV PCs with 1 GB

of memory, 80GB of disk and running the Linux operating system, using the PostgreSQL

8.1.2 engine [5].

Optimizer Algorithms. For DP, we used the implementation that is already avail-

able in the PostgreSQL engine, whereas IDP and SDP were implemented by us through

modifications to the source-code. The IDP implemented is the one found to be the best

overall performer in [4] – specifically, the IDP1-balanced-bestRow variant, with a hybrid

plan evaluation function that selects 5% of the subplans based on Minimum Intermediate

Result1 plan evaluation function for ballooning to complete plans, and during ballooning

again uses the Minimum Intermediate Result plan evaluation function. IDP also has a

parameter k that determines the number of levels to which DP is utilized in each itera-

tion, and we have experimented with both k = 4 and k = 7, which were found to perform

reasonably well in [4] – these are referred to as IDP(4) and IDP(7) in the sequel. With

1MinRows in our terminology.

18
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regard to SDP, we consider only the Root-Hub partitioning variant, since we found that

it provides plan quality close to that of Parent-Hub with much lesser overheads.

Database. The database is approximately 1.5 GB in size, and is composed of twenty-

five relations with a geometric distribution (parameter 1.5) of the relational cardinalities,

ranging from 100 to 2.5 million rows. Each relation has twenty-four columns, among which

a random column has an index built on it. The domain sizes of the columns also have

a geometric distribution going from 100 to 2.5 million. With regard to the distribution

of data values in these columns, we have experimented with both uniform and skewed

(exponential) distributions.

The Analyze command of PostgreSQL was used to generate the database statistics

that are used by the optimizer in the plan identification process.

Query Templates. While we experimented with a wide variety of query join graph

topologies, for ease of presentation and space reasons, the representative results presented

here are with respect to pure-star queries and star-chain join graphs – our results for the

other topologies are similar in flavor.

A very large number of queries, running to several millions, were generated through

a combinatorial enumeration of the relational choices – for example, with the 15-relation

pure-star query, the hub relation was chosen to be the largest, as in usually the case in

data warehousing applications, and 24C14 ≈ 2M query instances were created through

selection of 14 of the 24 remaining relations, and then each of these queries was optimized

with the various feasible optimization strategies.

In the star-component of the queries, the join of the “spoke” relations with the hub

relations is on indexed columns, while in the chain-component of the query, each relation

in the chain joins on an indexed column with its left neighbor.

Further, for each generated query, we also generated an ordered variant, where the

user requests ordered output on a randomly chosen join column.
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3.2 Experimental Results

Having described the framework, we now move on to presenting the results of our exper-

iments evaluating the various optimization strategies.

3.2.1 Star Join Graphs

For the star join graphs, the plan-quality statistics are shown in Table 3.1. Here, we see

that DP is feasible only for the 15-relation join but not for the 20 and 23-relation versions.

For Star-15, we observe that both IDP(7) and IDP(4) have a very large proportion (over

95%) of plans that are more than twice as costly as the optimal plan. In marked contrast,

SDP provides the optimal plan in over 50 percent of the queries, and a good plan for all

the remaining queries. Overall, SDP has a plan-quality factor, ρ, very close to 1, whereas

both IDPs are much beyond this mark (3.23 and 6.47, respectively).

When we scale up the join graph complexity to 20 relations, the performance of both

IDPs (relative to SDP as the ideal since DP is not feasible) noticeably worsens, especially

IDP(4) which has more than 80% bad plans. Finally, when we go up to 23 relations,

IDP(7) itself becomes infeasible, while IDP(4) continues to perform very poorly with

respect to SDP.

The above results were on plan quality – now we consider the associated optimization

overheads, which are shown in Table 3.2. Here we see that the overheads of SDP are

always substantially lower than those of the other algorithms with regard to all three

metrics, and that even for a 23-way join, it is able to complete in less than a second using

only about 40MB of memory. The reason for these reduced overheads is clear from the

number of plans costed, which for SDP is about one-third that of IDP(4) and about 20-30

times smaller than that of IDP(7), testifying to the efficacy of its pruning function.

Maximum Scaleup

We conducted another experiment, with an extended database schema, to determine the

maximum number of relations in a star join graph that could be handled by the various
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Query Join Tech- Plan-Quality
Graph nique I G A B W ρ

DP 100 0 0 0 1 1
Star-15 IDP(7) 0 2 98 0 6.00 3.23

IDP(4) 0 1 96 3 11.35 6.47
SDP 57 43 0 0 1.17 1.02

DP ∗ ∗ ∗ ∗ ∗ ∗
Star-20 IDP(7) 0 0 100 0 9.7 6.10

IDP(4) 0 0 16 84 18.46 12.19
SDP 100 0 0 0 1 1

DP ∗ ∗ ∗ ∗ ∗ ∗
Star-23 IDP(7) ∗ ∗ ∗ ∗ ∗ ∗

IDP(4) 0 8 17 75 31.88 12.93
SDP 100 0 0 0 1 1

Table 3.1: Star Join Graphs: Plan Quality

optimization algorithms before they exceeded the physical memory of the system. The

results for this experiment are shown in Table 3.3, along with the associated optimization

times. We see here that SDP is capable of optimizing as large as 45-relation star join

graphs, whereas the other algorithms run out of steam much earlier. Further, even for

this massive query, SDP completes the optimization process in under a minute, again

testifying to the efficacy of its pruning function.

Interesting Orders

The queries considered so far did not have any interesting orders. We now turn our

attention to their ordered variants, for which the results are shown in Table 3.4.

We see in this table that qualitatively the performance of the three algorithms remains

similar to that seen earlier for pure-star queries, with IDP(4) and IDP(7) having a sub-

stantial share of plans that are more than twice slower than the optimal, whereas SDP

almost always produces the optimal plan.
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Query Join Tech- Memory Time Costing
Graph nique (in MB) (in sec) (in plans)

DP 172.94 24.82 3.79E6
Star-15 IDP(7) 45.36 1.38 0.61E6

IDP(4) 10.68 0.21 0.10E6
SDP 5.44 0.11 0.04E6

DP ∗ ∗ ∗
Star-20 IDP(7) 506.14 88.70 4.95E6

IDP(4) 66.59 1.11 0.49E6
SDP 22.94 0.41 0.17E6

DP ∗ ∗ ∗
Star-23 IDP(7) ∗ ∗ ∗

IDP(4) 167.84 2.7 0.99E6
SDP 43.63 0.84 0.30E6

Table 3.2: Optimization Overheads

Technique Maximum Scale Optimization
(# of Relations) Time (in sec)

DP 16 111
IDP(7) 21 179
IDP(4) 29 15
SDP 45 51

Table 3.3: Maximum Scalability

3.2.2 Star-Chain Join Graphs

Since the performance of the basic Star-Chain join graphs was already presented in the

Introduction, we restrict ourselves to presenting the results of the ordered variants here.

These results are shown in Table3.5 and indicate that IDP(7) and IDP(4) have a noticeable

fraction of bad plans, and a substantial number of plans that are more than twice slower

than the optimal. Further, the percentage of optimal plans is rather low. On the other

hand, SDP provides the optimal plan on all but a few queries.
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Query Join Tech- Plan-Quality
Graph nique I G A B W ρ

DP 100 0 0 0 1 1
Star-15 IDP(7) 0 74 26 0 3.55 1.55

IDP(4) 1 38 61 0 3.37 2.00
SDP 99 1 0 0 1.01 1.01

DP ∗ ∗ ∗ ∗ ∗ ∗
Star-20 IDP(7) 0 56 44 0 3.33 1.70

IDP(4) 0 58 42 0 2.79 1.74
SDP 100 0 0 0 1 1

DP ∗ ∗ ∗ ∗ ∗ ∗
Star-23 IDP(7) 0 62 38 0 4.67 1.77

IDP(4) 0 64 36 0 2.95 1.86
SDP 100 0 0 0 1 1

Table 3.4: Ordered Star: Plan Quality

3.2.3 Need for Localized Pruning

While the previous experiments demonstrated the utility of the skyline-based pruning

function, in our final experiment, we demonstrate the need for the other primary feature

of SDP, namely, localized pruning. To do this, we compare the performance of SDP with

global pruning of the JCRs output from DP, based solely on the skyline functions, to that

obtained with local hub-based pruning. A sample set of results are shown in Table 3.6, for

the (unordered) Star-Chain-20 join graph, where we see that the plan quality deteriorates

perceptibly to around 1.4 from 1.05 with Global pruning, and the worst-case cost ratio

jumps to 6 from 1.3.
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Query Join Tech- Plan-Quality
Graph nique I G A B W ρ

DP 100 0 0 0 1 1
Star-Chain-15 IDP(7) 24 26 40 10 40.64 2.33

IDP(4) 4 33 54 9 41.21 3.01
SDP 100 0 0 0 1.00 1.00

DP 100 0 0 0 1 1
Star-Chain-20 IDP(7) 3 67 15 15 726.54 3.14

IDP(4) 3 32 51 14 728 3.98
SDP 98 2 0 0 1.17 1.01

DP ∗ ∗ ∗ ∗ ∗ ∗
Star-Chain-23 IDP(7) 0 62 38 0 4.67 1.77

IDP(4) 0 22 78 0 5.05 2.35
SDP 100 0 0 0 1 1

Table 3.5: Ordered Star-Chain: Plan Quality

Tech- Plan-Quality
nique I G A B W ρ

SDP/Global 73 0 27 0 6 1.4
SDP/Local 80 20 0 0 1.3 1.05

Table 3.6: Local vs Global Pruning



Chapter 4

Conclusion

4.1 Conclusions

We have attempted, in this paper, to present a robust and scalable heuristic for the effi-

cient optimization of complex SQL queries that are not easily amenable to the traditional

dynamic-programming approach. Our new heuristic, SDP, has two distinctive features

with respect to prior proposals for limiting the search space: First, it prunes selectively

on the hub regions in the query join graph, since it is these relations that cause op-

timization complexity, and allows the other simpler regions to retain the full power of

DP; Second, it incorporates a feature-vector that includes (intermediate) cardinalities,

costs and selectivities, which are the primary factors in query optimization, and a three-

way disjunctive skyline pruning function on this feature vector intended to retain all the

potentially useful plans, while pruning away the poor strategies.

Experiments over a vast number of queries with a spectrum of join-graph topologies, on

rich schemas implemented on the PostgreSQL engine, demonstrated that our approach

can perform significantly better than IDP, the best heuristic currently available, with

regard to both the robustness of the plan quality and the overheads involved in plan

selection. In fact, in all our experiments, we have found SDP to always provide at least a

good plan (within twice of the DP-optimal), if not the optimal itself. Further, in situations

where DP became infeasible, we found that SDP performed close to an order of magnitude

25
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better than IDP. Even more attractively, due to its low overheads, SDP could scale up

to handling about double the number of join relations in hard-to-optimize star queries as

compared to the corresponding limit of the IDP approach. We also showed that even in

the presence of interesting orders in the join graph, SDP maintains its good performance

profile.

In closing, SDP achieves a substantially improved tradeoff between plan quality and

optimization overheads that makes it feasible to efficiently optimize the complex queries

with tens of relations that arise in today’s industrial-strength data-processing environ-

ments. Our future research plans include investigating the impact of using “strong sky-

line” functions [12] on the optimization process.
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