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Abstract

Sampling is a well established technique to speed up the process of discovering fre-

quent itemsets. While the early literature focused on heuristic techniques, mathematical

bounds on the sample size required to probabilistically achieve approximately correct

results were recently presented in [6], [12]. A particularly appealing feature of these

bounds is that they are independent of the database row-cardinality.

In this report, we demonstrate through an extensive empirical evaluation that the

bounds, although theoretically elegant, are loose by as much as one to two orders of mag-

nitude in practice. We therefore investigate the possibility of obtaining better bounds

through prior knowledge of statistics on the datasets. In particular, we assume that the

number of maximal frequent itemsets in the data mining result is known in advance.

However, even with such a strong assumption, the revised bound turns out to be several

multiples of the required sample size. This motivates us to consider the question of algo-

rithmically identifying a reduced sample size that is sufficient to obtain accurate results.

To address this issue, we present VISTA, a voting-based iterative sampling algorithm

for accurately discovering frequent itemsets, whose sampling overheads are comparable

to the ideal sample size for one-shot frequent itemset mining. VISTA incrementally

mines samples in small batches and uses the presence or absence of a frequent itemset in

each batch to determine its voting characteristics. The stopping condition is the reach-

ing of a fix point in the identities of frequent itemsets that receive a clear majority of

the votes across the batches. All results presented here are validated through extensive

experimental evaluation on massive synthetic and real datasets.
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Chapter 1

Introduction

Recent advances in technology have enabled many organizations to collect massive amount

of data from their businesses. These datasets can be seen as valuable data for their com-

pany as they can find unknown knowledge by mining these datasets. Mining association

rules from datasets is an important research topic these days. Consider for example, the

database of all the transactions that take place in a retail chain. The goal of associ-

ation rule mining is to discover association rules of type, “whenever onion and potato

are included together in a transaction, it is likely that burger is also included in the

transaction”. In association rule mining, main computational step was to find the fre-

quent patterns from which association rules are derived. The problem of finding frequent

patterns from database is called as Frequent Itemset Mining(FIM).

1.1 Frequent Itemset Mining

The problem of frequent itemset mining over the so-called basket data model was first

introduced in [1]. Basket data consists of a set of individual records called transactions,

and each transaction is comprised of a list of items that feature in the transaction. The

computational goal is to identify all itemsets whose frequency, called support, in the

database exceeds a user-defined threshold (θ), these results are relevant to a diverse

suite of applications, including design of promotional pricing, product placement, web

1



Chapter 1. Introduction 2

usage mining, intrusion detection, and bioinformatics. Apriori, the classical algorithm

for efficiently mining frequent itemsets, was proposed by Agrawal and Srikant in [2], and

made use of the monotonicity property that all subsets of any frequent itemset must

themselves be frequent. A substantial body of prior work deals with frequent itemset

and association rule mining. We refer the reader to the survey by Ceglar and Roddick

[5] for more details.

1.2 Sampling for Frequent Itemset Mining

All the frequent itemset mining algorithms used in the literature have drawback that, in

addition to significant computations, they need to scan the entire database at least once.

Considering how rapidly the sizes of the transactions are growing, it is desirable to avoid

scanning the entire database. In this work, we consider various aspects of sampling as a

technique for frequent itemset mining.

The use of sampling in identifying frequent itemsets has been popular since inception

of association rule mining paradigm. A representative list of the initial work in this

direction can be seen in [14], [10], [16], [7]. Their main focus was on experimentally

studying the effectiveness of sampling at different sample sizes. A major limitation,

however, was that they considered only small databases, whereas the true power and

benefits of sampling come to the fore with very large databases. While sampling for FIM

was first broached in [10], their work deals with many issues in addition to sampling and

hence, their empirical investigation only points to the possible effectiveness of sampling.

Toivonen [14] was the first one to study sampling as a technique in its own right. This

study presented an upper bound on the sample size required to ensure that the support

of a given itemset in the sample is approximately equal to its support in the database

that is, its sample support is approximately equal to its database support. A detailed

experimental evaluation of the proposed techniques on synthetic basket databases with

100K records showed that sample sizes from 20K to 80K provide very high accuracy.

An empirical evaluation of sampling for frequent itemset mining was also carried
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out in [16]. They argued that the sample sizes suggested by Chernoff bounds [3] can

be much larger than that required in practice for FIM. As an example, in the case of

a database with 400K rows and a reasonable approximation guarantee, they showed

that the Chernoff bounds turn out to be larger than the database size itself! Through

extensive experimentation, they came up with a rule of thumb that, in order to obtain

reasonable accuracy, samples of sizes between 10% to 25% of the database were required

(depending on the desired support threshold). But, a crucial issue that was missed in the

above exercise was the question of what happens when the databases are much larger?.

As a case in point, consider massive databases like the one operated by Walmart, where

just the weekly transactions across all their stores is of the order of 200 million [15]! In

such environments, sampling even 10% of the database is itself prohibitively expensive.

A sampling based FIM algorithm, called FAST , was presented in [7]. Given a sample

size S, they focussed on obtaining the most representative sample of this size over which

FIM can yield better results as compared to a simple random sample of equivalent size.

Sub-sampling based heuristics were devised, wherein a cleaned-up subsample of size S is

first constructed from an original random sample of larger size, and then the frequent

itemset mining is carried out over the sub-sample. However, no quality guarantees on the

results were provided in their analysis. Further, experimental results on only a couple of

small-sized datasets were presented in the study.

A progressive sampling algorithm in which the sample size increases geometrically

between successive samples was presented in [11]. A local convergence criteria which

compares the set of characteristic frequent itemsets between the most recent two samples

is used to define the termination condition. An empirical evaluation of the convergence

rate was presented for a specific notion of closeness between two sets of characteristic

frequent itemsets. The local convergence criteria forces the algorithm to run for large

number of iterations before reaching convergence. For instance, for a convergence thresh-

old of 0.95 similarity between successive samples, the stabilization occurs at samples of

size 10 million. Whereas, using a global voting based criteria, we show that we can

reach termination with all the required accuracy guarantees at a sample size which is at
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least one order of magnitude lesser. Another limitation of the work is that, there is no

characterization of the errors when FIM is carried out on the computed sample.

1.3 Theoretical Bounds

As mentioned before, identifying the sample size required to ensure that, for a given

itemset, its sample support approximately equals its database support, was evaluated in

[14]. But, none of the early works considered the question of the sample size required

to ensure that this property is satisfied for all the itemsets of interest, i.e. the frequent

itemsets. Recently, this issue was addressed in [6] by formulating the notion of ε-close

FIM solutions, defined below.

ε-close Solution [6]: Given a database of transactions T, a support threshold θ, and

a tolerance threshold ε, a set (Fε) consisting of pairs of the form (I, f), where I is an

itemset and f is its frequency, is said to be an ε-close solution if it satisfies the following

conditions:

• Each itemset I whose database support is θ or above is present in Fε.

• If an itemset frequency in the database is α then its reported frequency(f) in Fε

is (1− ε)α ≤ f ≤ (1 + ε)α. We call its frequency in Fε as ε-close frequency.

• No itemset I with a database support lower than (1− ε)θ is present in Fε. We call

itemsets with supports in this range as Unacceptable False Positives(UFP).

• No itemset I with a database support α is present in Fε with f < (1− ε)α or f >

(1+ε)α. These itemsets with supports in this range are also called as Unacceptable

False Positives.

Note that an ε-close solution may contain itemsets whose database support is in the

range of [(1− ε)θ, θ). We refer to such itemsets as acceptable false positives (AFP).

Rather surprisingly, it was shown in [6] that the sample size required for guaran-

teeing ε-close solutions with high probability is independent of the size of the database
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(measured in terms of its row cardinality)! Specifically, the sample size bound is given

by

O(
1

ε2θ
(∆ + log

h

θ
)) (1.1)

where ∆ is the length of the longest transaction occurring in the database, and (1− 1
h
)

is the desired probability of success.

The above result is achieved through (i) a lemma that bounds the number of itemsets

of a given support, and (ii) a technique for analyzing the probability of UFP itemsets

erroneously appearing in the output. For ease of presentation, we will hereafter refer to

this bound as the longest transaction (LT) bound.

A notion very similar to ε-close solutions was considered by [12] in the context of

top-K itemset mining, where the goal is to identify the K itemsets having the highest

supports from among all itemsets appearing in the database. They analytically show that

a sample of size O( 1
ε2

log(h(2f + K(f −K)) is sufficient to guarantee ε-close solutions.

Here, f is the number of frequent itemsets, K is the number of top itemsets that are

required, and (1− 1
h
) is the desired probability of success. In their study, the value of m

is artificially curtailed by considering only itemsets within a predetermined size.

1.4 Contributions

The LT bound of [6] is appealing due to its being independent of the database cardinality.

For databases hosting hundreds of billion transactions, the bound works out to be just

a few million. We have conducted extensive experiments with popular real-life and

synthetic datasets to study the tightness of this bound. Based on the experiments, our

consistent observation is that there is a gap of atleast an order of magnitude, often even

two, between the bounds and the ideal sample sizes, as would have been determined

by an Oracle that directly runs Apriori on the sample database (we model the oracle

by empiricially evaluating the fewest number of samples for which ε-close solutions are

obtained).
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Given the above observation, we first consider the question of whether it is possible to

obtain tighter bounds by assuming advance knowledge of some strong statistical measures

on the database. In particular, we derive a new bound that presupposes knowledge of

the number of maximal frequent itemsets in the database at the given support threshold

(a maximal frequent itemset is one for which no superset is frequent). This is a strong

assumption as it implies the knowledge of the histogram of the number of maximal

frequent itemsets at different support thresholds. We derive a new bound in terms of

this parameter and show that a sample of size is sufficient to obtain ε-close solutions.

Here, m is the number of items, (1 − 1
h
) is the desired probability of success, and M is

the set of maximal itemsets arising with the θ support threshold. Our proof is based

on simple observations that relate the supports of itemsets based on their relationships

in the itemset lattice structure. We will hereafter refer to this bound as the maximal

frequent itemset (MFI) bound.

For meaningful values of the input thresholds, the MFI bound yields a value that

is substantially lower (typically, by a factor of between 5 and 10) than the LT bound.

However, it still falls short in practice the gap between the MFI bound and the Oracle

continues to be somewhat large (typically, as much as 5 times).

The conclusions drawn from the earlier work are also found to be not very useful. For

instance, [16] suggests a sample size of at least 10% of the database, but this works out

to be much larger than the LT and MFI bounds for industrial strength large databases.

Therefore, there is a need to algorithmically arrive at the appropriate sample size for

obtaining ε-close solutions. We present, in this paper, an iterative sampling algorithm,

called VISTA (Voting-based Iterative Sampling of Transactions Algorithm), for this pur-

pose. VISTA is based on the concept of repeated voting on the set of candidate frequent

itemsets, based on small-sized samples at each step. Repeat yes votes on a given itemset

add credence to its claim for being a frequent itemset, whereas sporadic votes raise the

bar on the voting levels required in subsequent iterations. Conceptually, our technique

is novel in the context of frequent itemset mining and may be of independent interest for
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other sampling problems in data mining. We present an extensive empirical evaluation of

VISTA over a rich suite of real and synthetic datasets. Our results indicate that VISTA

uses much, much fewer samples than the theoretical bounds in fact, it is always within

twice of the Oracle without sacrificing the data mining quality.

In a nutshell, VISTA is the first sampling algorithm, to our knowledge, that is (em-

pirically) capable of delivering ε-close solutions while only incurring sampling overheads

comparable to that of an idealized one-shot Oracle FIM algorithm.

1.5 Organization

The remainder of this thesis is organized as follows: The problem formulation is given

in Chapter 2. Limitation of theoretical bounds are explained in Chapter 3 which also

presents the new theoretical bounds which are lower than the LT bound. Chapter 4

presents Iterative Sampling Algorithm VISTA. Chapter 5 presents the Experimental

setup and Experimental results are highlighted in chapter 6. Finally, Chapter 7 summa-

rizes the conclusions of our study.



Chapter 2

Problem Formulation

In this chapter, we precisely define the problem that we address here and the notations

used in our analysis. The input to frequent itemset mining (FIM) consists of a database

T of N transactions, T = t1, t2, . . . tN , that range over a set of m items I=I1, I2, . . . Im.

Each transaction is a subset of I and we use ∆ to denote the length of the longest

transaction i.e. the transaction with the maximum number of items. We assume that ∆

is part of the statistics maintained by the database. A subset X ⊆ I is called an itemset,

and the frequency of an itemset is the ratio of the number of transactions that contain

the itemset to the total number of transactions in the database. An itemset X is said

to be p-frequent if its frequency is at least p. Given a user defined parameter 0 ≥ θ ≥ 1,

called the support threshold, the FIM goal is to discover the set F≥θ of all θ-frequent

itemsets in T .

The statistical nature of sampling implies that we obviously cannot guarantee to

obtain the exact answer F≥θ based on just an analysis of a sample of the database.

Therefore, the ε-close FIM problem is defined as follows: Given a tolerance threshold θ,

obtain an ε-close solution using the minimum number of transaction samples. In [6], the

following LT upper bound on the sample size required to obtain an ε-close solution with

a confidence probability of (1− 1
h
) was derived:

24

ε2(1− ε)θ

[
∆ + 5 + log

5h

(1− ε)θ)

]
(2.1)

8
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We study here the empirical effectiveness of the LT bound for massive datasets. In

particular, we consider 5 diverse real-life datasets from the FIMI repository [8], as well as

synthetic datasets generated by the popular IBM QUEST dataset generator [2]. Each of

these datasets contain up to 250 million transactions. We execute the Apriori algorithm

on a sequence of samples, which starts with the LT bound and then, through a binary

reduction technique, identifies the fewest number of samples at which the ε-close solution

is maintained this is the number that would have been predicted by an Oracle. Each

evaluation with a given sample size is repeated several times with different seeds for the

random number generator to ensure the statistical soundness of our experiments. Across

all the datasets, we consistently observe at least an order of magnitude gap between LT

and the Oracle in fact, it is often closer to two orders of magnitude. The details of these

experiments are presented in Chapter 6.



Chapter 3

Limitation Of Theoretical Bounds

In this chapter, we investigate whether significantly better theoretical bounds can be

obtained if we are allowed to assume prior knowledge of some strong statistics of the

database. To bound the sample size for ε-close solution, we have to get the sample

bound at which all frequent itemsets are present in solution and no unacceptable false

positive is present in solution. For this we divide the problem into two sub problems, one

to get the sample bound which accepts all the frequent itemsets and second one to get

the sample size which rejects all unacceptable false positives. Much of the work required

in obtaining the LT bound lies in estimating the number of itemsets on either side of the

acceptable support range in ε-close solutions. Therefore, it seems intuitive that, perhaps

the strongest statistical information that can be advised to a frequent itemset miner

is the number of maximal frequent itemsets [4], defined below, at the given support

threshold.

Let F≥θ denote the set of all θ-frequent itemsets in T . An itemset X ∈ F≥θ is said

to be a maximal θ-frequent itemset if Y ∈ F≥θsuch that X ∈ Y . Let M≥θ denote the

set of all maximal θ-frequent itemsets in T . We now present a new upper bound on the

required sample size based on the size of M≥θ, which is arrived at by exploiting simple

observations on the lattice structure of the itemsets.

We introduce two more notations that will be used in the rest of our exposition. Let

S be a sample of T . We denote the set of all θ-frequent itemsets in the sample S by

10



Chapter 3. Limitation Of Theoretical Bounds 11

F S
≥θ. Similarly, we denote the set of all maximalθ-frequent itemsets in the sample S by

MS
≥θ.

3.1 Relaxed Random Algorithm

We begin with the description of the one-shot sampling algorithm for reporting frequent

itemsets given in [6]. This algorithm, that we call as RelaxedRandom (to indicate that

the support threshold is appropriately relaxed for mining the random database sample)

is as follows:

• Pick a random sample S.

• Execute Apriori on S with support threshold set to a relaxed value of (1− ε
2
)θ and

report all the frequent itemsets output by the algorithm, i.e, F S
(1− ε

2
)θ.

Let X ⊆ I be an itemset, with its “database support” denoted by fX . The corre-

sponding “sample support” of X in a simple random sample S is denoted by fSX . By

expressing the counts of an itemset X in the sample and in the database, in terms of

fSX and fX , respectively, and using well known Chernoff bounds [3], the following was

shown in [6]:

For all 0 < δ < 1,

Pr[fSX ≤ (1− δ)fX ] ≤ e−
δ2|S|fX

2 (3.1)

Similarly, for all 0 < δ < 1,

Pr[f sX ≥ (1 + δ)fX ] ≤ e−
δ2|S|fX

3 (3.2)

3.2 Accepting all Itemsets in F≥θ

We now present the sample size required to ensure that all itemsets in F≥θ are reported

by Relaxed Random with a probability of (1 − 1
2h

). Consider an itemset X ∈ F≥θ. It
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is not reported by Relaxed Random only if fSX < (1 − ε/2)θ. But, by Equation 3.1, it

implies

Pr[fSX ≤ (1− ε/2)fX ] ≤ e−
ε2

8
|S|θ (3.3)

Now consider the set of maximal θ-frequent itemsets, i.e, M≥θ, on which we can prove

the following claim:

Claim 3.2.1. Suppose it is true that, for all X ∈M≥θ, fSX ≥ (1− ε
2
)θ, then Relaxed

Random reports every itemset in F≥θ.

The proof of the claim follows from the observation that every transaction containing

X also contains every itemset Y ⊆ X. Therefore, it suffices to ensure that Relaxed

Random returns all itemsets in M≥θ. In turn, it means that it suffices if our algorithm

ensures that each itemset in M≥θ is reported with a probability of at least (1− 1

2h|M≥θ|
).

Therefore, we need

Pr[fSX ≤ (1− ε/2)fX ] ≤ e−
ε2

8
|S|θ ≤ 1

2h|M≥θ|
(3.4)

Solving for S in Equation 3.4 yields the following lemma:

Lemma 3.1. A sample of size S ≥ 8
ε2θ

(log |M≥θ|+ log 2h) is sufficient to ensure that

the probability of accepting all the elements of F≥θ is at least (1− 1
2h

).

3.3 Rejecting all Non-Frequent Itemsets

The key in ensuring the acceptance of all itemsets in F≥θ was identifying a set of itemsets

(M≥θ) such that, if the algorithm accepts all itemsets in the set, then it also accepts all

of F≥θ. Similarly, we need to identify a similar small enough set for the case of rejecting

all non-frequent itemsets. Here, the notion of a “negative border” [14], defined below,

comes in handy.

Consider an itemset X ∈ M≥θ ∪ NULL. Let Ir denote the set of individual items

not present in X, i.e, Ir = I \ X . Then, define NBX = ∪I∈Ir(X ∪ I)), i.e, the minimal
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supersets of X. Finally, the negative border denoted by NB, is defined as NB =

∪X∈M≥θNBX .

Claim 3.3.1. Suppose our algorithm does not report any itemset in NB, then, it

is also true that it does not report any non-frequent itemset. The proof of the claim

follows from simply observing that any non-frequent itemset X 6∈ NB is a superset of at

least one itemset in NB. Careful counting shows that,

Claim 3.3.2. The size of NB is at most (m|M≥θ| + |I|). Note that NB is

conservative as it included some itemsets in the region ((1 − ε)θ, θ) which are AFPs.

Now by following the steps of Section 3.2 and using the bound in Equation 3.2, we can

show that:

Lemma 3.2. A sample of size S ≥ 12
ε2θ

(logm+ log |M≥θ|+ log 2h) is sufficient to

ensure that the probability of rejecting all the non-frequent itemsets is at least (1− 1
2h

).

By combining Lemmas 3.1 and 3.2, we obtain the following Maximal Frequent Itemset

(MFI) bound:

Theorem 3.3. A sample of size

S ≥ 12

ε2θ
(logm+ log |M≥θ|+ log 2h) (3.5)

is sufficient to ensure that we obtain an ε-close solution with a probability of at least

(1− 1
h
).

3.4 Balancing the Two Sides

We can slightly improve the MFI bound by exploiting the imbalance in the denominators

of the exponents in the Chernoff bounds in Equations 3.1 and 3.2 on the two sides of

the deviation. For this, we have to change the Relaxed Random algorithm as follows:

After obtaining the sample S, we run Apriori with the relaxed support threshold set to

(1− ε
c
) for some c > 2. So, the allowed deviation for the frequent itemsets reduces from

a factor of ε
2

to ε
c
, and the allowed deviation for the non-frequent itemsets in the region
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(1/N, (1 − ε)θ) increases from ε
2

to (c−1)ε
c

. As before, it results in two different bounds

S1
c and S2

c for each value of c corresponding to what is shown in Lemmas 3.1 and 3.2,

respectively. What we now need is a value of c for which S1
c = S2

c . The calculations to

derive the required value of c are straightforward. For the sake of brevity, we avoid the

calculations and mention directly that a value of c around 2.22 is optimal and improves

the required bound in Theorem 3.3 to:

S ≥ 10

ε2θ
(logm+ log |M≥θ|+ log 2h) (3.6)

We carry out an empirical evaluation of the new MFI bound on the same suite of

datasets (and input thresholds) which were used in studying the empirical effectiveness

of the LT bound. Our results indicate that in every case the MFI bound is at least 5 to

10 times smaller than the LT bound. But, even then, MFI is still much larger than the

Oracle sample size by about a factor of 5. The details of these experimental results are

deferred to Chapter 6.

From a close observation of the sample sizes suggested by the LT and MFI theoretical

bounds, it seems that their looseness arises from the basic tool used in their derivation,

namely, the Chernoff bounds employed to estimate the frequency deviation of individual

itemsets in the sample. In particular, their inverse dependence on ε2 and θ even to

estimate the bound for a single itemset turns out to be a major cause for the looseness.

However, we are not aware of much better tools from the statistics literature that can

be gainfully utilized in this case.

Comment: Even ignoring its looseness, the MFI bound is difficult to exploit in an

algorithmic manner as it requires estimating the number of maximal frequent itemsets,

and the complexity of computing this number has been shown to be #P-hard in [9].



Chapter 4

VISTA Algorithm

In the previous chapter, we showed the limitation of the LT and MFI theoretical bounds

in accurately predicting the required sample sizes for practical use. We move on now

to present a voting-based iterative sampling technique algorithm (VISTA) whose goal is

to obtain ε-close solutions with a sample of the database whose size is comparable to

that of Oracle. We treat the sum of the size of the samples used in each iteration as

the total sample size of the VISTA algorithm, denoted by SV ISTA. Our focus here is

on establishing the ability of the VISTA approach to efficiently obtain highly accurate

results. The algorithm is based on an idea of repeated voting to collect enough credible

evidence on whether or not an itemset is part of F≥θ, based on evaluating small-sized

samples at each step. These mini samples are henceforth referred to as “samplets” .

4.1 High level Description

Our algorithm is iterative. At any given point in time, we maintain a list L of candidate

frequent itemsets and a list F of clearly evident frequent itemsets. These are based on

samplets of size Ssmall whose value is a K-times scaled down version of the LT bound.

In each iteration, we pick a simple random sample (with replacement) of size Ssmall. We

consider the set of frequent itemsets in the sample and give each constituent a positive

vote. The set F of clearly evident frequent itemsets is maintained as the set of itemsets

15
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that have appeared as frequent in more than half of the iterations. We stop when the set

F stabilizes, i.e. it does not change over a sufficiently long number of successive iterations

(the number is determined dynamically based on the history of changes to F over the

samplets processed thus far). The output of the algorithm is the set F at termination.

The complete VISTA algorithm is presented in Algorithm 1.

4.2 Algorithm

input : Database T , θ, ε, and division factor K ≥ 1000

output: ε-close solution (using minimum total sample)

Let Ssmall = S
K

where S denotes the LT bound for the input parameters ;

// Initialization Phase

Initialize L and F as empty sets ;

for i← 1 to 20 do

Obtain a sample Si of size Ssmall ;

Let Li be the output of Apriori on Si with θr = (1− ε
2
) and let L = Li ∪ L′ ;

end

Initialize F as the set of itemsets that appeared in at least 1
2
rd of the above

iterations ;

// Stabilization Phase

while Not Stabilized do

Obtain a sample of size Ssmall and let Lcurrent be the output of Apriori on it ;

Increment the vote of each itemset in L that appears in Lcurrent ;

Add the itemsets in Lcurrent \ L to L and initialize their vote to 1 ;

Update F to be itemsets that have appeared in 2
3
rd of the iterations (including

Initialization Phase);

end

Output F .

Algorithm 1: The VISTA Algorithm
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input: Required Stabilization Sequence Length l0

Before the starting of stabilization phase, CurLen =0;

while CurLen ≤ l0 do

Define Fold to be the F at the beginning of the current convergence sequence ;

Fdiff = | F
Fold
| ;

if (Cardinality of Fdiff is not more than 0.1% of Fold) then

CurLen++;

else

CurLen=0 ;

New Convergence Sequence Begins;

end

end

Procedure Stabilization Phase

4.3 Stabilization Phase

The set L consists of all itemsets that have appeared as frequent at least once. The set F

is the set of itemsets that have appeared as frequent in a simple majority of the iterations.

The algorithm runs its iterations till the set F stabilizes. We use the number of successive

iterations in which the set F does not change as the degree of stabilization. But, the

key question is how to choose the required length of such a sequence as a termination

criteria (end of stabilization phase). We determine this criterion dynamically depending

on progressive changes to F . The procedure is started by letting the required stable

sequence length to be a nominal number, such as 10. The initial set F is chosen based

on the output of the first few iterations (in our experiments, it is 20), and consists of all

itemsets that appeared as frequent in a majority of these iterations. The stabilization

phase starts after this initialization is completed. Our stopping condition is when we

have a continuous sequence of l0 iterations in each of which the change of F relative

to the start of the sequence is less than 0.1%. Note that the logic for the stabilization

is inherent in Algorithm 1, but, to improve clarity, we abstract it out and present in
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Procedure Stabilization Phase.

Conceptually, our approach has similarities with the ”progressive sampling algo-

rithm” of [11]. This algorithm is also iterative, analyzes a fresh samplet at each iteration,

and terminates based on a convergence criteria. The most important difference is in the

notion of voting that we employ which provides a global criteria of convergence. In

contrast, the progressive sampling algorithm employs a local convergence criteria that

is based on a comparison of the ”characteristic frequent itemsets” of the previous two

iterations. Moreover, the size of the samplets in successive iterations are increased in

a geometric manner as suggested in [13], whereas the samplet size is fixed in our ap-

proach. The local convergence criteria seems to require a long time to stabilize in the

experiments of [11]. Further, it is reported that at the prescribed level of convergence

(0.95 proportion of similarity between two successive samplets), for a synthetic database

of 250 million transactions (similar to dataset SD1 in Chapter 5), a sample of size 10%

was required for stabilization (whereas we terminate at 0.5% of the database). Finally,

their technique does not give any assurance of the nature of errors that may be present

in the results obtained from the sample, whereas our expectation with VISTA is to have

no errors except for AFPs.

4.4 ε-Close Frequencies

In previous sections, we explained how VISTA algorithm report the identities of the

ε-close frequent itemsets. As mentioned in Chapter 1, ε-close solution includes the fre-

quency of the itemsets also. We find the frequency of a known ε-close frequent itemset

as follows: Collect the samplet taken in each iteration of VISTA algorithm and make a

larger sample by adding all samplets. Find the frequency of the ε-close frequent itemset

by making a one iteration over large sample. Report the frequency of the itemset in this

sample as frequency of the itemset from VISTA algorithm. We observed that, in all our

experiments the VISTA reported frequency is with in the ε-range(refer to definition in

Chapter 1).



Chapter 5

Experimental Setup

In this chapter, we present the experimental setup for empirical evaluations of the LT

bound [6] and the new MFI bound and VISTA algorithm. First we present the details of

the datasets used in our experiments in next section. As mentioned in the introduction,

the power of the sampling techniques come to fore when working with large datasets.

We give details of how to generate large instance of the FIMI datasets such that the

correct output does not change. Then we describe the method we followed in deciding θ

for different datasets.

5.1 Datasets for the Experiments

The datasets used in our experiments include real-life datasets from the FIMI reposi-

tory that are standard in evaluation of frequent itemset mining [8], as well as synthetic

datasets generated using the IBM QUEST data generator [2]. It is important to note

that the LT bound is not useful in the context of small databases as the component 24
ε2θ

itself works out to be much larger than the database size. So, it is useful only in the case

of large datasets, and we therefore conduct the bulk of our experiments on datasets that

run to 250 million transactions. The details of how we generate large instances of the

FIMI datasets such that the distributional statistics of the dataset remain unchanged is

given in Section 5.1.3.

19
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5.1.1 Synthetic Datasets

We experimented with several synthetic datasets, and present experimental results on

a representative instance that has 250 million transactions. It was generated using the

QUEST tool with the parameters set as follows: Maximum transaction length = 35,

average transaction length = 10, and total number of items = 1000. The maximum

transaction length was limited since the LT bound increases linearly with its value. We

call this as the SD1 dataset.

5.1.2 Real Datasets

The FIMI repository consists of several real-life datasets. We pick five that were chosen to

have different characteristics. They are: (i) RETAIL, a sparse dataset, (ii) CONNECT,

a dense dataset, (iii) MUSHROOM which has maximum transaction length equal to

average transaction length, (iv) ACCIDENTS and (v) PUMSB-STAR. These datasets

are relatively small and we therefore generate large variants that are statistically identical

to the base datasets. The details of the different datasets are captured in Table 5.1.

Columns OS and GS refer to their original sizes in the repository and their size in our

experiments, respectively.

Dataset OS GS (106) Items Tavg Tmax

SD2(s,l) 100000 250 1000 10 30

ACCIDENTS 340183 150 468 31 51

CONNECT 67557 195 129 43 43

PUMSB-STAR 49046 196 2088 50 63

MUSHROOM 8124 250 119 23 23

RETAIL 88126 176 16469 10 76

Table 5.1: Details of the FIMI datasets
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5.1.3 Generation of Large Datasets

The original sizes of the FIMI datasets are relatively small. One could generate a large

instance of a dataset by simply appending multiple copies of it, one after another. But, on

such a dataset, a trivial sampling algorithm which picks the first OS transactions gives

the exact result! Therefore, it is essential to avoid trivial solutions which exploit the

manner in which the large instances are generated. We generate large random instances

of the original datasets, but without changing the underlying distributional statistics.

The original dataset is partitioned into P1, . . . , PC partitions, each having 10 transactions

apiece. The original dataset is repeated GS OS times (refer to Table 5.1) as follows:

Every time we pick a random permutation π of (1, . . . ,C), and then write the

partitions according to this permutation. Specifically, the partitions are written in the

order (Pπ(1), Pπ(2), . . . , Pπ(C)). Within each partition, the transactions are again written

by picking a random permutation. Note that this process does not change the column

distributional statistics in anyway.

5.2 Setting Support Threshold θ

For frequent itemset mining, the most important input parameter is θ, the support level.

Since there are many possible values of θ, one needs to choose a value of θ that is

challenging from the point of view of producing θ-close solutions. In this section, we

describe the method we followed in deciding θ for different datasets.

5.2.1 Synthetic Datasets

For the large synthetic dataset SD1, the number of frequent itemsets at lower support

levels is very high, possibly due to random correlations in the data generation. There-

fore, we set the θ values to be relatively high at 0.01 and 0.02 at these settings, there

are a reasonable number of frequent itemsets (4837 and 1268, respectively), but not

impractically many.

Consider a particular θ value, say θ = x. Let the number of frequent itemsets at x
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be Nx. Let Nx−δ be the number of frequent itemsets when x is decremented by a small

value δ. If the Nx−δ
Nx

is close to 1, it is not a difficult point to operate under for a sampling

scheme as minor variations in its frequency estimates are unlikely to result in significant

errors. On the other hand, if Nx−δ
Nx

is high, it is a difficult to point for a sampling scheme

to operate under as minor variations in statistical estimates from the sample can lead to

significant errors. Starting with 1 and proceeding to lower values, we stop at the first x

where the ratio Nx−δ
Nx

is above a certain threshold. The rationale for stopping at the first

possible instant is, the sample size given at this point is least across all such points (and

hence difficult to ensure accuracy).

5.2.2 Real Datasets

For the FIMI datasets, we deliberately choose θ values that make it hard for the sampling

techniques to work well that is, we aim to evaluate the tough nut scenarios. Consider

a particular θ value, say θ = x. Let the number of frequent itemsets at x be Nx. Let

Nx−δ be the number of frequent itemsets when x is decremented by a small value δ. If

the Nx−δ
Nx

is close to 1, it is not a difficult point to operate under for a sampling scheme

as minor variations in its frequency estimates are unlikely to result in significant errors.

On the other hand, if both Nx−δ
Nx

and Nx−δ −Nx are high, it is a difficult situation for a

sampling scheme to operate under as minor variations in statistical estimates from the

sample can lead to significant errors. Starting with θ = 1 and proceeding to lower values,

we stop at the first x where the ratio Nx−δ
Nx

and the difference Nx−δ−Nx are above certain

thresholds. The rationale for stopping at the first possible instant is, the sample size

given at this setting is the least across all such settings, thereby increasing the scope for

making errors.



Chapter 6

Empirical Results

In previous chapters, we presented the LT bound, MFI bound and VISTA algorithm to

get the minimum sample bound for ε-close solution. To evaluate the relative performance

of these bounds and to confirm the claims that we have made about their excepted

behavior, we conducted a series of experiments that covered real and synthetic datasets

(detailed in Chapter 5). The performance metric in these experiments includes number

of UFPs, AFPs, TPs present in solution when frequent itemset mining algorithm is

executed over certain sample taken from database.

6.1 Evaluation of the LT Bound

In this section, we present an empirical evaluation of the gap between the LT bound and

practically found minimum required sample. By practically found minimum required

sample we mean, a minimum sample determined by an all powerful oracle which can

evaluate all possible sample sizes and output the minimum size at which ε-close solu-

tions are still obtained. We refer to this minimum size as SOracle.

We implement the Oracle for given input thresholds θ and ε as follows: Let S denote

the sample size given by the bound

24
ε2(1−ε)θ

[
∆ + 5 + log 5h

(1−ε)θ

]
We execute RelaxedRandom algorithm on the following

23
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sequence of samples: S1, S2, ... where Si = S2i−1. We stop the process at the first Si for

which the algorithm returns (i) one or more UFP itemsets OR (ii) misses some itemset in

F≥θ. Note that the minimum required sample lies in the range [Si, Si−1]. We now carry

out a similar binary search within this region to further narrow down to the minimum

required sample. We denote the size determined by this process as SOracle, the minimum

required sample size to obtain ε-close solution based on only one-shot sampling. However,

a sampling strategy that uses sub-sampling may be able to obtain ε-close solution with

a sample smaller than SOracle.

In the results given below, IFN refers to the false negatives (missing itemsets from

F≥θ), IAFP refers to the of Acceptable False Positives, and IUFP refers to the number of

Unacceptable False Positives reported by the algorithm. Each experiment (combination

of dataset and input thresholds) was run multiple times (often 10) to make sure the

results are credible. However, for brevity, we present the results of just one run, in

particular, the one in which Si−1 is the highest. Therefore, the actual gap between

Oracle and the LT bound may be even larger than what our results suggest below. We

present the results of the experiments conducted on synthetic and FIMI real datasets in

next subsections.

6.1.1 Synthetic Dataset Results

The synthetic dataset SD1 with 250 million transactions is tested with θ values of 0.01

and 0.02. The other parameters are set as ε = 0.1, and h = 100 (i.e, probability of

success is 0.99). The LT bound works out to be 12 million and 6 million for θ = 0.01,

0.02, respectively. The results of the experiment are shown in Table 6.1 and 6.2, which

presents the number of FNs, AFPs, and UFPs at different sample sizes. The actual

number of θ-frequent itemsets at 0.01 and 0.02 are 4837and 1268, respectively. The row

corresponding to the Oracle is highlighted in bold. Across the ten runs, the first four

rows (upto highlighted row) for the two columns FN and UFP are identical. In this

case, the theoretical bound is 30 times larger than the Oracle. Note that the number of

itemsets in the range [(1− ε)θ, θ), i.e, AFPs, are comparable for LT and Oracle.
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Sample size % of T IFN IAFP IUFP

12 Million 5 0 470 0

6 Million 2.5 0 473 0

3 Million 1.3 0 448 0

0.4 Million 0.16 0 503 0

0.3 Million 0.1 0 429 2

0.1 Million 0.04 5 507 11

Table 6.1: Evaluation of the LT Bound on SD1 with θ = 0.01

Sample size % of T IFN IAFP IUFP

6 Million 2.5 0 145 0

3 Million 1.3 0 165 0

0.5 Million 0.2 0 151 0

0.1 Million 0.04 0 137 0

0.05 Million 0.02 2 152 1

0.025 Million 0.01 21 148 43

Table 6.2: Evaluation of the LT bound on SD1 with θ = 0.02

6.1.2 Evaluation on FIMI Real-life Repository

We evaluated LT bound on FIMI datasets to test the looseness of the bound over real

datasets [8]. For each of the five datasets, we set the value of θ to a challenging value, as

described in Chapter 5 The ε parameter is set to be 0.01 for all datasets except RETAIL,

which is sparse and therefore needs θ to be as low as 0.0045. Further, requiring an

accuracy range of (1 − 0.01)0.0045 turns to be stringent and the LT bound increases

beyond the size of the dataset itself. Therefore, in this case, we relax ε to 0.1 and the LT

bound works out to be 101 million. The results of one run of the experiment for each of

the datasets are captured in Table 6.3 through 6.7. As mentioned before, there are no

deviations across experiments, especially in evaluating the Oracle.
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Summary : Table 6.7 summarizes the evaluation of the LT bound for the synthetic

and different FIMI datasets. For each dataset it captures the support level (θ), number

of frequent itemsets at θ, sample size suggested by LT and the Oracle across multiple

runs of the experiments. Note that the best instances for LT are those in which the

average transaction length is comparable to the maximum transaction length. However,

across all the instances we observe huge gaps (from 24 to 200 times) between LT and

Oracle. In fact, for very sparse datasets, the ε value needs to be increased in order to

even get a reasonable bound. The looseness is at least an order of magnitude, if not two.

Sample size % of T IFN IAFP IUFP

44 Million 17.6 0 79 0

32 Million 12.8 0 79 0

16 Million 6.4 0 79 0

4 Million 1.6 0 79 0

0.6 Million 0.24 0 82 0

0.25 Million 0.1 7 79 0

Table 6.3: Evaluation of the LT bound on MUSHROOM at θ = 0.4

Sample size % of T IFN IAFP IUFP

32 Million 21.33 0 2644 0

16 Million 10.67 0 2614 0

8 Million 5.3 0 2753 0

2 Million 1.35 0 2932 0

0.8 Million 0.54 0 3001 0

0.5 Million 0.34 1 3011 0

0.25 Million 0.17 5 2985 0

Table 6.4: Evaluation of the LT bound on ACCIDENTS at θ = 0.5
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Sample size % of T IFN IAFP IUFP

16 Million 9 0 65 0

8 Million 4.5 0 65 0

4 Million 2.26 0 63 0

2 Million 1.13 0 63 0

0.6 Million 0.37 0 62 0

0.5 Million 0.31 4 56 0

0.25 Million 0.15 7 54 0

Table 6.5: Evaluation of the LT bound on RETAIL at θ = 0.0045

Sample size % of T IFN IAFP IUFP

25.6 Million 12.24 0 1913 0

12.8 Million 6.12 0 1913 0

6.4 Million 3.06 0 1723 0

3.2 Million 1.53 0 1702 0

1.6 Million 0.76 0 1536 0

0.8 Million 0.38 0 1458 0

0.3 Million 0.014 0 1533 0

0.1 Million 0.0475 3 1952 0

0.05 Million 0.0238 232 2334 0

Table 6.6: Evaluation of the LT bound on PUMSB-STAR at θ = 0.40

6.2 Evaluation of the MFI bound

We now move on to the empirical evaluation of the MFI bound presented in Chapter 3.

We evaluated the bound as follows: First, Apriori was executed on the entire dataset and

the correct result was obtained. From this, the number of maximal frequent itemsets was

computed and fed as the input parameter |M≥θ| to the bound. Table 6.9 summarizes

the results, wherein the fifth column shows the multiplicative gap between LT and MFI

bounds and the sixth column shows the gap between the MFI bound and Oracle. It
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Sample size % of T IFN IAFP IUFP

16 Million 8.16 0 6437 0

8 Million 4.1 0 6421 0

2 Million 1.02 0 6933 0

1 Million 0.5 0 7377 0

0.3 Million 0.015 0 9013 0

0.25 Million 0.012 5 11245 0

Table 6.7: Evaluation of the LT bound on CONNECT at θ = 0.9

Benchmark θ |F≥θ| SLT SOracle
SLT

SOracle

SD1 0.01 4837 12 0.4 30

MUSHROOM 0.4 12384 44 1 73

ACCIDENTS 0.5 8099 30.7 1 38

RETAIL 0.0045 580 100.64 0.5 168

PUMSB-STAR 0.4 27348 45.8 0.5 150

CONNECT 0.9 35411 14.7 0.5 49

Table 6.8: Summary of the LT bound Evaluation

is easy to observe in this table that the knowledge of the strong statistical measure

significantly improves the tightness of the bound. But, there is still a large gap (as much

as 8 times in some instances) between the MFI bound and the Oracle.

6.3 Evaluation of the VISTA Algorithm

In this section, we present results for VISTA algorithm (Chapter 4) to get minimum

required sample bound. One of the input parameter for VISTA algorithm is the samplet

size. To choose the samplet size, we experimented with different scaling factors for the

LT bound, i.e, the input parameter K varied from 1000 to 10000. In each of the cases,

although the number of iterations for the stabilization were different, the total sample

size across iterations did not vary much. Moreover, the results were also nearly identical.
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Dataset SLT SMFI SOracle
SLT
SMFI

SMFI

SOracle

SD1 13.7 1.83 0.4 7.48 4.6

ACCIDENTS 30.7 3.4 0.8 9.03 4.25

CONNECT 14.7 1.7 0.3 8.64 5.7

PUMSB-STAR 45.8 4.4 0.3 10.41 14.7

MUSHROOM 44 7.7 0.6 5.71 12.83

RETAIL 49 4.3 0.6 11.4 7

Table 6.9: Comparison of the MFI bound with LT and Oracle

Therefore, we present the results with K = 1000.

With regard to stabilization, the number of iterations required to confirm the algo-

rithm has reached the stabilization is decided by a parameter called required sequence

length. This parameter will get incremented depending on the
|Fdiff |

10
. We denote the

total sample used by VISTA by SV ISTA. One impressive observation that held across

all datasets (and across multiple runs for each dataset) was that at the end of the sta-

bilization phase, the algorithm returned truly ε-close solutions, i.e, both FN and UFP

were zero. Table 6.9 captures the sample sizes for: LT, MFI bound, VISTA and Oracle.

We conclude that VISTA stabilized with total samples much smaller than MFI bound.

In fact, as claimed in the introduction, SV ISTA is always within twice of SOracle, the

minimum required sample for one-shot sampling.

In Figure 6.1 we also show how the stabilization phase of the algorithm proceeds for

the synthetic dataset. At each iteration, we plot the number of true positives, AFPs,

UFPs, and FNs. At stabilization both FNs and UFPs are zero. The vertical line around

80th iteration corresponds to the iteration at which the total sample used is equal to

SOracle. Note that the algorithm stabilizes around 110th iteration.

6.3.1 Hard Case for Iterative Sampling

Recall that the θ values for the different datasets were chosen so as to make it difficult

for sampling algorithms to obtain accurate results. In evaluating VISTA, we go one
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Dataset SLT SMFI SV ISTA SOracle

SD1 13.7 1.83 0.73 0.5

ACCIDENTS 30.7 3.4 1.4 0.8

CONNECT 14.7 1.7 0.6 0.3

PUMSB-STAR 45.8 4.4 0.49 0.3

MUSHROOM 44 7.7 1.2 0.6

RETAIL 49 4.3 0.7 0.6

Table 6.10: VISTA Algorithm Results

Dataset RelaxedRandom VISTA

Size (Mill) 1.5 1.5

Support 21.4% 21.4%

Total Output (TP+AFP) 22852 19375

True Positives (TP) 18853 18853

AFP’S (AFP) 3999 522

Table 6.11: Hard Case: Evaluation on MUSHROOM at θ = 0.214

step further and identify an even harder case. We try to identify a support level θ = x

such that the ratio Nx−δ
Nx
� 1 (the notations Nx and Nx−δ are used as in Chapter 5),

i.e, there is a step-like increase in frequent itemsets at x. It turned out that not all the

datasets had such a value of x but the MUSHROOM dataset did feature such a point at

θ = 0.214. Figure 6.2 shows the log plot of the number of frequent itemsets versus the θ

support threshold. Observe the step-like increase around 21.4%. We evaluated VISTAs

accuracy in this scenario as compared to the accuracy of the RelaxedRandom algorithm

( Chapter 3) on a random sample of equivalent size SV ISTA. The results are captured

in Table 6.11 and show that while RelaxedRandom returns far too many itemsets in the

range [(1− ε)θ, θ], VISTA returns very few of them.
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Figure 6.1: Progression towards stabilization for SYNTHETIC

6.3.2 Frequencies reported by VISTA

From previous sections, we know that VISTA algorithm is able to report all the identi-

ties of the frequent itemsets. To find the corresponding frequencies of the itemsets we

executed the method given in Chapter 4.4. We observed that the frequencies reported by

VISTA are with in ε-range. We call the frequencies reported by VISTA as ε-close frequen-

cies. Table 6.12 summarizes the evaluation of ε-close frequencies reported by VISTA.

We use =0.01 for all datasets. For each dataset, it captures the support(θ), number

of frequent itemsets in database (F ), number of ε-close frequent item sets reported by

VISTA(Fε), number of itemsets whose reported frequency is in ε-close frequency range,
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Figure 6.2: Choosing θ in the hard case

maximum deviation of ε-close frequency from database frequency, average deviation of ε-

close frequency from database frequency for all itemsets. The last two columns shows the

deviation in terms of ratio of al lowed deviation (ε) and observed deviation (εavg, εmax).

Across all datasets we observe that VISTA is able to report ε-close frequencies for all

itemsets. And deviation of ε-close frequency from database frequency is lower than

allowed deviation.
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Dataset θ F Fε F freq
ε

εavg
ε

εmax
ε

MUSHROOM 0.2 53846 54653 54653 0.26 0.63

ACCIDENTS 0.5 8099 11052 11052 0.34 0.73

CONNECT 0.9 35411 42404 42404 0.43 0.81

PUMSB-STAR 0.4 27348 30004 30004 0.21 0.58

RETAIL 0.0045 580 611 611 0.28 0.79

Table 6.12: Summary of Frequencies reported by VISTA



Chapter 7

Conclusions

In this thesis, we have first evaluated the looseness of various theoretical bounds on the

sample size required to obtain ε-close solutions. Our results over a large and representa-

tive suite of massive datasets demonstrate that both the LT bound from the literature,

as well as our new and tighter MFI bound which assumes apriori knowledge of the num-

ber of maximal frequent itemsets, are both rather loose as compared to the minimum

size required, often running to orders of magnitude. The reasons for the looseness are

inherent since they are based on the Chernoff bounds which turn out to be rather weak.

As a practical solution to this issue, we have presented VISTA, a voting-based iterative

algorithm that consistently provides the data mining quality of ε-close solutions while

only incurring overheads comparable to that required by Oracle, an idealized one-shot

sampling algorithm.

In a nutshell, we have shown here how sampling can be effectively used for mining

massive datasets, whereas most of the prior literature had confined their attention and

were applicable only to small datasets.
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Appendix A

Stabilization of VISTA Algorithm

for FIMI Datasets

In Chapter 6, we showed how the stabilization phase of the VISTA algorithm proceeds

for synthetic dataset. Here, we show the graphs for the real datasets. Figure A.1 through

A.4 shows the stabilization phase of VISTA for FIMI real datasets.
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Figure A.1: Progression towards stabilization for CONNECT



Appendix A. Stabilization of VISTA Algorithm for FIMI Datasets 37

Figure A.2: Progression towards stabilization for RETAIL
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Figure A.3: Progression towards stabilization for MUSHROOM
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Figure A.4: Progression towards stabilization for PUMSB STAR
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