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Abstract

We investigate here the query reverse-engineering problem of unmasking SQL queries hidden

within database applications, a problem with use-cases ranging from legacy code to server

security. As a first step in addressing this challenge, we present UNMASQUE, an extraction

algorithm that is capable of identifying a substantive class of complex hidden queries. A special

feature of our design is that the extraction is non-invasive w.r.t. the application, examining

only the results obtained from its executions on databases derived with a combination of data

mutation and data generation techniques.

Further, potent optimizations, such as database size reduction to a few rows, are incorpo-

rated to minimize the extraction overheads. A detailed evaluation over benchmark databases

demonstrates that UNMASQUE is capable of correctly and efficiently extracting a broad spec-

trum of hidden queries. We also show UNMASQUE’s capability to convert imperative code

into equivalent SQL queries for some famous blogging applications.
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Chapter 1

Introduction

Over the past decade, query reverse-engineering (QRE) has evinced considerable interest from

both the database and programming language communities (e.g. [14, 11, 10, 9, 5, 3, 2, 7, 4, 13]).

The generic problem tackled in this stream of work is the following: Given a database instance

Di and a populated result Ri, identify a candidate SQL query Qc such that Qc(Di) = Ri. The

motivation for QRE stems from a variety of use-cases, including: (i) reconstruction of lost

queries; (ii) query formulation assistance for naive SQL users; (iii) enhancement of database

usability through a slate of instance-equivalent candidate queries; and (iv) explanation for

unexpectedly missing tuples in the result.

Impressive progress has been made on addressing the QRE problem, with potent tools such

as Talos[11], Regal[10] and Scythe[13] having been developed over the years. Notwithstanding,

there are intrinsic challenges underlying the problem framework: First, the choice of candidate

query is organically dependent on the specific (Di,Ri) instance provided by the user, and can

vary hugely based on this initial sample. As an extreme case in point, if the result has only

a single row, the generated candidates are likely to be trivial queries, although the ideal an-

swer may be an aggregation query. Second, given the inherently exponential search space of

alternatives, identifying and selecting among the candidates is not easily amenable to efficient

processing. Third, the precise values of filter predicates, as well as advanced SQL constructs

(e.g. Limit, Like, UDFs), are fundamentally impossible to deduce since the candidate query

is constructed solely from the instance.

In this report, we consider a variant of the QRE problem, wherein a ground-truth query is ad-

ditionally available, but in a hidden form that is not easily accessible. For example, the original

query may be explicitly hidden in a black-box application executable. Moreover, encryption or

obfuscation may have been additionally incorporated to further protect the application logic.

An alternative scenario is that the application is visible but effectively opaque because it is
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comprised of hard-to-comprehend SQL (such as those arising from machine-generated object-

relational mappings), or poorly documented imperative code that is not easily decipherable.

Such “hidden-executable” situations could arise in the context of legacy code, where the original

source has been lost or misplaced over time (prominent instances of such losses are recounted

in [22]), or when third-party proprietary tools are part of the workflow, or if the software has

been inherited from external developers.

Formally, we introduce the hidden-query extraction (HQE) variant of QRE as follows: Given

a black-box application A containing a hidden SQL query QH , and a database instance Di on

which QH produces a populated result Ri, unmask QH to reveal the original query.

We leverage the presence of the hidden ground-truth to deliver a variety of advantages:

• The outcome now becomes independent of the initial (Di,Ri) instance.

• Since the application can be invoked repeatedly on different databases, efficient and fo-

cused mechanisms can be designed to precisely identify the hidden query.

• It allows for capturing difficult SQL constructs (we show here how Like, Limit, Having

and scalar UDFs can be extracted).

• As a collateral benefit, the unmasked query can serve as a definitive seed input to database

usability tools like Talos[11] which create an array of instance-equivalent queries.

• New use-cases become feasible – for instance, a security agency may wish to ascertain

offline the real intent of encrypted queries that were refused entry due to concerns about

their origins.

At first glance it may appear that the existing QRE techniques could be used to provide a

seed query for HQE, followed by refinements to precisely identify the hidden query. However, as

explained later, this is not a viable approach, forcing us to design the extraction procedures from

scratch. Our experience in this effort is that HQE proves to be a challenging research problem

due to factors such as (a) acute dependencies between the various clauses of the hidden query,

(b) possibility of schematic renaming, (c) result compression due to aggregration functions, and

(d) presence of UDFs.
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(a) Hidden Query (QH) (b) Extracted Query (QE) (c) Sample Regal Query

Figure 1.1: Hidden Query Extraction Example (TPC-H Q3)

1.1 UNMASQUE Algorithm

We take a first step towards addressing the HQE problem here by presenting UNMASQUE1,

an algorithm that uses a judicious combination of database mutation and synthetic database

generation to identify the hidden query QH . The extraction is completely non-invasive wrt

the application code, examining only the results obtained from its executions on carefully

constructed databases. As a result, platform-independence is achieved wrt the underlying

database engine.

Currently, UNMASQUE is capable of extracting a substantive class of SPJGHAOL2 queries.

As an exemplar, consider QH in Figure 1.1a, which encrypts TPC-H [25] query Q3 in a stored

procedure, and features most of these clauses. Our extracted equivalent, QE, is shown in

Figure 1.1b, clearly capturing all semantic aspects of the original query, including the scalar

revenue UDF. Only syntactic differences, such as a different grouping column order, remain in

the extraction.

As a reference point, the candidate query produced by Regal+[10] for this scenario is shown

in Figure 1.1c. While the query tables and joins are detected correctly, there are significant

discrepancies in the filters, grouping columns and aggregation functions. Moreover, the query is

produced after removing limit, order and UDF clauses and converting character and date type

columns to integers to suite their environment. Finally, producing even this limited outcome

took considerable time and resources.

1.2 Extraction Workflow

UNMASQUE operates according to the pipeline shown in Figure 1.2, where it unmasks the hid-

den query elements in a structured manner. It starts with the from clause, continues on to the

join and filter predicates, follows up with the projection and group by+aggregation

1Unified Non-invasive MAchine for Sql QUery Extraction
2Select, Project, Join, GroupBy, Having, Agg, Order, Limit
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Figure 1.2: UNMASQUE Architecture

columns, and concludes with the order by and limit functions (as explained in Section 6.2,

a different pipeline structure is required to extract Having clause). The initial elements are

extracted using database mutation strategies, whereas the subsequent ones are extracted lever-

aging database generation techniques. Further, while some of the elements are relatively easy to

extract (e.g. from), there are others (e.g. group by) that require carefully crafted methods

for unambiguous identification. The final component in the pipeline is the query assem-

bler which puts together the different elements of QE and performs canonification to ensure a

standard output format.

1.3 Extraction Efficiency

To cater to extraction efficiency concerns, UNMASQUE incorporates a variety of optimizations.

In particular, it solves a conceptual problem of independent interest: Given a database instance

D on which a hidden query QH produces a populated result R, identify the smallest subset Dmin

of D such that the result of QH continues to be populated.

At first glance, it may appear that Dmin can be easily obtained using well-established

provenance techniques (e.g. [6]). However, due to the hidden nature of QH , these approaches

are no longer viable. Therefore, we design alternative strategies based on a combination of

sampling and recursive database partitioning to achieve the minimization objective.

The database minimization is applied immediately after the from clause has been identified,

as shown in Figure 1.2. And the reduction is always to the extent that the subsequent SPJ

extraction is carried out on miniscule databases containing just a handful of rows. In an

analogous fashion, the synthetic databases created for the GAOL extraction are also carefully

designed to be very thinly populated. Overall, these reductions make the post-minimization
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processing to be essentially independent of database size.

1.4 Performance Evaluation

We have evaluated UNMASQUE’s behavior on a suite of complex decision-support queries, and

on imperative code sourced from blogging tools. The performance results of these experiments,

conducted on a vanilla PostgreSQL [20] platform, indicate that UNMASQUE precisely identifies

the hidden queries in our workloads in a timely manner. As a case in point, the extraction

of the example Q3 on a 100 GB TPC-H database was completed within 10 minutes. This

performance is especially attractive considering that a native execution of Q3 takes around 5

minutes on the same platform.

1.5 Organization

The rest of the report is organized as follows: In Chapter 2, a precise description of the HQE

problem is provided, along with the notations. The following chapters – Chapter 3 and 4

– present the components of the UNMASQUE pipeline, which progressively reveal different

facets of the hidden query. The experimental framework and performance results are reported

in Chapter 5. Extraction of the Having clause and other extensions are discussed in Chapter 6.

Chapter 7 summarizes some theoretical results about HQE. Finally, our conclusions and future

research avenues are summarized in Chapter 8.
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Chapter 2

Problem Framework

We assume that an application executable object file is provided, which contains either a single

SQL query or imperative logic that can be expressed in a single query. If there are multiple

queries in the application, we assume that each of them is invoked with a separate function

call, and not batched together, reducing to the single query scenario. This assumption is

consistent with open source projects such as Wilos [27], which contain code segments wherein

each function implements the logic of a single relational query.

If the hidden SQL query is present as-is in the executable, it can be trivially extracted

using standard string extraction tools (e.g. Strings [17]). However, if there has been post-

processing, such as encryption or obfuscation, for protecting the application logic, this option is

not feasible. An alternative strategy is to re-engineer the query from the execution plan at the

database engine. However, this knowledge is also often not accessible – for instance, the SQL

Shield tool[23] blocks out plan visibility in addition to obfuscating the query. Finally, if the

query has been expressed in imperative code, then neither approach is feasible for extraction.

Moving on to the database contents, there is no inherent restriction on column data types,

but we assume for simplicity, the common numeric (int, bigint and float with fixed precision),

character (char, varchar, text), date and boolean types. The database is freely accessible

through its API, supporting all standard DML and DDL operations, including creation of a

test silo in the database for extraction purposes.

2.1 Extractable Query Class

The QRE literature has primarily focused on constructing generic SPJGA queries that do not

feature non-equi-joins, nesting, disjunctions or UDFs. We share some of the restrictions but

have been able to extend the query extraction scope to include HOL constructs, as well as

6



Symbol Meaning Symbol Meaning(wrt query QE)

A Application TE Set of tables in query
F Application Executable CE Set of columns in TE
D Initial Database JGE Join graph
R Result of F on D JE Set of join predicates
T Set of all tables in D FE Set of filter predicates
QH Hidden Query PE Set of native projections with mapped result columns
QE Extracted Query AE Set of aggregations with mapped result columns
Dmin Reduced Database GE Set of group by columns
SG Schema Graph of database HE Set of having predicates

−→
OE Sequence of ordering result columns

lE limit value

Table 2.1: Notations

simple scalar UDFs. Further, we expect join graph to be a subgraph of schema graph. There

are additional mild constraints on some of the constructs – for instance, the limit value must

be at least 3, there are no filters on key attributes – and they are mentioned in the relevant

locations in the following chapters. We hereafter refer to this class of supported queries as

Extractable Query Class (EQC). Our subsequent description of UNMASQUE on EQC uses the

sample TPCH Query 3 of the Introduction (Figure 1.1a) as the running example.

For ease of exposition and due to space limitations, we initially present UNMASQUE for

SPJGAOL queries, and defer the Having clause to Section 6.2. Further, we assume a slightly

simplified framework in the subsequent description – for instance, that all keys are positive

integer values – the extensions to the generic cases are provided at the end.

The notations used in our description of the extraction pipeline are summarized in Table 2.1.

To highlight its black-box nature, the application executable is denoted by F, while
−→
OE has a

vector symbol to indicate that the ordering columns form a sequence.

2.2 Overview of the Extraction Approach

To set up the extraction process, we begin by creating a silo in the database that has the same

table schema as the original user database. Subsequently, all referential integrity constraints

are dropped from the silo tables, since the extraction process requires the ability to construct

alternative database scenarios that may not be compatible with the existing schema. We then

create the following template representation for the to-be extracted query QE:

Select ( PE, AE ) From TE Where JE ∧ FE
Group By GE Order By

−→
OE Limit lE;

and sequentially identify each of the constituent elements, as per the pipeline shown in Fig-

ure 1.2.

The initial segment of the pipeline is based on mutations of the original/reduced database

7



and is responsible for handling the SPJ features of the query which deliver the raw query

results. The modules in this segment require targeted changes to a specific table or column

while keeping the rest of the database intact.

In contrast, the second pipeline segment is based on the generation of carefully-crafted

synthetic databases. It caters to the GAOL query clauses, which are based on manipulation of

the raw results. The modules in this segment require generation of new data for all the query-

related tables under various row-cardinality and column-value constraints. We deliberately

depart from the mutation approach here since these constraints may not be satisfied by the

original database instance.

We hereafter refer to these two segments as the Mutation Pipeline and the Generation

Pipeline, respectively, and present them in detail in the following chapters.

8



Chapter 3

Mutation Pipeline

The SPJ core of the query, corresponding to the from (TE), where (FE, JE) and select

(PE) clauses, is extracted in the Mutation Pipeline segment of UNMASQUE. Aggregation

columns in the select clause are only identified as projections here, and subsequently refined

to aggregations in Generation Pipeline.

3.1 From Clause

To identify whether a base table t is present in QH , the following elementary procedure is

applied: First, t is temporarily renamed to temp. Then, F is executed on this mutated schema

and we check whether it throws an error – if yes, t is part of the query; Finally, temp is reverted

to its original name t.

By doing this check iteratively over all the tables in the schema, TE is identified. With Q3,

the procedure results in

TE = {customer, lineitem, orders}.

3.2 Database Minimization

For enterprise database applications, it is likely that D is huge, and therefore repeatedly exe-

cuting F on this large database during the extraction process may take an impractically long

time. To tackle this issue, before embarking on the SPJ extraction, we attempt to minimize

the database as far as possible while maintaining a populated result. Specifically, we address

the following row-minimality problem:

Given a database instance D and an executable F producing a populated result on D, derive

a reduced database instance Dmin from D such that removing any row of any table in TE results

in an empty result.

9



With this definition of Dmin, we can state the following strong observation for EQC−H

(EQC without having):

Lemma 3.1: For the EQC−H , there always exists a Dmin wherein each table in TE contains

only a single row.

Proof: Firstly, since the final result is known to be populated, the intermediate result

obtained after the evaluation of the SPJ core of the query is also guaranteed to be non-empty.

This is because the subsequent GAOL elements only perform computations on the intermediate

result but do not add to it. Now, if we consider the provenance for each row ri in the interme-

diate result, there will be exactly one row as input from each table in TE because: (i) if there

is no row from table t, ri cannot be derived because the inner equi-join (as assumed for the

query class EQC) with table t will result in an empty result; (ii) if there are k : (k > 1) rows

from t, (k−1) rows either do not satisfy one or more join/filter predicates and can therefore be

removed from the input, or they will produce a result of more than one row since there is only

a single instance of t in the query. In essence, a single-row R can be traced back to a single-row

per table in Dmin. 2

We hereafter refer to this single-row Dmin as D1– the reduction process to identify this database

is explained next.

Reducing D to D1

At first glance, it might appear trivial to identify a D1– simply pick any row from the R

obtained onD and compute its provenance using the well-established techniques in the literature

(e.g. [6]) – the identified source rows from TE constitute the single-row D1. However, these tuple

provenance techniques in the literature are predicated on prior knowledge of the query. This

makes them unviable for identifying D1 in our case where the query is hidden. Therefore,

we implement the following iterative-reduction process instead: Pick a table t from TE that

contains more than one row, and divide it roughly into two halves. Run F on the first half,

and if the result is populated, retain only this first half. Otherwise, retain only the second

half, which must, by definition, have at least one result-generating row (due to Lemma 3.1).

When eventually all the tables in TE have been reduced to a single row by this process, we have

achieved D1.

In principle, the tables in TE can be progressively halved in any order. However, note that

after each halving, F is executed to determine which half to retain, and therefore we would

like to minimize the time taken by these executions. Accordingly, we choose a policy of always

halving the currently largest table in the set. This is because this policy can be shown to

10



Figure 3.1: D1 for Q3

require, in expectation, the least amount of data processing to reach the D1 target.

To make the above concrete, a sample D1 for Q3 (created from an initial 100 GB instance)

is shown in Figure 3.1.

3.3 Join Predicates

To extract the join predicates JE of QH , we start with SG, the original schema graph of the

database. Note that, the nodes in SG are key columns (and not tables which is usually the

case with the term, schema graph) and each edge (u, v) denotes an equi-join predicate u = v.

From SG, we create an (undirected) induced subgraph whose vertices are the key columns in

TE, and edges are the possible join edges between these columns. In the case of composite keys,

each column within the key is treated as a separate node.

After that, each connected component in the subgraph is converted to a corresponding cycle

graph, hereafter referred to as a cycle, with the same set of vertices. Note that the elementary

graph with two nodes and and an edge connecting them is also considered to be a cycle. The

motivation for this graph conversion step is the following: Checking for the presence of a

connected component in the query join graph JGE, is equivalent to checking the presence of

the corresponding cycle. Therefore the collection of all the cycles put together is referred to as

candidate join-graph, or CJGE.

We now individually check for the presence of each CJGE cycle in JGE, using the iterative

11



procedure shown in Algorithm 1. The check is done in the following three steps: (i) Using

the Cut procedure, remove a pair of edges from a candidate cycle CC; this partitions CC into

two connected components; these new components are converted into cycles (C1 and C2) by

adding the missing edge; (ii) Negate in D1 all the values in the columns corresponding to the

vertices in C1, using the Negate procedure; (iii) Run F on this mutated database – if the result

is empty, we conclude the edges are present in JGE and the edges are returned to the parent

cycle CC; otherwise, C1 and C2 are included as fresh candidates in CJGE. If a candidate cycle

has reduced to a single edge, then the check is carried out only with the Negation step using

one of the two vertices.

In the above procedure, the motivation behind removing a pair of edges is the observation

that for JGE to not contain a cycle CC, at least two edges of CC should be absent from

JGE. The reason is that, in the above context, if an edge is removed from a cycle, the resultant

graph is still equivalent to the cycle due to transitivity property of inner-equi join over columns.

Further, the algorithm is bound to terminate because in each iteration, a cycle is either removed

or partitioned into smaller cycles.

With regard toQ3, CJGE contains only two connected components – specifically, (l orderkey, o orderkey)

and (o custkey, c custkey). Each component has a single edge that returns true when checked

for presence by Algorithm 1. So, in this case, JGE ≡ CJGE. In the final step, each edge in

JGE is converted into a predicate in JE. Therefore, for Q3, the join predicates turn out to be:

JE = {l orderkey=o orderkey, o custkey=c custkey}.

Lemma 3.2: For a hidden query QH ∈ EQC, UNMASQUE correctly extracts JGE, or

equivalently, JE.

Proof: It is easy see that when there is only one edge in the cycle, it will be correctly

extracted as the output after removing it will be empty iff this edge is present in the join graph.

For the edges that belong to bigger cycles, we prove the claim by contradiction. Consider an

edge (u, v) that belongs to JGE but UNMASQUE fails to extract it (i.e. a false negative). This

implies that when the edge (u, v) is removed by value negation (with any other edge) the result

continues to be populated. This is not possible if (u, v) ∈ JGE as one of the nodes from u and

v is negated.

On the other hand, consider an edge (u, v) ∈ C that is not part of JGE but UNMASQUE

extracts it (i.e. a false positive). This implies that when the edge (u, v) is explicitly removed

along with any other edge (x, y) by value negation, the result becomes empty. As there is no

other filter on key attributes and (u, v) /∈ JGE, every other edge in C must belong to the join

graph. Now due to inner-equi joins (u, v) also belongs to the join graph as it can be inferred

12



by other edges of cycle C, a contradiction. 2

Algorithm 1: Extracting Join Graph JGE

1 CJGE ← Candidate Cycles, JGE ← φ
2 while There is at least one cycle in CJGE do
3 CC ← Any candidate cycle from CJGE
4 if CC contains a single edge (v1, v2) then
5 D1

mut ← Negate(D1, {v1})
6 If F (D1

mut) = φ then JGE ← JGE ∪ CC
7 CJGE ← CJGE / CC

8 else
9 foreach pair of edges (e1, e2) ∈ CC do

10 C1, C2 = Cut(CC, e1, e2)
11 D1

mut ← Negate(D1, C1)
12 if F (D1

mut) = φ then
13 Add e1, and e2 back to CC
14 else
15 CJGE ← CJGE ∪ C1 ∪ C2

16 break //Go to the start of while loop

17 end

18 end
19 JGE ← JGE ∪ CC; CJGE ← CJGE / CC

20 end

21 end

3.4 Filter Predicates

We start by assuming that all columns in CE (set of columns in TE) are potential candidates

for the filter predicates FE in QH . Each of them is then checked in turn with the following

procedure: First, we evaluate whether there is a nullity predicate on the column. If an IS NULL

predicate is not present, we investigate whether there is an arithmetic predicate, and if yes, the

filter value(s) for the predicate are identified.

It is relatively easy to check for nullity predicates and, more generally, predicates on any

data types with small finite domains (e.g. Boolean), by simply mutating the attribute with

each possible value in its domain and observing the result – empty or populated – of running

F on these mutations. The procedure for general numeric and textual attributes is, however,

more involved, as explained below.
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Case R1 = φ R2 = φ Predicate Type Action Required

1 No No imin ≤ A ≤ imax No Predicate
2 Yes No l ≤ A ≤ imax Find l
3 No Yes imin ≤ A ≤ r Find r
4 Yes Yes l ≤ A ≤ r Find l and r

Table 3.1: Filter Predicate Cases

3.4.1 Numeric Predicates

For ease of presentation, we start by explaining the process for integer columns. Let [imin, imax]

be the value range of column A’s integer domain, and assume a range predicate l ≤ A ≤ r, where

l and r need to be identified. Note that all the comparison operators (=, <,>,≤,≥, between)

can be represented in this generic format – for example, A < 25 can be written as imin ≤ A ≤ 24.

To check for presence of a filter predicate on column A, we first create a D1
mut instance by

replacing the value of A with imin in D1, then run F and get the result – call it R1. We get

another result – call it R2 – by applying the same process with imax. Now, the existence of a

filter predicate is determined based on one of the four disjoint cases shown in Table 3.1.

If the match is with Case 2 (resp. 3), we use a binary-search-based approach over (imin, a]

(resp. [a, imax)), to identify the specific value of l (resp. r), where a is the value of column

A that is present in D1. After this search completes, the associated predicate is added to FE.

Finally, Case 4 is a combination of Cases 2 and 3, and can therefore be handled in a similar

manner.

We can easily extend the integer approach to float data types with fixed precision, by first

identifying the integral bounds with the above procedure and then executing a second binary

search to identify the fractional bounds. For example, with li and ri as the integral bounds

identified in the first step, and assuming a precision of 2, we search l in ((li − 1).00, li.00] and

r in [ri.00, ri.99) in the second step.

3.4.2 Date Columns

Extracting predicates on date columns is identical to that of integers, with the minimum and

maximum expressible dates in the database engine serving as the initial range, and days as

the difference unit. For example, after identifying filter of type A ≤ r on o orderdate, we

apply binary search strategy in range [‘1994-12-31’, r ] (assuming ‘1994-12-31’ is the value

of o orderdate in D1) and r is the greatest allowed date value in the database engine (for

PostgreSQL, r = 5874897AD). Note that the same strategy can be applied to other datetime

type columns with the corresponding change in the resolution of values.
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3.4.3 Boolean Columns

With a single row, a boolean column can have only one of True or False values. Therefore, to

identify a filter on boolean column t.A, we create a D1
mut by replacing its value in D1 with True

(resp. False) if the current value in D1 is False (resp. True) and get the result. If the result is

empty, add “A = False” (resp. “A = True”) to FE.

3.4.4 Textual Predicates

The extraction procedure for character columns is significantly more complex because (a) strings

can be of variable length, and (b) the filters may contain wildcard characters (‘ ’ and ‘%’). To

first check for the existence of a filter predicate, we create two different D1
mut instances by

replacing the value of A initially with an empty string and then with a single character string

– say “a”. F is invoked on both these instances, and we conclude that a filter predicate is in

operation iff the result is empty in one or both cases. To prove the if part, it is easy to see

that if the result is empty in either of the cases, there must be some filter criteria on A. For

the only if part, the result will be populated for both cases in only one extreme scenario – A

like ‘%’, which is equivalent to no filter on A.

Upon confirming the existence of a filter predicate on A, we extract the specific predicate

in two steps. Before getting into the details, we define a term called Minimal Qualifying String

(MQS). Given a character/string expression val, its MQS is the string obtained by removing

all occurrences of ‘%’ from val. For example, “UP ” is the MQS for ”%UP %”. Note that

each character of MQS, with the exception of wildcard ’ ’, must be present in the data string

to satisfy the filter predicate. With this notation, the first step is to identify MQS using the

actual value of A in D1, denoted as the representative string, or rep str. The formal procedure

to identify MQS is detailed in Algorithm 2. The basic idea here is to loop through all the

characters of rep str and determine whether it is present as an intrinsic character of the MQS

or invoked through the wildcards (‘ ’ or ‘%’). This distinction is achieved by replacing, in

turn, each character of rep str in D1 with some other character, executing F on this mutated

database, and checking whether the result is empty – if yes, the replaced character is part of

MQS; if no, this character was invoked through wildcards. In this case, further action is taken

to identify the correct wildcard character. Note that in case the character in rep str occurs

more than once without any intrinsic character in between, and only one of them is part of

MQS, our procedure puts the rightmost character in MQS.
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Lemma 3.3: For a query in EQC, Algorithm 2 correctly identifies MQS for a filter predicate

on character attribute.

Proof: The correctness of the algorithm 2 can be established using contradiction for each

of the possible failed cases. For example, let us say a character ‘a’ belonged to MQS but the

procedure fails to identify it. This means that after removing ‘a’ from rep str, the result is still

non-empty (the filter condition was satisfied). This is possible when ‘a’ occurs more than once

in rep str and there is at least one occurrence which is part of the replacement for wildcard

‘%’. However, the procedure will keep removing ‘a’ until there is no occurrence left which is

part of replacement for wildcard ‘%’. After that, removing ‘a’ will lead the corresponding filter

predicate to fail. If this is not the case, ‘a’ is not present in the MQS, a contradiction. Similarly,

the correctness for other cases can be proved.

2

Algorithm 2: Identifying MQS

1 Input: Column A, rep str, D1

2 itr = 0; MQS = “”
3 while itr < len(rep str) do
4 temp = rep str
5 temp[itr] = c where c 6= rep str[itr]
6 D1

mut ← D1 with value temp in column A
7 if F (D1

mut) = φ then
8 MQS.append(rep str[itr++])
9 else

10 temp.remove char at(itr)
11 D1

mut ← D1 with value temp in column A
12 if F (D1

mut) = φ then
13 MQS.append(’ ’); itr++

14 else
15 rep str.remove char at(itr)
16 end

17 end

18 end

After obtaining the MQS, we need to find the locations (if any) in the string where ‘%’ is

to be placed to get the actual filter value. This is achieved with the following simple linear

procedure: For each pair of consecutive characters in MQS, we insert a random character that
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is different from both these characters and replace the current value in column A with this new

string. A populated result for F on this mutated database instance indicates the existence of

‘%’ between the two characters. The inserted character is removed after each iteration and we

start with the initial MQS for each successive pair of consecutive characters. This makes sure

that we correctly identify the locations of ‘%’ without exceeding the character length limit for

A. In the specific case of Q3, the predicate value for c mktsegment turns out to be the MQS

itself, namely ‘BUILDING’.

Overall, for query Q3, the following numeric and textual filter predicates are identified by

the above procedures:

FE = { o orderdate ≤ date ‘1995-03-14’ ,

l shipdate ≥ date ‘1995-03-16’ ,

c mktsegment = ‘BUILDING’ }

3.5 Projections

The identification of projections is rendered tricky since they may appear in a variety of different

forms – native columns, renamed columns, aggregation functions on the columns, or UDFs with

column variables. To have a unified extraction procedure, we begin by treating each result

column as an (unknown) constrained scalar function of one or more database columns. We

explain here the procedure for identifying this function, assuming linear dependence on the

column variables and at most two columns featuring in the function – the extension to more

columns is discussed at last.

Let O denote the output column, and A,B the (unknown) database columns that may affect

O. Given our assumption of linearity, the function connecting A and B to O can be expressed

with the following equation structure:

aA+ bB + cAB + d = 0 (3.1)

where a, b, c, d are constant coefficients. With this framework, the extraction process proceeds,

as explained below, in two steps: (i) Dependency List Identification, which identifies the iden-

tities of A,B, and (ii) Function Identification, which identifies the values of a, b, c, d.

3.5.1 Dependency List Identification

In this step, for each On, the set of database columns which affect its value is discovered via

iterative column exploration and database mutation. Specifically, the value of each database
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column in CE (the set of columns in TE) is mutated in turn to see whether or not it affects the

value of O. However, a subtle point here is that even in the simplified two-variable scenario, a

single pass through all the database columns may not always be sufficient to obtain the complete

dependency list of O. To make it more concrete, if the value of column A in D1 happen to be
−b
c

, then the entry in column B has no impact on O, irrespective of its value. We say that A

is a blocking column and B is the blocked column for that database instance. Similarly, if the

value of column B in D1 happen to be −a
c

, then column A is blocked by column B. To address

such boundary conditions, we perform a second iteration in case the dependency list contains

less than two columns after first iteration. However, before the second iteration, the values in

all the database columns are changed to new values keeping filter predicates in consideration.

Now, if a column A was blocked before by another column B, it will no longer be blocked due

to the change in the value in column B, and hence - it will be identified in the second iteration.

Finally, as a special case, if the output column represents Count(*), its dependency list

will be empty.

For Q3, the following dependency lists are obtained with the above procedure: l orderkey:

[l orderkey], o orderdate: [l orderkey], o shippriority: [o shippriority], and revenue: [l extendedprice,

l discount].

3.5.2 Function Identification

With reference to Equation 3.1, at this stage we are aware of the identities of A and/or B

for each of the output columns, and what remains is to obtain the coefficient values a, b, c, d.

Since we have a non-homogeneous equation in 4 unknowns, it can be easily solved by creating

4 different D1
mut instances such that the resultant equations are linearly independent. This

is achieved by randomly mutating the values of A and B, checking whether the new vector

[A,B,AB, 1] is linearly independent from the vectors generated so far, and stopping when four

such vectors have been found. With regard to Q3, the revenue output column depends on A

= l extendedprice and B = l discount. The sample four equations, corresponding to output

column revenue, generated in our experiments are as below:

1.a+ 2.b+ 2.c+ d = −1 (3.2)

2.a+ 1.b+ 2.c+ d = 0 (3.3)

2.a+ 3.b+ 6.c+ d = −4 (3.4)

1.a+ 4.b+ 4.c+ d = −3 (3.5)
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Solving the above system results in coefficient values: a = 1, b = 0, c = −1, d = 0, producing

the function seen in Q3. For the remaining output columns, which are all dependent on only

a single database column, we get the function of the form aA + d with a = 1, d = 0 – i.e. a

native column.

Thus for query Q3, we obtain:

P̃E = {l orderkey: l orderkey, o orderdate: o orderdate,

o shippriority: shippriority,

revenue: l extendedprice * (1 - l discount) }.
The reason we show the above set as P̃E, and not PE, is that some of these projections are

subsequently refined as aggregations (AE) in the Generation Pipeline – for instance, revenue

becomes a sum. We did not have to concern ourselves with these aggregation functions in the

current stage because our extraction techniques operated on single-row databases, in which

case all aggregation functions are identical with regard to their values.

A closing note regarding the scope of scalar UDFs currently covered in UNMASQUE: Firstly,

the above process can be generalized to m column variables in the function if we are able to

generate 2m different D1
mut instances. Secondly, we can handle the CASE switch statements

on categorical domains, such as those seen in TPCH Q12. Finally, ancillary functions such as

substring, casting, median, etc. can also be extracted.
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Chapter 4

Generation Pipeline

The GAOL part of the query, corresponding to the group by (GE), aggregation (AE),

order by (
−→
OE) and limit (lE) clauses, is extracted in the Generation Pipeline segment of

UNMASQUE. Here, synthetically generated miniscule databases are used for all the extractions,

as described in the remainder of this chapter.

4.1 Group By Columns

For each column t.A in CE (the set of columns in TE), we generate a database instance Dgen

and analyze F (Dgen) for the existence of t.A in GE, the columns in the group by clause. How-

ever, we skip this check for columns with equality filter predicates (as determined in Mutation

Pipeline) since their presence or absence in GE makes no difference to the query output.

Assume for the moment that we have generated a Dgen such that the (invisible) intermediate

result produced by the SPJ part of QH contains 3 rows satisfying the following condition: t.A

has a common value in exactly two rows, while all other columns have the same value in all

three rows. Now, if the final result contains 2 rows, it means that this grouping is only due

to the two different values in t.A, making it part of GE. This approach to intermediate result

generation is similar to the techniques presented in [8, 12].

Generating Dgen

We now explain how to produce the desired Dgen for checking the GE membership of a generic

column t.A. In our description, assigning (p, q, r, ...) to t.A means assigning value p in the first

row, q in the second row, r in the third and so on. The database generation is performed

differently for the following two disjoint cases related to the presence or absence of t.A in the

JGE, the query join graph identified in Mutation Pipeline:
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Figure 4.1: Dgen for Grouping on o orderdate (Q3)

(Case 1) t.A /∈ JGE In this case, 3 rows are generated for table t and only one row in each

of the other tables in TE. For column t.A, any two different values p and q that satisfy all

associated filter predicates are assigned. If no filter exists, any two values from t.A’s domain

are taken (e.g. p = 1 and q = 2 for numeric). After that, we assign (p, p, q) to t.A.

For all other columns in t, such as t.X, a single value r that satisfies its associated filter

predicates (if any) is selected, and (r, r, r) is assigned to t.X. If there is no filter, any value from

its domain (e.g. r = 1 for numeric) is assigned. Finally, if t.X ∈ JGE, a fixed value of r = 1 is

assigned (consistent with the assumption of integral keys). A similar assignment policy is used

for all columns belonging to the remaining tables in TE.

An example Dgen for checking the presence of o orderdate in GE is shown in Figure 4.1.

Here, the orders table features 3 rows with p = ‘1995-03-13’ and q = ‘1995-03-14’, while the

remaining tables, lineitem and customer, have a single row apiece. (We hasten to add that

these intermediate results are shown just for illustrative purposes, but remain invisible to the

UNMASQUE tool in its extraction process.)

(Case 2) t.A ∈ JGE In this case, 3 rows are generated for table t, 2 rows are generated for

all tables t′ having a column t′.B such that there is a path between t.A and t′.B in JGE and

only one row in each of the other tables in TE. The assignment of values in the tables is similar

to Case 1 with the following modifications: (i) p and q are assigned fixed values of 1 and 2, (ii)

Each columns t′.B having a path to t.A in JGE, is assigned fixed values (1, 2) and all other

columns of the corresponding table t′ are assigned values just like for t′.X in Case 1, except

that the assignment is now duplicated across the two rows.

An example Dgen for checking the presence of l orderkey in GE is shown in Figure 4.2. Here,

there are 3 rows for lineitem, 2 rows for orders and 1 row for customer.

It is straightforward to see by inspection that, with our EQC restriction to key-based equi-
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Figure 4.2: Dgen for Grouping on l orderkey (Q3)

joins, the above data generation procedure results in ensuring the desired conditions for the

intermediate SPJ result. Namely, that it will contain 3 rows with all columns having the same

value across these rows except for the attribute under test which has two values across these

rows.

It is possible that after all attributes have been processed in the above manner, GE turns

out to be empty. In this case, we create a Dgen with each table having two rows, each column

in JGE assigned fixed values (1, 2), and any two different values to all other columns while

satisfying all filter predicates. Then, F is run on this Dgen, and if the result contains just one

row, we can conclude that the query has an ungrouped aggregation.

Overall, the above procedure produces for Q3:

GE = {l orderkey, o shippriority, o orderdate}.

4.2 Aggregation Functions

We explain here the procedure for identifying aggregations (min(), max(), count(), sum(),

avg()) – due to space limitations, we restrict our attention to numeric attributes. However,

similar methods can be used for textual/date attributes as well. Further, for ease of presenta-

tion, we assume that there is no distinct aggregation – such specialized cases are handled at

last.

As described in 3.5, the Projections Extractor extracts each output column as a function

of the database columns in its dependency list. For each columns O in P̃E, the aggregation

identification goes as follows: Let O = agg(fo(A1, ..., An)) where agg corresponds to the aggre-

gation and fo corresponds to the function identified in Section 3.5. Now our goal is to generate

a database Dgen such that the final result cardinality is 1, and each of the five possible aggre-

gation functions on fo results in a unique value, thereby allowing for correct identification of
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the specific aggregation. We call this the “target result”.

Since we want to be able to distinguish between min() and max(), we need at least two

different values in the input database columns. Further, to ensure unique values for the various

aggregations in the final output, we do the following: Consider a pair of input arguments

(a1, .., ai, .., an) and (a1, .., a
′
i, .., an) such that fo(a1, .., ai, .., an) = o1 and fo(a1, .., a

′
i, .., an) = o2,

with o1 6= 0, o1 6= o2. Note that the two arguments differ only in ai and a′i. Now assume we

have generated a database Dgen such that there are k + 1 rows in the (invisible) intermediate

result produced by the SPJ part of the query with value fo = o1 in k rows and fo = o2 in the

remaining row. Further, that k satisfies the following constraint:

k /∈

{
0, o1 − 1, o2 − 1,

o1 − o2

o1

,
1− o2

o1 − 1
,
(o2 − 2)±

√
(o1 − 2)2 − 4(1− o2)

2

}
(4.1)

These constraints on k have been derived by computing pairwise equivalences of the five aggre-

gation functions, and forbidding all the k values that result in any equality across functions.

Now, additionally if we ensure that the GE attributes are assigned common values in all the

rows, the result of F will be the target result.

The reason that the target result is produced is (i) the result cardinality is 1 since there

is a common set of values for the GE attributes, and (ii) the constraints on k ensure unique

aggregated output of all the aggregations for O. (As a special case, if fo is a constant function

or a function of only the columns in GE, we are forced to have ai = a′i and hence, o1 = o2 = c.

Here, the k constraint reduces to k /∈ {0, c − 1} and since multiple aggregations on fo will be

equivalent (e.g. min(), max(), avg()), any can be taken as the final choice.

Generating Dgen

Firstly, we choose the ith argument Ai to be a column that is not in GE. If choosing such Ai

is not possible, then as mentioned above, ai = a′i and any argument column can be chosen as

Ai. After that, the data generation process to obtain the above intermediate result for output

column O = agg(fo(A1, ..., An)) is similar to the Dgen generation of group by (explained in

section 4.1), with the following changes:

• k + 1 rows are generated for table t where Ai ∈ t, with t.Ai assigned value ai in k rows

and value a′i in the remaining row.

• With respect to Case 2 (t.Ai ∈ JGE) in section 4.1, the assignments of fixed values 1, 2

are replaced with values ai, a
′
i.
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Figure 4.3: Dgen for Aggregation on revenue UDF (Q3)

We can either use any two of the arguments that were used to identify dependency list for

fo in Section 3.5 as (a1, .., ai, .., an) and (a1, .., a
′
i, .., an) since they are known assignments that

satisfy the required conditions, or generate a new set of arguments. Further, the least positive

integer satisfying Equation 4.1 is chosen as k. A sample Dgen to check for aggregation on

l extendedprice * (1 - l discount) is shown in Figure 4.3. Here we set (l extendedprice, l discount)

as < (3, 0), (4, 0) > and k = 1 is feasible.

After getting Dgen, we run F and the aggregation is identified by matching the result column

value (corresponding to O) with the corresponding unique values for the five aggregations. The

identified aggregation along with the mapping to the corresponding result column is added to

AE.

At last, entries corresponding to all the aggregated columns are removed from P̃E and

inserted in AE. Further, if there remains an unmapped output column in P̃E, it is removed and

count(∗) is added toAE. Whatever remains in P̃E now constitutes the native (i.e. unaggregated)

PE.

With the above procedure, we finally obtain for Q3:

AE = {revenue:sum(l extendedprice ∗ (1− l discount))}
PE = {l orderkey:l orderkey, o orderdate:o orderdate,

o shippriority:o shippriority}

Extension to DISTINCT keyword

In case the aggregation can be present with DISTINCT keyword as well, the following cases

may happen as a result of identifying aggregation (without distinct) using above method:

Case1 - min() or max() aggregation is identified: In such a case, no action is required

as min() or max() produces exactly same result with/without unique.

24



Case2 - No aggregation is identified: In such a case, the aggregation on fo is one

of sum(DISTINCT fo), avg(DISTINCT fo) or count(DISTINCT fo). To identify the correct

aggregation, we generate the Dgen such that fo having values (o1, o2) such that o1 6= o2 and

(o1 + o2) /∈ {2, 4} to get value for all three aggregated results unique.

Case3 - Aggregation other than min() or max() is identified: In such a case, the pos-

sible actual aggregations on fo are sum(DISTINCT fo), avg(DISTINCT fo), count(DISTINCT

fo) or the one identified without distinct. In such a case, we generate databases to prune out

this list one by one. For example, let us say that sum (fo) is the identified projection. To

prune out one of sum(fo) and sum(DISTINCT fo), we generate a Dgen instance with k = 2 and

o1 6= 0. Similarly, other candidates can be pruned out as well. Note that in case of equivalent

aggregations, anyone can be chosen.

Extension to non-Numeric Columns

In case of non-numeric column A, we need to find existence of min() or max() only. In such a

case, we take k = 1 and take two different values a and b from the domain of A such that the

corresponding output column function returns two different values. The rest of the procedure

remains same.

4.3 Order By

We now move on to identifying the sequence of columns present in
−→
OE. A basic difficulty here

is that the result of a query can be in a particular order either due to: (i) explicit order by

clause in the query or (ii) a particular plan choice (e.g. Index-based access or Sort-Merge join).

Given our black-box environment, it is fundamentally infeasible to differentiate the two cases.

However, even if there are extraneous orderings arising from the plan, the query semantics will

not be altered, and so we allow them to remain.

Here, we expect that each database column occurs in the dependency list of at most one

output column. Further, for simplicity, we assume that count() /∈ AE and that no aggregated

output column is a constant function – the procedure to handle these special cases is described

at last.

Order Extraction

We start with a candidate list comprised of the output columns in PE ∪ AE. From this list, the

columns in
−→
OE are extracted sequentially, starting from the leftmost index. The process stops

when either (i) all candidates have been included, or (ii) all functionally-independent attributes
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Figure 4.4: D2
same and D2

rev for Ordering on revenue (Q3)

of GE have been included in
−→
OE, or (iii) no sort order can be identified for the current index

position.

To check for the existence of an output column O, we create a pair of 2-row database

instances – D2
same and D2

rev. In the former, the sort-order of O is the same as that of all the

other output columns, whereas in the latter, the sort-order of O alone is reversed with respect

to the other output columns. An example instance of this database pair is shown for the revenue

UDF in Figure 4.4.

We use the following procedure to create D2
same: Firstly, we divide the output columns into

three sets. S1, which represents the output columns that are already present in
−→
OE (initially,

S1 = φ). S2, which is a singleton set containing the output column that is currently being

analyzed. S3 is the set of all remaining output columns. Let fo denote the function identified

in Section 3.5 for output column O. For each O ∈ S1, we select a single value for the argument

columns which feature in fo. For each O ∈ S2 ∪ S3, we select a pair of argument columns such

that both the pair return different values for the output column. All these values are generated

keeping the filter and join restrictions in consideration. The data generation for all the tables is

as follows: (i) Each column that features in S1 is assigned the single identified value in both the
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rows. (ii) Each column that features in S2 and S3 is assigned the pair of identified values in the

two rows so that each output column is sorted in the same order. (iv) For all other columns,

two values r and s are assigned such that r < s and both r and s satisfy the associated filter

predicate (if any). The key attributes which are connected, get same r and s values. Further,

in case of equality filter predicate, we take r = s.

The procedure for creating D2
rev is the same as above except that the attributes correspond-

ing to the output column in S2 are assigned values in the reverse order to that in D2
same.

Database construction in the above manner ensures both the rows form individual groups,

so aggregated columns can be effectively treated as projections (except for count(), which re-

quires a different mechanism, explained at last). After generating D2
same and D2

rev, we run F

for both the instances and analyze the results. If the values in O are sorted in the same order

for both the results, O along with its associated order, is added to
−→
OE at position i, and the

sets S1, S2 and S3 are recalculated for the next iteration.

Lemma 4.1: With the above procedure, if O is not the rightful column at position i in
−→
OE,

and another column O′ is actually the correct choice, then the values in O will not be sorted

in the same order in the two results.

Proof: Firstly, as each column in the existing identified
−→
OE is assigned the same value in

both the rows, they have no effect on the ordering induced by other attributes. Now, let us

say that the next attribute in
−→
OE is O′ (asc) but UNMASQUE extracts O. Now in the result

corresponding to D2
same, the values in O will also be sorted in ascending order. But in the result

corresponding to D2
rev, the values in O will be sorted in descending order (due to ascending

order on O′), a contradiction. 2

With the above procedure, we finally obtain for Q3:
−→
OE = {revenue desc, o orderdate asc}

Extension1: count(*) ∈ AE

In the case when count(*) ∈ AE, the two rows in each of the tables is not enough as the count()

value for both the groups will be one. In such case, we need an intermediate result (on which

grouping will be applied) with 3 rows such that two rows form one group and the third row

forms another group. Also, the values in the rows should be according to the order desired after

grouping of the intermediate result. So the data generation process is as follows:

To generate data for D2
rev, we first choose a table t with at least one attribute in group by
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Figure 4.5: D2
same and D2

rev for Ordering on count(*) (Hypothetical scenario:Q3)

clause that can take two different values and is not present as an argument to any column in

S1. For each output column function fo ∈ S1, we take argument value (a1, .., an) and assign

same values in both the rows to corresponding columns in the table. For each output column

function fo /∈ S1, we take two different argument values (a1, .., an) and (b1, ..bn) and assign

values to corresponding columns in the table. In case the column is a key column we take

fixed values 1 and 2. For all the other columns of other tables t′, we generate two rows with

each attribute having two different values (p and q) such that p < q. In case of key attributes,

take p = 1andq = 2. In other cases, take p and q satisfying the corresponding filter predicates

(if any). Note that in the above procedure, if we encounter an attribute with equality filter

predicate, we take p = q = val where val satisfies the corresponding filter predicate.

Data generation for D2
same is similar as for D2

rev with the only change being the values of p

and q are now swapped. The further procedure of running F and analyzing the results is the

same as explained in order extraction part of the section. A sample D2
same and D2

rev database

instance for a hypothetical scenario where revenue is replaced by count(*) is shown in Figure 4.5.
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Lastly, in case count(DISTINCT t.A) ∈ AE, the data generation process is the similar with

the change that A is assigned values (p, q, p) in both the cases.

Extension2: t.A : (“t.A = val” ∈ FE ∧ (agg func(t.A) ∈ AE)

In case there is min(), max() or avg() aggregation on A, the attribute can be treated as natively

projected attribute because each group in the output will have exactly the same value for A.

Now, if sum(t.A) ∈ AE, the data generation process is same as in Extension 1. Also note that,

the aggregation case with DISTINCT keyword is equivalent to non-aggregated projection.

A closing note on the potential for spurious columns appearing in GE due to plan-induced

ordering: Since D2
same and D2

rev are extremely small in size, it is unlikely that the database

engine will choose a plan with sort-based operators – for instance, it would be reasonable to

expect a sequential scan rather than index access, and nested-loops join rather than sort-merge.

In our experiments, we explicitly verified that this was indeed the case.

4.4 Limit

If the query is an SPJA query, there is no need to extract lE since there can be only one row

in any populated result. But in the general SPJGAOL case, the only way to extract lE is to

generate a database instance such that F produces more than lE rows in the result R, subject

to a maximum limit imposed by the group by clause.

The number of different values a column can legitimately take is a function of multi-

ple parameters – data type, filter predicates, database engine, hardware platform, etc. Let

n1, n2, n3, .. be the number of different values, after applying domain and filter restrictions,

that the functionally-independent attributes A1, A2, A3, .. in GE can respectively take. This

means that there can be a maximum of n1 ∗ n2 ∗ n3 ∗ ... = lmaxE groups in the result. Thus, lE

values up to lmaxE can be extracted with this approach.

To extract lE, UNMASQUE iteratively generates database instances such that the result-

cardinality follows a geometric progression starting with a rows and having common ratio

r(> 1). We set a = max (4, cardinality of R) to be consistent with our extraction requirement

for GE which required a permissible result cardinality of upto 3 rows. And r can be set to a

convenient value that provides a good tradeoff between the number of iterations (which will be

high with small r) and the setup cost of each iteration (which will be high with large r). In

our experiments, r = 10 was used. This appears reasonable given that the lE value is typically

a small number in most applications – for instance, in TPC-H, the maximum is 100, and in

general, we do not expect the value to be more than a few hundreds at most.
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Generating Dgen for desired R cardinality

To get n rows in the result prior to the limit kicking in, we generate a database instance

with each table having n rows such that the functionally-independent attributes in GE have a

unique permutation of values in each row. Specifically, all the attributes appearing in JGE are

assigned values (1, 2, 3, ..., n) and the other attributes are assigned any value satisfying their

filter predicates (if any). If the result of applying F on this database contains m rows with

m < n, then we can conclude that limit is in operation and equal to m. With the above

procedure, we finally obtain lE = 10 for Q3.
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Chapter 5

Experimental Evaluation

Having described the functioning of the UNMASQUE tool, we now move on to empirically

evaluating its efficacy and its efficiency. All the experiments were hosted on a well-provisioned1

PostgreSQL 11 [20] database platform.

5.1 Hidden SQL Queries

Our first set of experiments was conducted on a representative suite of hidden SPJGAOL queries

based on different template queries of the TPC-H benchmark, with the primary change being the

removal of nesting; and are similar in complexity to the Q3 running example. For convenience,

we hereafter refer to them as Qx, where x is their associated TPC-H query identifier. The exact

queries are listed in Appendix A. Each query was passed through a Cpp program that embedded

the query in a separate executable. These executables formed the input to UNMASQUE,

which has been implemented in Python, and were invoked on the TPC-H database, assuring

a populated result. UNMASQUE’s ability to non-invasively extract these queries was assessed

on a 100 GB version of the TPC-H benchmark, and to profile its scaling capacity, also on a 1

TB environment.

we have also run UNMASQUE on (i) the TPC-DS [26] benchmark with PostgreSQL, and

(ii) the TPC-H benchmark with SQL Shield encrypted queries on Microsoft SQL Server [19].

The performance results were of a similar nature.

5.1.1 Correctness

We compared the QE output by UNMASQUE on the above QH suite with the original queries.

Specifically, we verified, both manually and empirically with the automated Checker component

1Intel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux
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Figure 5.1: Hidden Query Extraction Time (TPC-H 100 GB)

of the pipeline, that the extracted queries were semantically identical to their hidden sources.

5.1.2 Efficiency

The total end-to-end time taken to extract each of the twelve queries on the 100 GB TPC-H

database instance is shown in the bar-chart of Figure 5.1. In addition, the breakup of the

primary pipeline contributors to the total time is also shown in the figure.

We first observe that the extraction times are practical for offline analysis environments,

with all extractions being completed within 40 minutes. Secondly, there is a wide variation in

the extraction times, ranging from 4 minutes (e.g. Q2) to almost 40 minutes (e.g. Q5). The

reason is the presence or absence of the lineitem table in the query – this table is enormous in

size (around 0.6 billion rows), occupying about 80% of the database footprint, and therefore

inherently incurring heavy processing costs.

Drilling down into the performance profile, we find that the minimizer module of the

pipeline (blue color), take up the lion’s share of the extraction time, the remaining modules

(red color) collectively completing within a few seconds. For instance, for Q5 which consumed

around 37.2 minutes overall, the minimizer expended around 37 minutes, and only a paltry 12

seconds was taken by all other modules combined.

The extreme skew is because these two modules operate on the original large database,

whereas, as described in Chapters 3 and 4, the remaining modules work on miniscule mutations

or synthetic constructions that contain just a handful of rows. Interestingly, although the

executable F was invoked a few hundred times during the operation of these modules, the

execution times in these invocations was negligible due to the tiny database sizes.
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5.1.3 Optimization

We now go on to show how minimization – could be substantially improved with regard to its

efficiency.

Instead of executing minimizer on the entire original database, sampling methods that are

natively available in most database systems could be leveraged as a pre-processor to quickly

reduce the initial size. Specifically, we iteratively sample the large-sized tables, one-by-one in

decreasing size order, until a populated result is obtained. The sampling is done using the

following SQL construct:

select * from table where random() < 0.SZ ;

which creates a random sample that is SZ percent relative to the original table size. An

interesting optimization problem arises here – if SZ is set too low, the sampling may require

several failed iterations before producing a populated result. On the other hand, if SZ is set

too large, unnecessary overheads are incurred even if the sampling is successful on the first

attempt.

Currently, we have found a heuristic setting of Sample Size = 2% in terms of number of

rows to consistently achieve both fast convergence (within two iterations) and low overheads.

In our future work, we intend to theoretically investigate the optimal tuning of the sample size

parameter.

The revised total execution times after incorporating the above two optimizations, are shown

in Figure 5.2, along with the module-wise breakups. We see here that all the queries are now

successfully identified in less than 10 minutes, substantially lower as compared to Figure 5.1.

Further, the from clause takes virtually no time, as expected, and is therefore included in the

Other Modules category (green color). And in the minimizer, the preprocessing effort spent on

sampling (maroon color) takes the majority of the time, but greatly speeds up the subsequent

recursive partitioning (pink color).

An alternative testimonial to UNMASQUE’s efficiency is obtained when we compare the

total extraction times with their corresponding query response times. For all the queries in

our workload, this ratio was less than 1.5. As a case in point, a single execution of Q5 on the

100GB database took around 6.7 minutes, shown by the red dashed line in Figure 5.2, while

the extraction time was just under 10 minutes.

Finally, as an aside, it may be surmised that popular database subsetting tools, such as

Jailer [15] or Condenser [24], could be invoked instead of the above sampling-based approach

to constructively achieve a populated result. However, this is not really the case due to the

following reasons: Firstly, these tools do not scale well to large databases – for instance, Jailer
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Figure 5.2: Optimized Hidden Query Extraction Time (TPC-H 100 GB)

did not even complete on our 100 GB TPC-H database! Secondly, although they guarantee

referential integrity, they cannot guarantee that the subset will adhere to the filter predicates

– due to the hidden nature of the query. So, even with these tools, a trial-and-error approach

would have to be implemented to obtain a populated result.

5.1.4 Scaling Profile

To explicitly assess the ability of UNMASQUE to scale to larger databases, we also conducted

the same set of extraction experiments on a 1 TB instance of the TPC-H database. The results

of these experiments, which included all optimizations, are shown in Figure 5.3. We see here

that all extractions were completed in less than 25 minutes each, demonstrating that the growth

of overheads is sub-linear in the database size. In fact, a single query execution of Q5 on this

database took around 72 minutes, almost 3 times the query extraction time.

5.1.5 TPC-DS Results for 100 GB

The bar-chart in Figure 5.4 shows the time taken to extract 7 queries sourced from TPC-DS

benchmark (along with there identifier numbers) on a 100 GB database version. The exact

queries are listed in Appendix A. We can see that all the queries were extracted within 4

minutes. It may surprise at first that the time taken in this case is lesser than the time for

TPC-H queries and also, the variation amongst queries is very less. The reason is that the

table sizes in TPC-DS are not that skewed as in TPC-H. So, no table in TPC-DS is as huge as

lineitem table of TPC-H.
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Figure 5.3: Optimized Hidden Query Extraction Time (TPC-H 1 TB)

Figure 5.4: Hidden Query Extraction Time (TPC-DS 100 GB)

Command Application Extracted SQL Complexity Time

get admin comments Enki Project, Join, OrderBy, Limit 1.2 sec
get admin pages Enki Project, OrderBy, Limit 1 sec
get admin pages id Enki Select, Project, Limit 1 sec
get admin posts Enki Project, Join, GroupBy, OrderBy, Limit 2.5 sec
get admin posts id Enki Select, Project, Limit 1 sec
get admin comments id Enki Select, Project, Limit 1 sec
get admin undo items Enki Project, Order by, Limit .5 sec
get latest posts Enki Select, Project, Join, Filter, GroupBy, Order By, Limit 1.5 sec
get user posts Enki Select, Project, Join, Filter, Group By, Order By, Limit 2.5 sec
get latest posts by tag Enki Select, Project, Join, Filter, GroupBy, OrderBy, Limit 2.5 sec
get article for id Blog Select, Project, join 1 sec

Table 5.1: Imperative to SQL Translation

35



(a) Imperative Function Code (snippet) (b) Extracted Query (cur timestamp is a constant)

Figure 5.5: Imperative to SQL Translation

5.2 Hidden Imperative Code

Our second set of experiments evaluated applications hosting imperative code. Here we con-

sidered the popular Enki [16] and Blog [21] blogging application, both built with Ruby on

Rails, each of which has a variety of commands that enable bloggers to navigate pages, posts

and comments. The Enki and Blog servers receive HTTP requests, interact with the database

accordingly, and respond the client with an HTML page that contains the data retrieved. Enki

uses a total of eight database tables and Blog uses two database tables. We created a synthetic

database of 10 MB size which gives non-empty result for each of these commands. Along with

UNMASQUE, we used Selenium [18] to send an HTTP request and receive the results in HTML

page from which the database results are automatically extracted.

Since native data is not publicly available, we created a synthetic 10MB database that

provided populated results for all these commands. We found that for Enki, 14 out of 17 and

for blog 2 out of 2 commands were extracted (except insert, update, etc.). Table 5.1 shows the

SQL queries extracted w.r.t. the commands. We have omitted five commands as those were

simple table scans. The queries corresponding to remaining three commands did not belong

to EQC and only SPJ part was extracted correctly for them. We manually verified that all

the commands in table 5.1 were extracted correctly. As a sample instance, consider the “get

latest posts by tag” command, a snippet of which is outlined in Figure 5.5a. The corresponding

UNMASQUE output is shown in Figure 5.5b, and was produced in just 2.5 seconds.
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Chapter 6

Extensions

6.1 Extension to non-integral Key attributes

There are various applications (e.g. Wilos [27]) which use non-integral keys as identifier in

the database tables. We assume that the domain of each key attribute contains at least two

different values. To handle non-integral keys, the following changes are required:

In Mutation Pipeline, only the join predicate extraction module require changes. In this

module, instead of negating the values of the columns in C1 (refer Section 3.3), we choose two

different fixed values (say p and q) from the domain of the key attribute and assign p to the

columns in C1 and q to the columns in C2.

For every module in Generation Pipeline, we again take two different fixed values (say p

and q) from the domain of the key attribute. Then, all the assignments that use fixed value 1

are replaced with value p and all the the assignments that use fixed value 2 are replaced with

value q.

6.2 Queries with Having Clause

Thus far, we had deliberately set aside discussion of the Having clause. The reason is that this

clause is especially difficult to extract, stemming from its close similarity to filter predicates in

the Where clause – this difficulty has led to it not being considered in the prior QRE literature

as well. The good news is that we have been able to devise an extraction technique under a few

assumptions, the primary one being that the attribute sets in FE and HE are disjoint1 However,

1This assumption holds for all the queries of the TPC-DS benchmark.
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incorporating this approach entails a significant reworking of the UNMASQUE pipeline, as well

as modified algorithms for some of the modules. Specifically, the extraction of filter predicates is

now delayed to after the GroupBy module, and the implementations of the FilterPredicate

and GroupBy modules are altered. In addition to the assumptions in Chapter 2, the SPJGA

queries with having clause should satisfy the following conditions.

1. The attributes involved in filter predicate in the Having clause and outside Having clause

are disjoint.

2. Each attribute has at most one aggregation in the Having clause predicates.

3. The values in the Having clause predicates do not exceed the bounds of corresponding

data type.

Note: Here, the operation on only integral attributes are discussed. However, the queries

with textual attributes (and LIKE operator) can also be handled in a similar manner as defined

in previous chapters.

6.2.1 From Clause Detection

From Clause detection is performed in the same way as described in section 3.1.

6.2.2 Database Sampling

If the initial database instance is huge, the sampling (as defined in Chapter 5) is applied to

reduce its size. Note that, the whole database is not copied, but a new table is created with

the sampled rows. Also “not null” constraints are not added in the new table.

6.2.3 Join Graph Detection

Join graph detection is performed in the same way as described in section 3.3. Knowledge of

join graph helps reducing the database instance more efficiently. As we can not go with the

binary partition argument here, using key relations helps in faster database reduction.

6.2.4 Database Minimization

Given a database instance D and an executable F producing a populated result on D, derive a

reduced database instance Dmin from D such that removing any row of any table in TE results

in an empty result. We call such database, a minimal database for the query.

With this definition of Dmin, we can prove the following observations:
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Lemma 6.1: For the EQC, the output of SPJ part of the query for the minimal Dmin con-

stitutes a single group (as per grouping attributes of the query) and the final output contains

only a single row.

The minimization is done in the following manner: Let t be a table in the From clause (the

set TE) of the query. Initially, for each attribute in t, the frequency of each value is calculated.

Let fA,j denotes the maximum value of frequency with value j in attribute A. In each iteration,

the rows corresponding to fA,j are preserved, removing all other rows. If a non-empty output is

produced, the preserved rows form the new table content on which frequency values are recalcu-

lated and the same procedure is repeated. If an empty output is produced, the same procedure

is applied with the value having the next maximum frequency. This procedure is repeated until

no further reductions are possible in t. Once t is reduced, all the tables connected to it in the

join graph are reduced to contain only those rows which satisfy the join condition.

The above procedure is applied to each table in the set TE repeatedly until the database

can not be reduced further. The idea behind the step of preserving a particular value of the

attribute is as following: if A is a group by attribute, it will contain a single value in the reduced

database instance. Further, we first select the value with the maximum frequency as a heuristic

because it selects a relatively large number of rows at a time.

Note that if the query belongs to EQC−H , the final database will be a one row database.

However, we may get a one row database even if the query belongs to EQC. For now, we

assume that the reduced database is not a one row database. We discuss the other case in

Section 6.2.10.

6.2.5 Group By Attributes

It is clear by Dmin construction that any attribute with two or more different values can not

be a part of group by clause as it would have created two different groups in the output. So,

in order to get the attributes involved in the group by clause, we check for each attribute in

the Dmin which have a single value in all the rows. For each such attribute A with value val1,

we insert each of the current row in the table again with A value being val2 where val2 6= val1.

However, val2 may not satisfy the unknown filter on A, If any. For this, we do this two times,

one with val2 = val1 +1 and one with val2 = val1−1. Two output rows in any of the two cases

indicate A to be present in the group by clause. A similar argument can be used for textual

attributes as well.
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6.2.6 Having Clause and Filters

First we identify possible filter on each group by column using a similar technique as per in

section 3.4. After that, the filters on non-grouping attributes are identified.

For a SPJGA query, filter predicate a ≤ A ≤ b can be re-written in terms of a having clause

condition as a ≤ min(A) and max(A) ≤ b. The procedure below identifies filter predicate

in terms of having clause conditions. Thus hereonwards, a filter on A refers to a filter in the

form of val1 ≤ agg func(A) ≤ val2. To detect the having clause condition on an attribute, we

change its values in the table, such that only one row of the output group is affected at a time.

However, if a foreign key of the table maps to a key of another table in the join graph and

values in the foreign key attribute are not unique, one change in the table will affect multiple

places in the output group. So we transform the tables in a way such that all key values in

all the tables are unique and there is one-to-one relationship between the tables. This can be

done by traversing the join graph and duplicating rows in the table with new key identifiers.

For example, let T1[(1, “a”, 2), (2, “b”, 2)] be a table with two rows and T2[(2, “c”)] be a table

with a single row where last attribute of T1 refers to the first attribute of T2. Then these tales

are transformed as T1[(1, “a”, 1), (2, “b”, 2)] and T2[(1, “c”), (2, “c””)]. Note that both the joins

(before and after transformation) produce same output except the key attribute contents.

Let [i1, i2] be the integer range. Let (a1, a2, ..., an) be the values in attribute A in non-

decreasing order. WLOG, let us assume ai is the value in attribute A in the ith row. For a

filter predicate val1 ≤ A ≤ val2, Let us call A ≥ val1 as the left filter on A and A ≤ val2 as

the right filter on A. We first define the term rowno and val. Starting from 1 to n, if we keep

decreasing the value of ai to i1, rowno denotes the first row, in which the values in A can not be

decreased to i1 without losing the output. Also, rowno = none if values in all the rows can be

decreased to i1. Further, if rowno 6= none, val denotes the minimum value in row rowno which

can be present without losing the output. The following algorithm is used to get rowno and val.

Now, the following two cases arise:

Case 1: rowno = none. In this case, there is no left filter condition on A. The reason is

that, we were able to reduce value in every row to minimum possible value without loosing the

output.

Case 2: rowno 6= none. If rowno 6= 1 and rowno 6= n, there is a having clause predicate
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Algorithm 3: Getting rowno and val for left filter

1 rowno = none, val = none
2 for i in range 1 to n do
3 val ← the minimum value in [i1, ai] which gives non-empty result.
4 if val = i1 then
5 Replace ai with i1 in the database
6 val = none continue

7 end
8 Replace ai with val in the database
9 rowno = i

10 break

11 end

on A with either sum() ≥ val1 or avg() ≥ val1. The reason is that, if there were a condition

min(A) ≥ val1, the value of rowno should have been 1. Similarly, if here were a condition

max(A) ≥ val1, the value of rowno should have been n. Now, if rowno = 1, the aggrega-

tions in the filter predicate may be sum(), avg() or min(). To differentiate amongsts these,

we decrease the value in the first row by 1 and increase the value in any other row by 1. This

makes sure that the sum(A) and avg(A) does not change while changing min(A). If we get

an output, the filter is either sum() ≥ val1 or avg() ≥ val1 otherwise it is min(A) ≥ val1. A

similar method can be used to differentiate amongst sum(), avg() or max() when rowno = n.

The corresponding filter value val1 will be the val obtained from the algorithm.

To find the right filter on A, a similar approach can be used with a new definition of rowno

and val. Starting from n to 1, if we keep increasing the value of ai to i2, rowno denotes the

first row, in which the values in A can not be increased to i2 without losing the output. Also,

rowno = none if values in all the rows can be increased to i2. Further, if rowno 6= none, val

denotes the maximum value in row rowno which can be present without losing the output. The

following algorithm is applied to get the rowno and val.

After getting rowno and val, right filter can be found in a similar way using the following

two cases:

Case 1: rowno = none. In this case, there is no right filter condition on A.

Case 2: rowno 6= none. If rowno 6= 1 and rowno 6= n, there is a having clause predicate

on A with either sum() ≤ val2 or avg() ≤ val2. Now, if rowno = n, the aggregations in the
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Algorithm 4: Getting rowno and val for right filter

1 rowno = none, val = none
2 for i in range n to 1 do
3 val ← the maximum value in [ai, i2] which gives non-empty result.
4 if val = i2 then
5 Replace ai with i2 in the database
6 val = none
7 continue

8 end
9 Replace ai with val in the database

10 rowno = i
11 break

12 end

filter predicate may be sum(), avg() or max(). To differentiate amongsts these, we increase the

value in the nth row by 1 and decrease the value in any other row by 1. This makes sure that

the sum(A) and avg(A) doesn’t change while changing max(A). If we get an output, the filter

is either sum() ≤ val2 or avg() ≤ val2 otherwise it is max(A) ≤ val2. A similar method can

be used to differentiate amongsts sum(), avg() or min() when rowno = 1. The corresponding

filter value val2 will be the val obtained from the algorithm.

Note that we have not yet differentiated between the filters on sum() and filters on avg().

Here we make use of the leverage to have null values in our database. Let the current average of

the values in column A be a. To differentiate between the two for an attribute A, we insert a row

in the table such that the column A is assigned value 0 (if operator is ≥) or it is assigned value

a (if operator is ≤) group by attributes get the same value, the other attributes with sum() or

avg() filter are assigned null in the new row and all other attributes get any value satisfying the

filter predicate. This construction ensures that the output state is directly dependent on the

changes made in attribute A. Based on the output on this new database, we can differentiate

between sum(A) and avg(A). Further if the average is a floating point number, we can refine

it using binary search assuming fixed precision.

6.2.7 Having condition with count()

After identifying all other filters, the filter with count() can be done in a manner analogous to

finding limit in section 4.4.
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6.2.8 Projection Clause

The projections are identified in a manner analogous to the method defined in Section 3.5.

However, while calculating the function, all the rows of the columns in dependency list are

assigned same value and final coefficients are divided by number of rows produced after the join

and filters.

6.2.9 Other Clauses

If there is no filter with count(∗) in the having clause, we can create a single row database

satisfying all the filters. Hence, procedures similar to the ones described for queries in EQC−H

can be used. In case of presence of a filter of the form “count(∗) op k”, we add an additional

constraint of number of rows for each of the other modules.

6.2.10 One Row database for SPJGHA[OL] query

While database minimization, we may get a one row database for a SPJGA query with Having

clause as well. However, to detect Having clause properly, we need database such that the

intermediate output of SPJ part contains at least two rows. In such a case, we first detect the

group by clause as mentioned in Section 6.2.5. After that, in each table, we insert the existing

row again with a different key value. If we get a two row output, we can conclude the query

is an SPJ query. If we get a single row output, we now have a single group database with

more than one row in the intermediate SPJ output. However, we may get an empty output as

well. Consider an attribute A containing a value 6 in the database currently. There is a Having

clause condition on A defined as sum(A) < 10. In such a case, replicating the value will make

sum(A) = 12 and hence we will not get any output. As there is no way of knowing beforehand,

which attribute caused output to be non-empty, we place null value in a subset of attributes

starting from size 1 subsets until we get a non-empty output.

6.2.11 UDF’s in Projection

In the absence on a Having clause filter of type val1 ≤ sum() ≤ val2, the techniques defined in

section 3.5 can be used to detect UDF in the having clause by placing a single unique value in

every row of each column. However, in the presence of such filter, we may not be able to do so

as we may not have much choice for arbitrary unique values in the column. In such a case, we

may get an under-determined system of equations and any solution can be treated as the UDF.
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6.3 Discussion on Other Operators

A natural question to ask at this point is whether it appears feasible to extend the scope of our

extraction process to a broader range of common SQL constructs – for instance, outer-joins,

disjunctions and nested queries. As mentioned previously, none of these constructs are handled

by the current set of QRE tools. However, based on some preliminary investigation, it appears

that outer-joins and disjunctions could eventually be extracted under some restrictions – for

instance, the IN operator can be handled if it is known that the database includes all constants

that appear in the clause. Nested queries, however, pose a formidable challenge that perhaps

requires novel technology. In this context, an interesting possibility is the potential use of

machine-learning techniques for complex extractions.
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Chapter 7

Theoretical Results

In this chapter, we prove that for arbitrary queries, Hidden Query Extraction is an undecidable

problem. We use the following problem to prove the undecidability of HQE.

Semantic Equivalence of queries(SE): Given two arbitrary queries Q1 and Q2, deter-

mine if Q1 and Q2 are semantically equivalent.

Semantic equvalence of two arbitrary SQL queries is a well known undecidable problem [1].

Further, we say that SE(Q1, Q2) = true if Q1 and Q2 are semantically equivalent, and false

otherwise. Before moving on to the main theorem of this chapter, we first state and prove the

following lemma.

Lemma 7.1: Let Q1, Q2 be two arbitrary queries. For any query Q,

(SE(Q1, Q2) = true) =⇒ (SE((Q−Q1) ∪ (Q1 −Q), (Q−Q2) ∪ (Q2 −Q)) = true)

Proof: If Part: Let SE(Q1, Q2) = true, then for any database instance D, Q1(D) =

Q2(D) = R. Further let Q(D) = R′. Then,

((Q−Q1) ∪ (Q1 −Q))(D) = (Q(D)−Q1(D)) ∪ (Q1(D)−Q(D)) = (R′ −R) ∪ (R−R′)

and
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((Q−Q2) ∪ (Q2 −Q))(D) = (Q(D)−Q2(D)) ∪ (Q2(D)−Q(D)) = (R′ −R) ∪ (R−R′)

Hence, SE((Q−Q1) ∪ (Q1 −Q), (Q−Q2) ∪ (Q2 −Q)) = true.

Only If Part: Let SE(Q1, Q2) = false. It means that there exists a database instance

D such that Q1(D) 6= Q2(D). WLOG, Let t be a tuple that is present in Q1(D) but not in

Q2(D). Now there are two possible cases:

(Case 1) t ∈ Q(D): In this case

(t ∈ Q(D) ∧ t ∈ Q1(D) =⇒ t /∈ ((Q(D)−Q1(D)) ∪ (Q1(D)−Q(D)))

and

(t ∈ Q(D) ∧ t /∈ Q2(D), =⇒ t ∈ ((Q(D)−Q2(D)) ∪ (Q2(D)−Q(D)))

Hence, SE((Q−Q1) ∪ (Q1 −Q), (Q−Q2) ∪ (Q2 −Q)) = false.

(Case 2) t /∈ Q(D): In this case

(t /∈ Q(D) ∧ t ∈ Q1(D)) =⇒ t ∈ ((Q(D)−Q1(D)) ∪ (Q1(D)−Q(D)))

and

(t /∈ Q(D) ∧ t /∈ Q2(D)) =⇒ t /∈ ((Q(D)−Q2(D)) ∪ (Q2(D)−Q(D)))

Hence, SE((Q−Q1) ∪ (Q1 −Q), (Q−Q2) ∪ (Q2 −Q)) = false. 2

Now, we prove that the Hidden Query extraction problem is undecidable in general.
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Theorem: For an arbitrary hidden query (denoted as black-box function F ), Hidden Query

Extraction (HQE) problem is Undecidable.

Proof: Suppose that HQE is decidable. Then, there exists a deterministic algorithm A

such that for any database instance D and a function F with F (D) 6= φ, A(F,D) produces

a Qout which is semantically equivalent to unknown hidden query in F . Further, let us say

F1 = H(Q1) and F2 = H(Q2) where H is some function (or a wrapper) which simply hides the

query. To continue our proof, we state and prove the following two lemmas first.

Lemma 7.2: Q1 and Q2 are semantically equivalent iff F1 = F2.

Proof: F1 and F2 can be seen as relations which relate the set of database instances to

a set of result instances. If F1 and F2 represent the exact same relation, Q1 and Q2 will be

semantically equivalent otherwise there would exist at least one D, which is mapped to different

results in F1 and F2. Similarly, the other direction can be proved. 2

Lemma 7.3: For any F1, F2 and D, (F1 = F2) =⇒ (A(F1, D) = A(F2, D)). Also,

(A(F1, D) = A(F2, D)) =⇒ (F1 = F2).

Proof: The first statement holds because A is deterministic algorithm. The second state-

ment can be proved by contradiction. Let us say that A(F1, D) = A(F2, D)) = Q but F1 6= F2.

Now, Q will be semantically equivalent to the query in F1 and F2 both while F1 6= F2, a con-

tradiction for Lemma 7.1. 2

Let Q1, Q2 be two arbitrary queries. We prove that if HQE is decidable, there exists

a deterministic algorithm for SE(Q1, Q2) for arbitrary queries Q1 and Q2. WLOG, let

us say that Q1 and Q2 are compatible in set difference (‘−’) and set union (‘∪’) operations.

If this is not the case, we can say that Q1 and Q2 are not equivalent. Further, let Q be any

simple project join query which is compatible with Q1 and Q2 for ‘−’ and ‘∪’ operations. Note

that such query Q can be generated easily after observing the result column data types of Q1

or Q2. Also, let D be a database instance such that Q(D) 6= φ. Note that, although finding

such D is a hard problem in general, it can be easily done in case of a project join query. We

define two black-box functions as follows:

F1 = H((Q−Q1) ∪ (Q1 −Q))

and
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F2 = H((Q−Q2) ∪ (Q2 −Q))

WLOG, let us say that D gives same non-empty result on F1 and F2. Note that if this is not

the case, then by Lemma 7.1, Q1 and Q2 are not semantically equivalent. Further, if D gives

empty result in both cases, it means that D gives a non-empty result on Q1 and Q2. In such a

case, we take F1 = Q1 and F2 = Q2 and keep the D as it is. Now that we have F1, F2 and D,

using Lemma 7.2 and Lemma 7.3, we can say that

(A(F1, D) = A(F2, D)) =⇒ (F1 = F2) =⇒ SE(Q1, Q2)

Thus, presence of a deterministic algorithm for HQE shows the presence of a deterministic

algorithm for SE. As SE is known to be undecidable, so is HQE.

2
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Chapter 8

Conclusion and Future Work

We introduced and investigated the problem of Hidden Query Extraction as a novel version of

QRE, which has a variety of real-world use-cases. As the first step toward solving this problem,

we presented the UNMASQUE algorithm, which is based on a combination of database mutation

and database generation pipelines. An attractive feature of UNMASQUE is that it is completely

non-invasive, facilitating its deployment in a platform-independent manner.

UNMASQUE is capable of identifying a large class of hidden SPJGHAOL queries, similar

to those present in the decision-support benchmarks. Potent optimizations related to database

minimization and order detection were incorporated to reduce the overheads of the extraction

process. Specifically, for the most part, the extraction pipeline works on miniscule databases

designed to contain only a handful of rows. The effects of these optimizations were visible

in our experimental results which demonstrated that query extraction could be completed in

times comparable with normal query response times in spite of a large number of executable

invocations.

In our current work, we are attempting to extend the scope of EQC to include the Having

clause in a more general sense. Also, a mathematical analysis to help choose the appropriate SZ

setting for sampling. For the long-term, the extraction of nested queries and outer joins poses a

formidable challenge. More fundamentally, characterizing the extractive power of non-invasive

techniques is an open theoretical problem.
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Appendix A

A.1 Experiment Queries 1 (Based on corresponding TPC-

H queries)

Q1

Select l returnflag, l linestatus, sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,

sum(l extendedprice * (1 - l discount)) as sum disc price, sum(l extendedprice * (1 - l discount) * (1 +

l tax)) as sum charge, avg(l quantity) as avg qty, avg(l extendedprice) as avg price, avg(l discount) as

avg disc, count(*) as count order

From lineitem

Where l shipdate ≤ date ‘1998-12-01’ - interval ‘71 days’

Group By l returnflag, l linestatus

Order by l returnflag, l linestatus;

Q2

Select s acctbal, s name, n name, p partkey, p mfgr, s address, s phone, s comment

From part, supplier, partsupp, nation, region

Where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like ‘%TIN’

and s nationkey = n nationkey and n regionkey = r regionkey and r name = ‘MIDDLE EAST’

Order by s acctbal desc, n name, s name, p partkey

Limit 100;

Q3

Select l orderkey, sum(l extendedprice * (1 - l discount)) as revenue, o orderdate, o shippriority

From customer, orders, lineitem
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Where c mktsegment = ‘BUILDING’ and c custkey = o custkey and l orderkey = o orderkey and

o orderdate < date ‘1995-03-15’ and l shipdate > date ‘1995-03-15’

Group By l orderkey, o orderdate, o shippriority

Order by revenue desc, o orderdate

Limit 10;

Q4

Selecto orderdate, o orderpriority, count(*) as order count

From orders

Where o orderdate ≥ date ‘1997-07-01’ and o orderdate < date ‘1997-07-01’ + interval ‘3’ month

Group By l orderkey, o orderdate, o orderpriority

Order by o orderpriority

Limit 10;

Q5

Select n name, sum(l extendedprice * (1 - l discount)) as revenue

From customer, orders, lineitem, supplier, nation, region

Where c custkey = o custkey and l orderkey = o orderkey and l suppkey = s suppkey and c nationkey

= s nationkey and s nationkey = n nationkey and n regionkey = r regionkey and r name = ‘MIDDLE

EAST’ and o orderdate ≥ date ‘1994-01-01’ and o orderdate < date ‘1994-01-01’ + interval ‘1’ year

Group By n name

Order by revenue desc

Limit 100;

Q6

Select l shipmode, sum(l extendedprice * l discount) as revenue

From lineitem

Where l shipdate ≥ date ‘1994-01-01’ and l shipdate < date ‘1994-01-01’ + interval ‘1’ year and

l quantity < 24

Group By l shipmode

Limit 100;

Q10
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Select c name,, sum(l extendedprice * (1 - l discount)) as revenue, c acctbal, n name, c address,

c phone, c comment

From customer, orders, lineitem, nation

Where c custkey = o custkey and l orderkey = o orderkey and o orderdate ≥ date ‘1994-01-01’ and

o orderdate < date ‘1994-01-01’ + interval ‘3’ month and l returnflag = ‘R’ and c nationkey =

n nationkey

Group By c name, c acctbal, c phone, n name, c address, c comment

Order by revenue desc

Limit 20;

Q11

Select ps COMMENT, sum(ps supplycost * ps availqty) as value

From partsupp, supplier, nation

Where ps suppkey = s suppkey and s nationkey = n nationkey and n name = ‘ARGENTINA’

Group By ps COMMENT

Order by value desc

Limit 100;

Q16

Select p brand, p type, p size, count(ps suppkey) as supplier cnt

From partsupp, part

Where p partkey = ps partkey and p brand = ‘Brand#45’ and p type Like ‘SMALL PLATED%’ and

p size ≥ 4

Group By p brand, p type, p size

Order by supplier cnt desc, p brand, p type, p size;

Q17

Select AVG(l extendedprice) as avgTOTAL

From lineitem, part

Where p partkey = l partkey and p brand = ‘Brand#52’ and p container = ’LG CAN’;

Q18

Select c name, o orderdate, o totalprice, sum(l quantity)

From customer, orders, lineitem

54



Where c phone Like ‘27- %’ and c custkey = o custkey and o orderkey = l orderkey

Group By c name, o orderdate, o totalprice

Order by o orderdate, o totalprice desc

Limit 100;

Q21

Select s name, count(*) as numwait

From supplier, lineitem l1, orders, nation

Where s suppkey = l1.l suppkey and o orderkey = l1.l orderkey and o orderstatus = ‘F’ and s nationkey

= n nationkey and n name = ‘GERMANY’

Group By s name

Order by numwait desc, s name

Limit 100;

A.2 Experiment Queries 2 (Based on corresponding TPC-

DS queries)

Q3

Select dt.d year ,item.i brand id as brand id ,item.i brand as brand ,sum(ss sales price) as sum agg

From date dim dt ,store sales ,item

Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and

item.i manufact id = 816 and dt.d moy=11

Group By dt.d year ,item.i brand ,item.i brand id

Order by dt.d year ,sum agg desc ,brand id

Limit 100 ;

Q37

Select i item id ,i item desc ,i current price

From item, inventory, date dim, catalog sales

Where i current price between 45 and 45 + 30 and inv item sk = i item sk and d date sk=inv date sk

and d date between date ’1999-02-21’ and date ’1999-04-23’ and i manufact id between 707 and 1000

and inv quantity on hand between 100 and 500 and cs item sk = i item sk

Group By i item id,i item desc,i current price
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Order by i item id

Limit 100 ;

Q42

Select dt.d year ,item.i category id ,item.i category ,sum(ss ext sales price)

From date dim dt ,store sales ,item

Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and

item.i manager id = 1 and dt.d moy=11 and dt.d year=2002

Group By dt.d year ,item.i category id ,item.i category

Order by sum(ss ext sales price) desc,dt.d year ,item.i category id ,item.i category

Limit 100 ;

Q52

Select dt.d year ,item.i brand id as brand id ,item.i brand as brand ,sum(ss ext sales price) as ext price

From date dim dt ,store sales ,item

Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and

item.i manager id = 1 and dt.d moy=12 and dt.d year=2002

Group By dt.d year ,item.i brand ,item.i brand id

Order by dt.d year ,ext price desc ,brand id

Limit 100 ;

Q55

Select item.i brand id as brand id ,item.i brand as brand

,sum(ss ext sales price) as ext price

From date dim dt ,store sales ,item

Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and

item.i manager id = 1 and dt.d moy=12 and dt.d year=2002

Group By dt.d year ,item.i brand ,item.i brand id

Order by ,ext price desc ,brand id

Limit 100 ;

Q82

Select i item id ,i item desc ,i current price
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From item, inventory, date dim, store sales

Where i current price between 45 and 45 + 30 and inv item sk = i item sk and d date sk=inv date sk

and d date between date ’1999-07-09’ and date ’1999-09-09’ and i manufact id between 169 and 639

and inv quantity on hand between 100 and 500 and ss item sk = i item sk

Group By i item id,i item desc,i current price

Order by i item id

Limit 100 ;

Q96

Select count(*)

From store sales ,household demographics ,time dim, store

Where ss sold time sk = time dim.t time sk and ss hdemo sk = household demographics.hd demo sk

and ss store sk = s store sk and time dim.t hour = 8 and time dim.t minute ≥ 30 and

household demographics.hd dep count = 3 and store.s store name = ’ese’

Order by count(*)

Limit 100;
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