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Abstract

Keyword search (KWS) gives an easy interface to RDBMS, which does not require the

knowledge of schema information of the published database. Most of the works on KWS

engines [3, 7, 5, 9], use main memory data structures to perform required computations

to get good performance on execution time and RDBMS is used as storage repository.

Our work focuses on effective utilization of RDBMS technologies to process computations

involved in providing KWS interface. By this we can get additional benefits from RDBMS

back-end technologies to handle large databases and to have persistent KWS indexes.

Two prominent database models used by KWS engines are schema graph based and

data graph based KWS models. We have chosen Labrador KWS engine [9] as a represen-

tative of schema based KWS model and built DBLabrador, which is functionally similar

to Labrador, uses RDBMS to perform all computations and uses additional keyword

index. In data graph based KWS model, we have taken ’Providing built-in keyword

search capabilities in RDBMS(PBKSC)’[8] work, which is based on distinct root seman-

tic answer model. We introduced an alternative keyword index, Node-Node, instead of

Node-Keyword index to reduce the storage space consumed by the keyword index. By

using properties of Node-Node index, similar to concept mentioned in [4], issues related

to storage space of keyword index can be effectively solved by compromising with query

search time. Also Node-Node index can be effectively used to produce answers for search

query in connected tree semantic model.
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Chapter 1

Introduction

KWS interface to RDBMS is a simple, user-friendly and schema-less text based interface,

where user queries the database with a set of keyword terms. Structured queries, like

SQL queries, are usual interface to RDBMS which gives precise answers to the search

query. Since usage of structured query interface is difficult for naive users and popularity

of KWS in World Wide Web, has given motivation to provide keyword search interface

to RDBMS as an alternative to structured query interface.

Let us consider Bollywood database having relational tables movie(id, name, year,

rating), actor(id, name) and movie actor(movie id, actor id, role name). Suppose if we

want information about names of movies acted by ‘Shahrukh’, containing term ‘Dil’,

with SQL query language interface, we need to construct SQL query like Table 1.1 and

corresponding answer published would be like Table 1.2.

SELECT a.name
FROM movie as a, movie actor as b, actor as c
WHERE a.id = b.movie id AND
c.id = b.actor id AND
a.name LIKE ‘%Dil%’ AND
c.name LIKE ‘%Shahrukh%’

Table 1.1: SQL query language interface to RDBMS

But usage of KWS interface requires only to type ‘Shahrukh Dil’ on text box pro-

vided for searching and answers are published like in Table 1.3. Important benefits and

1
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Movie Name
Har Dil Jo Pyar Karega
Phir Bhi Dil Hai Hindustani
Dil Se
Dil To Pagal Hai
Dil Aashna Hai

Table 1.2: Search result of SQL query for ‘Shahrukh’ and ‘Dil’

drawbacks of KWS interface are

• It does not require knowledge of schema information of the database.

• Part of information produced maybe irrelevant to user, i.e. it is not precise like

SQL queries.

• Since potential answers for a query are large, it ranks answers by calculating rele-

vance score for each answer.

Movie name Rating Actor name Role name Relevance-Score
Dil Se 7.4 Shahrukh Amarkanth Varma 4
Dil To Pagal Hai 6.7 Shahrukh Rahul 3.5
Phir Bhi Dil Hai Hindustani 5.8 Shahrukh Ajay Bakshi 1
Dil Aashna Hai 5.2 Shahrukh Karan D. Singh 0.7
Har Dil Jo Pyar Karega 4.8 Shahrukh Rahul 0.5

Table 1.3: Search result of KWS query for ‘Shahrukh’ and ‘Dil’

There is a subtle difference in providing KWS interface to web documents and to

RDBMS. In web documents, an answer for a keyword query has clear boundary, i.e.

a document. In RDBMS world, because of normalization, published database is split

into multiple relational tables. So for a given keyword query, a candidate answer can be

obtained by joining related relational tuples which, as a whole, contain all the keyword

terms. To obtain answers for keyword query, two prominent database models, schema

graph based model and data graph based model, are used.
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1.1 Schema Graph based KWS Engines

It uses schema graph of the published database which gives information about relation-

ship between set of relational tables present in it. The relationship between relational

tables may be due to foreign key - primary key or by user(DBA) defined relationships.

In our work, we have chosen Labrador [9] KWS engine as a representative of schema

graph based KWS engines. It uses column-granularity term frequency hash map as a

data structure, which is a main memory construct. For a keyword query, with the use

of column-granularity term frequency hash map, Labrador generates ranked candidate

structured queries. A structured query is a form of query where each keyword term

is associated with an attribute of the database. User can choose one of the preferred

structured query for which Labrador generates appropriate SQL query. Labrador queries

RDBMS with generated SQL query and obtains answers for the keyword query. Finally

it ranks the answers produced and outputs to user.

We have built DBLabrador engine which follows Labrador’s approach for generating

ordered answers. Instead of using main memory, relational tables are used for storing

keyword indexes. By using declarative language, all processing tasks are pushed to

RDBMS. By shifting from Labrador to DBLabrador we get following advantages.

• KWS data structures are feasible to handle large databases as they do not have

main memory dependency.

• KWS data structures are persistent.

• Most of the computational tasks are performed in RDBMS. By this we are able

to utilize the automated optimization of function calculation feature and index

facilities of RDBMS.

• Removed the dependency on having full text indexes on published attributes by

utilizing cell-level granularity term frequency keyword index.

• Cell-level granularity term frequency keyword index removes the necessity of split-

ting of string attribute values of answers into terms, which is a necessary step to
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calculate relevance scores of answers.

1.2 Data Graph based KWS Engines

It uses data graph of the published database, which represents relationships between pub-

lished relational tuples, and use it for generating answers for keyword queries. They are

schema-less approach as they do not need schema information of the published database.

Most of the KWS engines based on data graph, use main memory data structures for

storing data graph [3, 7, 5]. Advantage of using data graph based model is that for small

databases their search time is faster as they directly get the answers from data graph.

Because of main memory constraint they cannot keep data graph of huge database.

We have taken PBKSC [8] as a representative of data graph based KWS engines. It

uses a node-keyword index, which stores Voronoi paths from node to keywords within

threshold path weight. This keyword index is stored as relational table. Answers for

keyword query is obtained from Node-Keyword index by appropriate SQL query. Storage

space for this keyword index is huge, especially for text-based databases.

We are introducing an alternative Node-Node data structure for PBKSC KWS engine,

which is also stored as relational table. Node-Node data structure is inspired from work

in [4], which discusses effective data structures to store and retrieve shortest distance

between relational tuples. This keyword index stores the shortest paths between nodes

within threshold path length of the data graph. Advantages of using Node-Node data

structure over Node-Keyword data structure is

• Takes less storage space for text based database.

• Can be used for connected tree semantic answer model [3].

• Can operate effectively with small threshold path weight to get same quality of

answer produced by high threshold path weight Node-Keyword index.



Chapter 2

Schema Graph based KWS Model

In this section, we discuss about our contribution for schema based KWS engines which

use main memory data structures and imperative languages. As a representative, we

have chosen Labrador [9] KWS engine. We have developed DBLabrador, a version

of Labrador which uses RDBMS technologies to store keyword data structures and to

perform required computations. Initially basic terminologies used in this section are pre-

sented in Section 2.1. Later Labrador’s approach is discussed in Section 2.2. After that

DBLabrador’s approach is explained in Section 2.3. Finally Labrador and DBLabrador

KWS engines are compared in Section 2.4. Here both KWS engines implementation is

specific to PostgreSQL 8.4. To move these KWS engines to other RDBMS engine re-

quires change in construction of SQL queries, as RDBMS engines differ in the usage of

full text indexes and their in built functions.

2.1 Preliminaries

Let KQ ={k1, k2, ..., kn} denote set of keyword terms present in the keyword query,

R ={R1, R2, ..., Rm} denote set of relational tables present in the published database.

A denote set of published attributes and Ai = {ai1, ai2, ..., aiq}, Ai ∈ A denote set of

attributes belonging to relational table Ri.

5
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Domain Relational tables are the relational tables whose attributes are going

to be published. We assumed that each tuple of domain relational table has unique

id, tuple id. It can be obtained from RDBMS, for example PostgreSQL have option

of having oid field, which will give unique number to each tuple within the relational

table. Also we assume, we have index built on tuple id field, which allows fast retrieval

of tuples of a domain relational table. In our work we support only string attributes to

be published. Also Database Administrator has the option of publishing only selected

attributes of the Domain relational tables.

Keyword query contains set of words entered by user in text search box. In the

context of information retrieval, each such word is called as a term. Order of the key-

word terms are not important. We follow exact keyword semantics where each stemmed

keyword term must be present in the answer.

Schema Graph gives the information about relationship between domain relational

tables. Nodes of schema graph are domain relational tables. Edges of the graph rep-

resent relationships between corresponding relational tables. In our work we followed

Labrador’s convention that there is a relationship between two relational tables if they

have at least one common attribute name syntactically. This makes natural join between

these two relational tables not to be Cartesian product. Here edges are considered to be

undirected.

Structured query is a form of query in which each keyword term is assigned to one

of the published attributes. Attributes present in a structured query are called query

attributes. Relational tables involved in a structured query are called query relational

tables. A keyword term, along with associated attribute of a structured query is called

query predicate.

A candidate structured query is a structured query with following property

• For each query predicate < ki, aj > of the structured query, aj must contain ki.

• There exist at least one spanning subtree in the schema graph containing all query

relational tables as nodes.
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We retain only candidate structured queries and discard other structured queries.

Answer tuple is an information unit produced as an answer to the keyword query.

These answer tuples are generated with the help of candidate structured queries.

Symbol table is used to efficiently get location in the published database where

keyword terms are present. One of the important design issues of symbol table is the

selection of granularity level in which terms in the published database needs to be stored

in the index. Two prominent granularity [1] levels are

• Cell-level Granularity stores terms in Table→ Column→ Tuple level.

• Column-level Granularity stores terms in Table→ Column level.

Comparison of performance of these two granularity level for search algorithms are stud-

ied extensively by [1]. Summary of that is, column-level granularity performs better when

there is an availability of full-text index on published database. Otherwise column-level

granularity performs poorly because it needs to make sequential scan of the relational

tables during keyword search.

In this section, we need symbol table to keep term frequency information. We use

cell-level granularity term frequency data structure which stores frequency information

of terms present in the published data base at cell-level granularity. Similarly we use

column-level granularity term frequency data structure which stores frequency informa-

tion of terms present in the published database at column-level granularity.

2.2 Labrador

Interface and processing steps of Labrador are explained in Figure 2.1:

1. Labrador provides a single text box interface where user enters keyword query.

2. Corresponding to the keyword query, Labrador generates ranked candidate struc-

tured queries.
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Figure 2.1: Labrador interface

3. Labrador generates and queries DBMS with appropriate dynamic SQL query cor-

responding to the submitted structured query by the user.

4. Labrador outputs ranked answer tuples to user.

Generation of structured queries helps to classify the possible answer tuples for the

keyword query and helps to generate answer tuples belonging to one class.

In Labrador engine, all the computations are performed by Labrador engine module

(Figure 2.2) and RDBMS is used just as storage repository. Major computational part

include following tasks.

• Building main memory hash map of column-level granularity term frequency.

• Generating candidate structured queries for keyword query and ranking them.

• Generating SQL query corresponding to a structured query and calculating rele-

vance scores for each of the answer tuple.
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2.2.1 Keyword Index

Labrador maintains hash map of column-level granularity term frequency data structure

in main memory as keyword index. Every time before making Labrador engine func-

tional, hash map needs to be built. Column-level granularity term frequency information

helps in

• To get set of published attributes Aki ⊆ A containing keyword term ki.

• To get the frequency information of term ti in an published attribute aj ∈ A.

The storage space required for column-level granularity term frequency keyword index,

is directly proportional to number of distinct terms present in each published attribute.

Labrador has not addressed cell level granularity keyword index as it takes more space,

which is in the order of database size, and cannot be handled effectively in main memory.

2.2.2 Generation of candidate structured queries and calculat-

ing relevance score

For a given keyword query KQ, steps involved to generate all candidate structured

queries involves following steps.

• For each term ki ǫ KQ, identify the set of attributes Aki ⊆ A containing ki.

• Generate all possible candidate structured queries by performing Cartesian product

of Aki , ki ∈ KQ.

• Each of the structured query are checked for plausibility condition.

Relevance score for each of the candidate structured query is calculated using Bayesian

network model. Let us denote query attributes of a structured query as QA and query

relational tables as QR. Calculation of relevance score of the structured query involves

following steps:
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• For each term k ∈ KQ calculate its fitness value using following formula

Fitness(k, aj) =
fkj

fjmax

log(1+fkj)

log(1+nk)

where

aj ∈ QA is the attribute to which ki is assigned.

fkj: frequency of the term k in aj.

fjmax: frequency of the term having maximum occurrences in the attribute aj.

nk: total number of occurrences of the term k in database.

• Calculate cos value of ∀ai ∈ QA by

COS(ai) =
∑

k∈Ki
Fitness(k,ai)

|Ki|
.

Ki ⊆ KQ: keyword terms assigned to attribute ai ∈ QA.

• Relevance score of the structured query is calculated by
∑

ai∈QA COS(ai)

|QR|

2.2.3 Generating answer tuples for submitted structured query

and ranking answer tuples

First SQL query is constructed corresponding to user submitted structured query. FROM

clause of the SQL query is constructed by making natural join of the query relational

tables. To generate WHERE clause, for each query predicate < ki : aki >, get the

string aki LIKE ki. Since we are dealing with conjunction query, each query predicate is

joined by AND condition. SQL query for structured query < k1:ak1 , k2:ak2 , ... , kn:akn

> without full-text index is shown in Table 2.1. If the published attributes have full-text

SELECT *
FROM r1 natural join r2 ...
WHERE ak1 LIKE k1 and ak2 LIKE k2 and ...
aknLIKE kn

Table 2.1: SQL query for without full-text index

index, then the SQL query corresponding to the structured query is shown in Table 2.2.

To have a full-text index on an attribute ai in Postgres, we need to add separate column

ai’ where it maintains term informations present in each attribute value in tsvector type.
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Then on ai’ GIN/GiST indexes, which are Postgres in-built indexes, can be built to

find tuples containing terms. SQL query of type Table 2.2 can be used to search tuples

containing a term.

SELECT *
FROM r1 natural join r2 ...
WHERE ak1 ’ @@ to tsquery(k1) and
ak2 ’ @@ to tsquery(k2) and ...
akn ’ @@ to tsquery(kn)

Table 2.2: SQL query for with full-text index

Ranking result tuples: Relevance scores for each of the answer tuple is calculated

based on Bayesian network model. Steps involved in calculating relevance score for each

answer tuple are:

• For each term ui belonging to query attribute aj, calculate its weight in that

attribute using

weight(ui,aj) = log (1+ N
fij
)

where

fij : frequency of the term ui in aj.

N: total number of tuples in table r containing attribute aj.

• For each query attribute aj present in the result tuple tuplei, calculate its cos value

using following formula:

cos(tuplei,aj) =

∑

kiǫaj
weight(ki)

√

∑

uiǫaj
u2

i

√

∑

kiǫaj
1

where

ki: represents any keyword term

ui represents any term ∈ tuplei.

• relevance(tuplei) =
∑

aj
cos(tuplei, aj)

where ajǫ query attributes.
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Figure 2.2: Shift in architecture

2.3 DBLabrador

DBLabrador is a modified version of Labrador which utilizes back-end database tech-

nology to build suitable keyword data structures and to perform all the computational

tasks. Shift from Labrador to DBLabrador [Figure 2.2] is made by removing main

processing part of Labrador, Labrador engine, by pushing all the processing task to

DBMS in DBLabrador. Also in DBLabrador, required keyword indexes are maintained

by DBMS as relational tables. In this section, we will discuss about implementation part

of DBLabrador.

Complete architecture of DBLabrador is shown in Figure 2.3. Three main processing

parts of DBLabrador are

• Building and storing keyword indexes off-line as relational tables.

• Generating candidate structured queries for a given keyword query and calculating

relevance scores of the structured queries.

• Generating answer tuples for submitted structured query and calculating relevance

scores of answer tuples.



Chapter 2. Schema Graph based KWS Model 13

Figure 2.3: DBLabrador architecture

2.3.1 Keyword Indexes

DBLabrador addresses keyword index for both generation of structured queries and

generation of answer tuples by using cell-level granularity term frequency information

and column-level granularity term frequency information. Lab Col Granularity and

Lab Cell Granularity are the two relational tables used to store term frequency infor-

mation at column and cell granularity level, respectively. Important relational tables

used in keyword indexing process are

Lab Temp StringTerms ( tuple id integer, attr id integer, term id integer,

frequency integer ) This relational table is used to store cell-level granularity term

frequency information about published database temporarily. This is used to speed up

the execution time to build keyword indexes.

Lab Term ( term text, term id integer ) Since string computations are costly,

each distinct term present in the published database is assigned a unique integer value.

Lab Term relational table is used to store mapping information of distinct terms present

in published database and corresponding integer value.
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Lab Col Granularity (term id integer, attr id integer, frequency integer )

This relational table is used to store column-level granularity term frequency informa-

tion. Here frequency attribute gives frequency of a term at column-level granularity. To

efficiently retrieve set of published attributes Aki ⊆ A containing ki, B-tree index is used

on term id attribute.

Lab Cell Granularity (term id integer, attr id integer, tuple id integer, fre-

quency integer, weight real ) This relational table is used to store term frequency

information along with weight of each term in cell-level granularity. Here frequency at-

tribute stores frequency of the term id at cell-level granularity. Attribute weight stores

the weight of the term (section 2.2.3). To efficiently retrieve set of tuples having a key-

word term in one of its attributes, B-tree index is used on (term id, attr id) attribute

pair. Also B-tree index is used on (tuple id, attr id) attribute pair to retrieve term

frequency information at cell-level granularity.

Steps involved in building keyword indexes are

• Initially scan published database once to populate Lab Temp StringTerms. This

involves scanning each string attribute value(cell) in the published database, split-

ting into terms and storing cell-id, distinct terms and corresponding frequency.

• Take distinct terms from Lab Temp StringTerms to populate Lab Term.

• Populate Lab Col Granularity from Lab Temp StringTerms and Lab Term rela-

tional tables.

• Populate Lab Cell Granularity from Lab Temp StringTerms, Lab Term and Lab Col Granularity

relational tables.

2.3.2 Generation of structured queries and calculation of rele-

vance scores

All candidate structured queries are generated for given keyword query with the help of

Lab Col Granularity relational table. The approach for generating candidate structured
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queries and calculating relevance scores are similar to Labrador, but DBLabrador uses

two dynamic SQL queries instead of using imperative language. Lab structure query

relational table stores candidate structured query information.

2.3.3 Generation and calculation of relevance scores for answer

tuples

DBLabrador uses Lab Cell Granularity keyword index to generate answer tuples as well

as to calculate their relevance score.

Generation of answer tuples: Since providing full-text index requires huge storage

space, every string attribute in the domain database may not have full-text indexes. But

for provinding KWS interface, without full-text indexes on published attributes results

in sequential scan of the corresponding relational tables. So DBLabrador maintains

separate cell-level granularity term frequency information, without changing domain

database, for those published attributes which do not have full-text index and avoids

costly sequential scan at runtime. Answer for a structured query can be obtained by

using Table 2.2 approach if full-text index available on published attributes. Otherwise

Lab Cell Granularity table can be used to generate answer tuples by following steps.

• Get distinct relational tables, R’ ⊆ R, present in the submitted structured query.

• For each relational table, ri ∈ R’, get all the query predicates, QPi, whose attribute

belongs to the relational table ri.

• Using Lab Cell Granularity relational table, for each relational table, ri ∈ R’,

retrieve the tuples which satisfy all query predicates QPi.

• Finally compute natural join of all the R’ relational tables which gives answer

tuples. Temporarily store generated answer tuples in Lab Result relational table

to calculate relevance scores.
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Name attributes # tuples #distinct
terms

terms per
tuple

size(MB)

Proceedings (id,key,title,year) 17,982 30,558 20 4.3
InProceedings (id,key,Proc key,

title,year)
1,112,035 1,353,575 13 206

InProc Authors (InProc id,
name)

3,155,373 291,477 2 187

Articles (id,key,title,
journal,year)

826,026 1,022,410 14 154

Article Authors (Article id,name) 2,101,494 260,209 2 125
Books (id,key,editor,

publisher,year)
9,286 19,634 5 1.16

Book Authors (Book id,name) 13,415 9,404 2 0.86
InCollections (id,key,Book key,

title,year)
22,582 34,034 12 4.5

Table 2.3: DBLP domain relational tables

So it avoids full scan of the domain relations when one of its published attribute does

not have full-text index.

Relevance Score calculation for an answer tuple: DBLabrador calculates rele-

vance scores of each answer tuple with the help of Lab Cell Granularity table. By this

splitting of answer tuple strings can be avoided, also weight of each term of the answer tu-

ple need not be calculated as these informations are available from Lab Cell Granularity

table. Approach to compute relevance score is similar to Labrador’s approach, but

DBLabrador uses one SQL query instead of imperative language.

2.4 Experiments

In this section, we seek to analyze three aspects from Labrador and DBLabrador KWS

engines. First one is the importance of persistent keyword data structures for publishing

large databases. Second one is the necessity of cell-granularity data structures for KWS

engines handling large databases when full-text indexes are not available. Third one is

to analyze effect on execution time to calculate relevance scores of answer tuples.
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Figure 2.4: Schema graph representation

2.4.1 Experimental setup

All experiments are conducted in PostgreSQL 8.4.8 on Sun Ultra 24, Intel Core(TM) 2

Quad-Core CPU X9650, 3GHz with 8GB Main memory, Ubuntu 10.04 operating system.

We also set Postgres parameters shared buffers = 1GB and work mem = 1GB.

We use DBLP dataset for testing purpose. Description of domain database is given

in Table 2.3. The schema graph of the published database is shown in Figure 2.4. The

keyword queries used in our experiments are listed in Table 2.4.

Search queries # output tuples

paul system 1477
wang environment 722
lee architecture 737
michael algorithm conference 550
andrea network proceeding 738
daniel proceeding conference 499

Table 2.4: Keyword queries
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2.4.2 Importance of persistence of keyword data structures

Time to build keyword index on the dataset depends on total number of tuples and

terms present in each tuple. General operations involved are splitting of string values

into terms, stemming operations of each term and calculating frequency of term.

Name Time(sec)

Proceedings 2
InProceedings 5536
InProc Authors 611
Articles 271
Article Authors 157
Books 2
Book Authors 1
InCollections 6

Total 6315

Table 2.5: Labrador keyword index populating time

Name Time(sec)

Proceedings 5
InProceedings 337
InProc Authors 181
Articles 220
Article Authors 126
Books 2
Book Authors 1
InCollections 7
Lab Terms 106
Lab Col Granularity 148
Lab Cell Granularity 6350

TOTAL 7377

Table 2.6: DBLabrador keyword index populating time

Labrador needs to build keyword index every time before it is functional. It maintains

a hash bucket for each published attribute to maintain distinct terms present in it and

corresponding frequency of the term. This involves hash operation of each term to find

its presence in the attribute hash bucket and update its frequency value. Note that
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during scan of a domain relational table, all hash maps of column-level granularity term

frequency of its published attributes are built. So Table 2.5 shows time taken by Labrador

to build keyword index per relational table. Figure 2.5 shows exponential behavior of

Labrador to build keyword index as the size of the database table increases.

By storing keyword indexes as relational tables, DBLabrador gives persistent key-

word indexes. DBLabrador keep cell-granularity term frequency information along with

column-level term frequency information and does extra computation to materialize

weight of each term in cell-granularity level. Calculating weight of each term at cell

granularity level involves costly floating point computations. Note that during scan of

a domain relational table, cell-level granularity term frequency information is obtained.

Later keyword indexes Lab Col Granularity and Lab Cell Granularity are populated.

DBLabrador’s time to populate keyword indexes are shown in Table 2.6. Here each

domain relational table entry involves getting cell-level granularity term frequency infor-

mation. Populating Lab Cell Granularity is costly operation as it involves floating point

computations. In summary DBLabrador’s performance in populating keyword index is

comparable with Labrador’s performance. In addition DBLabrador gives persistent key-

word data structures and materialize weight information of terms at cell-level granularity.

2.4.3 Execution time for getting answer tuples

Without using cell-level granularity data structure or full-text index, keyword search

involves sequential scan of the relational table to get answer tuples. To find the effect

of this sequential scan, we have conducted experiments on listed keyword queries(Table

2.4). For keyword queries having two terms, we have chosen structured query having 2

query relational tables. Similarly for keyword queries having 3 terms, we have chosen

structured query having three query relational tables.

Experiment involves three systems,

• Labrador without using full-text index on published attributes.
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Figure 2.5: Importance of persistent keyword index

• DBLabrador using cell-level granularity term frequency relational table.

• Labrador with full-text index(PostgreSQL GIN index) on published attributes.

Figure 2.6 gives information about performance of three systems. Labrador without full-

text index uses more time to get the answer tuples as it uses SQL LIKE operator to

get the tuples containing a keyword term. This involves sequential scan of the relational

tables. Labrador with full-text index is faster as it uses in-built RDBMS index facili-

ties. DBLabrador using Lab cell granularity keyword index which is not in-built index

of RDBMS, performs less compared to full-text index approach. But its performance

is much better compared to Labrador without full-text index. In summary, its better

to use cell-level granularity keyword index if full-text index is not present on published

attribute. So DBLabrador performs better when full-text index is not available on pub-

lished attribute compared to Labrador and its performance is almost equal to Labrador

when full-text index is present on attribute as both use same SQL query to generate

answer tuples.
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Figure 2.6: Importance of avoiding sequential scan of relational tables

2.4.4 Execution time for ordering answer tuples

Here we compare performance of Labrador and DBLabrador on execution time to order

answer tuples. This operation involves calculation of relevance scores of each answer

tuple and ordering them based on relevance scores. Figure 2.7 shows the performance

of the two systems. DBLabrador performs better than Labrador because it does not

need to split the answer strings into terms and calculate their weight, as it gets these

information directly from Lab Cell Granularity relational table.
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Figure 2.7: Ordering answer tuples
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Data Graph based KWS model

In this chapter we discuss our contribution to data graph based KWS engines. We have

taken work of PBKSC [8] as representative of KWS engines using data graph approach.

First basic concepts related to data graph approach for KWS engines are discussed.

Later PBKSC KWS engine’s approach is explained. Next our proposed Node-Node index

approach is discussed for PBKSC KWS engine. Finally advantages of our approach is

shown.

3.1 Basic concepts

Data graph G = (V,E) represents data graph of the published database where V =

{v1, v2, ..., vn} represents nodes of the data graph, which represents relational tuples of

the database and E = {(vi, vj)|vi, vj ∈ V } represents edges of the data graph. T =

{t1, t2, ..., tm} represents distinct terms present in the published database. Term node

set Vi are nodes containing term ti. Let V
′ = {V1, V2, ..., Vm}, Vi ⊆ V and Vi contains ti.

Keyword Query Let KQ = {k1, k2, ..., kl} represents keyword query. Let us denote

VKQ = {Vk1 , Vk2 , ..., Vkl}, Vki ∈ V ′ and contains ki term.

Steiner Tree (ST (U,G)) [8] is defined for a set U ⊆ V on data graph G(V,E). It

is defined as a connected subtree of G, which covers all nodes in U . Each ST (U,G)

23
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is associated with node r present in the Steiner tree, called root node. Path weight

of a ST (U,G) having root r, is the sum of path weights from root r to all ui ∈ U .

Minimum Path Weight Steiner Tree MPWST (U,G) denotes a Steiner tree having least

path weight among all possible Steiner tree on set U .

Group Steiner Tree (GST (U ′, G)) [8] is defined for a set U ′ = {U1, U2, ..., Um}, Ui ⊆

V on data graph G(V,E). It is defined as a connected subtree of G, which covers at

least one node from each Ui, 1 6 i 6 m. Minimum Path Weight Group Steiner Tree

MPWGST (U ′, G) defined as minimum path weight Steiner tree of G, which covers at

least one node from each Ui, 1 6 i 6 m.

Voronoi Path V P (vi, tj, G) [8] is defined for a node vi ∈ V and term tj ∈ T on data

graph G. It is defined as path having shortest path weight from vi to Vtj if such path

exists,

i.e. minpath−weigth(path(vi, vtj), ∀vtj ∈ Vtj).

Compact Steiner Tree CST (vi, T
′, G) [8] is defined for a node vi ∈ V , terms set

T ′ ⊆ T on data graph G. It has following properties

• CST (vi, T
′, G) ∈ GST (VT ′ , G).

• ∀tj ∈ T ′, CST (vi, T
′, G) should contain Voronoi path V P (vi, tj, G).

• There should not be any subtree of CST (vi, T
′, G) which also satisfy above two

conditions.

We refer vi of a CST (vi, T
′, G) as root node. Weight of CST (vi, T

′, G) is defined as sum

of path weight of V P (vi, Vtj , G), ∀tj ∈ T ′. Minimum Path Weight Compact Steiner Tree

MPWCST (T ′, G) is defined as CST (vi, T
′, G) having shortest path weight among all

possible compact steiner tree on (T ′, G).

minpath−weight(CST (vi, T
′, G), ∀vi ∈ V )
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Answer model for a keyword query KQ on data graph G can be based on either

MPWGST or MPWCST . Since user expects Top-K answers for a keyword query

KQ, finding answers can be modeled as finding Top-K MPWGST (VKQ, G) or Top-K

MPWCST (VKQ, G).

Connected Tree Semantic answer model (CTS) is based on finding Top-K MPWGST (VKQ, G

on data graph G for keyword query KQ. In worst case each node vj ∈ V can have path

to ∀vki ∈ Vki , 1 6 i 6 l and ki ∈ KQ. In this case total possible candidate answers are

|V | ×
∏l

i=0 |Vki |. From these candidate answers, Top-K answers with minimum path-

weight needs to be picked.

Distinct Root Semantic answer model (DRS) is based on finding Top-K MPWCST (VKQ, G)

on data graph G for keyword query KQ. Here a node vj ∈ V can become root of an

answer only once. So in worst case maximum number of candidate answers for a keyword

query is |V |. Out of these candidate answers, Top-K answers needs to be picked.

Row-level Granularity Index is a keyword index used to store distinct terms present

in each relational tuple. In our work, relational table Row Granularity( node, term) is

used to store this keyword index. Main operation with this keyword index is, getNodes(ti),

to get set of nodes having term ti. This can be efficiently performed by having B-tree

index on term attribute.

3.2 General search algorithm for DRS model

Algorithm-1 [8] describes general approach of DRS model to find Top-K answers for

keyword query KQ. First keyword term node sets Vki , 1 6 i 6 l and ki ∈ KQ are

calculated. Next step is to generate all possible candidate answers by constructing

CST (vi, VKQ, G), ∀vi ∈ V . Each candidate answer is also associated with weight which

is based on weight of CST . Among all candidate answers, Top-K answers are chosen

based on weight of answers. Function drop K(ANSWER) removes answer with large
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weight.

Algorithm 1 Polynomial search algorithm for finding Top-K MPWCST (VK , G)

1. INPUT : Data graph G(V,E)

2. Keyword query KQ

3. Row-level Granularity table RG

4. K:Required number of answers

5. OUTPUT ANSWER:Top-K answers for KQ

6. For each kj ∈ KQ

• Vkj ← RG.getNodes(kj)

7. For each vi ∈ V

• Find CST (vi, KQ,G)

• If (CST (vi, KQ,G) is among Top−K)

– If(|ANSWER| > K)

∗ dropK(ANSWER)

∗ ANSWER← CST (vi, KQ,G)

– Else

∗ Discard CST (vi, KQ,G)

3.3 Node-Keyword index based approach

First node-keyword index is discussed in detail. Next search algorithm used by PBKSC

KWS engine is discussed.

Node-Keyword index

It stores Voronoi path information {V P (vi, tj, G)|∀vi ∈ V, tj ∈ T}. Voronoi path having

path-weight greater than a threshold path weight are not considered important for getting

answers for search query, so those path informations are not stored.
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Relational table Node-Keyword(node, term, path, path-weight) is used to store Node-

Keyword index. Here <node,term> attribute value constitute primary key value. At-

tribute value path stores Voronoi path information and path-weight gives path weight of

the corresponding Voronoi path.

Main operation on Node-Keyword relational table is getV Nodes(ti), to get set of

nodes NV Pti which have Voronoi path to a term ti less than threshold path-weight. By

using B-tree index on attribute term of Node-Keyword relational table, getV Nodes(ti)

operation can be effectively performed.

3.3.1 Search algorithm using Node-Keyword index

Algorithm-2 [8] describes the approach to get search results for keyword query using

Node-Keyword index. First for each keyword term ki, it gets set of nodes NV Pki having

Voronoi path to ki. Intersection of NV Pki , ∀ki ∈ KQ gives candidate answers. Function

ftopk selects Top-K candidate answers based on weight of the answer. PBKSC KWS

engine uses equivalent SQL query of Algorithm-2 to get Top-K answers.

Algorithm 2 Search algorithm for finding Top-K MPWCST (VKQ, G) using Node-
Keyword index

1. INPUT : Data graph G(V,E)

2. Keyword query KQ

3. Node-Keyword index NK

4. K:Required number of answers

5. OUTPUT ANSWER:Top-K answers for KQ

6. For each kj ∈ KQ

• NV Pki ← NK.getV Nodes(ki)

7. CAN ←
⋂l

i=0 NV Pki

8. ANSWER← ftopk(CAN)
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3.4 Node-Node index based approach

In this section we discuss about keyword search algorithm based on Node-Node index

approach. First we discuss Node-Node index, then later modified search algorithm is

described.

Node-Node Index

Here we materialize shortest path information between pair of nodes. Like node-keyword

index, only path information of nodes which is less than threshold path weight is stored.

The motivation for Node-Node index is that for text based database, number of distinct

terms present within the region of threshold path weight of a node, is very large compared

to number of nodes present in the region.

Goldman et al. [4] has also discussed storing shortest path information between pair

of nodes within threshold path-weight. They also address problem of storage space and

use hub indexing mechanism. Their work is for Find/Near keyword query semantics,

where they need to find shortest distance between nodes belonging to Find set and

Near set. They also mentioned about advantages of self joins to compute shortest path

between pair of nodes. Our work concerns about effectively utilizing Node-Node index for

computing Voronoi paths as an alternative of Node-Keyword index, thus getting benefit

of using less storage space.

Node-Node index is stored as relational table, Node-Node(node1, node2, path, path-

weight). Here <node1,node2> value forms primary key. Attribute path stores the path

from node1 to node2 and attribute path-weight stores corresponding path weight.

Main operations of Node-Node index are getNNodes(U), getMinNodes(U). Oper-

ation getNNodes(U) helps to get all nodes of the data graph G which have shortest

path to U ⊆ V having less than threshold path weight along with all path information.

Operation getMinNodes(U) is similar to getNNodes(U), but gives only shortest path

information. By using B-tree index on attribute node1 these operations can be effectively

performed.
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3.4.1 Search algorithm using Node-Node index

Algorithm-3 describes the approach to get search results for keyword query using Node-

Node index. Initially keyword term node set, Vki for each keyword term ki is obtained

from Row-level granularity relational table. Next set of nodes, NV Pki , for keyword term

ki having Voronoi path less than threshold path weight can be obtained from Node-Node

keyword index by using getMinNodes(Vki) function. Intersection of NV Pki , ∀ki ∈ KQ

gives candidate answers. Function ftopk selects Top-K candidate answers based on

weight of the answer.

Algorithm 3 Search algorithm for finding Top-K MPWCST (VKQ, G) using Node-Node
index

1. INPUT : Data graph G(V,E)

2. Keyword query KQ

3. Node-Node index NN

4. Row-level Granularity table RG

5. K:Required number of answers

6. OUTPUT ANSWER:Top-K answers for KQ

7. For each kj ∈ KQ

• Vki ← RG.getNodes(ki)

8. For each kj ∈ KQ

• NV Pki ← NN.getMinNodes(Vki)

9. CAN ←
⋂l

i=0 NV Pki

10. ANSWER← ftopk(CAN)
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3.5 Effect of threshold path weight

The problem with Node-Keyword or Node-Node index is usage of huge storage space.

Since answers for keyword search having large weight are not significant, they can be

discarded. But there is no theoretical bound for this threshold path weight. So from

user perspective, threshold path weight affects the quality of answer. Whereas from

publisher’s perspective, threshold path weight affects storage space required. In this

section we analyze effect of this threshold path weight on storage space and quality of

the answer.

Figure 3.1: Effect of threshold path weight

Figure 3.1 shows a part of data graph G. Here v1 ∈ V is the interested node.

v2, v3, v4, v5 ∈ V are neighbors of v1 and are only nodes which are within threshold path

weight TP . Ni, 2 6 i 6 5 are the set of nodes which are within threshold path weight

2TP , and their shortest path to v1 is through vi, 2 6 i 6 5 respectively.
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3.5.1 Node-Keyword index

Node-Keyword index may not store shortest path information of all nodes which are

within threshold path weight, as some nodes do not have any term or do not have any

term tj ∈ T for which there is Voronoi path V P (v1, tj). Suppose to make Node-keyword

index for threshold path weight twice of previous threshold path weight, costly graph

traversal algorithm needs to be used.

Suppose in the Figure 8 if Node-Keyword index does not store shortest path infor-

mation of v1 → v2 then to get shortest path weight information of v1  Nv2 , costly

graph traversal algorithm needs to be used.

3.5.2 Node-Node index

Node-Node index stores path information of all nodes which are within threshold path

weight. This makes it easier to have Node-Node index of path weight twice of previous

path weight by simple self join operation of Node-Node index.

In the Figure 8 Node-Node index store shortest path information of {v1 → vi, 2 6

i 6 5}. To get shortest path weight information of {v1  Nvi , 2 6 i 6 5}, joining

operation of {v1 → vi, vi → Nvi} needs to be performed. This operation can be easily

performed by self-join of Node-Node relational table.

3.6 Finding Top-K MPWGST (VKQ, G)

In this section method mentioned in [8] to get Top-K MPWGST (VKQ, G) answer from

MPWCST (VKQ, G) for keyword query KQ is discussed. ANSCST represents Top-K

MPWCST (VKQ, G) answers and set RootCST contains respective root nodes. ANSGST

represents Top-K MPWGST (VKQ, G) answers and set Rootans contains respective root

nodes.

Algorithm 4 gives procedure to get Top-K MPWGST (VKQ, G) answer fromMPWCST (VKQ, G)

for keyword query KQ. Since weight of Kth element of ANSGST cannot be greater than

Kth element of ANSCST , each member of ANSCST is assigned to ANSGST [1-3 line].
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Next [4-14 lines] root c′i ∈ Rootans of element of ANSGST is taken in increasing order of

weight if c′i is not seen before. All possible GST (V ′
KQ, G) are generated having root as c′i,

represented as Canans, using function allGST(c′i). Each element of Canans is pruned if

its weight is greater than or equal to weight of Kth element of ANSGST . Else it is added

in appropriate position of ANSGST and previous Kth element is removed. Similarly

Rootans is updated accordingly. This procedure is continued till (K − 1)th element of

ANSGST is reached.

The main operation in this process is, allGST(r), generating all possible GST (V ′
K , G)

having root node r. PBKSC KWS engine accomplishes this work by using Dijkstra’s

algorithm on data graph G as Node-Keyword index cannot be used. But Node-Node

index helps in this process as it provides getNNodes(U) function.

3.7 Experiments

In this section, we seek to analyze two aspects from Node-Keyword index and Node-Node

index. First one is the utilization of storage space by the two keyword indexes. Second

one is the performance of execution of search query by the two approaches. Currently

our experiments include cases where database and keyword indexes fit in main memory.

Experimental setup

All experiments are conducted in PostgreSQL 8.4.8 on Sun Ultra 24, Intel Core(TM) 2

Quad-Core CPU X9650, 3GHz with 8GB Main memory, Ubuntu 10.04 operating system.

We also set Postgres parameters shared buffers = 1GB and work mem = 1GB.

We use part of DBLP dataset for testing purpose. Description of domain database is

given in Table 3.1. The schema graph of the published database is shown in Figure 3.2.

The keyword queries used in our experiments are listed in Table 3.2
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Algorithm 4 Getting Top-K MPWGST (VKQ, G) from Top-K MPWCST (VKQ, G)

1. INPUT : Data graph G(V,E)

2. Keyword query KQ

3. ANSCST = {aci , 1 6 i 6 K}

4. Rootdist = {ci, 1 6 i 6 K}

5. K:Required number of answers

6. OUTPUT ANSWER:Top-K answers for KQ

7. ANSGST

8. Rootans

9. For i = 1→ K

• ANSGST ← aci

• Rootans ← ci

10. For i = 1→ K

• IfRootans.NotSeen(c′i)

– Canans ← allGST(c′i)

– For cGST ∈ Canans

∗ IfIsTopk(cGST )

∗ Update(ANSGST , cGST )

∗ Update(Rootdist, cGST )
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Name attributes # tuples #distinct
terms

#terms
per tuple

size

Proceedings (proc id,title,
seriesid,pub id)

2,968 9,891 18 776kB

InProceedings (inproc id,proc id,
title,year)

212,268 98,310 9 24MB

Person (personid,
name)

174,709 101,671 2.3 10MB

Publication (pub id,name) 86 170 3 8kB
Series (seriesid, title) 24 68 4.65 8kB
Inproc Person (personid,

inproceedingid)
491,777 NA NA 21MB

Table 3.1: DBLP domain relational tables

Search queries

Database system
Main Preprocess
operating system
learning programming language
System

Table 3.2: Keyword queries

3.7.1 Usage of storage space

Figure 3.3 gives information about number of path information stored by both keyword

indexes. Clearly Node-Node index stores less path information. If we compare disk

space utilization, Node-Keyword takes 1096MB storage space while Node-Node index

takes 335MB.

3.7.2 Performance on search queries

Figure 3.4 shows the performance of two keyword indexes on set of keyword queries men-

tioned in Table 3.2. These keyword queries are chosen so that number of possible answers

are more than 5,000. Here performance is almost equal, as time to handle large Node-

Keyword index balances extra computation required for Node-Node index approach. We
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Figure 3.2: Schema graph

can clearly observe effect of handling large Node-Keyword index for keyword query ‘sys-

tem’ as Node-Node index approach performs better as its computation overhead (only

one keyword term) is less.
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Figure 3.3: Storage space usage by keyword indexes

Figure 3.4: Performance on keyword search queries
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Related Work

Work to introduce KWS interface to RDBMS is mainly based on schema graph based

approach [1, 6] and data graph based approach [3, 7, 5]. We have extensively discussed

about [9] in Section-2.2, [8] in Section 3.3 and [4] in Section 3.4.1. In this section we

discuss other related work.

DBXplorer [1] and DISCOVER [6] are based on schema graph based, Candidate Net-

work(CN) generation and evaluation approach. CN s are similar to structured queries,

but is intended for CTS answer model. They generate answers for all CN s by construct-

ing appropriate SQL queries. DBXplorer mainly discusses about symbol table design is-

sues and effective storage space utilization. DISCOVER mainly discusses about effective

way to evaluate CN s, by materializing intermediate results. Their ranking mechanism

of answer tuples is weak, as it considers only structure of answer tuples and does not

consider content of the answer tuples. Labrador and DBLabrador ’s approach differs from

these approaches as it classifies answer tuples by submitting ranked structured queries to

user. Also it ranks answer tuples based on its structure as well as content of the answer.

[2] discusses about performance issues of KWS engines, that for some queries response

time is very large. Their solution is fix response time, send generated answers within

this time limit and send query forms which explore remaining possible answer space.

Since Labrador and DBLabrador ’s approach does classifies possible answers and generates

answer for particular answer class, it does not affected by performance issues much.

37
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BANKS [3] and Bidirectional Traversal-BANKS [7] are based on data graph ap-

proach, which use main memory data structure containing data graph information. For

search queries, they uses data graph traversal algorithms, Backward Search(BWS) [3]

and Forward Search(FSW) [7] to get answers. Problem with this approach is that, it

cannot be used for large database. Also it does not use any keyword indexes to traverse

the data graph.

BLINKS [5] is also based on data graph based approach which uses two main mem-

ory keyword indexes, Keyword-Node for BWS algorithm and Node-Keyword for FWS

algorithm. To reduce storage space consumed by the keyword indexes, it partitions data

graph into blocks and use bi-level keyword indexing. Still it consumes more storage space

than BANKS, so it is not practical for large databases.

[10] discuss about effective utilization of RDBMS capabilities without usage of any

additional KWS data structures for different KWS models. Main disadvantage of this

approach is that its performance cannot be matched with main memory based KWS

engines. Our approach is to utilize RDBMS capabilities to effectively build KWS data

structures and we have showed that we are comparable with previous approaches.



Chapter 5

Conclusions

We have effectively utilized RDBMS back-end technologies to provide KWS interface to

RDBMS on two prominent database models.

In schema graph based KWS model, we have taken Labrador engine [9] and built

DBLabrador which uses RDBMS back-end technologies. DBLabrador gives persistent

keyword indexes and removes the dependency on having full-text index on published at-

tributes. In experiments we have shown that performance of DBLabrador is comparable

with Labrador using full-text indexes.

In data graph based KWS model, we have introduced an alternative keyword index

for [8] work. Compared to Node-Keyword index, Node-Node index uses less storage space

for text based databases and gives comparable performance. Also Node-Node index uses

RDBMS back-end technologies in self join procedure, which allows it be operated with

small threshold path weight to get same quality of answer produced by high threshold

path weight Node-Keyword index, and in the process to produce CTS answer model,

where Node-Keyword index approach depends on main memory procedures.

For future work on Node-Node index approach includes trying to reduce storage space

by using hub indexing method [4] and comparing it with our approach of increasing

threshold path weight at runtime.
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