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Abstract

In modern database systems, a query optimizer is used to estimate selectivities during plan

selection for SQL queries. In practice, these estimates are often significantly different compared

to the actual values encountered during query execution which results in highly sub-optimal

execution performance. In [1], a different approach is proposed to address this classical problem,

wherein the compile-time estimation process is completely skipped, rather query is executed

through cost-limited executions of a small set of plans, called “Plan Bouquet”. QUEST [2]

is a prototype system, developed to showcase the concept of plan bouquet in existence. But,

the earlier QUEST implementation was restricted to queries having at most two error-prone

base predicates. In this work, we generalize the QUEST design and implementation so that

any query having multidimensional error-prone predicates (base or join) can be evaluated.

For a given query, as we increase the number of error-prone predicates, the time taken to identify

the parametric optimal set of plans (POSP) across the error-prone selectivity space (ESS)

increases exponentially with the dimensionality of the space. In this work, we have improved the

POSP identification time from years to hours using a massively parallel supercomputer, Cray

XC40. We have also improved the performance (in terms of running time) of basic CostGreedy

reduction algorithm [3] which is used to reduce the total number plans in POSP. Finally,

extensive experiments were performed with a suite of multi-dimensional TPC-H based query

templates on PostgreSQL optimizer. The results demonstrate that we can generate complex

plan diagrams in significantly less time. Further, a complex plan diagram can be reduced

substantially incurring only marginal increases in the estimated query processing costs.
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Chapter 1

Introduction

Database systems accept declarative SQL queries as input. The queries should be executed

efficiently so that data can be retrieved in less time. There are several alternative ways to

execute a query which gives the same result. But, each alternate way of executing a query

varies in performance.

Database systems have complex, cost based query optimizers which attempts to determine the

most efficient way to execute a given query by considering all possible query plans. Query plan

is an ordered sequence of steps to fetch the results for a SQL query. The optimizer will generate

and evaluate many plans and choose the least cost plan as the best plan. After selection of a

plan with minimum cost, it is passed to the executor module where the query is executed and

results are shown as output.

1.1 Background

In database systems, accurate estimations of predicate selectivities are a basic requirement for

the effective optimization of declarative SQL queries. In practice, however, these compile-time

selectivity estimates are significantly different with respect to actual values encountered during

query execution and that may result in highly sub-optimal plan selection.

In [1], a different approach is proposed to address this classical problem, wherein the compile-

time estimation process is completely skipped, rather query is executed through cost-limited

executions of a small set of plans, called “Plan Bouquet”. This approach provides guarantees

on worst-case performance for the first time in literature, but it requires a significant amount

of pre-processing to be done to identify the bouquet of plans at compile-time.

The space formed by all possible combinations of erroneous selectivities is called as Error-prone

Selectivity Space (ESS) [1]. Firstly, we identify the set of plans that covers the entire ESS. These
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set of plans are called Parametric Optimal Set of Plans(POSP). Secondly, a small bouquet of

plans is identified from the POSP such that at least one of the bouquet plans is 2-optimal at

each location in the space. In order to have practical guarantees, the POSP set is reduced using

CostGreedy [3] plan reduction algorithm.

1.2 Motivation

QUEST [2] is a Java based prototype implementation of plan bouquet technique. It visually

shows bouquet execution process and provides interactivity during execution. QUEST includes

modified database system with incorporated features required for plan bouquet. Currently,

PostgreSQL is the database system used with QUEST wherein all required features are imple-

mented. At present, only two-dimensional ESS queries with error-prone base predicates can be

evaluated through QUEST.

To evaluate a query with error-prone join predicates, we need join-selectivity injection feature

to be implemented in a database so that we can get the optimizer estimated plan for a given

join selectivity. But, open-source PostgreSQL doesn’t have this feature implemented.

In order to make QUEST practically useful for queries having multi-dimensional error-prone

predicates, we need to reduce the compile-time overhead of plan bouquet [1]. For a query, as we

increase the error-prone dimensions, the time required to produce the POSP for the entire ESS

increases exponentially with the dimensionality of the ESS. If the resolution of a d-dimensional

ESS is res then, the number of optimization calls made for producing the POSP is resd, which

is computationally expensive.

1.3 Contribution

In this work, we generalize the QUEST design and implementation so that any multidimen-

sional ESS query with error-prone base predicates as well as join predicates can be evaluated.

We have also tried to reduce the time required to produce POSP for a given query template by

using a massively parallel supercomputer, Cray XC40. Our contribution can be divided into

three categories.

• QUEST Modifications: Here we explain new QUEST features including ‘Query-coupled

join selectivity injection’ in PostgreSQL 9.4, query parser with error-prone predicates se-

lection panel, a common database interface and query evaluation having multidimensional

ESS.

• A Massively Parallel Algorithm for POSP Identification: Here, we propose a
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parallel algorithm to reduce the time taken for POSP identification resulting in lesser

pre-processing time for plan bouquet approach [1]. It also enables us to investigate high-

dimensional plan diagrams [5] (a pictorial enumeration of the execution plan choices of a

database query optimizer over the relational selectivity space) in high resolution.

• Modified CostGreedy Algorithm: In this chapter, we explain an optimization tech-

nique to speed-up basic CostGreedy algorithm.

We’ll also show in the experimental results that complex plan diagrams even with high

resolutions can be reduced to a much simpler picture, featuring less number of plans

without substantively affecting the query processing quality.

1.4 Organization

Chapter 2 provides the background details of plan bouquet technique. We explain the QUEST

architecture in Chapter 3. Chapter 4 discusses the modifications in QUEST. In Chapter 5,

we explain our parallel algorithm for POSP generation followed by a detailed description of

basic CostGreedy algorithm modifications in Chapter 6. Chapter 7 represents the empirical

evaluation of our approach. Finally, in Chapter 8, we summarize our work and mention the

outline of future work.
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Chapter 2

Plan Bouquet Technique

In this chapter, we present necessary background details about plan bouquet approach for

robust query processing [1].

2.1 Overview

Plan bouquet is a new approach wherein the compile-time estimation process is completely

shunned for error-prone selectivities. Instead, these selectivities are learnt systematically at

run-time by executing a carefully chosen small set of plans called “Bouquet of plans” in a

particular sequence in cost-limited manner. Partial executions are controlled by a graded pro-

gression of isocost surfaces projected onto the POSP curve. It has been proved in [1] that this

construction results in guaranteed worst-case performance. It assumes Plan Cost Monotonicity

(PCM) property, which states that cost of POSP plans increase monotonically with increasing

selectivity values.

2.2 Single Dimension Example

Plan bouquet approach is explained for a simple query having one error-prone selectivity using

query shown in Figure 2.1.

Figure 2.1: Example Query (EQ)

This example query contains one base predicate and two join predicates. Out of these,
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assume selectivity of base predicate p retailprice < 1000 is error-prone.

2.2.1 Bouquet Identification

Firstly, the Parametric Optimal Set of Plans (POSP) that cover the entire selectivity range

of the error-prone predicate is identified through repeated invocations of the optimizer and

explicit injection of selectivities from lowest to highest values. Let POSP set be comprised of

plans P1 through P5. Further, each plan is optimal over a certain selectivity range. The costs

of these five plans, P1 through P5, over the entire selectivity range are enumerated as shown

in Figure 2.2 (on a log-log scale). From these plots, the trajectory of the minimum cost from

among the POSP plans is obtained as a curve which represents the ideal performance. This

curve is called as POSP Infimum Curve (PIC). Next, the PIC is discretized by projecting a

graded progression of isocost (IC) steps onto the curve. In Figure 2.2, the dotted horizontal

lines represent a geometric progression of isocost steps, IC1 through IC7, with each step being

double the preceding value. The intersection of each isocost step with the PIC (indicated by

∎) gives an associated selectivity, and the identity of the best POSP plan for this selectivity.

Figure 2.2: POSP performance

For example, in Figure 2.2, the intersection of IC5 with the PIC corresponds to a selectivity

of 0.65% with associated POSP plan P2. The subset of POSP plans that are associated with

the intersections forms the plan bouquet for the given query. So in Figure 2.2, the bouquet

plans are P1, P2, P3, P5.
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2.2.2 Bouquet Execution

At run-time, through a sequence of cost-limited executions of bouquet plans, the actual query

selectivities are discovered. Specifically, execution begins with the cheapest isocost contour.

Plans in each contour are sequentially executed with a budget limit equal to the contour’s

budget. If a plan completes its execution, then the results are returned to the user. Otherwise,

the plan is forcibly terminated and next plan in the contour is selected for execution. If all the

plans in a contour result in forcible termination, we move on to the next isocost contour and

start all over again.

2.3 Extension to Multiple Dimensions

In multidimensional selectivity environment, the IC steps and the PIC curve become surfaces,

and their intersections represent selectivity surfaces on which many bouquet plans may be

present. In spite of these changes, the basic mechanics of the bouquet algorithm remain very

similar to the 1D case. The primary difference is that we advance from one IC surface to the

next only after it is determined that none of the bouquet plans present on the current IC surface

can complete the execution of the given query within the associated cost budget.

2.4 Robustness Metric

Robustness is measured in terms of maximum sub-optimality (MSO) for plan bouquet.

Given a query Q and an ESS, let qe denote the optimizers estimated query location, and qa

denote the actual run-time location in ESS. Also, denote the plan chosen by the optimizer at

qe by Poe and the optimal plan at qa by Poa. Finally, let cost(Pj, qi) represents the execution

cost incurred at actual location qi by plan Pj. Then, robustness is defined by the normalized

metric:

MSO = max
qe,qa∈ESS

[cost(Poe, qa)
cost(Poa, qa)

]

Plan bouquet gives robustness guarantee in terms of MSO as:

MSO ≤ 4ρ

If there exist K total contours and ni plans lie on ith contour then,

ρ = max
i=1 to K

ni
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Chapter 3

QUEST Prototype System

QUEST [2] (QUery Execution without Selectivity esTimation) is prototype implementation of

plan bouquet technique. It visually shows bouquet execution process and provides interactiv-

ity during execution. QUEST includes modified database system with incorporated features

required for plan bouquet, and implementation of bouquet algorithms that execute query on

modified database engine. Currently, PostgreSQL is the database system used wherein all

required features are implemented.

3.1 System Architecture and Feature Details

The complete architecture of the QUEST system is shown in Figure 3.1, divided into a compile-

time/pre-processing phase and a run-time/execution phase. In pre-processing phase, through

repeated invocations of the optimizer, and explicit injection of selectivities, we identify a small

bouquet of plans. In execution phase, a calibrated sequence of cost bounded executions of those

plans are performed to complete the query execution.

QUEST features range from showing sub-optimality of native optimizer to executing query with

bouquet mechanism. These features can be summarized as:

1. Performance comparison with native optimizer by showing native database execution and

optimal execution performance.

2. Visually showing identification process of plan bouquet.

3. Actual and abstract executions of plan bouquet algorithm.
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Figure 3.1: Existing QUEST Architecture

3.2 Implementation Details

QUEST interface is implemented using Java Swing. First, it validates the input query by

accessing pg stats meta-data relation. Next, through repeated invocations of the optimizer,

and explicit injection of selectivities in PostgreSQL, we identify the POSP over the entire

selectivity range (0-100%). CostGreedy reduction [3] is implemented for reducing POSP.

In this implementation, graphs and plan trees are drawn using open libraries “JFreeChart”

[8] and “JGraph” [9] respectively. During bouquet execution, graphs are updated through

functionality provided in JFreeChart. QUEST also provides functionality for clearing system

cache. This cache clearing function runs system (Linux) commands through Java program.
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Chapter 4

Modifications in QUEST

The new QUEST architecture is shown in Figure 4.1. In this chapter, we elaborate all the

newly added QUEST features in the following order.

1. Query-coupled join selectivity injection in PostgreSQL 9.4.

2. Query parser with error-prone predicate selection panel.

3. A common database interface.

4. Query evaluation having multidimensional ESS.

Figure 4.1: Modified QUEST Architecture
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4.1 Query-coupled Join Selectivity Injection

Given a multidimensional query template and a selectivity space resolution, QUEST identifies

the isocost contours (IC) in bouquet identification step. To achieve this objective, QUEST

needs the optimizer estimated optimal plans and costs for different query locations in the ESS.

Hence, we have implemented a feature in PostgreSQL to inject the user specified selectivity for

inner-join predicates through the query and obtain the corresponding plan and cost from the

optimizer. It can also be useful in some situations when we want to encourage some particular

type of join operation or join order.

4.1.1 Implementation Details

In this section, we explain the implementation details of the join selectivity injection feature in

PostgreSQL 9.4. To inject selectivities for join predicates, user has to use the following query

format:

EXPLAIN SELECTIVITY

(<join pred1> AND <join pred2> AND ...) (<selec1>,<selec2>,...) statement;

where, selec1 is the selectivity for join predicate1, selec2 is the selectivity for join predicate2

and so on. The injected selectivities should vary between 0 and 1.

We parse the input query and store injected join clauses and their corresponding selectivities

in PlannerInfo structure which stores all the information for planning a particular Query.

PostgreSQL optimizer uses clause selectivity() function to calculate selectivity of all kind of

predicates. Whenever this function is called for the injected join predicates, we use the user-

specified selectivity instead of the one calculated by the optimizer. Selectivities can only be

injected for the join predicates which do not have any cyclic dependencies in the given query.

4.1.2 An Example

Let us compare the output of visual explain for the following query on TPC-H database with

index created.

SELECT * FROM lineitem,part where p partkey = l partkey and p retailprice <1000;

Here is the same query modified with different selectivity clauses:

10



EXPLAIN SELECTIVITY

(p partkey = l partkey) (0.01) SELECT * FROM lineitem,part where p partkey = l partkey

and p retailprice <1000;

EXPLAIN SELECTIVITY

(p partkey = l partkey) (0.9) SELECT * FROM lineitem,part where p partkey = l partkey

and p retailprice <1000;

(a) With selectivity of 0.01
(b) With selectivity of 0.9

Figure 4.2: Plan tree for different selectivity of p partkey = l partkey

Figure 4.2 shows the visual output of both the plan trees. Clearly, when the join predicate

has lower selectivity, it is beneficial to use Nested Loop Join with index scan on the inner

relation. Similarly, for higher selectivity of the join predicate, optimizer chooses Hash Join.

4.2 Query Parser with Error-prone Predicate Selection

Panel

In QUEST, we have implemented a parser which parses the input query and extracts the base

predicates and join predicates. Then, the user is asked to select the error-prone predicates

among the extracted ones using a Java selection panel, see Figure 4.3.
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Figure 4.3: Error-prone Predicate Selection Panel

The implementation is similar to [6]. To achieve this, a regular expression based parser is

implemented which collects the list of relations in the query and attribute names in the selected

predicate in a tree structure. Tree structure is needed to handle nested queries correctly. The

attribute name is searched in all relations present in the current scope to find the associated

relation and schema.

4.3 A Common Database Interface

We have implemented a database interface module which abstracts away communication to

the relational databases from QUEST. Different databases have slightly varying SQL syntax,

different types of histograms and different plan representations. This module abstracts such

inconsistencies under a common interface.

4.4 Query Evaluation having Multidimensional ESS

New QUEST implementation supports execution of query having multiple error-prone range

predicates as well as join predicates. This is achieved by using an index array similar to [6].

QUEST lays out the plan number and cost information to single dimension for storage. The

index array is used to calculate the position of each point in the single dimension layout. For

now, we have made an assumption that the entire index array can be fitted in the available

system memory.
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Chapter 5

A Massively Parallel Algorithm for

POSP Identification

For a given query, as we increase the number of error-prone predicates, the time taken to iden-

tify the parametric optimal set of plans (POSP) across the error-prone selectivity space (ESS)

increases exponentially with the dimensionality of the space, assuming a fixed resolution.

Figure 5.1: Time taken to generate plan diagrams

Figure 5.1 shows (on a log-scale) the estimated time taken on a system consisting of Intel

Haswell Xeon processors with 128GB RAM to identify POSP by varying dimensions. To get a

13



feel about the identification time, it takes almost four years to generate POSP for a selectivity

space with 5 dimensions and 100 resolution.

But, POSP identification time can be reduced significantly by efficient utilization of modern

multi-core clusters. Here, we have developed an efficient parallel algorithm for POSP identifi-

cation and implemented the same using MPI (Message Passing Interface) library.

Figure 5.2: Parallel architecture for POSP Identification

Figure 5.2 depicts the system architecture of our implementation. Suppose, 2N (N is even)

computing nodes are available and we want to use m cores in each node. Each process needs

to connect to a database server. We use N nodes to start N database servers and rest of the

nodes are used to execute the parallel algorithm. All the processes in ith node connect to the

database server hosted in i/2th node. A separate thread is created for each database connection.

Since, we are creating m connections for each database server, all connection threads can be

executed in a non-preemptive manner. Thus, the computational time for POSP identification

is reduced by a factor of Nm.
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Algorithm 1 Parallel Algorithm for POSP Identification

Input: number of processes n, dimension dim and resolution res of the ESS;

Output: POSP of the entire ESS;

1: Init: currqlocs ={},plans ={};

2: Call MPI Init(); //Initialize MPI execution environment

3: Get rank of the current process using MPI Comm rank();

4: if rank = 0 then

5: Divide the ESS (dim ∗ res points) into n equally sized subspaces;

6: Send n subspaces (defined by the top-right and bottom-left points) to n different processes

using MPI Send();

7: end if

8: Receive the subspace (S) information which needs to be explored by current process using

MPI Receive();

9: for each query locations q ∈ S do

10: Get the optimal plan Popt at q;

11: if Popt ∉ plans then

12: Add Popt in plans;

13: Add q in currqlocs;

14: end if

15: end for

16: Store currqlocs in a shared buffer qlocs using MPI Gatherv();

17: plans ={};

18: if rank = 0 then

19: for each query locations q ∈ qlocs do

20: Get the optimal plan Popt at q;

21: if Popt ∉ plans then

22: Add Popt in plans;

23: Store Popt in disk;

24: end if

25: end for

26: end if

27: Call MPI Finalize(); //Terminates MPI execution environment

The main idea of the our algorithm 1 is to divide the multi-dimensional ESS equally among

the processes. Each process identifies POSP in its subspace. For each plan in POSP, a process

15



stores the query location where it was found for the first time. Finally, we find the POSP for

the entire ESS by exploring only those query locations.

Along with POSP, we also store the cost and optimal plan at each location of the selectivity

space in a linear data structure. This information can be used by QUEST during bouquet

identification phase for a parameterized query template to avoid numerous optimizer calls.

Hence, pre-processing time of Plan Bouquet can be substantially reduced.
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Chapter 6

Modified CostGreedy Algorithm

For queries having multi-dimensional error-prone predicates, the worst-case bound of plan bou-

quet algorithm depends on ρ, the maximum plan density over the isocost surfaces. Therefore, to

have a practically useful bound, we need to ensure that the value of ρ is kept to the minimum.

This can be achieved through the basic CostGreedy algorithm, a plan reduction technique de-

scribed in [3]. Here, POSP plans are allowed to swallow other plans, that is, occupy their regions

in the ESS space, if the suboptimality introduced due to these swallowings can be bounded to

a user-defined threshold, λ.

The input to the algorithm is a plan diagram [5], a pictorial enumeration of the execution plan

choices of a database query optimizer over the relational selectivity space and a threshold λ.

The output is another plan diagram. The data structures used in the algorithm are as follows:

1. cur(q): current plan of a point q in the plan diagram.

2. belong(q): the set of plans that can be used instead of the current plan in the reduced

plan diagram.

3. cost(q): value indicating the cost of q in the plan diagram.

4. color(q): integer denoting the color (equivalently, plan) of q in the plan diagram.

The time complexity of CostGreedy is O(mn), where m and n are the number of query

points and plans, respectively, in the input plan diagram P [3].

Step 3 of CostGreedy algorithm (2) updates belong(q) with all the plans that are in q’s first

quadrant with cost within the given threshold starting from TopRight to BottomLeft. But, if

plan-cost monotonicity (PCM) assumption holds then, we don’t need to check all the points in

17



q’s first quadrant to find plans having cost within the threshold.

Algorithm 2 Basic CostGreedy Algorithm [3]

Input: Plan Diagram P , Threshold λ;

Output: Reduced plan diagram;

1: for each query locations q from TopRight to BottomLeft do

2: set cur(q) = color(q);
3: update belong(q) with plans that are in q’s first quadrant with cost within the given

threshold.

4: end for

5: Let m be the number of points in P and n be the cardinality of POSP for P .

6: Create n sets S = {S1, S2, . . . Sn} corresponding to the n plans.

7: Let U = {1,2, . . .m} correspond to the m query points.

8: Define ∀i = 1, . . . , n, Si = {j ∶ i ∈ belong(r) or i = cur(r) for query point r corresponding to

j,∀j = 1, . . . ,m}.

9: Let I = (U,S), I be an instance of the Set Cover problem.

10: Let Ln be the color of the TopRight point. Remove set Sn and all its elements from I.

11: Apply Algorithm Greedy Setcover to I. Let C be the solution.

12: C = C⋃Sn

13: Recolor the grid with colors corresponding to the sets in C and update new costs appro-

priately. If a point belongs to more than one subset, use color that results in least cost

increase.

14: End Algorithm CostGreedy.

We need to modify the belong(q) data structure so that it also includes the current plan at

q. We use belong(q) at step 8 of the algorithm which can be changed accordingly, because, we

are already making sure that belong(q) includes the current plan at q.
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Figure 6.1: 2D and 3D Example

Now, suppose that qx,y is a query location in 2D ESS (Figure 6.1). Then, we only need to

check plans only at qx+1,y and qx,y+1 to find belong(qx,y). Similarly, for 3D ESS, we need to

check plans at qx+1,y,z,qx,y+1,z and qx,y,z+1 to calculate belong(qx,y,z). Hence, for a d-dimensional

ESS we need to check plans at d locations to find belong(q) for a query location q.

Claim: If PCM assumption holds, then, belong(q) ⊆ ⋃d
i=1 belong(qi) ∪ p, where qis are the

immediate neighbour points of q (at q’s first quadrant) along each of the d dimensions and p is

optimal plan at q.

Proof: Suppose, the cost of the plan p at location q is c. For another location q′, the cost

corresponding to the optimizer chosen plan p′ is c′. Suppose, p′ ∈ belong(q) which means

c ≤ c′ ≤ c(1 + λ) where λ is the user-defined threshold. Due to PCM assumption, q′ must be

in q’s first quadrant. It is easy to see that p′ can be used for any point in the region bounded

by q and q′. Hence, for any plan other than p that can be used at q, there is at least one

point among q’s neighbours (in q’s first quadrant) where it can complete execution with cost

within the threshold. We need to check all neighbour points along each dimension since PCM

assumption doesn’t provide any relation between these points. ∎

After the above modifications in the CostGreedy algorithm, although asymptotically the

time complexity is still O(mn), but empirically we get significant performance improvement.

Because, for most of the query points, belong(q) contains 1%−5% of the total number of plans

in the ESS. We’ll show the results in the next chapter.
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Chapter 7

Empirical Analysis

In this chapter, we report an experimental evaluation of our proposed techniques.

7.1 Experimental Environment

PostgreSQL version 9.4 is used to obtain estimated optimal plans and estimated cost of plans.

Our experiments have been carried out on Cray XC40 composed of 1376 computing nodes

[12]. Each node has 2 CPU sockets with 12 cores each, 128GB RAM and they are connected

using Cray Aries interconnect. Concerning software environment, the entire system is built to

operate using Cray’s customized Linux OS, called Cray Linux Environment. For our parallel

algorithm implementation, we have used the GNU compiler collection with Cray MPICH2

Message Passing Interface and for CostGreedy reduction algorithm, we have used Java. We

have performed all the experiments on TPC-H 1GB database [10].

7.2 Impact of Parallel Algorithm

We have used 300 nodes and 20 cores in each node for our experimental purpose. As discussed

in Chapter 5, we get 3000 times speed-up. Figure 7.1 indicates the performance improvement

of parallel algorithm over serial one.
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Figure 7.1: POSP Identification performance

As we can see in the figure, for a query with 5-dimensions and 100 resolution, our algorithm

reduces the running time from 4 years to 12 hours. This enables us to generate POSP as well

as the complete plan diagrams for high-dimensional ESS with high-resolutions in very less time

which was previously unthinkable. It also reduces the compile-time overhead for plan bouquet

to a great extent. For parameterized query templates, we can reuse these plan diagrams for

bouquet identification phase in QUEST.

7.3 Modified CostGreedy Algorithm Performance

Figure 7.2 shows the performance improvement after incorporating the modifications in Cost-

Greedy algorithm. For a query location, if we consider all the points in its first quadrant then,

we need to examine a lot of plans to check whether their costs are within the permissible thresh-

old. But, if we only look at immediate neighbour points to a query locations, the number of

plans reduces substantially.
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Figure 7.2: CostGreedy performance

Figure 7.3: Number of points with different cardinality of belong(q)

For example, the cardinality of POSP of TPC-H query 8 with 4 dimensions and 40 resolution

is 145. But, figure 7.3 depicts that for majority of the points, cardinality of belong(q) is

very small compared to the total number of plans. Thus, we can achieve such computational

efficiency.
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7.4 Plan Reduction Quality

We have produced the POSP set for different TPC-H query templates by varying each dimen-

sion uniformly. Table 7.1 shows the cardinality of POSP sets for different query templates. For

example, TPC-H query 8 with 2D ESS and 100 resolution has 25 plans in its POSP set.

Query Template #plans

Q8 100res 2d 25

Q10 100res 2d 18

Q7 100res 3d 45

Q8 100res 3d 71

Q8 100res 4d 215

Q8 100res 5d 573

Table 7.1: POSP cardinality for different query templates

These results show that the cardinality of the optimal plan set can reach high values for

some queries. Also, as we increase the dimensions, we notice a substantial increase in the num-

ber plans even with fixed resolution.

Figure 7.4: Plan reduction quality by varying dimensions

Now turning our attention to reduction quality, figure 7.4 shows that CostGreedy signifi-

cantly reduces plans in POSP set. We have also found that 80% of the plans in the reduced
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plan diagrams could not be swallowed in the reduction process. Another observation is that

the initial steep exponential decrease in the number of plans with increasing threshold. We

have found this to be true as stated in [3] even with high resolution. But, with increase in

dimensions, the number of reduced plans goes beyond “anorexic”level (small absolute number

of plans). The reason for this is that CostGreedy follows a conservative cost-bounding approach

to estimate the costs of plans outside their endo-optimal regions. Plan reduction quality can be

improved by using CostGreedfy −FPC algorithm [4]. The foreign-plan-costing (FPC) feature

is used to evaluate plans outside of their endo-optimal regions.

Figure 7.5: Plan reduction quality by varying resolution

Figure 7.5 shows that the final plan cardinality increases with the resolution. As we increase

the resolution, new plans are found near the axis which can not be swallowed by other plans.

This is the reason that the final plan cardinality increases. We can use foreign-plan-costing

(FPC) feature to check whether the final plan cardinality can be reduced further.
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Chapter 8

Conclusions and Future Work

In the initial work, we have generalized the implementation of Quest so that any query with any

number of error-prone selectivity predicates can be evaluated. As part of Quest modifications,

we have implemented join selectivity injection feature in PostgreSQL 9.4.

In our second contribution, we have proposed a parallel algorithm for identifying POSP set for a

query template. We have shown that our algorithm improves the identification time from years

to hours. We have also improved the running time of CostGreedy reduction algorithm. Finally,

we investigated the possibilities of reducing a dense plan diagram produced by PostgreSQL,

without adversely affecting the query processing quality. Our analysis has shown that plan

reduction can be carried out efficiently and can bring down the plan cardinality to a manageable

number of plans while maintaining acceptable query processing quality.

To further improve the plan reduction quality, we can use CostGreedy-FPC algorithm. But, as

stated in [4], the algorithm performs very poorly in terms of running time. It takes mn FPC

calls to the optimizer to reduce a ESS with m points and n plans. It will be an interesting

future work to reduce the running time of CostGreedy-FPC by exploiting parallelism using

multi-core architectures. It also opens up the possibility to analyze plan bouquet technique

and its empirical bounds for high-dimensional queries.
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