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Abstract

An important class of queries which has recently received increasing attention is the class
of queries that find aggregate values over an attribute (or set of attributes) above some
specified threshold. This class of queries was denoted by Fang et al. as iceberg queries,
because the number of tuples satisfying the threshold are very less compared to the large
amount of input data. In this report we introduce the problem of answering queries which
compute aggregate functions over a set of attributes below some specified threshold. As
it finds aggregate values over an attribute (or set of attributes) below some specified
threshold and the number of tuples satisfying the query is very less compared to the
size of the database, we coin the term N-Iceberg queries for such type of queries. We
propose an algorithm to evaluate N-Iceberg queries and compare them with ORACLE
and traditional sorting algorithms, with very little main memory. Finally, an experimental

study with various data sets is performed, where our algorithm outperforms sorting.
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0.1 Introduction

Large number of applications encounter complex queries, which take long time to execute.
There has been a trend in recent years to find aggregation values over an attribute (or
set of attributes) above some specified threshold [1] [2] [3] [4] [5]. This class of queries
was denoted by Fang et al. as Iceberg queries. They are so called because the number
of above threshold results is often very small (the tip of an iceberg), relative to the large
amount of input data (the iceberg). Iceberg queries occur frequently in data warehousing,
information-retrieval, market basket analysis and clustering.

In this report, we consider the complimentary problem i.e., to find aggregation values
over an attribute (or set of attributes) below some specified threshold. We call these
type of queries as N-Iceberg queries, which stands for Negative ICEBERG queries. A N-
Iceberg query computes aggregate function over a set of attributes below some specified
threshold eliminating all the aggregate values above the threshold. To the best of our
knowledge, we are unaware of any work that addresses the issue of computing N-Iceberg
queries. In this report, we discuss the difficulties of evaluating N-Iceberg queries and
describe an algorithm which efficiently evaluates N-Iceberg queries using compact main

memory structures.
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Figure 1: N-Iceberg Vs Iceberg Queries

Figure 1 specifies where N-Iceberg queries stand with respect to Iceberg queries, where
“Measure” represents the aggregate value for a particular Target and “Targets” refer to

the number of targets satisfying a particular Measure. From Figure 1, it is clear that the
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number of targets satisfying N-Iceberg and Iceberg queries are small relative to large size
of the database. Although Iceberg queries has been studied in depth, N-Iceberg queries are
not addressed till now. An example N-Iceberg query, based on a relation Purchase(P.cust,

P.item, P.qty), is as follows:

cust | item | qty
Har | Pep 4
Dev | Cok 5
Lee | Mar 3
Lee | Pep 8
Har | Pep 5
Dev | Cok 6
Lee | Mar 2

Table 1: Example Database Fragment

SELECT P.cust, P.item, SUM(P.qty)
FROM purchase P

GROUP BY P.cust, P.item

HAVING SUM(P.qty) <= 6

If the above query is executed on the database fragment shown in table 1, it results
in only one tuple <Lee,Mar,2>. We refer such queries as N-Iceberg queries, as the result
is very small compared to the relation P.

N-Iceberg queries have a number of useful applications like information retrieval, fi-
nancial applications, marketing. For instance, a mutual fund manager may be interested
in stocks that have not performed well with other stocks in the market over an extended
period of time, so that he can sell them. Alternatively, consider a pharmaceutical indus-
try, where a manager will be interested to find the pharmaceuticals which are not having
good market, to discontinue producing them or produce a different kind. More examples
of N-Iceberg queries are discussed in the next subsection.

The simplest way of computing a N-Iceberg query is to scan the whole database and
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increment the counter for the appropriate target maintained main memory. This solution
needs a distinct counter for each distinct target in the database. Since this solution uses
physical main memory to store the array of counters, it will incur a performance penalty
when the number of distinct targets in the data set is very large to fit in the main memory
(which is always the case), in which case it is difficult to store a distinct counter for each
distinct target. Another approach to answer an N-Iceberg query is to apply hashing or
sorting to compute the value of the aggregate function and then remove those for which
the aggregate value is more than the specified threshold. The number of tuples satisfying
the condition of N-Iceberg queries is very small with respect to the total number of tuples
processed, leaving room for improvements in efficiency.

We explain two different variants of sorting to compute N-Iceberg queries in the next

Section.

0.1.1 What is interesting about N-Iceberg queries?

We now explain the interesting features of N-Iceberg queries and illustrate them using a

few examples.

Example 1: Drowsy Student Query Consider the IISc Student database with at-
tributes Student name, Student ID , Course ID and number of Credits for the course.
Majority of the students have their aggregated credits in between 12 and 24. Stu-
dents who have an aggregate sum of less than 12 credits is very small compared to
the total student database. Now consider the following query, which computes all
the students who have done less than 12 credits aggregated on all the courses taken

by them.

SELECT S.ID, S.Course, SUM(S.Cred)
FROM Student S

GROUP BY S.ID, S.Course
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HAVING sum(S.Credits) < 12

The above query is a N-Iceberg query because it results in only few targets compared
to the whole student database. If current techniques like sorting or hashing are
applied to compute the query, it first sorts or hashes all the distinct targets (all
distinct students) and then does an aggregation of the resulting sorted or hashed
database. Irrespective of the size of the result, sorting or hashing does all the work

to evaluate the query.

There are many more applications in which N-Iceberg queries arise. For example,
web search engines will be interested to find whether there are any documents which

are very less visited, to optimize the construction of indexes on that documents.

From the above illustrated examples, the importance of N-Iceberg queries in various
applications is shown. By this motivation, a solution is proposed to efficiently evaluate

N-Iceberg queries.

0.1.2 Why is it difficult?

[1] presents novel and efficient techniques to evaluate iceberg queries using very little
main memory and significantly fewer passes over the data, when compared to sorting or
hashing. One might think that it is not necessary to formulate N-Iceberg queries. The
solution for N-Iceberg queries can be inferred by just negating the solution of the Iceberg
queries. However, this is not the case with N-Iceberg queries.

Intuitively, algorithms for evaluating Iceberg queries involve more of false positives (light
targets reported as heavy, where light targets mean targets whose aggregated value is
less than the threshold and heavy targets mean whose aggregated value is more than the
threshold). If we consider C as the potentially heavy candidates output by the above
algorithms, and F as answer to the query. Then, if C — F' is non empty, then the
algorithm reports false positives. Alternatively, if F'— C is non empty, then the algorithm

reports false negatives (light targets are missed). If the techniques used for evaluating
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Iceberg queries are used for evaluating N-Iceberg queries, they result in false negatives.
Eliminating false positives from the candidate set(C) involves post-processing that scans
the whole database once and explicitly counts the frequency of all targets in the candidate
set. But, post-processing to eliminate false negatives from the candidate set(C) is very
inefficient and in fact be as bad as the original problem [1]. In other words, computing
N-Iceberg queries is not easy compared to computing Iceberg queries.

There is no known efficient technique to identify the lowest frequencies in a distribu-
tion that have relatively very high frequencies and a few small ones [11]. The common
techniques used to identify such lowest frequencies are sorting and hashing. In this report,
we provide a novel efficient technique to address this problem. However, we are unaware

of any work that tries to identify such small frequencies in a distribution.

The main contributions of this report are:

We define N-Iceberg queries and identify the usefulness of these class of queries in real

world applications.

We propose an algorithm for evaluating N-Iceberg queries efficiently. We use a multi
pass, partition based algorithm which, in each pass over the data, generates a mini
database, which is compressed not only vertically but also horizontally. This is a
write-also algorithm, where the mini database generated at each pass becomes the

input to the next pass.

We evaluate our algorithms over a wide range of distributions and for different character-
istics of data sets. We show that our algorithm perform better than n-way external

mergesort.

0.1.3 Organization

The rest of the report is organized as follows. In Section 0.2, a suite of algorithms to
evaluate N-Iceberg queries are presented. In Section 0.3, we propose the performance

methodology and experimental results of our techniques compared with the traditional
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sorting and ORACLE algorithms. In Section 0.4, we conclude the report along with some

directions for future research.

0.2 N-Iceberg Algorithms

In this section, we explain some variants of sorting to evaluate N-Iceberg queries. We also

propose a multiple-pass partition-based algorithm, MINI, for evaluating N-Iceberg queries.

0.2.1 The SMA Algorithm

In the Sort-Merge-Aggregate algorithm, the relation I is sorted on the target attribute
using Two-Phase Multi-way Merge-Sort [9] (also known as external merge-sort). It

consists of the following phases:

sort : Sort main-memory sized pieces of the data, such that every record is part of a
sorted list that just fits in the available main-memory.
merge : [teratively merge the smaller sorted sublists from the previous pass into larger

sorted sublists till a single sorted list results.

Next, in the aggregate phase, the single sorted list, which is now stored on disk, is
scanned once to compute the count for the contiguous set of tuples corresponding to each
target. For heavy targets whose count exceeds the threshold, the target along with its

count becomes part of the query result.

Cost of the SMA Components

We now discuss the cost involved in executing each of the SMA components. Assuming B
buffer pages are available in main-memory and that we need to sort a large relation with

N pages:

e the sort phase would result in [/N/B] runs of B pages each (except for the last run,

which may contain fewer pages)
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e B — 1-way merge in the merge phase will require [logg 1[N/B]]| passes to merge
all the runs into a single sorted list.

e the aggregate phase will require single scan of the fully sorted database.

Thus the analysis of the above steps suggests that SMA performance is not linear in
the size of data. But as shown in the analysis done in [10], for sufficient amount of
main-memory, SMA finishes in 3-5 passes of the database for most real-world dataset

sizes.

0.2.2 The ISMA Algorithm

ISMA is a simple modified version of SMA that is specifically optimized for handling aggre-

gate queries. It makes use of two optimizations, Early Projection and Early Aggregation:

Early Projection : The result attributes are projected before executing the sort in

order to reduce the size of the database that has to be sorted.

Early Aggregation : The aggregate evaluation is pushed into the sort and merge
phases, thereby reducing the size of data that has to be merged in each succes-
sive merge iteration of external merge-sort. Further, this preprocessing makes
the last aggregate phase redundant since the aggregate values have been already

computed.

We will encounter the same costs for advanced algorithms like duplicate record elimi-

nation in large data files [6] and hash based aggregations [8].

0.2.3 MINI

A partition P C relation R refers to any subset of tuples contained in R and union of
all partitions is the relation, i.e., P, UP,U...U P, = R. The key idea underlying the
partition-based algorithm is to partition the data, and prune the targets in a partition if

their count is above the specified threshold. We now explain the theorem used for pruning
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the candidates.

Theorem Given threshold T and relation R, partitioned into n partitions (P, Ps, ..., P,),

YV targetst € R

(Fiaggr(t,P)) >T = aggr(t,R) > T
1= 1,2,...,n;

What the theorem states is that if a target is beyond the threshold in atleast one
partition P then it must always be beyond the threshold in relation R. Hence according
to the theorem, we can prune those targets that are beyond the threshold in each of the
partitions. On the other hand, targets below the threshold are written to disk.

At the end of the pass, we have a new database composed of all the targets that proved
to be light in some partition. This database, which we refer to as mini-database, will be
smaller in size, and will be fed as input to the next iteration. This iterative process
continues until all the remaining candidate targets fit in memory after which we do a
counting scan of the original database to eliminate all the false positives.

Apart from the elimination of tuples corresponding to locally heavy targets, the fol-

lowing strategies help to further reduce the effective database size:

e During the first pass over the original database, only the result attributes from the

tuples are written to the mini database.

e During all passes, aggregation of the tuples corresponding to a common target results

in vertical compression of the database.

Figure 2 shows the architecture of the algorithm. We now briefly describe the steps
of the algorithm below and defer the detailed algorithm to Figure 3.

1. Hashing Scan: The hash size is constrained by the main-memory allocated for the
algorithm. For each tuple, hash the target to a main-memory collision-resolving
hash table (i.e. distinct targets occupy different buckets), and update the counter
at the corresponding location. This continues till the hash table becomes full which

marks the end of the current virtual partition and beginning of the next partition.
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2. Pruning Scan: From the hash remove all the targets whose counter values are less
than the threshold and write these along with their counter values to the mini
database. The mini database would thus consist of targets that appear light in
the current partition, but are not guaranteed to be light (false positives). But the

algorithm does not have false negatives, as light targets are always written.

3. Filtering Scan: For each tuple, hash on the target value and if the target does not
exist in the hash table (after the final pruning scan), write the tuple to the mini
database. This ensures that the tuples for the most heavy targets identified for the
current iteration have been pruned and are now being filtered from the rest of the
database, thus resulting in tremendous reduction in database size from the previous

pass.

4. Counting Scan: Scan the mini database and for each target whose counter is less

than threshold, scan through the original database to remove all the false positives.

PARTITIONED

DATABASE
HASH TABLE

Partition 1 Target, Measure -
Partition 2
ORIGINAL | easure<Threshold |~ MINI
DATABASE Partition 3 DATABASE
Partition n

Figure 2: Architecture of MINI

Steps 1 and 2 are performed repeatedly as long as the pruning in step 2 results in
enough hash buckets being emptied. As a result, the real heavy targets tend to accumulate
in the hash table. When step 2 no longer results in pruning enough buckets, step 3 is
performed next on the rest of the database for the current pass. Finally step 4 is performed

when the current mini database fits in memory.
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MINI (IP_DB,T,P)

Input : DataBase I P_DB, Threshold for N-Iceberg query 7, Memory Size M

Output: Result Set F with targets less than Threshold T

1. DB=IP.DB

2. Mini DataBase M_DB = NULL // Mini Database to store the light targets
// Lterative calls

3. while DataBase Size |DB| > Memory Size M

4 pruned = highvalue

5. while (pruned > 0)

6. // Hashing Scan

7 while (HT is not full)

8. ReadNextTuple()

9. Hash on target

10. if (target already exists)

11. target.count = target.count 4+ count

12. else

13. insert into HT

14. target.count = count

15. // Pruning Scan

16. pruned = 0

17. for each entry in HT

18. if (target.count < T)

19. append to M_DB

20. remove from HT

21. pruned = pruned + 1

22. // Filtering Scan

23. while (more tuples in database)

24. ReadNextTuple()

25. Extract target and count

26. Hash on target

27. if (target does not exist)

28. append to M_DB

29. DB=M_DB

30. M_DB = NULL

31. // Counting Scan

32. for each target in DB

33. if target.count < T

34. if target.count in IP_DB < T

35. insert target in F

Figure 3: Algorithm MINI
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0.2.4 The ORACLE Lower Bound Algorithm

We compare the performance of the above mentioned practical algorithms against OR-
ACLE which “magically” knows in advance the identities of the targets that qualify for
the result of the iceberg query, and only needs to gather the counts of these targets from
the database. Clearly, any practical algorithm will have to do at least this much work in
order to answer the query. Thus, this optimal algorithm serves as a lower bound on the
performance of feasible algorithms and permits us to clearly demarcate the space available
for performance improvement over the currently available algorithms.

Since, by definition, N-Iceberg queries result in a small set of results, it is very reason-
able to assume that the result targets and their counters will all fit in memory. Therefore,
all that ORACLE needs to do is to scan the database once and for each tuple that corre-
sponds to a result target, increment the associated counter. At the end of the scan, it

outputs the targets and the associated counts.

0.2.5 Impact of various data/query parameters

Finally, we conclude the section by discussing the impact of various data and query
parameters on the performance of MINI and SMA/ISMA. We consider the following four
parameters: target-count distribution, number of unique targets, size of the database and

result selectivity as reflected by the threshold.

Target-count distribution

Target-count distribution will not affect SMA, as the algorithm is independent of this
parameter for any particular dataset. But, it affects MINI’s pruning scan which removes
false positives in each pass. For high skew target-count distribution (mean much less
than T), MINI performs better, because the number of heavy targets (greater then T) are
more. Pruning scan will be able to remove many false positives in each pass.

For target-count distribution with low skew, where the peak target- counts are com-
parable to the mean for the distribution (mean comparable to T), pruning scan is not of

much help, as the number of heavy targets in each pass are less. As a result, the mini
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database will not reduce much. We propose a recipe algorithm in [7], to show when a

query resolves to ISMA or MINI for any data distribution.

Number of unique targets

This parameter will not affect SMA much. In contrast, MINI’s performance will be
affected as the number of targets increase. As the number of targets increase, the number
of false positives increase, and this results in mini database not reducing much. We have
evaluated MINI, where it performs better than ISMA, for only a fraction of targets fitting

into the constrained memory.

Size of the database

This parameter will not affect MINI much. In contrast, SMA will be affected by the
increase of the size of the database. For a given number of targets, if the database size
increase, then the number of targets more than T increase, thus decreasing the number of
false positives, resulting in good performance for MINI. But the cost incurs in scanning

the initial database.

Result Selectivity

This parameter decides the number of tuples in the result set. As the result selectivity
decreases, the number of false positives increase, thus affecting MINI’s performance. As
the proposed solution is for iceberg query answers, where the result set is very small, this
parameter will not affect much, as the result selectivity will be too high. In contrast, only

the aggregate phase of SMA gets affected.

0.3 Performance Evaluation

In this section, we present the performance model and experimental result of MINI over
various datasets. To depict MINI’s performance, we compared it with SMA, ISMA and
ORACLE.



0.3 Performance Evaluation 13

Experiments were performed on an Intel 800 MHz Pentium IIT machine, running
Redhat Linux 7.1. The machine has 512MBytes of memory and 36GBytes of local SCSI
disk storage. The datasets considered for evaluation and the mini database generated are
stored in disk. Memory is constrained to 8KBytes through out the experiments. The
details of the dataset considered in our study are described in Table 2.

Dataset refers to the name of the dataset, Cardinality indicates the number of attributes
in the GROUP BY clause, NumTargets indicates the total number of targets in the data,
Size of DB indicates the size of the dataset, RS indicates the size of a tuple (in bytes), TS
indicates the size of the target fields (in bytes), MS indicates the size of the measure fields
(in bytes), Mean represents the mean value of target counts, and Variance represents the
variance in target counts, Lexis Ratio (= Var/Mean) is a measure of the skew in the

count distribution, and SC represents the smallest target count.

Data- | Cardi- | Unique | Size Lexis
set nality | Targets | of DB | RS | TS | MS | Mean | Variance | Ratio | SC
D, 1 5000 2GB 116 | 4 4 1 25067 | 605080381 | 40159 | 2
D, 1 10000 2GB [ 16 | 4 4 | 12516 | 144573262 | 11551 | 1
D; 2 10000 2GB | 16 | 8 ! 9316 | 154813655 | 16618 | T

Table 2: Statistics of the datasets

Different datasets are distinguished by the number of targets and the skew of the
distribution. Experimental results are shown for high skew data only, as MINI will not
perform better for low skew data and the better alternative is ISMA. In the following
experiments moderate number of targets represent that the total number of targets re
comparable to the targets that can fit in to the constrained memory. On the other hand,
high number of targets means that the number of targets that can fit into the memory is
very less, in our case it is 1% of the distinct targets in the dataset.

We now explain the performance graphs shown from Figure 4-6. X axis represent the
query response time for various result selectivities, represented on Y axis, ranging from
0.001% to 10%.

Figure 4 corresponds to Dataset D;, wherein the data is high skew with moderate

number of unique targets. For this dataset, MINI performs better than SMA and ISMA
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for a range of selectivities. For this dataset the number of targets is comparable to the

number of targets that can fit in the memory.
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Figure 5: high skew/high number of targets

Figure 5 corresponds to Dataset Do, wherein the data is high skew with high number
of targets. For this dataset, MINI performs better, even though the number of targets
that can fit in memory is less, in this case as the number of buckets in the memory is 1K,
only 1% of the targets can fit in memory.

Figure 6 corresponds to Dataset D3, wherein the data is high skew with high number

of targets. For this dataset, MINI performs better, even though the number of targets
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Figure 6: high skew/high number of targets

that can fit in memory is less, in this case as the number of buckets in the memory is

0.6K, less than 1% of the targets fit in memory.

0.4 Conclusions

We defined for the first time N-Iceberg queries, a class of queries equally important as
Iceberg queries, but much harder to compute. We provide a customized algorithm, called
MINI, to handle N-Iceberg queries, and put the performance of MINI in performance
perspective against the benchmark algorithms, SMA, ISMA and ORACLE, and found the
following:

MINI performs better than ISMA for a dataset with low/moderate number of targets
with high/moderate skew. It never performs better than ISMA for datasets with high
number of targets and low skew.

In our future work, we propose to provide a simple recipe algorithm for the incorpo-
ration of N-Iceberg queries in the Query Optimizer. This recipe takes into account the

various data and query parameters for choosing between MINI and ISMA.
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