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Abstract

Given an SQL query, current database systems execute it using a least cost plan which is

largely based on estimates of predicate selectivities. Due to insufficient statistics and invalid

assumptions, errors in estimates can lead to highly sub-optimal plans.

In the paper[1], a strategy named “Plan Bouquets” has been proposed which provides

guarantees on the worst case execution performance which does not rely on the estimates

of predicate selectivities. The PlanBouquet algorithm, in its basic form, implicitly discovers

predicate selectivities by observing the completion status of a sequence of cost-budgeted plan

executions.

Our contribution includes improving two variants of PlanBouquet. In the first contribution,

we analyze this “non-intrusive” bouquet technique in presence of assumptions on the acclivities

of cost functions which generally hold in practice. Further, we show that we can achieve signif-

icant reduction in the preprocessing time and will get upper bound on worst-case performance

which is independent of the plan densities.

Next, we investigate an intrusive variant of PlanBouquet named SpillBound[2], which

changes the plan execution component and gives worst-case performance bound of O(D2),

which is only dependent on D, the dimensionality of selectivity space. We propose Opt-SB,

which dynamically optimizes SpillBound, such that, the worst-case bound oscillates between

O(D) and O(D2) based on the optimizer’s behaviour profile within the selectivity space.
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Chapter 1

Introduction

Modern cost-based database query optimizers estimate a host of predicate selectivities while

identifying the least cost plan for a declarative query. Often, the selectivity estimates are sig-

nificantly erroneous with respect to the actual values subsequently encountered during query

execution. Such errors lead to poor execution plan choices by the optimizer, resulting in sub-

stantially inflated query response times.

In the efforts to mitigate this problem, [1] proposed a new non-intrusive query processing

strategy called “Plan Bouquets”, which provides upper bound on worst-case execution per-

formance. The basic idea in the bouquet approach is to completely jettison the compile-time

estimation process for error prone selectivities. Instead, these selectivities are discovered at

run-time through a sequence of cost-limited executions from a small set of plans. A potent ben-

efit of this discovery-based approach is that it lends itself, for the first time in the literature, for

providing guaranteed bounds on worst-case optimizer performance. Specifically, if we compute

MSO (Maximum Sub-Optimality) as the worst-case ratio, over the entire selectivity space,

of the cost sub-optimality incurred by the optimizer with respect to an oracular system that

magically knows the correct selectivity values, then the plan bouquet can provide guaranteed

upper bounds on MSO – specifically, MSO ≤ 4 ∗ |PlanBouquet|. 1 Moreover, the worst case

execution guarantee is dependent on the plan density behaviour.

We investigate a scenario, when the plan cost functions will adhere to certain desirable

functional properties. We observed that, in practical scenarios, plan cost functions obey a

specific property which we term as “cost acclivity assumption” which will be described in

Chapter 3. As our initial contribution, we will utilize this assumption to improve the existing

MSO bound given by PlanBouquet. Moreover, we will also look at the resulting benefits on

1A more precise bound is given in Chapter 2.
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the preprocessing time.

Recently, [2] proposed an improvement to the above technique named “SpillBound”, which

improves the MSO bounds by using the power of intrusiveness into the database engine. Specif-

ically, they leverage the notion of “spilling”, whereby operator pipelines in the execution plans

are prematurely terminated at carefully chosen locations in the plan tree. The use of spilling is

tuned towards ensuring that the assigned budgets for plan executions are selectively focussed

on speeding up the learning process.

Our second contribution includes improving the MSO bounds provided by SpillBound.

We propose an optimized version of SpillBound, named Opt-SB, where we execute plans at

strategic selectivity locations to maximize the selectivity learning given by SpillBound. The

distinctive feature of Opt-SB includes execution of plans that might be slightly sub-optimal

which gives better selectivity learning than SpillBound. The execution of plans is done after

partitioning D dimensions of selectivity space into p partitions. We finally give a MSO bound

which is in O(Dp). As an example, for TPC-DS query 19 with 5 error-prone predicates, MSO

bound given by SpillBound is 40 while Opt-SB brings it down to 12.6.

Organization

The rest of the thesis is organized as follows: In Chapter 2, a precise description of the robustness

model is provided, along with the associated notations. We also define the problem statement

and give a brief background of PlanBouquet in Chapter 2. In Chapter 3, we try to give an MSO

bound for the non-intrusive system by using cost acclivity assumption. In Chapter 4, we briefly

describe the intrusive variant of PlanBouquet, namely SpillBound and propose an optimized

version of it named Opt-SB. Formulation of MSO Bound for the optimized version and it’s

associated empirical results are explained in Chapter 4. We conclude our work in Chapter 5.

2



Chapter 2

Problem Framework

In this chapter, we present the robustness model used in this thesis, and the key notations and

concepts, followed by a brief overview of the plan bouquet approach.

While different notions of robustness are relevant for different scenarios, we use here the

following measure, introduced in [1]: Robustness is evaluated in terms of the sub-optimality of

the overall execution cost in comparison to the optimal cost incurred by an oracle that possesses

complete a priori knowledge of all predicate selectivities.

2.1 Error-prone Selectivity Space (ESS)

Consider a query for which a subset of the predicate selectivities cannot be estimated accurately.

We call one such error-prone predicate as epp, and a collection of these as EPPs (equivalently,

epp set). All possible selectivity combination of the EPPs, constitute the error-prone selectivity

space, i.e, ESS, whose dimensionality is denoted by D. The ESS is represented by a discretized

grid with the values on each dimension ranging over [0, 1]. The epp corresponding to dimension

j of the ESS is denoted by Rj.

Each location q ∈ [0, 1]D, represents a unique query in the ESS, with q.j denoting the

selectivity of Rj. For example, consider an ESS of dimension 2 and a location q = (0.3, 0.2) ∈
[0, 1]2. In our notation, q.1 would be 0.3 and q.2 would be 0.2, representing selectivity instance

of the corresponding two error-prone predicates. Let � denote a binary relation on the set of

selectivity locations over the entire ESS, which is defined as follows.

For any two locations qb and qc in ESS, we say qb � qc

if qb.i > qc.i ∀i ∈ {1, . . . , D}
For a given query and a location in the ESS (thus fixing selectivity for all the EPPs), the

query optimizer can identify the optimal query execution plan. Therefore, at the time of
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compiling the query, one can identify the optimal plan for each location in the ESS grid. This

can be done by repeated invocations of the optimizer, and explicit injection of selectivities. The

optimal execution plan for a location q is denoted by Pq, and Cost(Pq, q
′) represents the cost

of executing the query incurred by the plan Pq when the actual selectivities coincide with q′ ∈
ESS. Therefore, Cost(Pq, q) represents the optimal execution cost of the query when the run-

time selectivities correspond to q (For the clarification of the reader, we alternatively denote

Cost(Pq, q) as OC(q)). The set of plans that cover the ESS space constitutes the Parametric

Optimal Set of Plans (POSP) [3]. The locations in the ESS for which a POSP plan P is optimal

are collectively referred to as the “endo-optimal region” of plan P [4].

We adopt the convention of using qa to denote actual run-time selectivities. For optimizers

that execute a single selected plan, it first estimates a selectivity location for the query and then

the plan to be executed is chosen based on it. Let, qe denote the single estimated selectivity

location decided by the optimizer. However, for plan switching-based schemes like PlanBouquet,

a sequence of locations are explored. This sequence is called a “run”. Further, the running

selectivity location, as progressively discovered by the bouquet mechanism, is denoted by qrun.

2.2 Maximum Sub-optimality (MSO)

We now present the key notion of sub-optimality used as the measure of robustness in [1].

Consider the POSP plan Pqe , representing the optimal plan at location qe ∈ ESS. The sub-

optimality of using Pqe when the actual selectivity turns out to be qa is given by

SubOpt(qe, qa) =
Cost(Pqe , qa)

Cost(Pqa , qa)
∀(qe, qa) ∈ ESS (2.1)

The quantity SubOpt(qe, qa) ranges over [1,∞). Now, the Maximum Sub-Optimality (MSO)

over the entire ESS is given by

MSO = max
(qe,qa)∈ESS

(SubOpt(qe, qa)) (2.2)

The above definition is suitable for a traditional query processing engine where a single plan

is used to execute a query. However, in case of plan switching approaches such as PlanBouquet,

multiple plans are executed in a cost-limited manner. We represent each such algorithm by a

sequence of (plan, budget) pairs. Since the sequence changes for each qa ∈ ESS, we call such a

sequence, with respect to a qa, by Runqa . Thus, in this case the suboptimality incurred for a
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given qa, denoted by SubOpt(∗, qa), is given by

SubOpt(∗, qa) =

∑
(plan,budget)∈Runqa

budget

Cost(Pqa , qa)
.

Further, we define MSO as

MSO = max
qa∈ESS

SubOpt(∗, qa) (2.3)

Average Sub-Optimality(ASO) Similar to worst case impact, we also define a metric

for evaluating average case. Formally, the average-case equivalent definition of MSO is the

following:

ASO =

∑
qa∈ESS

SubOpt(∗, qa)∑
qa∈ESS

1
(2.4)

2.3 Problem Definition

Within the above framework, the problem of robust query execution is defined as:

Given a user query Q with D error-prone predicates, and the ESS populated with the POSP

plans, develop a query processing approach that will give an upper bound on MSO.

The key assumptions that allow us to systematically explore the ESS are those of plan cost

monotonicity and selectivity independence. They may be stated as:

Assumption 2.1. Plan Cost Monotonicity (PCM): For any two locations qb, qc ∈ ESS, and for

any plan P,

qb ≺ qc ⇒ Cost(P, qb) < Cost(P, qc) (2.5)

Assumption 2.2. Selectivity Independence: The selectivities of the error-prone predicates are

independent with respect to each other.

2.4 Plan Bouquet Approach

The plan bouquet approach [1] systematically discovers the actual selectivities at run-time

through a sequence of cost-limited executions of small set of plans. To understand this concept,

let us start with the case of single epp (referred to as 1D Plan Bouquet), and then move on to

multiple epp scenario.

2.4.1 1D Plan Bouquet

A single epp induces an 1D ESS by varying selectivities of the epp as shown in Figure 2.1.

Here, the x-axis captures the selectivity range of the epp, while the y-axis denotes the plan
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Figure 2.1: Plan Bouquet with single dimension ESS

execution costs corresponding to each selectivity value. There are five POSP plans, and cost

variation for each of them can be seen from the figure. Further, it is evident that each one of

them is the least cost (or best) plan over disjoint selectivity segments. This pointwise minimum

cost curve among all the plans at each of the locations in the ESS is referred to as the POSP

Infimum Curve (PIC). In this case, the PIC is a one-dimensional curve, whereas for the general

case with D epp, the PIC is a D-dimensional surface. For each location q ∈ ESS, PIC satisfies

the invariant property that it indicates the optimal cost of executing the query if the run-time

selectivities coincide with q.

Now, we introduce the notion of isocost contour (IC) which the plan bouquet approach

is predicated on. The isocost contour of cost C is the set of locations in the ESS whose PIC

cost is equal to C. Since the PIC cost is monotonically increasing with selectivity, the isocost

contours are singleton points (in case of single epp). For instance in the example, we can see

that the isocost contours IC1, . . . , IC7 intersect the PIC at singleton points which are marked.

For a PIC whose minimum cost is Cmin and maximum cost is Cmax, plan bouquet approach

is selectively interested in those isocost contours whose cost is of the form 2k · Cmin for all

k = 1, . . . , dlog2(
Cmax

Cmin
)e – that is, a contour cost-doubling regime is in operation. This small set

of plans on all the isocost contours are called as “plan bouquet”.

1D Plan Bouquet Execution: Now we shall see the execution strategy of the bouquet of plans,

which are identified at compile time. Starting from the cheapest isocost contour, one plan is

executed in each contour with budget equal to cost of the contour, until a plan completely

finishes its execution. In our example, let us say that the actual selectivity of the epp is 5%

i.e. qa = 5%. To begin with, plan P1 is executed with budget equal to cost corresponding to

the cheapest isocost step IC1. Since the budget does not suffice (which is inferred when the

plan does not finish executing completely), we increase the budget until we reach IC4, after
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Figure 2.2: Contours in 2D ESS

unsuccessful executions with budgets corresponding to IC2 and IC3, continuing execution of

the same plan. Since none of the previous four executions complete, the plan is changed to

P2 with increased budget of IC5. This execution again does not go to completion. Finally,

execution of P3 with budget of IC6 finishes completely, since the actual location, 5%, is within

the selectivity range covered by IC6. Further, it can shown that using this approach, for 1D

case, the MSO to be at most 4.

2.4.2 Extension to Multidimension

As mentioned before, the PIC, for ESS with D dimensions, is a D-dimensional surface. Similarly,

the isocost contour translates to a continuous surface of dimension D− 1. For example, Figure

2.2 shows the hyperbolic isocost contours that result with a 2-dimensional ESS. Further in each

isocost contour, we see that there is more than one plan, each associated with disjoint regions

of the contour. In the example, plans P1, P2, P3, P4 are the optimal plans for different regions of

contour ICi. This set of plans associated with a contour are collectively referred to as PL(ICi),

and the cost of the contour is denoted by CC(ICi).

Plan Bouquet Execution: Let us assume that there arem cost-doubling contours IC1, . . . , ICm

where m = d(log2
Cmax

Cmin
)e. Now, Starting from IC1, all plans in the contour are executed with

the contour cost budget, until one finishes its execution. For instance, in contour ICi, either

one of the plan, P1, . . . , P4, completes execution within the assigned budget – in which case the

query is answered – or, if none of the plans complete, the search proceeds to the next contour

ICi+1. Thus, the MSO for this algorithm is captured in the following theorem.

Theorem 2.1. [1] The PlanBouquet algorithm has an MSO bound of 4ρ where ρ is the maxi-

mum number of plans in any contour, i.e., ρ = Max
i={1,...,m}

{|PL(ICi)|}.

So we can infer that the MSO bound given by PlanBouquet is dependent on the plan density

7



behaviour of the contours in the ESS. Theoretically, ρ value could as large as the cardinality of

the POSP set, which may be huge. In the next chapter, we will investigate this problem and

address it by utilizing a property on PIC.

For easy reference, the notations discussed so far, and those used in the following chapters,

are summarized in Table 2.1.

Notation Meaning
epp (EPPs) Error-prone predicate (its collection)

ESS Error-prone selectivity space
D Number of dimensions of ESS

R1, . . . , RD D error prone predicates
q ∈ [0, 1]D A location in the ESS space

q.j Selectivity of q in the jth dimension of ESS
Pq Optimal Plan at q ∈ ESS

qa Actual run-time selectivity
qrun The running selectivity location, as progressively discov-

ered by SpillBound and Opt-SB

Cost(P, q) Cost of plan P at location q
OC(q) Cost of optimal plan at location q
IC Isocost Contour
res Resolution of ESS grid

CC(IC) Cost of an isocost contour IC
PL(IC) Set of plans on contour IC
Int(P ) Set of non-leaf nodes of plan P
P j Plan P is identified to spill on epp Rj

Table 2.1: Notations

8



Chapter 3

Improving Non-intrusive technique

In this work, we try to investigate the properties of plan functions and utilize their character-

istics to improve PlanBouquet. Although PlanBouquet give worst case execution guarantees, 
the expression for MSO depends on ρ, which is indirectly dependent on the nature of the plan 
diagram. Theoretically, ρ could be as large as the number of plans in the plan diagram, hence 
we investigate whether we can give a MSO bound independent of plan diagram characteristics. 
Moreover, a huge amount of preprocessing is required for the basic plan bouquet to get the 
bouquet of plans. Again, by utilizing a distinctive property of PIC, we try to reduce the pre-

processing overheads. We will start by stating the assumption which we term as “cost acclivity” 
and later see its effect on both guarantees and the preprocessing time.

Cost acclivity assumption

Specific to this work, we make an assumption on the behaviour of PIC which forms the basis of 
analysis in Section 3.1. For ease of exposition, we will first explain the assumption for 2D ESS.

2D ESS case : Let X, Y be the two error prone dimensions. Let qi = (xi, yi) be a point in 
the ESS. Let OC(q) be the cost of the optimal plan at selectivity location q. Let (a, b).qi denote 
a location qj where qj = (a ∗ xi, b ∗ yi).

For any fixed α > 1, ESS satisfies the cost acclivity assumption when either of the conditions 
hold:

1. OC((α, 1).qi) ≤ α ∗OC(qi) ∀qi ∈ ESS

2. OC((1, α).qi) ≤ α ∗OC(qi) ∀qi ∈ ESS

Intutively, it implies that when we increase selectivity of one of the dimension by α, then the

increase in the optimal cost is atmost α times.

9



Multi-D ESS case : In the case of D dimensional ESS, for any fixed α > 1, the cost acclivity 
assumption is satisfied when the below condition holds:

If selectivity value of any of the (D-1) dimensions is multiplied by a factor of α then the optimal 
cost increases by atmost αD−1 times.

3.1 Proposed Solution

[This work has been jointly done with Srinivas Karthik.]

In this section, we will describe a modified version of PlanBouquet , where we use the 
cost acclivity assumption to bound the number of executions per contour. We will start with 
explaining the notations.

Notations Let P denote the PlanBouquet algorithm, given in [1], with parameters r = 2, 
and λ = 0.2.

Let P’ denote the modified PlanBouquet. Let α be the parameter for which the cost acclivity 
assumption holds true.

We will first introduce the notion of “Covering Set ”, hereafter denoted as CS . CS is a set 
of selectivity locations such that, for every location q on contour IC, we have one location l in 
CS which is in the first quadrant of q and cost of the optimal plan at l is atmost α times the 
cost of the optimal plan at q. Moreover, the locations in the CSi are positioned such a way 
that, execution of all the plans in it will ensure that all the locations below the contour ICi 
are in the third quadrant of the CS location. We will delay the discussion about algorithm for 
finding CS to Section 3.1.1.

In comparison with PlanBouquet, we incorporate two major changes in P′, which are as 
follows. In the preprocessing phase, we find out covering set corresponding to each isocost 
contour in the ESS. In the execution phase, we execute the optimal plans in covering set with 
an increased cost budget. Assuming that we have finished the preprocessing phase and obtained 
each CS , we will now discuss the execution phase of P′ for 2D ESS, and then extend to higher 
dimensions.

2D ESS case. In PlanBouquet for 2D ESS, we execute all plans on the isocost contour, which 
ensures that every location on the contour gets third-quadrant coverage. Hence the MSO linearly 
increases with number of plans on the densest contour. In P’, rather than executing all the 
plans on the contour, we execute plans in covering set which will cover all the locations below 
the contour.

Our idea is clearly depicted in Figure 3.1, which shows a contour in 2D ESS. Plans P 1 . . . P 14 
are the plans on the iso-cost contour(ICi), and plans Pa, Pb, Pc, Pd, Pe are the plans in the
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covering set (CSi). We assume that (ε,ε) is the minimum selectivity possible in the ESS. ymin

denotes the minimum selectivity on dimension y for a contour. Let q = (x, ymin) be a location

on the contour ICi. Let location q1 = (1, α).q. Due to the cost acclivity property, we know

that OC(q1) ≤ α ∗OC(q). We can see from Figure 3.1, that plan Pe is the optimal plan at q1,

hence, by executing Pe with cost budget of α ∗ CC(ICi), we can prune all the locations on the

contour ICi between line y = ymin and y = α∗ymin. Similarly, execution of all the plans in CSi

will prune all the locations below the contour. Similar to PlanBouquet, if none of the plans in

CSi complete the execution, then we jump to CSi+1 until we reach the maximum selectivity.

The case when the actual selectivity of one of the epp is learnt, we stay on the same contour

with one predicate less in epp and the corresponding lower dimensional ESS.

Extending to higher dimensions. For a D dimensional ESS, the algorithm to find the

covering set is explained in Algorithm 2 which would be discussed later. The unique character-

istic about CSi in higher dimensions is that, the cost of the optimal plan at these locations is

atmost αD−1 ∗ CC(ICi), hence we execute the plans in each CSi with an increased cost budget

of αD−1 ∗ CC(ICi) to prune all the locations below the contour.

Figure 3.1: Covering Set

Now, in the next section, we will discuss the preprocessing step which focuses on the algo-

rithm to find the covering set . First, we will explain for 2D ESS and then generalize the idea

for higher dimensions.

3.1.1 Finding the covering set

For 2D ESS: Algorithm 1 finds all the plans in each covering set for a 2D ESS. Let us first

see the notations used in this section.
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Notations: PL(CSi) is a list of plans contained in CSi. Let Pq denote the optimal plan at

the location q. OC(q) denotes the cost of the optimal plan at the location q in the ESS. Let

ymin denote the minimum selectivity on dimension Y for a contour.

Algorithm 1, starts with the line y = ymin. Using binary search technique, it then finds

the isocost contour location (xcur, ycur) on this line. Then, we scale the y-coordinate α times

to obtain the first location (xcur, α ∗ ycur) for CSi. Line 7 in the algorithm finds appropriate

xcur so that optimal plan at (xcur, αycur) gives third-quadrant coverage for all locations on ICi

between [ycur, αycur]. In each iteration, we jump to next line by multiplying ycur by α. The

update of ycur in line 10, ensures that the while loop terminates in atmost logα
1
ε

steps, which

would also serve as the upper bound on |PL(CSi)|. It should be noted that all these plans are

executed with same budget of α ∗ CC(ICi).

Input : α > 1,xmin,ymin
Output: PL(CSi) - Plans in the ith covering set

1 Initializations: i = 1, PL(CSi) = ∅,
; // i denotes the current contour

; // PL(CSi) denotes the set of execution plans in covering set CSi
2 repeat
3 Let ymin be the minimum y-coordinate value in ICi;
4 ycur = ymin;
5 while ycur ≤ 1 do
6 Find xcur :
7 Do a binary Search on line y = ycur
8 from x = xmin to x = 1 such that
9 OC(qcur) = CC(ICi), where qcur = (xcur, ycur);

10 ycur ← ycur ∗ α;
11 if ycur > 1 then
12 ycur = 1;
13 end
14 Let q = (x, ycur);
15 if Plan Pq is not in PL(CSi) then
16 Add Pq to PL(CSi);
17 end

18 end
19 i = i + 1;

20 until All the contours are visited ;
Algorithm 1: Find covering set for ICi in a 2D ESS
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Multi-D ESS Case: In Algorithm 2, we have extended the procedure of finding plans in each

CSi for D dimensional ESS. The basic idea is to reduce dimensions one by one by intersecting

hyperplanes of one dimension less.

For ease of exposition, let us take an example of 3D ESS with X, Y, Z being the three

selectivity dimensions. Now, each of the iso-cost contours ICi is a 3D surface. Let us assume

that the cost acclivity assumption holds true for the dimensions Y,Z with α as the parameter.

We first intersect hyperplane z = zmin with the ICi surface, and we get a 2D contour with

selectivity dimensions as X and Y. Let (x1, y1), (x2, y2), . . . , (xn, yn) be the locations in covering

set corresponding to the 2D contour obtained above with z = zmin. So the plans on the locations

(x1, y1, αzmin), (x2, y2, αzmin), . . . , (xn, yn, αzmin) will cover all the locations on ICi from z=zmin

to z=αzmin. Similarly, we can find the plans for z = αzmin and so on. Due to the cost acclivity

assumption, if we execute plans in covering set CSi with cost budget of α2 ∗ CC(ICi), then all

the locations below the contour ICi would be pruned.

In D dimensional ESS , all the plans in PL(CSi) are executed with the budget αD−1∗CC(ICi).

3.2 Theoretical Results

3.2.1 Preprocessing time incurred

Figure 3.2: Comparison of the number of optimizations

Let us see the theoretical bound for the preprocessing time incurred for our algorithm. In

algorithm 2, Line 8 takes log(res) number of optimizations to perform the binary search, and

for loops from line 3 to line 6 iterates logD−1α
1
ε

times. So total number of optimizations in our
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Input : α > 1,∀i xmini

Output: PL(CSi) - Plans in the ith covering set
1 Initializations: PL(CSi) = ∅, i = 1;
2 repeat
3 for x1 ← α ∗ xmin1 to 1 do
4 compute xmin2 at x1

α
;

...
5 compute xminD−1 at (x1

α
, · · · , xD−2

α
);

6 for xD−1 ← α ∗ xminD−1 to 1 do
7 Find xD :
8 Do a binary Search
9 from xD = xminD to xD = 1 such that

10 OC(qD) = CC(ICi), where qD = (x1
α
, · · · , xD−1

α
, xD);

11 Let q = (x1, x2, · · · , xD);
12 if Plan Pq is not in PL(CSi) then
13 Add Pq to PL(CSi);
14 end
15 xD−1 ← xD−1 ∗ α;

16 end
...

17 x1 ← x1 ∗ α;

18 end
19 i = i + 1;

20 until All the contours are visited ;
Algorithm 2: Find covering set for ICi in Multi-D ESS

approach is given by

log(res) ∗ logD−1α (
1

ε
)

The comparison between the functions is shown in Figure 3.2. For ε = 0.01, α = 1.6 and

d = 2, B denotes the function resD and A denotes the function log(res) ∗ logD−1α (1
ε
).

3.2.2 Impact on MSO Bound

Now, we will try to formulate the MSO Bound for P′. During the execution time of algorithm

P′, we execute the plans in the covering set (CSi) with budget αD−1 ∗ CC(ICi) for each plan

contained in CSi. If execution of none of the plans in CSi gets completed, then we jump to

covering set CSi+1. In Algorithm 2, due to the update in line 14, we can ensure that the total

number of iterations for a single contour can be utmost logD−1α (1
ε
). Suppose that the actual

selectivity location qa is located in the range (ICk, ICk+1]. Then, the algorithm explores the
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contours from 1 to k + 1 before discovering qa. In the following lemma we show that, by using

P′, we get MSO bound independent of the plan behaviour (i.e ρ)

Lemma 3.1. MSO ≤ 4αD−1 logD−1α (1
ε
).

Proof.

Total Cost =
k+1∑
i=1

# plans per contour*Budget

≤ logD−1α (
1

ε
)(
k+1∑
i=1

αD−1 ∗ CC(ICi))

= logD−1α (
1

ε
) ∗ (αD−1) ∗ (

k+1∑
i=1

CC(ICi))

= 4αD−1 logD−1α (
1

ε
) ∗ CC(ICk)

(3.1)

The cost for an oracle algorithm that apriori knows the correct location of qa is lower bounded

by CC(ICk). Hence,

∴MSO ≤ 4αD−1 logD−1α (
1

ε
) (3.2)

Thus the above MSO expression is independent of the plan density (ρ) for each contour. For

clarification of the reader, we stress on the fact that, the above MSO expression cannot be

degenerated to an expression with ρ. This is because, for a fixed ε, α and D, we will get a

fixed value for the MSO bound, using the above expression, whereas ρ will depend upon the

complexity of the optimizer.

3.3 Experimental Evaluation

In this section, we will give the empirical results tested on TPCH [5] benchmark queries. The

database engine used is PostgreSQL 9.3.4 [6]. We use the standard 1GB TPCH database. As in

the paper [1], the physical schema has indexes on all columns featuring in the queries, thereby

maximizing Cmax

Cmin
, creating “hard-nut” environments for achieving robustness, where Cmax is

the cost of optimal plan at highest selectivity on all error-prone dimension and Cmin is the cost

of the optimal plan at the lowest selectivity on all the error-prone dimensions.

We will first validate the cost acclivity assumption. We checked for most of the TPCH queries

with 2D and 3D ESS and it was found that almost 99% of the points satisfies the cost acclivity

assumption with α ∈ [1.6, 2]. In Table 3.1, we have shown the percent violation for different

query templates.
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Now, we compare the reduction in the overall pre-processing time after using P′. We ob-

tained around 98% reduction in the preprocessing time, when compared with the naive prepro-

cessing step mentioned in PlanBouquet.

Next, we compare the query template specific MSO Bounds for P and P′. We notice that,

even though we removed the dependency of ρ from the MSO expression, the MSO bound,

specific to a query for P′ is worse than P. Table 3.2 shows the MSO Bound for 5 query

templates using P′ with ε = 4.7 ∗ 10−6. Here α value chosen is 1.6. The value of ε used, is

obtained as the lowest selectivity point using the exponential distribution with resolution 300.

Since PlanBouquet technique uses the anorexic reduction technique, the MSO Bound for any

given query template is around 40, which is considerably low as compared to the numbers in

Table 3.2. Alternatively, we could use ε value as the selectivity at which we get one tuple from

the table on which we have the error-prone predicate.

Finally, Table 3.3 shows the empirical MSO obtained for query template 5 with 2D ESS.

In the table, second column PB(FPC), denote the MSO obtained using PlanBouquet with

anorexic reduction. The result without using reduction is shown in third column. The result

obtained for our approach is shown in the last column. We used the same values of ε and α as

earlier experiment. We can see that the MSO values for our approach are considerably higher

than both the variants of PlanBouquet. The selectivity location where the worst case impact

happens, are different for both of them.

We conclude by saying that this initial idea did not provide a substantial empirical benefit,

rather, it gave a theoretical perspective to look for improvements in PlanBouquet by harnessing

the properties of the cost functions.

Having discussed this initial idea for PlanBouquet, we will now see our second contribution,

where we tried to improve an intrusive system. In the next chapter, we will see the magnitude

of improvement which we can achieve by using the power of intrusiveness into the database

engine.
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Percent violation of A
QT α 2D 3D

QT2

1.6 1.32 0.77
1.7 1.11 0.82
1.8 1.02 0.91
1.9 0.74 1.18
2 0.65 0.39

QT5

1.6 1.1 0.86
1.7 0.93 0.96
1.8 0.81 0.40
1.9 0.71 0.11
2 0.31 0.20

QT7

1.6 0.96 0.41
1.7 0.73 0.02
1.8 0.35 0.01
1.9 0.21 0.01
2 0.11 0.01

Table 3.1: Percent violation of cost acclivity assumption

QT logD−1α (1
ε
) MSO Bound

2 7 44.77
5 11 74.80
7 9 64.79
8 11 83.59
9 5 40.00

Table 3.2: MSO Bounds of P’ for 2D ESS

QT PB(FPC) PB(w/o FPC) Our Approach
QT5 12.61 14.32 19.15

Table 3.3: Empirical MSO
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Chapter 4

Improving intrusive technique

In the initial work, we looked at PlanBouquet, a non-intrusive robust query processing approach

and improved the MSO bound expression to be independent of ρ, by harnessing a property of

PIC. But the bound obtained, in Section 3.2.2 contained a αD−1 term, which can be high for

higher dimensions.

Now, we switch gears and try to tweak into the database engine, to achieve better worst case

guarantees. We will now discuss the improvements which we can get, when we are given power

of intrusiveness into the database engine. In our lab, Srinivas Karthik has come up with an

intrusive technique called SpillBound[2], which changes the execution component to achieve

better overall performance. In this thesis, we propose Opt-SB, which tries to improve the MSO

bound given by SpillBound. Before we get into our work, we will briefly explain SpillBound.

4.1 SpillBound Algorithm [2]

PlanBouquet algorithm, as summarized in Section 2.4, implicitly discovers selectivities through

the completion status of cost-budgeted plan executions whereas SpillBound[2] tries to improve

the MSO bound by explicitly monitoring and accelerating the discovery process. It leverages

the notion of “spilling” which involves modifying the execution of a plan to extract increased

learning about selectivities within the assigned execution budget.

A location q ∈ ESS is said to be “below” contour ICi, if there exists a location qc ∈ ICi such

that q � qc. On the other hand, a location q ∈ ESS is “above” ICi, if there is a location qc ∈ ICi
such that q � qc. The notations also apply to a region, consisting of contiguous locations, with

respect to a contour.

Figure 4.1 illustrates the idea of spilling. Consider the plans P1 and P2. S, L, O, C, N

denote tables from TPC-H benchmark which are namely Supplier, Lineitem, Orders, Customer

18



Figure 4.1: Spilled Plans

and Nation respectively. NL and HJ stands for Nested-loop join and Hash join respectively.

Assume that the S-L join predicate is erroneous in this case. The execution of plans P1 and P2

with a cost-budget of c, takes place in a bottom up fashion, i.e the tuples are moved from the

leaf nodes to the root of the plan tree. For an internal node, the set of nodes which are in the

subtree rooted at the node is called as its upstream nodes, and the set of nodes on its path to

the root as its downstream nodes. The cost of the whole plan is obtained by summating the cost

of all the internal nodes. Since SpillBound interested in finding the selectivity of the erroneous

node S-L, the part of the budget that is assigned for its downstream operators is not useful for

learning about its selectivity. So, spilling out the results of the S-L node, without forwarding to

downstream nodes helps to use the budget more effectively to learn about its selectivity. This

idea of spilling helps to achieve a lower bound on the selectivities of error-prone predicates, for

instance S-L join predicate. The node used for spilling is termed as spill node.

A formal procedure for identifying the spill node is given in [2]. The identification of spill

node ensures that the selectivities of all the predicates that are upstream of the chosen spill

node are exactly known. A desirable property for the spill node identification procedure is to

carefully choose one of the epp which gives a guaranteed selectivity learning. For instance,

while exploring a location q ∈ ESS, when q does not dominate qa, in the spilling approach, it

learns that qa.j > q.j, where Rj is the spill node identified for the optimal plan at q. Plan Pi

is said to spill on dimension k, if epp used as a spill node for plan Pi corresponds to dimension

k. Given an execution plan, an identified epp to spill on and a cost budget B, the modification

to the plan to enable spilling is presented in Algorithm 3.

The difference between the plan bouquet approach and the spilling approach is pictorially

shown in Figure 4.2, for the region of interest below contour ICi. In plan bouquet approach,

when plan P3 is executed, it will prune only the blue region of the ESS. Whereas in SpillBound,

if P3 has spill node corresponding to dimension X, then a spill-mode execution of P3, would

additionally prune green region. Similarly if P3 spills on Y, then it will prune the yellow and
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Figure 4.2: Pruning of ESS (PlanBouquet and SpillBound)

the blue region.

Algorithm 3: Spill-Mode-Execution

Input: Execution plan P , it’s spilling predicate epp Rj, and cost budget B;
Create a modified-plan which is the subplan of P rooted at Rj;
Execute the modified-plan until the budget B is exhausted;
Output: Selectivity learnt for Rj after execution;

Now, having discussed the concept of spilling, we will briefly explain the SpillBound algo-

rithm. To understand this algorithm, let us first start with a case of 2D ESS and then generalize

to the multi-dimensional case.

4.1.1 The 2D-SpillBound Algorithm

Let the two epp dimensions be denoted by X and Y . In Figure 4.2, if P2 and P3 both spill

on dimension X, then plan P2’s execution can be avoided since the guaranteed learning/lower

bound on selectivity of X from P3 subsumes the learning obtained from P2. Hence just two

executions are enough to prune the entire region below the contour if the qa lies outside the

pruned region.

They annotate each plan with the predicate it can spill on. For instance, P x
0 denotes

that plan P0 is identified to spill on predicate X. Further, SpillBound are interested in two

plans P xmax
i and P ymax

i in each contour ICi, one which maximizes the lower bound on learning

selectivity of X and other for Y . Formally, P xmax
i will be the optimal POSP plan at location

qxi ∈ ICi, where

qxi = argmax
q
{q.x|Pq is identified to spill on epp X}
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For the axes specified in Figure 4.2, P xmax
i denotes the rightmost location plan in the contour

which can spill on X. The plan P ymax

i , which is defined similarly, would be the top most location

plan in the contour which can spill on Y .

The algorithm explores the ESS contour-wise, from the minimum cost contour, while exe-

cuting two plans P xmax
i and P ymax

i in spilling mode sequentially which were chosen using the

spill node identification process. This contour-wise exploration continues until one of the epp

learns its actual selectivity, say epp X (or equivalently, qrun.x = qa.x). Then it knows that qa

lies on the line x = qrun.x. After this, the standard PlanBouquet algorithm is used to discover

the selectivity of the remaining predicate, starting from the present contour while executing

plans in non-spilling mode. Since the problem is reduced to single dimension, only one plan is

executed in each contour. The steps of choosing of plans P xmax
i and P ymax

i , and executing them,

is carried out only when the corresponding plans exist.

4.1.2 Extending to higher dimensions

Let the number of error-prone predicates be denoted by D, which induces a D-dimensional

error-prone selectivity space. The key idea remains the same as in the two dimensional case,

wherein by carefully choosing and executing just D plans, the whole region below a contour is

pruned. In essence, these plans together provide the maximal learning for all the dimensions,

and hence eschew the need of executing the rest of the plans in the contour.

Notations : Let EPPs = {R1, . . . , RD} denote the set of error-prone predicates. for any

contour ICi. Let P jmax

i denote the plan which can spill on predicate Rj while providing the

highest lower bound on selectivity learning in the contour (analogous to plans P xmax
i and P ymax

i ,

in two dimensional case). Formally, P jmax

i is the POSP plan at location qji ∈ ICi where

qji = argmax
q
{q.j|Pq is identified to spill on epp Rj} (4.1)

As in two dimension case, SpillBound algorithm explores the ESS contour-wise, from the

minimum cost contour. At a generic step in the algorithm, the spill node identification process

is used to identify the set of plans {P jmax

i } for each epp Rj. This identified set of plans

are then executed in spilling-mode, sequentially. As a consequence, qrun is updated based on

the selectivities learnt in each execution. This wonted sequence of execution is halted when

one of the epp learns its actual selectivity. Wherein the generic step procedure is repeated

while staying in the same contour, but with one less predicate in epp and corresponding lower

dimensional ESS. They call this as a Repeat Step. They need to revisit the same contour again

because it ensures that for all epp dimensions whose actual selectivity location lie below the
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contour ICi, are indeed discovered on contour ICi before moving to the next contour.

The worst case execution occurs when all the repeat steps happen at the last contour, in

which case MSO is given by the following theorem :

Theorem 4.1. [2] The MSO of the SpillBound algorithm for any query with D error-prone

predicates is bounded by D2 + 3D.

4.2 Proposed Solution

SpillBound algorithm, as described in previous section, executes D plans in a D-dimensional

ESS, and gives a MSO bound of D2 + 3D. We observe that, in the worst case scenario, we

will need to execute the D plans to ensure that all the selectivity locations under the contour

are discovered. But in practical scenarios, if we carefully replace some plans on each contour,

we may not need to execute all the D plans per contour. This is the high-level idea for our

algorithm Opt-SB. We will now explain Opt-SB. Firstly, we will briefly describe the notations

used in this work, and then move ahead to explain the idea.

Notations : For a given contour ICi, location q is said to be an extreme location on dimension

i if q has the maximum selectivity on dimension i amongst all the locations on the contour.

For instance, in Figure 4.3, qx1 is an extreme location on dimension X for contour IC1.

A contour ICi is said to be aligned on dimension i, if the extreme location on dimension

i, q (q ∈ ICi) has an optimal plan which spills on dimension i. For example, in Figure 4.3, if

query location qy2 has a spill node as the epp corresponding to dimension Y, then we say that

contour IC2 is aligned on dimension Y.

Figure 4.3: Favourable case for SpillBound
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4.2.1 Favourable Case

We will start by discussing a favourable case for SpillBound. Favourable case occurs for

SpillBound when all the contours are aligned on at least one of the dimensions. For example,

consider the 2D ESS as shown in Figure 4.3. Here, contours are denoted by IC1, IC2, IC3,

IC4. For each contour ICi, we have shown one of the two extreme locations, which is denoted

by either qxi or qyi . Consider that all the contours are aligned on the dimension, on which the

extreme location is shown in the figure, i.e, for every location qji shown in Figure 4.3, it has an

optimal plan that spills on dimension j.

For qa, as shown in the figure, let us see how the executions will take place using SpillBound.

Initially, optimal plan at qx1 would be executed in spill mode with the budget CC(IC1), which

does not finish its execution. So, due to the property of spilling, we will get a guaranteed

selectivity learning for epp Rx, which is qa · x > qx1 · x. Since qx1 is the location on IC1 with

maximum selectivity for dimension X, we prune all the selectivity locations (q ∈ ESS) where

q · x ≤ qx1 · x. The shaded region in Figure 4.3 represents the pruned space of the ESS when

optimal plan at qx1 is executed in spill mode. Since the shaded region encompasses the whole

contour, there is no need of another execution in the same contour. Hence, only one execution

is needed per contour in this case.

Let us now see the case when we learn selectivity on one of the epp completely. Here, we

need to revisit the contour with one less epp and the corresponding lower dimensional ESS. Let

us denote step of revisiting a contour as a Repeat Step. So, for D dimensions, if all the contours

are aligned on some dimension, we will need only one execution per contour in addition to the

Repeat Steps. Moreover, after each repeat step, the number of dimensions of ESS reduces by

exactly one. Thus, at most there could be D repeat steps in the entire execution sequence.

With the above explanation, we will now give the MSO bound for the favourable case.

We will be proving the bound for a general D dimensional ESS. Let us assume, without loss

of generality, that the actual selectivity location qa is located in the range (ICk, ICk+1]. Then,

the algorithm will explore the contours from 1 to k+ 1 before discovering qa. In the worst case

execution sequence, we will encounter all the D repeat steps at the last contour (k+1). So the

total cost incurred would be given by
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TotalCost = CC(IC1) + · · ·+ CC(ICk) +D ∗ CC(ICk+1)

= CC(IC1) + · · ·+ 2k−1CC(IC1) +D ∗ 2kCC(IC1)

= CC(IC1) ∗ (1 + 2 + · · ·+ 2k−1) +D ∗ 2kCC(IC1)

= (2k − 1)CC(IC1) +D ∗ 2kCC(IC1)

≤ (2k−1CC(IC1))(2D + 2)

From the plan cost monotonicity (PCM) assumption, we know that the cost for an oracle

algorithm that apriori knows the correct location of qa is lower bounded by CC(ICk). By

definition, CC(ICk) = 2k−1 ∗ CC(IC1). Hence,

∴MSO ≤ TotalCost

2k−1 ∗ CC(IC1)

≤ 2D + 2

MSO ≤ 2D + 2 (4.2)

Thus, for the favourable case of SpillBound, we get a MSO bound that is linear in the

number of dimensions.

Practically, we found out that not all contours are aligned for a given ESS. So, we try to

align each contour by replacing the optimal plan at the extreme locations of misaligned contours

with a plan from POSP that spills on the same dimension. Further, the replacement comes at

a cost, which is the cost of forcing the replaced plan at the extreme location. For experiments,

plan replacement was carried out using the feature of “Foreign Plan Costing”[7]. We will

denote the percentage increase in the cost incurred while replacing the plan as tolerance t.

Now, for spilling to work, we need to execute these plans with a budget equal to their cost at

the forced location, hence we increase the cost-budget for each contour by t percentage. Since

we have increased the cost budget for a contour, this will have an effect on the MSO bound.

If MSOorig was the original MSO bound and MSOnew is the MSO bound after increasing the

cost budget with tolerance t, then the following holds true.

MSOnew = (1 + t
100

)MSOorig

Let us empirically see, the minimum tolerance required to align all the contours for an

ESS. Empirically observed minimum tolerance is shown in Table 4.1. We have carried out

experiments on queries from TPC-H and TPC-DS benchmarks with their standard sizes of 1

GB and 100 GB respectively. The nomenclature for the queries is xD y Qz, where x specifies
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the number of error-prone dimensions, y the benchmark (H or DS), and z the query number in

the benchmark. So, for example, 3D H Q5 indicates a three-dimensional error-prone selectivity

space on Query 5 of the TPC-H benchmark.

Query Template Tolerance(%) Our MSO SpillBound MSO

2D DS Q96 66 10 10
3D DS Q15 25 10 18
3D DS Q96 12251 988 18
4D DS Q7 276 31 28
4D DS Q91 339 43 28
4D DS Q26 5047 514 28
5D DS Q19 5 13 40

3D H Q5 0 8 18
3D H Q7 12 9 18
4D H Q8 1 10 28
5D H Q7 1.6 12 40

Table 4.1: Minimum tolerance needed to align all contours.

For some of the query templates mentioned in the above table, the tolerance required is

more than 200%. Specifically, for TPC-DS query template 96 with 3 error prone dimensions,

is as high as 12251, which increases the MSO bound given by SpillBound to 988. So we

observe that, this approach cannot be used in practice. Figure 4.4, gives a broader perspective

to analyze SpillBound. Number of executions in favorable case is 1, whereas in worst-case, it

goes up to D. We try to improve SpillBound, by analyzing the current situation, and see if

the number of executions per contour could be between 1 and D. We design a new algorithm

named Opt-SB which will dynamically decide the number of executions required per contour.

The property of this algorithm is that, in best case, it will give a O(D) bound, while in the

worst case, it gives a bound of O(D2). Let us now see how Opt-SB works.

Figure 4.4: Big Picture
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4.2.2 Opt-SB

As we have seen in the previous section, that tolerance to align each contour is huge. So, rather

than aligning each contour to achieve one execution per contour, we can align partitions of

contour and achieve a favorable case for each of these partitions. We call these partitions of

contours as subcontours, which will be precisely defined later in this section. So, by executing

one plan per subcontour, we can cover the whole contour. So, the number of executions per

contour would be equal to the number of sub contours. This is the central idea behind Opt-SB.

Before going into details of the algorithm, let us see the notations used.

Notations: D is the number of dimensions of ESS where we number each dimension starting

from 1.

Let p denote the number of partitions. Let T1, . . . , Tp denote the partitions of the D dimen-

sions. For example, in a 4D ESS, let T1 = {1, 2}, T2 = {3, 4} represent two partitions, where

dimensions 1 and 2 belong to partition 1 and dimensions 3 and 4 belong to partition 2. For

ease of exposition, we redefine two notations which is as follows:

Let K be a subset of selectivity locations of ESS. Location qi (qi ∈ K) is said to be an extreme

location of K on dimension i if qi has the maximum selectivity on dimension i amongst all the

locations in K. We say that K is aligned on dimension i with tolerance t, if there exist a plan

Ai in POSP, which spills on dimension i, such that Cost(Ai, qi) ≤ (1 + t
100

) ∗OC(qi). Any such

plan, Ai with tolerance t, is called as a leader plan of K, denoted as LP(K) and dimension i

is termed as a leader dimension, denoted as LD(K). It could be possible that there are more

than one leader plan or leader dimension for K, but for simplicity, we will randomly consider

any one of the many choices for LP(K) and LD(K).

Now let us try to understand Opt-SB as given in Algorithm 4. For a given query, Opt-SB

uses a preprocessing module to obtain the partitions T1, . . . , Tp and the maximum tolerance t.

We will delay the discussion of preprocessing module until we prove the MSO expression.

The algorithm explores the ESS contour-wise, from the minimum cost contour. After divid-

ing D dimensions into p partitions, T1, . . . , Tp, we run the spill node identification procedure

for all the locations in ICi. Now, we will introduce the notion of a subcontour. After we have

partitioned the dimensions into p partitions, we split the contour locations of each ICi, into p

sets, S1, . . . , Sp, where Si is a set of all the locations on the contour ICi whose optimal plan

spills on one of the dimensions included in Ti. For example, in the above 4D ESS, S1 will

contain all the locations on the contour which has optimal plan that spills on either dimension

1 or 2. We term each of these Si as a subcontour. The preprocessing module ensures that

we can align each subcontour with tolerance of t. After aligning each subcontour in ICi, we
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denote the leader plan and the leader dimension for each of these subcontours as Pj and dj

respectively. We perform a Spill-Mode-Execution (Algorithm 3) of all the leader plans along

with corresponding leader dimension with an increased cost budget of CC(ICi) ∗ (1 + t
100

). In

line 16, Sel-Learnt denotes the selectivity of dimension dk, which was learnt after executing

Pk in spill mode. We use this learnt selectivity to update qrun accordingly. This sequence of

p-executions-per-contour is halted when one of the epp learns its actual selectivity. Wherein

the generic step procedure is repeated while staying in the same contour, but with one less

predicate in epp and corresponding lower dimensional ESS. We also remove the learnt dimen-

sion from its respective partition. The intuitive rationale behind revisiting the same contour,

guided by the boolean variable Repeat-Contour, is to prune the region below the contour. In

other words, it ensures that all the selectivity locations lying below the contour ICi are indeed

discovered before moving to the next contour, which is critical for the required MSO bound in

the end.

Since all the subcontours are aligned with tolerance t, only one plan execution is needed

for each subcontour to cover all the locations below that subcontour. Thus, there would be at

most p executions per contour to prune the entire region below the contour, if qa lies outside

the pruned region.

Let us denote the current number of partitions by pcur. We use (ICi, Rj) pair to identify

the executions which spill on epp Rj in contour ICi. As the name suggests, we call the first

execution of the (ICi, Rj) combination as a fresh step, and subsequent executions as repeat

steps. We need to observe that repeat steps happen only after Repeat-Contour variable is set

to true in each contour. Consider any contour ICi. Note that the number of possible fresh

executions of the form (ICi, Rj) on contour ICi for Opt-SB is bounded by p (in fact, it is equal

to pcur, when the algorithm enters the contour ICi iteration).

As mentioned earlier, a repeat step can happen only when the variable Repeat-Contour is set

to true in any contour. After selectivity of any one of the epp is learnt, we remove the dimension

corresponding to the epp from its respective partition. However, this may not decrease the pcur,

since the partition may contain more than one dimension. So, in the worst case, we will have

p executions for (D-p) repeat steps, until we reach a state where each partition has only one

dimension. After coming to this state, let us say that, when Repeat-Contour is set to true,

it marks the beginning of a new phase. It is easy to see that, there would be pcur − 1 repeat

steps within a phase, where pcur refers to the number of partitions which were present at the

beginning of a phase. Further, in each phase, the size of pcur decreases by 1. Therefore, the

number of repeat steps is bounded by
∑p−1

l=1 l = p(p−1)
2

.

We will now present the theoretical bound on MSO for Opt-SB. Suppose that the actual
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Algorithm 4: The Opt-SB Algorithm

1: Init: i=1, EPPs={R1, . . . , RD};
2: Initialize(π, t) from the Preprocessing module;
3: Let p be the number of partitions in π;
4: Let the corresponding partitions be denoted

by T1, . . . , Tp ;
5: while i ≤ m do { for each contour}
6: if |EPPs| = 1 then { only one epp left}
7: Run the 1D PlanBouquet algorithm to discover the selectivity of the remaining

epp starting from the present contour;
8: Exit;
9: end if
10: Run spill node identification procedure on

each plan in the contour ICi
11: Partition ICi into subcontours S1, . . . , Sp
12: Let Pj = LP(Sj) for 1 ≤ j ≤ p
13: Let dj = LD(Sj) for 1 ≤ j ≤ p
14: Repeat-Contour = false;
15: for each partition k, 1 ≤ k ≤ p do
16: Sel-Learnt = Spill-Mode-Execution(Pk, Rdk , CC(ICi));
17: Set qrun.dk to Sel-Learnt;
18: if qrun.dk = qa.dk then { learnt its actual selectivity}
19: Remove Rdk from partition Tk;
20: Remove Rdk from the set EPPs ;
21: Repeat-Contour = true;
22: Break;
23: end if
24: end for
25: if Repeat-Contour = true then
26: /*Stay on the contour */
27: else
28: i = i+1; /* Move to next contour */
29: end if
30: Update ESS based on learnt selectivities,

i.e. updated qrun;
31: end while

selectivity location qa is located in the range (ICk, ICk+1]. Then, the Opt-SB algorithm explores

the contours from 1 to k+ 1 before discovering qa. Recall that CC(ICi) = CC(IC1) · 2i−1. As we

discussed, the worst case execution sequence would be as follows:
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• p fresh execution for contours 1 to k+1, without learning the actual selectivity of any

epp. We will denote this cost as A1.

∴ A1 = p ∗ (CC(IC1) + CC(IC2) + · · ·+ CC(ICk+1))

≤ 2p ∗ CC(ICk+1)

• p executions on contour k+1, for learning selectivity of each of the (D-p) dimensions, such

that it eventually comes to a state when there is exactly one dimension per partition. Let

A2 denote this cost.

∴ A2 = 2CC(ICk) ∗ ((D − p) ∗ p)

• Similar to SpillBound, p(p−1)
2

repeat steps on contour k+1. We will denote this cost as

A3

∴ A3 = 2CC(ICk) ∗ (
p ∗ (p− 1)

2
)

Moreover, since we are using tolerance of t to align each subcontour, the total cost in the

worst case execution sequence is bounded as follows:

TotalCost ≤ (A1 + A2 + A3) ∗ (1 +
t

100
)

≤ (2pD − p2 + 3p) ∗ (1 +
t

100
)(CC(ICk))

The cost for an oracle algorithm that apriori knows the correct location of qa is lower bounded

by CC(ICk). Hence,

MSO ≤ TotalCost

CC(ICk)

MSO ≤ (2pD − p2 + 3p) ∗ (1 +
t

100
) (4.3)

We show in Section 4.3 that the tolerance value (t) obtained using Algorithm 4 , in practical

situations, is not significantly high.

When the number of partitions (p) is equal to the number of dimensions(D), we degenerate

to the case of SpillBound. i.e if we substitute p = D in equation (4.3), the MSO expression

becomes,

MSO ≤ D2 + 3D (4.4)

It is easy to see that, when p = D, the tolerance value t becomes 0.
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Now we will discuss the preprocessing module, as mentioned earlier, which gives the best

way to partition the D dimensions. Let π denote a valid partitioning of the D dimensions of

ESS into p partitions denoted by {T1 . . . Tp}. The total number of possible partitionings for D

dimensional ESS is given by the Bell number [8]. For each possible partitioning π, we can get

the corresponding maximum tolerance t needed to align all the subcontours in the ESS. We

exhaustively try out each possible partitioning and choose the optimal one, which minimizes

the MSO expression given in equation (4.3). Note that there is an implicit assumption that,

when we learn the actual selectivities of some of the EPPs, the maximum tolerance required

to align subcontours in the reduced space would be not greater than t corresponding to the

current optimal partitioning. As shown in Algorithm 4, we fix the partitioning at the beginning

and use it for all the contours. Rather, we could find an optimal partitioning for each contour

in the ESS. We call such kind of partitioning as local-partitioning, and we have shown results

for it in Section 4.3.

This technique of exploring all the possible partitioning, is infeasible when D is high. As a

part of future work, we will try to find a heuristic technique which will efficiently search the

optimal partitioning in high dimensional ESS.

4.3 Results

In this section, we present an empirical evaluation of Opt-SB on benchmark queries and compare

with SpillBound.

4.3.1 Experimental Setup

We have shown results on PostgreSQL version 8.3.6. Since SpillBound is an intrusive technique,

we are unable to show results on commercial database engines. We have used Ubuntu 14.04

LTS, on a vanilla Sun Ultra 24 workstation with 8GB of memory and 1TB of hard disk. We

have carried out experiments on queries from TPC-H and TPC-DS benchmarks which covers

a range of join-graph geometries including chain, star etc. All the error-prone selectivities are

chosen as join selectivities providing a challenging multi dimensional ESS. Number of error

prone selectivities ranges from 2 to 5. We have used the standard sizes of TPC-H and TPC-DS

databases which are 1 GB and 100 GB respectively. The physical schema of the database has

index on every column in the database, thus increasing the cost gradient Cmax

Cmin
and creating a

challenging environment for achieving robustness.
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Query Template πr t Opt-SB SpillBound

2D DS Q96 {1,2} 66 9.9 10
3D DS Q15 {1},{2,3} 0 14 18
3D DS Q96 {1},{2},{3} 0 18 18
4D DS Q7 {1,3,4},{2} 47 26.4 28
4D DS Q91 {1,2,3},{4} 4 18.7 28
4D DS Q26 {1,3,4},{2} 31 23.5 28
5D DS Q19 {1,2,3,4,5} 5 12.6 40

Table 4.2: Comparison of query specific MSO Bound

4.3.2 MSO Bound

We will initially show the comparison of query specific MSO bounds for both the algorithms.

In Table 4.2, πr denotes the optimal partitioning for the given query template and t denotes

the minimum tolerance required for aligning all the subcontours with partitioning πr. The last

two columns show the MSO bound for the two algorithms. For query template 19 with 5D ESS,

the MSO bound comes down from 40 to 12.6, which is a significant reduction.

4.3.3 Empirical MSO

Let us see the empirical MSO values for Opt-SB. Here, we have used local-partitioning, where

we find optimal partitioning for each contour as mentioned in Section 4.2. From the Table

4.3, we can infer that, even if we have comparable values of MSO for lower dimensions, we get

improved MSO values when D > 3.

Table 4.4 shows the maximum value of tolerance and the number of partitions for each query

template at any instance of Opt-SB. Hence, we confirm that the tolerance values are not very

high in practice with sufficient partitions.

4.3.4 Average-case Performance

After comparing the two algorithms wrt worst-case performance, let us shift focus on the

average-case performance. Since Opt-SB reduces the number of executions in each contour, we

can see a consistent improvement in the ASO values for Opt-SB over SpillBound in Table 4.5.
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Query Template Opt-SB SpillBound

2D DS Q96 5 5
3D DS Q15 7 6.6
3D DS Q96 9.6 9.8
3D H Q5 5.15 5
3D H Q7 6.1 6.4

4D DS Q7 6.7 14
4D DS Q91 7.8 7.8
4D DS Q26 9.7 13.2
5D DS Q19 7.8 12.9

Table 4.3: Empirical MSO using local-partitioning

Query Template Tolerance(%) #Partitions

2D DS Q96 60 2
3D DS Q15 67 2
3D DS Q96 61 3
4D DS Q7 69 2
4D DS Q91 45 3
4D DS Q26 43 2
5D DS Q19 41 2
3D H Q5 49 2
3D H Q7 39 2

Table 4.4: Empirical values of t and p

Query Template Opt-SB SpillBound

2D DS Q96 3.2 3.3
3D DS Q15 3.2 3.3
3D DS Q96 4.9 6.6
3D H Q5 2.9 3.3
3D H Q7 2.9 3.0

4D DS Q7 5.4 6.7
4D DS Q91 3.8 4.0
4D DS Q26 6.0 6.6
5D DS Q19 4.7 6.1

Table 4.5: Empirical ASO using local-partitioning
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Chapter 5

Conclusion

In the initial work, we improve the MSO bound given by PlanBouquet, by utilizing the cost

acclivity assumption on PIC, which mostly holds true in practice. We improved the MSO bound

by removing its dependence on the plan density(i.e. ρ). In doing so, we substantially reduced

the pre-processing time of finding the bouquet of plans.

In our second contribution, we investigate an intrusive technique called SpillBound, which

explicitly learns selectivities by changing the execution module of the database engine. We pro-

posed an optimized version of SpillBound called Opt-SB, wherein we execute bounded subopti-

mal plans at chosen selectivity locations, thereby maximizing the selectivity learning. We proved

that Opt-SB’s MSO bound is in O(Dp) which improves the O(D2) bound of SpillBound. Our

experimental results, obtained on benchmark environments operating on PostgreSQL, demon-

strate that Opt-SB performs well in practice with respect to both MSO and ASO metrics.

As a part of future work, we will try to get an MSO which has weak dependence on dimen-

sionality D of ESS. Moreover, for higher dimensions, the total number of possible partitions

become unreasonably large, which makes it infeasible to search for the optimal partitioning.

In future, we will try to find a good heuristic technique which will prune the search space for

finding the optimal partitioning.
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