Next Generation Relational Query
Optimizers

A Project Report
Submitted in Partial Fulfilment of the
Requirements for the Degree of
MNaster of Engineeving
in

Computer Science and Engineering

by

Naveen Reddy

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012

June 2005

to my parents

without whose constant support and urging

| would never have made it this far.

Contents

Acknowledgments Vi
Abstract Vii
1 Introduction 1
1.1 Organization. e e 7
2 Related Work 11
2.1 Related Work for Plastic 11
2.1.1 Comparison with Modern Optimizers 12
2.2 Related WorkforPicasso e 13
3 Architecture of Plastic and Picasso 15
3.1 Architectureof Plastic 15
3.2 Architecture of Picasso 16
4 New Features in Plastic 18
4.1 MS-SQL Serverand PostgreSQL 18
4.2 ClusteringinPlastic 18
4.2.1 Static Variable-Sized Clustering 19
4.3 ImprovementsinClustering. e 21
4.3.1 Distance Function 21
4.3.2 Dynamic Variable Clustering 23

4.4 Decision-Tree Classifier 25

CONTENTS

45 Plan-Diff Module

5 Picasso: Testbed Environment
5.1 PicassoTool e
5.2 DatabaseandQuerySet. e
5.3 RelationalEngines e
5.4 Computational Platform.

5.5 Integrated Plan-Cost/Plan-Cardinality Diagrams

6 Skew in Plan Space Coverage
6.1 Plan Cardinality Reduction by Swallowing
6.2 Plan Reductiogt OptimizationLevels

7 Relationship to PQO

8 Interesting Plan Diagram Patterns
8.1 PlanDuplicatesandPlanlislands
8.2 PlanSwitchPoints
8.3 SpecklePattern
8.4 FootprintPattern

8.5 Non-Monotonic Cost Behavior
9 Conclusions and Future Work

10 Appendix

Bibliography

54

List of Figures

11
1.2
1.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

6.1

8.1
8.2
8.3

Fixed-Sized clustering 3
Smooth Plan and Cost Diagram (Query 7) 9
Complex Plan and Reduced Plan Diagram (Query 8, OptA) 10
Integrated Architecture of Plasticand Picasso 16
Query-21 (template) of TPC-H Benchmark 19
Static Variable-Sized clustering L Lo 19
Square Shaped Cluster e 21
Fixed clustering witl.>°Norm 22
Dynamic Clustering Algorithm 23
Points considered for eligibility 24
Dynamic Variable-Sized clustering L. 24
Classifier Module Output 26
Plan Differences e 27
Picasso GUI e 29
3D Plan-Cost/Plan-Card Diagrams (Query 7,0ptB) 32
DominatingQuadrant 37
Duplicates and Islands (Query 10, OptA) 43
Duplicates and Islands (Query 5,0ptC) 43
Plan Switch-Point (Query 9, OptA) 45

LIST OF FIGURES iv

8.4 Venetian Blinds Pattern (Query 9,0ptB) 45
8.5 Speckle Pattern (Query 17, OptA) 46
8.6 Plan Diagram and Reduced Plan Diagram (Query 7,OptA) 47
8.7 Plan-Switch Non-Monotonic Costs (Query 2,OptA) 50

8.8 Intra-plan Non-Monotonic Costs (Query 21, OptA) 51

List of Tables

6.1 SkewinPlanSpaceCoverage. 35
6.2 Plan Cardinality Reduction by Swallowing 38
8.1 DuplicatesandlIslands 44
10.1 Skew in Plan Space Coverage for PostgreSQL 54
10.2 Plan Cardinality Reduction by Swallowing in PostgreSQL 55
10.3 Duplicates and Islands in PostgreSQL 55

Acknowledgments

| would like to begin by thanking my guide Prof. Jayant Haritsa for his enduring support and
encouragement as well as the freedom to pursue my area of interest. | would also like to thank
my fellow ME-DSLite Pavan for his wonderful company and help. Last, but not least, | thank

all my friends who directly or indirectly helped me in completing this report.

Vi

Abstract

Plastic [7] is a recently-proposed tool to help query optimizers significantly amortize optimiza-
tion overheads through a technique of plan recycling. This tool groups similar queries into
clusters and uses the optimizer-generated plan for the cluster representative to execute all fu-
ture queries assigned to the cluster. We have now significantly extended the scope, useability
and efficiency of Plastic by incorporating a host of new features, includiymgmic variable-
sizedclustering withZ.>°Normas the distance metridecision-tree-baseduery classifier, inte-
gratedplan-costandplan-cardinalitydiagrams and an extendptan-diff module that considers
operator-specifiadetails and can compare plans across database systems. Plastic which origi-
nally worked on DB2 and Oracle has now been portelll 8 SQL ServeandPostgreSQL

Plastic reduces optimization overheads by amortizing the cost of producing an optimal plan.
Picasso [18], a tool conceived and developed by us, can help in reducing the cost of producing
the optimal plan itself. In this context, we definglan diagram([7] as a pictorial enumeration
of the execution plan choices of a database query optimizer over the relational selectivity space.
Using Picasso, we present and analyze representative plan diagrams on a suite of popular com-
mercial query optimizers for queries based on the TPC-H benchmark. These diagrams, which
often appear similar to cubist paintings, provide a variety of interesting insights, including that
current optimizers make extremely fine-grained plan choices, which may often be supplanted
by less efficient options without substantively affecting the quality; that the plan optimality re-
gions may have highly intricate patterns and irregular boundaries, indicating strongly non-linear
cost models; that non-monotonic cost behavior exists where increasing result cardinalities de-
crease the estimated cost; and, that the basic assumptions underlying the research literature on

parametric query optimization often do not hold in practice. We hope that these inputs can be

vii

Abstract Viii

used to simplify the design of modern query optimizers and thereby reduce query optimization

overheads.

Chapter 1

Introduction

Modern database systems usguary optimizeto identify the most efficient strategy to execute

the SQL queries that are submitted by users. The efficiency of these strategies, called “plans”,
is usually measured in terms of query response time. Optimization is a mandatory exercise
since the difference between the cost of the best execution plan and a random choice could be
in orders of magnitude. The role of query optimizers has become especially critical in recent
times due to the high degree of query complexity characterizing current data warehousing and
mining applications, as exemplified by the TPC-H decision support benchmark [45].

While commercial query optimizers each have their own “secret sauce” to identify the best
plan, the de-facto standard underlying strategy, based on the classical System R optimizer [24],
is the following: Given a user query, apply a variety of heuristics to restrict the combinatorially
large search space of plan alternatives to a manageable size; estimate, with a cost model and
a dynamic-programming-based processing algorithm, the efficiency of each of these candidate
plans; finally, choose the plan with the lowest estimated cost.

These well known inherent costs are compounded by the fact that a new query submitted to
the database system is typically optimized afresh, providing no opportunity to amortize these
overheads over prior optimizations. While current commercial query optimizers do provide
facilities for reusing execution plans (e.g. “stored outlines” in Oracle [41]), the query matching
is extremely restrictive — only if the incoming query has a cltes¢ual resemblanceith one

of the stored queries then the associated plan is reused to execute the new query.

CHAPTER 1. INTRODUCTION 2

The Plastic Tool

Recently, in [7], a tool calledPlastic (PLan Selection Through Incremental Clustering) was
proposed to be used by query optimizers to significantly increase the scope of plan reuse and
amortize the optimization overheads through a technique of “plan recycling”. The tool is based
on the observation that queries which differ in projection, selection, join predicates, and even in
the base tables themselves, may still have idenpieal templates- that is, they share a common
database operator tree. By identifying such similarities in the plan space, Plastic materially
improves the utility of plan cacheing.

Specifically, Plastic attempts to capture these similarities by characterizing queries in terms
of a feature vector that includes structural attributes such as the number of tables and joins in the
query, as well as statistical quantities such as the sizes of the tables participating in the query.
Using a distance function defined on these feature vectors, queries are grouped into clusters.
Clusters are built incrementally using tleaderalgorithm proposed by Hartingan [10]. Each
cluster has a representative for whom the template of the optimizer-generated execution plan
is persistently stored, and this plan template is used to execute all future queries assigned to
the cluster. In short, Plastic recycles plan templates based on the expectation that its clustering
mechanism is likely to assign an execution plan that is identical to what the optimizer would
have produced on the same query. A sample output depicting clustering in Plasiicefgr
templaté Q2, is shown in Figure 1.1. Here, the axes represent the selectivities of a pair of
the participating relations, namePART andPARTSUPPand the dots represent the cluster rep-
resentatives (leaders). Experiments with a variety of TPC-H based queries on a commercial
optimizer showed that Plastic predicts the correct plan choice in most cases, thereby providing
significantly improved query optimization times. Further, even when errors were made, the
additional execution cost incurred due to the sub-optimal plan choices was marginal.

Apart from the obvious advantage of speeding up the optimization, Plastic also improves
guery execution efficiency since it makes it possible for optimizers to always run at their highest

optimization level as the cost of such optimization is amortized over all future queries that reuse

LA query template represents a query in which some or all of the constants in the where-clause predicates have
been replaced by bind variables.

CHAPTER 1. INTRODUCTION 3

100

b g 4w 4 9 p o
wun
S

0 10 20 30 40 50 60 70 80 90 100
PART

Figure 1.1: Fixed-Sized clustering

these plans. Yet another important advantage is that the benefits of “plan hints”, a common
technique for influencing optimizer plan choices for specific queries, automatically percolate
to the entire set of queries that are associated with this plan. Lastly, since the assignment of
gueries to clusters is completely based on database statistics, the plan choice for a given query
is adaptiveto the current state of the database.

Earlier demos [26, 23] had presented two implementations of Plastic, one that demonstrated
the basic prototype, and another which improved upon the first. We have now significantly
extended the scope, useability, and efficiency of Plastic, by incorporating a host of new features,

including:

e Implementation of Plastic in MS-SQL Server.

e Implementation of Plastic in PostgreSQL.

¢ .°°Normas the distance metric to better match boundaries in the plan space.
e Dynamic variable-sizedlustering to match volatility in plan space.

e Integration of a C4.5 decision tree classifier for fast cluster identification.

¢ An extendedplan-diff module that compares plans considering dperator-levelattributes

and can compare plans across database systems.

CHAPTER 1. INTRODUCTION 4

Plan and Cost Diagrams

For a query on a given database and system configuration, the optimal plan choice is primarily a
function of theselectivitief the base relations participating in the query —that is, the estimated
number of rows of each relation relevant to producing the final result. In this report, we use the
term “plan diagram” to denote a color-coded pictorial enumeration of the execution plan choices
of a database query optimizer over the relational selectivity space. An example two dimensional
plan diagram is shown in Figure 1.2(a), for a query based on Query 7 of the TPC-H benchmark,
with selectivity variations on theRDERSandcusTOMERrelations.

[Note to Readers: We recommend viewing all diagrams presented in this paper directly from the
color PDF file, available at [32], or from a color print copy, since the greyscale version may not clearly
register the various feature.

In this picture, produced with a popular commercial query optimizer, a set of six optimal
plans, P1 through P6, cover the selectivity space. The value associated with each plan in the
legend indicates the percentage space coverage of that plan — P1, for example, covers about
38% of the area, whereas P6 is chosen in only 1% of the region.

Complementary to the plan diagram is a “cost diagram”, shown in Figure 1.2(b), which is
a three-dimensional visualization of the estimated plan execution costs over the same relational
selectivity space (in this picture, the costs are normalized to the maximum cost over the space,
and the colors reflect the relative magnitude with blue indicating low cost, white — medium cost,

and red — high cost.)

The Picasso Tool

Plastic reduces optimization overheads by amortizing the cost of producing an optimal plan —
that is, in a given cluster, once the optimizer generates a plan foedler, Plastic optimizes
the cost of generating plans for tf@lowers On the other hand, Picasso [18], a tool conceived

and developed by us, can help in reducingabstof producing theoptimal planfor the leader.

2Specifically, the variation is on the totalprice andc _acctbal attributes of these relations.
3The optimality is with respect to the optimizer’s restricted search space, and not in a global sense.

CHAPTER 1. INTRODUCTION 5

In certain cases, as detailed later, Picasso can also help in improviggdhty of the optimal
planitself.

Given a query and a relational engine, Picasso automatically generates the associated plan
and cost diagrams. In this report, we describe the plan/cost/cardinality diagrams output by
Picasso on a suite of three popular commercial query optimizers for queries based on the TPC-
H benchmark. [Due to legal restrictions, these optimizers are randomly identified as OptA,
OptB and OptC, in the sequel.]

Our evaluation shows that a few queries in the benchmark do produce “well-behaved” or
“smooth” plan diagrams like that shown in Figure 1.2(a). A substantial remainder, however, re-
sultin complex and intricate plan diagrams that appear similemidst paintingg35]*, provid-
ing rich material for investigation. A particularly compelling example is shown in Figure 1.3(a)
for Query 8 of the TPC-H benchmark with OptAvhere no less than 68 plans cover the space
in a highly convoluted manner! Further, even this cardinality¢e@aservativeestimate since it
was obtained with a query grid of 100 x 100 — a finer grid size of 300 x 300 resulted in the plan
cardinality going up to 80 plans!

Before we go on, we hasten to clarify that our goal in this paper is to provide a broad
overview of the intriguing behavior of modern optimizers, batto make judgements on spe-
cific optimizers, nor to draw conclusions about the relative qualities of their execution plans.
Further, not being privy to optimizer internals, some of the conclusions drawn here are perforce
speculative in nature and should therefore be treated as such. Our intention is primarily to alert
database system designers and developers to the phenomena that we have encountered during
the course of our study, with the hope that they may prove useful in building the next generation

of optimizers.

Analysis of Plan and Cost Diagrams

Analyzing the TPC-H based query plan and cost diagrams provides a variety of interesting

insights, including the following:

“Hence, the name of our tool — Pablo Picasso is considered to be a founder of the cubist painting genre [35].
SOperating at its highest optimization level.

CHAPTER 1. INTRODUCTION 6

Fine-grained Choices: Modern query optimizers often make extremdige-grained plan
choices, exhibiting a marked skew in the space coverage of the individual plans. For
example, 80 percent of the space is usually covered by less than 20 percent of the plans,
with many of the smaller plans occupying less tloare percenbf the selectivity space.

Using the well-known Gini index [34], which ranges over [0,1], to quantify the skew, we
find that all the optimizersacross the boargexhibit a marked skew in excess of 0.5 for

most queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the small-sized plans may often be sup-
planted by larger siblingwithout substantively affecting the qualitfFor example, the

plan diagram of Figure 1.3(a) which has 68 plans can be “reduced” to that shown in Fig-
ure 1.3(b) featuring as few agvenplans, without increasing the estimated cost of any

individual query point by more than 10 percent.

Overall, this leads us to the hypothesis that current optimizers may perhaps be over-
sophisticated in that they are “doing too good a job”, not merited by the coarseness of the
underlying cost space. Moreover, if it were possible to simplify the optimizer to produce

only reduced plan diagrams, it is plausible that the considerable processing overheads

typically associated with query optimization could be significantly lowered.

Complex Patterns: The plan diagrams exhibit a variety of intricate tessellated patterns, in-
cludingspecklesstripes blinds mosaicsandbands among others. For example, witness
the rapidly alternating choices between plans P12 (dark green) and P16 (light gray) in
the bottom left quadrant of Figure 1.3(a). Further, the boundaries of the plan optimal-
ity regions can be highly irregular — a case in point is plan P8 (dark pink) in the top
right quadrant of Figure 1.3(a). These complex patterns appear to indicate the presence
of strongly non-linear and discretized cost models, again perhaps an over-kill in light of
Figure 1.3(b).

Non-Monotonic Cost Behavior: We have found quite a few instances where, although the

base relation selectivities and the result cardinalities are monotonically increasing, the

CHAPTER 1. INTRODUCTION 7

cost diagram doesot show a corresponding monotonic beha¥i@ometimes, the non-
monotonic behavior arises due to a change in plan, perhaps understandable given the
restricted search space evaluated by the optimizer. But, more surprisingly, we have also
encountered situations where a plan shows such behavionmeenal to its optimality

region.

Validity of PQO: A rich body of literature exists oparametric query optimizatioPQO) [1,
2,11,12,5,6, 14, 16, 17]. The goal here is to apriori identify the optimal set of plans for
the entire relational selectivity space at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the best plan — the expectation is that
this would be much faster than optimizing the query from scratch. Much of this work is
based on a set of assumptions, that we do not find to holdewes, approximate)yn the

plan diagrams produced by the commercial optimizers.

For example, one of the assumptions is that a plan is optimal withirernitiee region
enclosed by its plan boundaries. But, in Figure 1.3(a), this is violated by the small (brown)
rectangle of plan P14, close to coordinates (60,30), in the (light-pink) optimality region

of plan P3, and there are several other such instances.

On the positive side, however, we show that some of the important PQO assumptions do

hold approximately foreducedplan diagrams.

1.1 Organization

In this report we present a walk-through of the upgraded Plastic tool, and explain how it helps
to significantly amortize the overheads of query optimization. We also present the Picasso tool,
and show how it serves as a research, educational and administrative tool for understanding the
intricacies of query plan generation.

The remainder of this report is organized as follows: In Section 2, we discuss related work.

80ur query setup is such that in addition to the result cardinality monotonically increasing as we travel outwards
along the selectivity axes, the result tuples are algmerset®f the previous results.

CHAPTER 1. INTRODUCTION 8

Integrated architecture of Plastic and Picasso are discussed in Section 3. The new features in-
corporated into Plastic are discussed in Section 4. The Picasso tool and the testbed environment
for our experiments is presented in Section 5. Then, in Section 6, the skew in the plan space
distribution, as well as techniques for reducing the plan set cardinalities, are discussed. The
relationship to PQO is explored in Section 7. Interesting plan motifs are presented in Section 8.
Finally, in Section 9, we summarize the conclusions of our study and outline future research

avenues.

CHAPTER 1. INTRODUCTION

10

a0

II 80
S 70
T 60

38.45

o

50 30.48

16.53
40 12.41

1.13

30
1.00

e I 4

20

10

10 20 30 a0 50 60 70 80 100

ORDERS

(a) Plan Diagram

- 09
- 0.5
- 0.7

- 06
il
- 0.4

y- 0.3

- 0.2

B 1

09 -
08
07
06
0s
04
03
02 -
01 -

CUSTOMER

100

(b) Cost Diagram

Figure 1.2: Smooth Plan and Cost Diagram (Query 7)

CHAPTER 1. INTRODUCTION

[}
v

.82

=
=]

.82

L 8.61
I 80 4.175
3.96
N 7o 3.82
E s 3.28
3.07
I 50 2.75
T 2.46
40 1.96
E
30 1.56
M 1.40
20 1.22
1.05
10 1.04
o - 0.99 I P17
10 20 30 40 50 60 70 80 S0 10 0.95 P18
O
H
SUPPLIER 68 E’Ians

(a) Complex Plan Diagram

SUPPLIER
(b) Reduced Plan Diagram

Figure 1.3: Complex Plan and Reduced Plan Diagram (Query 8, OptA)

Chapter 2

Related Work

2.1 Related Work for Plastic

Techniques such amulti-query optimizatiofMQO) [21, 27, 25, 8, 15] angdarametric query
optimization(PQO) [14, 2,6, 5, 11,12, 1,17, 16] have been previously proposed for enhancing
the query optimization process. Both these techniques are inherently computationally hard — for
example, the search space in MQO is doubly exponential in the size of the queries. This has led
to the design of heuristic-based solutions, such as those presented in [21].

Plastic approach is fundamentally different from MQO in that it do not attemgptionize
queries but merely to make effective use of tesultsof prior optimizations. Moreover, while
Plastic does group queries into clusters, the plan selection is applicable on a per-query basis
and is therefore not restricted to query batches. Finally, Plastic optimization is not limited to
a temporal window of queries, but can be utilized across widely dispersed query sets. Moving
on to PQO, its coverage of the query space is typically an off-line process. In contrast, Plastic
approach can be implemented in either an off-line manner where artificial queries are generated
SO as to create clusters that cover the query space, or more practically as an online process
with regard to both cluster formation and query plan selection. That is, the query space can
be covered incrementally on demand when user queries arrive at the database system. Another
significant difference with PQO is that Plastic plan selection process involves only the traversal

of a simple decision tree, whereas PQO requires a spatial storage and indexing mechanism. This

11

CHAPTER 2. RELATED WORK 12

Is because the scheme requires storing not only the set of optimal plans but also the regions in
which each of these plans are optimal. Even for simple linear cost functions, the shapes of these
regions turn out to be convex polyhedrons [5], mandating spatial storage and access in order to
identify which plan is to be utilized for a newly arrived query. This issue assumes importance
since supporting spatial databases is well-known to be an expensive proposition [29]. Finally,
while PQO is concerned with completely characterizing the plan space for a given query, our

approach extends s&haringof plans across similar queries.

2.1.1 Comparison with Modern Optimizers

Some modern optimizers also provide plan reuse facilities. We discuss Oracle9i Optimizer
[41] here and how adding Plastic, to any such optimizer, can augment its capabilities. The
Oracle database system provides a mechanism, called “stored outlines”, for preserving queries
and execution plans. When the system parame$& STORED OUTLINES is set to true, the
optimizer compares the incoming query with the stored queries andideartical match is

found, the associated plan is used. The point to note here is that the query matching is done at
the syntacticlevel. There needs to be a one-to-one correspondence between SQL text and its
stored outline. If a different literal is specified in a predicate, then a different outline applies.
To avoid this, Oracle also allows bind variables to be used instead of constants to allow a wider
coverage. This approach is still somewhat limited in several ways. Firstly, the query matching
is very strict — a slight change in the structure of query, for example, adding or replacing of
a projection attribute, will result in the optimizer not utilizing the existing plan. Secondly, it
does not take into account the fact that several selection predicates on a particular table can
together generate a selectivity for the table which is similar to that of a previously stored query.
Thirdly, a more serious problem is that the query plan is the same fardimplete range of
valuesof a bind variable since Oracle adopts the heuristic of assuming small values for the
selectivity of bind variable-based predicates. Specifically, it chooses a selectivity of 0.05 for
all range predicates associated with bind variables, a heuristic that can prove very costly for
database environments with higher selectivity values. Plastic approach, on the other hand, tries

to address all these three issues in a much more flexible and fine-grained manner.

CHAPTER 2. RELATED WORK 13

It should thus be noted that Plastic does not just map a parametric space based on changes
in bind variables of selection predicates but works at the level of shéebhgeenqueries, a

feature expected to loesirablein practice.

2.2 Related Work for Picasso

To the best of our knowledge, there has been no prior work on the analysis of plan diagrams
with regard toreal-world industrial-strengthguery optimizers. However, similar issues have
been studied in the parametric query optimization (PQO) literature in the context of simplified
self-crafted optimizers. Specifically, in [1, 16, 17], an optimizer modeled along the lines of
the original System R optimizer [24] is used, with the search space restricted to left-deep join
trees, and the workload comprised of pure SPJ queries with “star” or “linear” join-graphs. The
metrics considered include the cardinality and spatial distribution of the set of optimal plans
— while [1] considered only single-relation selectivities, [16, 17] evaluated two-dimensional
relational selectivity spaces, similar to those considered in this paper. Their results in the 2-D
case indicate that for linear queries, the average number of optimal plans is linear in the number
of join relations, while for star queries, this number is almost quadratic. Also, the optimal
plans are found to be densely packed close to the origin and the selectivity axes. An analysis
of plan reduction possibilities in [1], given a plan optimality tolerance threshold, indicates that
a larger fraction of plans can be removed with increasing query complexity. In [11, 12], an
optimizer modeled along the lines of the Volcano query optimizer [9] is used, and they find the
cardinality of the optimal plan set for queries with two, three and four-dimensional relational
selectivities. They also present efficient techniques for approximating the optimal plan set.
Finally, a complexity analysis of the optimal plan set cardinality is made in [5] for the specific
case of linear (affine) cost functions in two parameters.

While the above efforts do provide important insights, the results presented in this paper
indicate that plan diagrams with sophisticated real-world optimizers and queries show much
more variability with regard to both plan set cardinalities and spatial distributions, as compared

to those anticipated from the PQO literature. For example, as mentioned earlier, we find that

CHAPTER 2. RELATED WORK 14

plan densities can be high even in regions far from the plan diagram axes, and that the optimality
region geometries can have extremely irregular boundaries.

There has also been work on characterizing the sensitivity of query optimization to storage
access cost parameters [19], but this work focuses on the robustness of optimal plan choices
to inaccuracies in the optimizer input parameters, and when suboptimal choices are made, the
impact of these errors. So, the focus is on piamlity, not quantity or spatial distribution.
Further, their analysis shows that when all tables and indexes are on a single device (as in our
case), the optimizer proved relatively insensitive to inaccurate resource costs in terms of plan
choices — however, we find strong sensitivity with regardetectivity valuesFurther, many of
the queries for which they did find some degree of sensitivity also feature in our list of “dense”
queries.

Cost-based attempts to reduce the optimizer's search space include a “pilot-pass” ap-
proach [20], where a complete plan is initially computed and the cost of this plan is used
to prune the subsequent dynamic programming enumeration by removing all subplans whose
costs exceed that of the complete plan. But, it has been reported [13] that such pruning has only
marginal impact in real-world environments. Finally, a preliminary study of a sampling-based
approach to find acceptable quality plans, evaluated on a commercial optimizer, is discussed in

[30], but its impact on theptimalplan set cardinality is an open issue.

Chapter 3

Architecture of Plastic and Picasso

A block-level diagram that shows the integrated architecture of Plastic and Picasso is shown in
Figure 3.1. In this picture, the solid lines show the sequence of operations in the situation where
a matching cluster or a matching plan diagram is found for the new query, while the dashed
lines represent the converse situation where no match is available and a fresh cluster or a new

plan diagram has to be created.

3.1 Architecture of Plastic

The query given to Plastic is first processed byRbature Vector Extractowhich also accesses
the system catalogs and obtains the information required to produce the feature vector. The
Similarity Checkmodule establishes whether this feature vector has a sufficiently close match
with any of the cluster representatives in @eery Cluster Databasdf a match is found (solid
lines in Figure 3.1), the plan template for the matching cluster representative is accessed from
thePlan Template Databas@ plan template is a plan that has database operators but does not
have the specific values of the inputs like table names, index names to these operators. This
plan template is converted into a complete plan byRken Generatormodule, which fills in
the operator inputs based on the specifics of the input query.

On the other hand, if no matching cluster is found (dashed lines in Figure 3.1), the Query

Optimizer is invoked in the traditional manner and the plan it generates is used for executing the

15

CHAPTER 3. ARCHITECTURE OF PLASTIC AND PICASSO 16

Plan-Id
Selectivity - 30
Estimator |~ ™| Query Generator Plan |»| Visualizer——»
il I : Database Plan-Cost &
. ! § . Plan-Cardinality
Grid Cqrdinality | | § § 3 ! Diagrams
P | v o S —
MMamh 777777777777777 » Query Optimizer
Feature Vector J
‘ ! |Plan Template

generator

v

Cluster

Reorganizer

Query Cluster Plan Template
Database | Database

System
Catalogs

| ot ; Pl
Query | Feature Vector | Feature | Similarity [~ o Plan |y)"
Extractor Vector | Check Match | Generator
Cluster-Id T

Figure 3.1: Integrated Architecture of Plastic and Picasso

guery. This plan is also passed to flan Template Generatavhich converts the plan into its
template representation and stores it in Bi@n Template Database&oncurrently, the feature
vector of the query is stored in ti@uery Cluster Databaseas a new cluster representative.
Periodically, the cluster database may be reorganized to suit constraints such as a memory
budget or a ceiling on the number of clusters. For example, it may be decided to purge the
feature vectors and plan templates of “outlier” queries that rarely result in matches with the

current query workload.

3.2 Architecture of Picasso

Picasso takes as input the query, the grid granularity at which queries should be distributed

across the plan space, the relations (axes) on which the selectivities should be varied to construct

CHAPTER 3. ARCHITECTURE OF PLASTIC AND PICASSO 17

the plan diagram (can be deduced from the query itself if there are only two relations in the
guery), and the choice of query optimizer.

The query and the grid granularity given to Picasso is first processed Betbetivity Esti-
mator module which also accesses the system catalogs and obtains the information required to
produce the conditions on the chosen two relations for achieving a particular selectivity. These
conditions are given to th®uery Generatomodule that generates the query for a specified
value of selectivity. This query is fed to tliguery Optimizeithat generates a plan to execute
the query. Once plans have been generated for each of the points at the specified granularity, the
entire set of plans with their corresponding positions in the plan space are persistently stored in
thePlan Databaseso that the next time when the same plan diagram is needed, it does not need
to be generated. These set of plans and their corresponding positions are also given as input to

a 3D Visualizermodule that generates both plan-cost and plan-cardinality diagrams.

Chapter 4

New Features in Plastic

In this section, we describe in detail the new features of Plastic that have been implemented.
These new features significantly extend the scope, useability, and efficiency of Plastic as ex-

plained below.

4.1 MS-SQL Server and PostgreSQL

Plastic originally worked on DB2 and Oracle. We have ported it to worli8:SQL Server

and PostgreSQL Thus Plastic now works on all popular database platforms. With this im-
plementation, we now have a tool that can be used to compare the plans generated for queries
across all popular database platforms. This feature of Plastic is very useful, especially in the
industry where it could be used to identify areas of the plan space where an inferior plan is be-
ing chosen by one optimizer while a relatively better plan is being chosen by another optimizer.
Further, it provides a base that can be used to compare the quality of plans produced by different

optimizers, having same database and system configuration.

4.2 Clustering in Plastic

For comparing various mechanisms in clustering, wequeey templat€-21 from the TPC-H

benchmark (the nested sub-query and group-by operations have been removed). Here :1 and :2

18

CHAPTER 4. NEW FEATURES IN PLASTIC 19

are “bind variables” that are replaced by constants in an actual query. The query template is

given in Figure 4.1.

select * from
supplier,
lineitem,
orders,
nation
where
s_suppkey = | _suppkey
and o_orderkey = |_orderkey
and s_nationkey = n_nationkey
and |_quantity = : 1
and n_regionkey = : 2

Figure 4.1: Query-21 (template) of TPC-H Benchmark

4.2.1 Static Variable-Sized Clustering

1o
20

s0

N 70
A &0
ju)
rl

ISD
040

Pz
buc)
P

=0 pc

Z0

1a

LINEITEM

Figure 4.2: Static Variable-Sized clustering

Plastic originally implementetixed-sizeclusters. The distance metric employed is shown
below.
X | ETSi — ETS} |
Dist = L_— "2
18 ance(Ql,Q2) Z max(TS{,TS%)

=1

(4.1)

CHAPTER 4. NEW FEATURES IN PLASTIC 20

where@; and Q. are queries involving K tables arfiSi, ETS! is original and (estimated)
effective size of’" table inQ,. Similar explanation holds fdFSi, ET'Ss.

Fixed-size clustering resulted in the twin problems of insufficient clusters irhidpe-
volatility (rapid changes in plan choices) regions of the plan space and redundant clusters in
thelow-volatility (gradual changes in plan choices) regions.

To overcome thisstatic variable-sizedlustering was implemented in Plastic [22], which
provided several small-sized clusters in the high-volatility region and a few large-sized clusters
in the low-volatility region. This scheme was based on the assumption that the high-volatility
region is typically present in the highly-selective region of the plan space and the low-volatility
region is typically present in the low-selectivity region. The modified distance metric is shown

below.

| ETS: — ETS: |

A A 4.2
max(ETSy, ETSY) (4.2)

Distance(Qq, Q2) Z

=1
A sample output of static variable-sized clustering for query template Q-21 for the DB2
optimizer, is shown in Figure 4.2. Here, the axes represents the selectivities of a pair of the
participating relations, namelyATION andLINEITEM, the dots represent the cluster represen-
tatives, and the background shows the associated plan diagram.

Though this technique improves the accuracy of clustering, it still has some disadvantages.

e Firstly note that the.!Norm (also known asanhattandistance metric) is not a good
metric for clustering because, tipéan spacegenerally hasorizontalboundaries rather

thandiagonalboundaries, whereas with Norm we getdiagonalboundaries.

e The observation that the high-volatility region is typically present in the highly-selective
region of the plan space is generally true but need not be always. In Figure 4.2, we see
that even though we have only one plan when selectivities of both taiNesTEM and
NATION are below 20%, we have a number of clusters in this areaidéa case would
be to cluster the query-space based on the underlying plan diagram. Thus, we require

dynamic variable clustering

CHAPTER 4. NEW FEATURES IN PLASTIC 21

4.3 Improvements in Clustering

In this section, we introducé*°Norm as the new distance metric for clustering, followed by an
algorithm that performs dynamic variable clustering. We then empirically show that dynamic
variable clustering using>°Norm is better than previous approaches of clustering presented in

Plastic.

4.3.1 Distance Function

Since L'Norm is not adequate, we need a distance function that forms clusters that have a
square shape or preferably a rectandl&®Norm (also known a€hessboardlistance metric)
IS one such metric. It clusters the entire query space into squares, the size of each square being

determined by the threshold value. The new distance metric Usitigorm is shown below.

ETS: — ETS:
Distance(Qq, Q2) = max(| 1 2 |

4 4 4.3
i max(TSy,TSY)) (4.3)

We can determine thiareshold valudor the distance function that needs to be set given the

number of clusters

-—

Y X Z
Figure 4.3: Square Shaped Cluster

Consider a single cluster as shown in Figure 4.3. d_bé the threshold value. Let ‘A be
the total size of the query-space that needs to be clustered. Let ‘c’ be the desired number of
clusters.

The area of each cluster is thdric. If ‘'S’ is the side of a square (shape of the cluster), then

s> = A/c. Thus

1The number of clusters can be calculated from the space budget available for storing the clusters.

CHAPTER 4. NEW FEATURES IN PLASTIC 22

(Z - X) s? A

T P
max(TSt, TSS) 4K?2 4cK?

where Kanaz (TS}, T'SS) is the difference between the sizes of the two tables in the given

guery and hence does not change. Thus the required threshold is

A
5= T2 (4.9)

If the cluster has n-dimensions, we can similarly show that the required threshold is

6 =I5 /=] (4.5)

yul
Pl
Pz
P3

ZoHHAYPZ

D4
P&

LINEITEM

Figure 4.4: Fixed clustering with>*Norm

Our initial experiments have shown that usihgfNorm as the distance metric itself in-
creases the accuracy of clustering and makes it comparable to statiofvariableclustering
using L'Norm. For this particular query template Q-21 shown in Figure 4.1, we got an accu-
racy of 82.39% which is infact slightly more than the accuracy 81% we gdtétic-variable
clustering. A sample output of fixed-sized clustering usingNorm for query template€)-21

given in Figure 4.1 is shown in Figure 4.4.

CHAPTER 4. NEW FEATURES IN PLASTIC 23

4.3.2 Dynamic Variable Clustering

The algorithm for dynamic variable clustering is shown in Figure 4.5. This algorithm works on
a fixed budget of clusters — giveri number of clusters, it merges and divides clusters in such a
way that finally at mostc’ clusters are present. For each cluster, it identifies all the neighboring

clusters that have same plan and merges them if the resulting cluster is in the form of a square.

INPUT : C number of fixed size clusters
OUTPUT: K < C number of dynamic sized clusters

DYNCLUSTER

{
Let | be a bound on the size of the smallest cluster
Let h be a bound on the size of the largest cluster
Initial size of each fixed cluster sR/1 * h]

Get all eligible clusters 'E’.
Il A cluster is eligible if any 7 out of the 9 points shown in Figure 4.6
/I have the same plan.

1. For each eligible cluster in E, gets its four cluster neighbors
2. If all of them have same plan, cluster-size *= 4
3. Repeat steps 1-4 with new cluster-size

4, Sort clusters in decreasing order of their sizes

/I Initially removed|i]=false for all clusters
6. For each eligible cluster in sorted list, if it is not removed
Remove all clusters whose centers are within the boundary of this cluster

Get the number of clusters removed = R
/I Since we only have a fixed budget,
/I clusters removed = clusters that can be added

7. For each ineligible cluster, divide into four smaller clusters
Decrement R by 4. iR < 0 then break

Figure 4.5: Dynamic Clustering Algorithm

CHAPTER 4. NEW FEATURES IN PLASTIC 24

The initial size of each fixed cluster is taken as the geometric mean of the size of the max-
imum possible cluster to the size of the smallest allowed cluster. Then checking is done to
determine the clusters eligible for merging. A cluster is eligible if it has the same plan for any
7 out of the 9 points shown in Figure 4.6. If a cluster is eligible and has four eligible neighbors
with the same plan, then the size of the cluster is increased by a factor of 4. This is repeated for

all the clusters.

— CLUSTER

CLUSTER CENTER

Figure 4.6: Points considered for eligibility

Next, starting from the cluster with the largest size, all clusters that have their centers within
the boundary of this cluster are removed. This process is repeated for each cluster in decreasing
order of their sizes, provided they are not already removed by clusters before them in the sorted

order.

ro
r1
0z
12

Z0HHAPZ

153
13

LINEITEM

Figure 4.7: Dynamic Variable-Sized clustering

CHAPTER 4. NEW FEATURES IN PLASTIC 25

Finally theineligible clustersare divided, generating four new clusters, subject to the con-
dition that the number of new clusters generated can be atmost the number of clusters reduced
in the previous step. A sample outputdyinamic-variableclustering using.>>Norm for query
templateQ-21 is shown in Figure 4.7.

Our initial experiments have confirmed our belief thghamic-variablelustering increases
the accuracy of clustering. For query template Q-21 shown in Figure 4.1, we obtained an
accuracy of 89.95% with the sam& number of clusters which is substantially better than

81%, the accuracy obtained by usistgtic-variableclustering.

4.4 Decision-Tree Classifier

In the original tool, identifying the matching cluster (if any) for the new query, was achieved
by comparing the new query with the cluster representatives until either a similar representa-
tive was found, or all were found to be dissimilar. This process can become computationally
expensive when a large number of clusters are present, as would often be the case.

Accordingly, we needed a faster technique such as decision tree or hierarchical clustering [3]
—we have explored the former option since it naturally suits our problem. This is because most
of our query features are deterministic as well as common to a small group of clusters and we
can therefore have a set of comparisons that zero-in on the required cluster very quickly. For
example, the feature sdbegree SequenandJoin Predicate Index Countsvill be the same
for all the queries within the cluster and thus can be considered to be a characteristic of the
cluster acting as a decision rule for selecting clusters. Another important advantage of decision
trees is that once we have the rules generated, we can even drop the source query feature vectors
and simply interpret clusters as leaves of the decision tree.

So, to hasten the process of cluster identification, we have now incorporated the popular
C4.5 [43] decision-tree classifier which is present in the classifier module of the architecture
diagram(see Figure 3.1). This new classifier module operates on the clusters in the database,
after grouping them based on plan commonality — that is, clusters sharing the same plan are

grouped together and a classifier is built on these groups.

CHAPTER 4. NEW FEATURES IN PLASTIC 26

To optimize the grouping process, initially the plan template of each query representative is
traversed in post-order and an MD5 hash signature of this traversal is computed. Subsequently,
these signatures, rather than the plans themselves, are compared to decide plan commonality
among clusters. Such grouping significantly reduces the number of class labels in the cluster
database, and has twofold advantages: Firstly, it increases the accuracy of the classifier, and
secondly, results in a decision tree of lesser height, thereby requiring lesser time for classifi-
cation. Quantitatively, our experiments show that the cluster identification time reduces by an
order of magnitudeat only a small cost in the overall matching accuracy [22]. In fact, with the
classifier, the identification cost is proportional to tieterogeneityf the clusters, whereas in
the earlier version, the cost was proportional todaedinality of the clusters. The decision tree
also helps to identify the attributes of the query feature vector that have the most impact on plan
choices.

We have preferred C4.5 over the newer version C5.0 since both have almost the same accu-
racy but the former is an open source and also works on both Windows and Linux Platforms.
OC1 [36], another popular decision tree classifier which has oblique splits contrary to access
parallel splits in C4.5, provides slightly better performance than C4.5 but unfortunately is not
supported on the Windows Platform. A sample output of the classifier module is shown in Fig-
ure 4.8 (here, ETS refers to Effective Table Size, a query feature vector component [7] and there

are three cluster groups).

|(ETS of Relation4) <= 4.1Ef]
F
ClusterGroup-1 [(ETS of Relation5) <= 3.6E6 |
T F
ClusterGroup-2 |(ETS of Relation4) <= 7.5E6]
T F

‘(ETS of Relation5) <= 94E7‘ ClusterGroup-3
ey

ClusterGroup-1 ClusterGroup-3

Figure 4.8: Classifier Module Output

CHAPTER 4. NEW FEATURES IN PLASTIC 27

4.5 Plan-Diff Module

The plan-diff module, intended for analyzing the specific differences between a pair of query
execution plans, has been extended to compare plans across the four database platforms (DB2,
Oracle, SQL-Server, PostgreSQL). This module identifies differences between plans using an
adaption of theX-Diff [31] algorithm (which was proposed for computing differences between
XML documents). This module now compares plans considering@pleeator-levelattributes

also. It can be used in two ways: (a) to compare plan choices for different versions of a query
on a single platform, or (b) to compare choices for the same query across database platforms.
Part of a sample output of the module, showing the differences between Plan 3 and Plan 4 of
Figure 4.7, is shown in Figure 4.9 (the source plans are omitted because of their complexity
and size). From this figure, we can see that these two plans differ only in the access method
(index scan versugable scan) for the LINEITEM relation. We expect that this module will be
especially beneficial for database administrators and query optimization researchers/students to

help understand plan choices made by the optimizer.

FILTER (7) 232,003 FILTER (7) 178,901
FETCH (8) 231,903 TBSCAN (8) 178,894

IXSCAN (9) 14,430> (LINEITEM SORT (9) 171,520
\

SQL0433043133430 TBSCAN (10) 124,664
Plan 7 Plan 9

Figure 4.9: Plan Differences

Chapter 5

Picasso: Testbed Environment

In this section, we overview the Picasso tool and the experimental environment under which the
plan and cost diagrams presented here were produced. We also show the injglgratsabt

andplan-cardinalitydiagrams that have been implemented in Picasso.

5.1 Picasso Tool

The Picasso tool is a value added tool that helps in understanding the intriguing behavior of
modern optimizers. Through its GUI, users can subrgitery templat¢7], the grid granularity

at which instances of this template should be distributed across the plan space, the relations
(axes) and their attributes on which the diagrams should be constructed, and the choice of
guery optimizer. A snapshot of the interface for a template based on Query 2 of the TPC-H
benchmark, is shown in Figure 5.1 (the predicatesize < C1 ” and “ps _supplycost

< C2’ determine the selectivity axes).

With this information, the tool automatically generates SQL queries that are evenly spaced
across the relational selectivity space (the statistics present in the database catalogs are used to
compute the selectivities). For example, with a grid spacing of 100 x 100, a plan diagram is
produced by firing 10000 queries, each query covering 0.01 percent of the plan diagram area.
The resulting plans are stored persistently in the database, and in the post-processing phase, a

unique color is assigned to each distinct plan, and the area covered by the plan is also estimated.

28

CHAPTER 5. PICASSO: TESTBED ENVIRONMENT 29

£ Picasso

fMain |/Diagram rSettings rHeIp |

Select Fire-Interval, Selectivity Range: Fire-Interval C} 11
¥-Low & 10 ¥-High 2 100
¥ Low 7 10 ¥ High | 2 100

Select Operation: ® Plan-Cost Diagram|) Plan-Cardinality Diagram) Compare Plan

select s_accthal, s_name, n_name, p_parkey, p_mfar, 5_address, s_phone, s_comment
frorm part, supplier, partsupp, nation, region
here p_partkey = ps_parkey and s_suppkey = ps_suppkey and p_size = C1

and 5_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'ELROFPE’
and ps_supplycost =

select min(ps_supplycost)
fram partsupp, supplier, nation, region
where p_partkey = ps_pankey and s_suppkey = ps_suppkey

and s_nationkey = n_nationkey and n_redionkey = r_regionkey
and r_name = 'EUROPE" and ps_supplycost = C2)
order by s_accthal desc, n_name, s_name, p_partkey

‘ Browse || Show |

Figure 5.1: Picasso GUI

The space is then colored according to this assignment, and the legend shows (in ranked order)
the space coverage of each plan. Differences between specific plans are easily identified using
a PlanDiff component22] that only requires dragging the cursor from one plan to the other in

the plan diagram.

5.2 Database and Query Set

The database was created using the synthetic generator supplied with the TPC-H decision sup-
port benchmark, which represents a commercial manufacturing environment, featuring the fol-
lowing relations:REGION, NATION, SUPPLIER CUSTOMER PART, PARTSUPR ORDERSand
LINEITEM. A gigabyte-sized database was created on this schema, resulting in cardinalities of
5, 25, 10000, 150000, 200000, 800000, 1500000 and 6001215, for the respective relations.

All query templates were based on the TPC-H benchmark, which features a set of 22 queries,
Q1 through Q22. To ensure coverage of the full range of selectivities, the relational axes in the
plan diagrams are chosen only from the large-cardinality tables occurring in the query (i.e.

NATION and REGION, which are very small, are not considered). An additional restriction

CHAPTER 5. PICASSO: TESTBED ENVIRONMENT 30

Is that the selected tables should feature only in join predicates in the query, but not in any
constant predicates. For a given choice of such tables, additional one-sided range predicates
on attributes with high-cardinality domains in these tables are added to the queries to support
a fine-grained continuous variation of the associated relational selectivities. As a case in point,
the plan diagram in Figure 1.3(a) on thePPLIERANdLINEITEM relations, was produced after
adding to Q8 the predicatssacctbal < Clandl _quantity < C2, whereClandC2

are constants that are appropriately set to generate the desired selectivities on these relations.
For making these changes we used ZQL [37], a SQL parser written in Java. In the remainder of
this paper, for ease of exposition, we will use the benchmark query numbers for referring to the
associated Picasso templates.

While plan and cost diagrams have been generated for most of the benchmark queries, we
focus in the remainder of this paper only on those queries that have “dense” plan diagrams —
that is, diagrams whose optimal plan set cardinality is 10 or more, making them interesting for
analysis — for at least one of the commercial optimizers. For computational tractability, a query
grid spacing of 100 x 100 is used, unless explicitly mentioned otherwise. Further, for ease of
presentation and visualization, the query workloads are restricted to 2-dimensional selectivity
spaces (with the exception of queries Q1 and Q6, which feature only a single relation, and

therefore have a 1-D selectivity space by definition).

5.3 Relational Engines

The relational engines evaluated in our study are IBM DB2 v8.1 [39], Oracle 9i [41] and Mi-
crosoft SQL Server 2000 [40]. DB2 offers a range of optimization levels, going from 1 (lowest
quality) through 5 (default) to 9 (highest quality). Oracle also has two optimization modes —
first_rows.n andall_rows (default) — the former optimizes latency, while the latter optimizes
guery completion time.

While we have evaluated all the DB2 levels and all Oracle modes, for ease of exposition,
the diagrams presented here, unless explicitly mentioned otherwise, were all obtained with the

default of Level 5 for DB2, andptimize-all-rowdor Oracle. An additional issue with regard to

CHAPTER 5. PICASSO: TESTBED ENVIRONMENT 31

DB2 is that inclusion ohash-joinas a candidate join operator has to be explicitly set, and this
was done. To support the making of informed plan choices, commands were issued to collect
statistics on all the attributes participating in the queries. Finally, for every query submitted to
the database systems, commands were issued to only “explain” the plan — that is, the plan to
execute the query was generated, but not executed. This is because our focus here is on plan
choices, and not on evaluating the accuracy of the associated cost estimations. As said earlier,
due to legal restrictions, we randomly identify the three commercial optimizers as OptA, OptB

and OptC, in the rest of the report.

5.4 Computational Platform

A vanilla platform consisting of a Pentium-1V 2.4 GHz PC with 1 GB of main memory and
120 GB of hard disk, running the Windows XP Pro operating system, was used in our exper-
iments. The three relational engines were all installed with their default configurations for all
parameters, including those related to physical resources, except as mentioned above. For this
platform, the complete set of evaluated queries and their associated plan, cost, and reduced-plan
diagrams, over all three optimizers, are available at [32] — in the remainder of this report, we

discuss their highlights.

5.5 Integrated Plan-Cost/Plan-Cardinality Diagrams

An integratedplan-costdiagram is a 3D plan diagram with the Z-axis showing the normalized
cost of each plan bounded in the interval [0, 1]. On similar lines, we define an integtated
cardinality diagram, as a 3D plan diagram which shows the normalized result cardinality on
Z-axis. These diagrams are more useful when compared to an isolated plan diagram as they
provide a more holistic view of the changes in plan space as a function of cost and result cardi-
nalities. We have implemented a 3-D visualizer module, using VisAD [44] for generating these
integrated plan-cost and plan-cardinality diagrams. VisAD, an acronym for "Visualization for
algorithm development”, has been developed actively by programmers in SSEC Visualization

project at the university of Wisconsin Madison.

CHAPTER 5. PICASSO: TESTBED ENVIRONMENT 32

Sample 3D plan-cost and plan-cardinality diagrams for Query 7 of the TPC-H benchmark

for the OptB optimizer are shown in Figure 5.2.

' ORDERS

(a) Integrated 3D Plan-Cost Diagram

38.45 1}

30.48 Pl
16.53 P2
12.41 P2

1.13 P4

P5

) ORDERS
(b) Integrated 3D Plan-Cardinality Diagram

Figure 5.2: 3D Plan-Cost/Plan-Card Diagrams (Query 7, OptB)

Though plan-cost diagrams and plan-cardinality diagrams are more useful in understanding

CHAPTER 5. PICASSO: TESTBED ENVIRONMENT 33

the intricacies of optimizers, they are difficult to comprehend when presented as an image in
a report. This can be seen by comparing the plan diagram shown in Figure 1.2(a) with the
integrated plan-cost diagram shown in Figure 5.2(a). Hence we show only plan diagrams in the
rest of the paper. Their corresponding cost diagrams shown in report are obtained by feeding the
query points and their associated costs to a commercial 3-D visualizer — currently, the freeware

Plot3D [38] is being used for this purpose.

Chapter 6

Skew in Plan Space Coverage

We start off our analysis of plan diagrams by investigatingstkeanvin the space coverage of the
optimal set of plans. In Table 6.1, we show for the various benchmark queries, three columns for
each optimizer: First, the cardinality of the optimal plan set; second, the (minimum) percentage
of plans required to cover 80 percent of the space; and, third, the Gini index [34], a popular
measure of income inequality in economics — here we treat the space covered by each plan as
its “income”. Our choice of the Gini index is due to its desirable statistical properties including
being Lorenz-consistent, and bounded on the closed interval [0,1], with O representing no skew
and 1 representing extreme skew. Finally, the averages acrodsraé querie$l0 or more

plans in the plan diagram) are also given at the bottom of Table 6.1.

These statistics show that the cardinality of the optimal plan set can reach high values for a
significant proportion of the queries. For example, the average (dense) cardinality is consider-
ably in excess ofwenty across all three optimizers. Q9, in particular, results in more than 40
plans for all the optimizers. But it is also interesting to note that high plan density is not solely
guery-specific since there can be wide variations between the optimizers on individual queries
— for example, Q18 results in 13 plans for OptB, but only 5 plans each for OptA and OptC.
Conversely, OptB requires only 6 plans for Q7, but OptA and OptC employ 13 and 19 plans,
respectively. It should also be noted that a common feature between Q8 and Q9, which both
have large number of plans across all three systems, is that they are join-intensive nested queries

with the outer query featuringynamicbase relations (i.e. the relations in them clauseare

34

CHAPTER 6. SKEW IN PLAN SPACE COVERAGE 35

TPC-H OptA OptB OptC
Query Plan 80% Gini Plan 80% Gini Plan 80% Gini
Number | Card Coverage Index | Card Coverage Index| Card Coverage Index
2 22 18% 0.76 14 21% 0.72 35 20% 0.77
5 21 19% 0.81 14 21% 0.74 18 17% 0.81
7 13 23% 0.73 6 50% 0.46 19 15% 0.79
8 31 16% 0.81 25 25% 0.72 38 18% 0.79
9 63 9% 0.88 44 27% 0.70 || 41 12% 0.83
10 24 16% 0.78 9 22% 0.69 8 25% 0.75
18 5 60% 0.33 13 38% 0.57 5 20% 0.75
21 27 22% 0.74 6 17% 0.80 22 18% 0.81
Avg(dense)| 28.7 17% 0.79 || 245 23% 0.72 || 28.8 16% 0.8

Table 6.1: Skew in Plan Space Coverage

themselves the output of SQL queries).

When the fractional cardinality required to cover 80 percent of the space is considered, we
see that on average it is in the neighborhood of 20 percent, highlighting the inequity in the plan
space distribution. This is comprehensively captured by the Gini index values, which are mostly
in excess of 0.5, and even reaching 0.8 on occasion, indicating very high skew in the plan space
distribution. Further, note that this skew is presawctpss the board, in all the optimizers

Overall, the statistics clearly demonstrate that modern optimizers tend to make extremely
fine-grained choices. Further, these numbersanservativen that they were obtained with a
100 x 100 grid — with finer-granularity grids, as mentioned in the Introduction, the number of
plans often increased even further. For example, using a 1000 x 1000 grid for Q9 on OptB, the

number of plans increased from 44 to 60!

6.1 Plan Cardinality Reduction by Swallowing

Motivated by the above skewed statistics, we now look into whether it is possible to replace
many of the small-sized plans by larger-sized plans in the optimal plan set, without unduly
increasing the cost of the query points associated with the small plans. That is, can small plans
be “completely swallowed” by their larger siblings, leading to a reduced plan set cardinality,
without materially affecting the associated queries.

To do this, we first fix a threshold\, representing the maximum percentage cost increase

CHAPTER 6. SKEW IN PLAN SPACE COVERAGE 36

that can be tolerated. Specifically, no query point in the original space should have its cost
increasedpost-swallowingby more tham\. Next, to decide whether a plan can be swallowed,

we use the following formulation:

Cost Domination Principle: Given a pair of distinct query pointg (z1, y1) andga(z2, y2) in
the two-dimensional selectivity space, we say that pgirtominates;;, symbolized by
¢ >~ q1, ifand only ifxo > 24, y» > v, and result cardinalityz,, > R,, (note that result
cardinality estimations are, in principle, independent of plan chofc&)en, if points
q1(z1,11) andga (e, y2), are associated with distinct plais and P,, respectively, in the
original space(’?, the cost of executing query with plan P, is upper-bounded bg?,

the cost of executing, with P,, if and only if ¢5 >~ ¢;.

Intuitively, what is meant by the cost domination principle is that we expect the optimizer
cost functions to be monotonically non-decreasing with increasing base relation selectivities
and result cardinalities. Equivalently, a plan that processes a superset of the input, and produces
a superset of the output, as compared to another plan, is estimated to be more costly to execute.
However, as discussed later in Section 8, this (surprisingly) does not always prove to be the case
with the current optimizers, and we therefore have to explicitly check for the applicability of
the principle.

Based on the above principle, when considering swallowing possibilities for a query point
qs, we only look for replacements by “foreign” (i.e. belonging to a different plan) query points
that are in thdirst quadrantrelative tog, as the origin, since these points upper-bound the cost
of the plan at the origin. This is made clear in Figure 6.1, which shows that, independent of
the cost model of the dominating plan, the cost of any foreign query point in the first quadrant
will be an upper bound on the cost of executing the foreign plan at the swallowed point. We
now need to find the set of dominating foreign points that are withinttieeshold, and if such
points exist, choose one replacement from among these — currently, we choose the point with
the lowest cost as the replacement. Finallyeatire plancan be swallowed if and only dll

its query points can be swallowed by either a single plan or a group of plans. In our processing,

IResult cardinalities are usually monotonically non-decreasing with increasindy, but this need not always
be the case, especially for nested queries.

CHAPTER 6. SKEW IN PLAN SPACE COVERAGE 37

we first order the plans in ascending order of size, and then go up the list, checking for the
possibility of swallowing each plan.

Note that the cost domination principle is conservative in that it does not capture all swal-
lowing possibilities, due to restricting its search only to the first quadrant. But, as we will show
next, substantial reductions in plan space cardinalities can be achieved even with this conserva-

tive approach.

38.45
Cost=95b

0. l 30.48

16.53
12.41
1.13

30 Cost=88 1.00

Cost=91

1] 20 30 40 50 60 70 80 90 100

ORDERS

Figure 6.1: Dominating Quadrant

For the experiments presented here, we)sdhe cost increase threshold, to 10 percent.
Note that in any case the cost computations made by query optimizers are themselves statis-
tical estimatesand therefore allowing for a 10 percent “fudge factor” may be well within the
bounds of thenherenterror in the estimation process. In fact, as mentioned recently in [19, 28],
cost estimates can often be signficantly off due to modeling errors, prompting the new wave of
“learning” optimizers (e.g. LEO [28]) that iteratively refine their models to improve their esti-
mates.

When the above plan-swallowing technique is implemented on the set of plans shown in
Table 6.1, and withh = 10%, the resulting reductions (as a percentage) in the plan cardinalities
are shown in Table 6.2. We see here that the reductions are very significant — for example,
Q8 reduces by 87% (31 to 4), 84% (25 to 4) and 86% (38 to 5), for OptA, OptB and OptC,

CHAPTER 6. SKEW IN PLAN SPACE COVERAGE

38

OptA OptB OptC

TPC-H % Avg Max % Avg Max % Avg Max
Query Card Cost Cost|| Card Cost Cost|| Card Cost Cost
Number Dec Inc Inc Dec Inc Inc Dec Inc Inc
2 59.2 1.0 44| 642 0.6 59| 771 3.2 6.4

5 673 2.6 81| 429 01 06| 611 0.2 8.1

7 46.1 0.1 95| 166 04 0.7 | 54.5 11 9.5

8 876 04 9.4 84 0.9 9.1 | 86.8 1.2 8.4

9 844 1.6 86| 364 14 89| 805 21 8.3
10 676 0.8 44| 444 05 6.1|| 625 04 2.4
18 40.0 0.1 05| 46.2 3.7 9.6|| 000 0.0 0.0
21 59.8 0.0 0.2 66.7 0.9 25| 68.2 0.7 6.9
Avg(dense)| 67.4 0.9 64| 56.9 0.7 6.1 714 14 7.9

Table 6.2: Plan Cardinality Reduction by Swallowing

respectively. On average over dense queries, the reductions are of the order of 60% across all
three optimizers, with OptC going over 70%. Also note that these reductioc®aservative
because when the grid granularity is increased — from 100 x 100 to, say, 1000 x 1000 — the
new plans that emerge tend to be very small and are therefore highly likely to be subsequently
swallowed. In a nutshell, the following thumb rule emerges from our resuttwo-thirds of

the plans in a dense plan diagram are liable to be eliminated through plan swallowing”.

In Table 6.2, we have also shown theeragepercentage increase in the costs of swallowed
guery points, as well as thmaximumcost increase suffered across all query points. Note that,
although the threshold is set to 10%, thetual average cost increase is rather low — less than
2%, which means that most of the swallowed query panatslly suffer on account of the re-
placement by an alternative plan. In fact, even the maximum increase does not always reach the
threshold setting. Further, note that these averages and maximmpmeeboundsand the real
cost estimates of the replacement plans at the swallowed points may be even lower in practice.
Overall, our observation is that there appears to be significant potendicldbcally reduce the
complexity of plan diagrams without materially affecting the query processing quality

A key implication of the above observation is the followinuppose it were possible to
simplify current optimizers to produce only reduced plan diagrams, then the considerable com-
putational overheads typically associated with the query optimization process may also be sub-

stantially lowered We suggest that this may be an interesting avenue to be explored by the

CHAPTER 6. SKEW IN PLAN SPACE COVERAGE 39

database research community.

6.2 Plan Reduction# Optimization Levels

As mentioned earlier, optimizers typically have multiple optimization levels that trade off plan
quality versus optimization time, and at first glance, our plan reduction technique may appear
equivalent to choosing a coarser optimization level. However, the two concepts are completely
different because the optimal plan sets chosen at different levels by the optimizer may be vastly
dissimilar. A striking example is Q8, whem®neof the 68 plans chosen by OptA at the highest
level are present among the 8 plans chosen at the lowest level. Further, going to a coarser level
of optimization does natecessarilyesult in lower plan cardinalities — a case in point is OptA
on Q2, producing only 4 plans at the highest level, but as many as 22 plans at a lower level.
Again, there is zero overlap between the two optimal plan sets.

In contrast, with plan reduction by swallowing, only a subset ofitiginal planschosen by
the optimizer are used to cover the entire plan space. In fact, plan reduction fits in perfectly with
the query clustering approach previously proposed in our Plastic plan recycling tool [7, 23, 26,
33], where queries that are expected to have identical plan templates are grouped together based
on similarities in their feature vectors. This is because the cluster regibasentlycoarsen the

plan diagram granularity.

Chapter 7

Relationship to PQO

A rich body of literature exists oparametric query optimizatioPQO) [1, 2, 11, 12, 5, 6, 14,

16, 17]. The goal here is to apriori identify the optimal set of plans for the entire relational
selectivity space at compile time, and subsequently to use at run time the actual selectivity
parameter settings to identify the best plan — the expectation is that this would be much faster
than optimizing the query from scratch. Most of this work is based on assuming cost functions

that would result in one or more of the following:

Plan Convexity: If a plan P is optimal at point A and at point B, then it is optimal at all points

on the line joining the two points;
Plan Uniqueness: An optimal plan P appears at only one contiguous region in the entire space;

Plan Homogeneity: An optimal plan P is optimal within the entire region enclosed by its plan

boundaries.

However, we find thahone of the threassumptions hold true, even approximately, in the
plan diagrams produced by the commercial optimizers. For example, in Figure 1.3(a), plan
convexity is severely violated by the regions covered by plans P12 (dark green) and P16 (light
gray). The plan uniqueness property is violated by plan P4 (maroon) which appears in two
non-contiguous locations in the top left quadrant, while plan P18 appears in finely-chopped
pieces. Finally, plan homogeneity is violated by the small (brown) rectangle of plan P14, close

to coordinates (60,30), in the (light-pink) optimality region of plan P3.

40

CHAPTER 7. RELATIONSHIP TO PQO 41

The prior literature [12, 17] had also estimated thigth plan densitiesre to be expected
only along the selectivity axes — that is, where one or both base relations in the plan diagram
are extremely selective, providing only a few tuples. However, we have found that high plan
densities can be present elsewhere in the selectivity space also — for example, see the region
between plans P5 (dark brown) and P11 (orange) in Figure 1.3(a). This is also the reason for our
choosing a uniform distribution of the query instances, instead of the exponential distribution
towards lower selectivity values used in [12].

In the following section, more detailed statistics about the violations of the above assump-

tions are presented, as part of a discussion on interesting plan diagram patterns.

Chapter 8

Interesting Plan Diagram Patterns

We now move on to presenting representative instances of a variety of interesting patterns that
emerged in the plan diagrams across the various queries and optimizers that we evaluated in our

study.

8.1 Plan Duplicates and Plan Islands

In several plan diagrams, we noticed that a given optimal plan may davecatesin that it

may appear in several different disjoint locations. Further, these duplicates may also be spatially
quite separated. For example, consider the plan diagram for Q10 with OptA in Figure 8.1. Here,
we see that plan P3 (dark pink) is present twice, being present both in the center, as well as along
the right boundary of the plan space. An even more extreme example is plan P6 (dark green),
which is present around the 20% and 95% markers ol tre&roMERSelectivity axis.

A different kind of duplicate pattern is seen for Q5 with OptC, shown in Figure 8.2, where
plan P7 (magenta) is present in three different locations, all within the confines of the region
occupied by plan P1 (dark orange). When plans P7 and P1 are compared, we find that the
former uses anested-loops join between the small relationsaATION and REGION, whereas
the latter employs aort-merge-join instead.

Apart from duplicates, we also see that there are instancptanfislands where a plan

region is completely enclosed by another. For example, plan P18 is a (magenta) island in the

42

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 43

35.68 Pl

29.36 P2
9.92 P3
6.52 P
4.57 Ph
3.41 PhH
1.60 P7
1.14

1.00

4]
P9
0.96 PlD
0.88 Pll
0.84 P12
o.81 P13
0.76 Pl4
0.62 P15

0.48 Plh

0.46 P17
0 50 60 70 80 90 100p.06 P18

CUSTOMER 24 Plans

Figure 8.1: Duplicates and Islands (Query 10, OptA)

10

56.14 Pl

90

s
I8} 80
P
E)ﬁﬂ
L

50

14.84 P2

9.25 P3
8.51 P4
5.44 Ph
1.54

1.50

P6
P7

0.98 4]

0.88 P9

40 0.36 P10

0.19 P11l

I
E
30 0.16 P12
R .
0.11 P13

20

0.03 Pla

10 0.03 P15

0.02 Pl6

o.01 P17

100

o.01 P13

CUSTOMER

Figure 8.2: Duplicates and Islands (Query 5, OptC)

optimality region of the (dark green) plan P6 in the lower left quadrant of Figure 8.1. Investi-
gating the internals of these plans, we find that plan P18 asla-join betweencCUSTOMER
andNATION followed by ahash-join with a sub-tree whose root isrested-loop join. The

only difference in plan P6 is that it first hash-joins thesTOMERrelation with the sub-tree,

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 44

and then performs the hash-join wiiATION.

The number of such duplicates and islands for each optimizer, over all dense queries of the
benchmark, is presented in Table 8.1 (Original columns). We see here that all three optimizers
generate a significant number of duplicates; OptA also generates a large number of islands,

whereas OptB and OptC have relatively few islands.

Databases # Duplicates # Islands
Original Reduced || Original Reduced
OptA 130 13 38 3
OptB 80 15 1 0
OptC 55 7 8 3

Table 8.1: Duplicates and Islands

In general, the reason for the occurrence of such duplicates and islands is that two or more
competing plans have fairly close costs in that area. So, the optimizer due to its extremely
fine grained plan choices, obtains plan diagrams with these features. This is confirmed from
Table 8.1 (Reduced columns), where after application of the plan reduction algorithm, a signif-
icant decrease is observed in the number of islands and duplicates. This also means that PQO,
which, as mentioned in the previous section, appears ill-suited to directly capture the complexi-
ties of modern optimizers, may turn out to be a more viable proposition in the space of reduced

plan diagrams.

8.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes that run throughtineselectivity
space, with a plan shift occurring fall plans bordering the line, when we move across the line.
We will hereafter refer to such lines as “plan switch-points”.

In the plan diagram of Figure 8.3, obtained with Q9 on OptA, an example switch-point
appears at approximately 30% selectivity of herPLIERrelation. Here, we found @mmon
changein all plans across the switch-point — thash-join sequenc®ARTSUPP>1 SUPPLIER

< PART is altered tOPARTSUPPI<I PART <X SUPPLIER suggesting an intersection of the cost

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 45

function of the two sequences at this switch-point.

P4
Ph
P

SUPPLIER 63 Plans

Figure 8.3: Plan Switch-Point (Query 9, OptA)

35
s [l

.on

10

M
=

.55 Pl

=
=21

.89 P2

90

ABI]
R 70
T 60

P3
P4
Ph
.53 PhH
.44
.34
.98
.23

.86

P7
4]

50 4]

P10

40 P11l

.Th P12
30

LT3 P13

b b g

.54 Pl4

20
.54

.50

P15

10 Plo

Lo R R - R . B . B % R A% R A] [T -- -]

.47 P17

10 20 eli} 40 50 60 70 an 11} 100

SUPPLIER

44 F;Ians

Figure 8.4: Venetian Blinds Pattern (Query 9, OptB)

For the same Q9 query, an even more interesting switch-point example is obtained with
OptB, shown in Figure 8.4. Here we observe, between 10% and 35% @uUtmLIERaXIS,

six planssimultaneously changing with rapid alternations to produce a “Venetian blinds” effect.

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 46

Specifically, the optimizer changes from P6 to P1, P16 to P4, P25 to P23, P7 to P18, P8 to P9,
and P42 to P47, from one vertical strip to the next.
The reason for this behavior is that the optimizer alternates betwkdtideephash join
and aright-deephash join across thelATION, SUPPLIERaNdLINEITEM relations. Both vari-
ations have almost equal estimated cost, and their cost-models are perhaps discretized in a

step-function manner, resulting in the observed blinds.

8.3 Speckle Pattern

Operating Picasso with Q17 on OptA results in Figure 8.5. We see here that the entire plan
diagram is divided into just two plans, P1 and P2, occupying nearly equal areas, but that plan
P1 (bright green) also appears as speckles sprinkled in P2’s (red) area.

The only difference between the two plans is that an additisaT operation is present
in P1 on therPART relation. However, the cost of this sort is very low, and therefore we find

intermixing of plans due to the close and perhaps discretized cost models.

10

66.16 Pl

33.84 P2

1] 1o 20 eli] 40 50 60 70 80 90 100

PART

Figure 8.5: Speckle Pattern (Query 17, OptA)

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS a7

8.4 Footprint Pattern

10

90
I8} 80
S 70
T 60

Pl
P2
P3
P4
P5
50 PG
10 P7
4]

30 4]

e B 5 4

Pln

20 pil

P12
10
P13

ORDERS
(a) Footprint Pattern

10
a0

UBI]
S 70

66,82 Pl

19.71 P2
11.03

1.00

P3
P4

0.90 P5

<o

50

0.45 PhH

0.09 P7

a0

30

P R 4

20

10

ORDERS
(b) Reduced Footprint Pattern

Figure 8.6: Plan Diagram and Reduced Plan Diagram (Query 7, OptA)

A curious pattern, similar to footprints on the beach, shows up in Figure 8.6(a), obtained

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 48

with Q7 on the OptA optimizer, where we see plan P7 exhibiting a thin (cadet-blue) broken
curved pattern in the middle of plan P2’s (orange) region. The reason for this behavior is that
both plans are of roughly equal cost, with the difference being that in plan PQutreLIERre-

lation participates in aort-merge-join at the top of the plan tree, whereas in P7,liash-join
operator is used instead at the same location. This is confirmed in the corresponding reduced

plan diagram e 8.6(b) where the footprints disappear.

8.5 Non-Monotonic Cost Behavior

The example switch-points shown earlier, werecabt-basedwitch-points, where plans were
switched to derive lower execution costs. Yet another example of such a switch-point is seen in
Figure 8.7(a), obtained with query Q2 on OptA, at 97% selectivity ofPtkerT relation. Here,

the common change in all plans across the switch-point is thatable-join between relations

PART andPARTSUPPIs replaced by gort-merge-join.

But, in the same picture, there are switch-points occurring at 26% and 50%RARMTSUPP
selectivity range, that result in a counter-intuitiven-monotonicost behavior, as shown in the
corresponding cost diagram of Figure 8.7(b). Here, we see that although the result cardinalities
are monotonically increasing, the estimated costs for producing these results show a marked
non-monotonic step-down behavior in the middle section. Specifically, at the 26% switch-point,
an additionalsort’ operator (orps _supplycost) is added, which substantially decreases the
overall cost — for example, in moving from plan P2 to P3 at 59%T selectivity, the estimated
cost decreases by a factor of 50! Conversely, in moving from P3 to P1 at the 50% switch-point,
the cost of the optimal plan jumps up by a factor of 70 at 59%T selectivity.

Step-function upward jumps in the cost with increasing input cardinalities are known to
occur — for example, when one of the relations in a join ceases to fit completely within the
available memory — however, what is surprising in the above is the step-functiodezystise
at the 26% switch-point. We conjecture that such disruptive cost behavior may arise either due
to the presence of rules in the optimizer, or due to parameterized changes in the search space

evaluated by the optimizer.

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 49

The above example showed non-monotonic behavior arising out of a plan-switch. However,
more surprisingly, we have also encountered situations where a plan shows non-monotonic
behaviorinternal to its optimality region. A specific example is shown in Figure 8.8 obtained
for Q21 with OptA. Here, the plans P1, P3, P4 and P6, show a reduction in their estimated costs
with increasing input and result cardinalities. An investigation of these plans showed that all of
them feature aested-loops join, whose estimated codecreasesvith increasing cardinalities
of its input relations — this may perhaps indicate an inconsistency in the associated cost model.

Further, such instances of non-monotonic behavior were observed with all three optimizers.

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS

]
@ v

o 0 0 Q0 0 Q = = = = N N W oo

- 0.9
° - 0.0
a4 - 0.7
0s g 0.6
or e 0.5
o0& g 0.4
0s a0 0.3
04 g 0.2
03 e 0.1
0z
01 —

PARTSUpp

100

(b) Cost Diagram

Figure 8.7: Plan-Switch Non-Monotonic Costs (Query 2, OptA)

50

CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS

10
34.66 Pl
ap 19.52 P2

L
8.25 P3
T 80 7.22 p4
6.25 P5

N 70
5.03 P6
E 3.14 p7
2.84 P8
50 2.24 P9
T 1.92 P10
0 1.61 11
. P

E
20 1.47 P12
M 1.02 P13
20 0.92 P14
0.87 P15

10
0.57 P16
0 0.54 P17

0 10 20 30 40 50 &0 70 80 S0 100 :
SUPPLIER 27 Plans
(a) Plan Diagram
o

o 0.9

- 0.8
09 - 0.7
as a- 06
07 y- 0.5
05 204
as o~ 0.3
04 .- 0.2
03 o 0.1
0z
a1

100
(b) Cost Diagram

Figure 8.8: Intra-plan Non-Monotonic Costs (Query 21, OptA)

Chapter 9

Conclusions and Future Work

In this report, we have attempted to improve both the speed and the quality of results of the op-
timizer. Plastic, a tool that significantly improves the speed of the optimizer, has been improved
by incorporating a host of new features into it.

Using L*°Norm as the distance metric, we have proposed and implemeashadmic
variable-sizedthat can adjust gracefully to both high-volatility and low-volatility regions of
plan space. Through query template Q-21 shown in Figure 4.1, we have demonstrated that
dynamic-variableclustering improves classification accuracy when comparsthta-variable
clustering. We have incorporated C4.5 decision tree into Plastic for fast cluster identification.
We first group the clusters based on plan commonality and then build a classifier on these groups
of clusters. We have extended thkan-diff module, which can now be used to compare plan
choices across database platforms, along with comparing plan choices for different versions of
same query. This plan comparison is currently performed taking into consideration operator-
level attributes of the plans.

We have conceived and developed a tool called Picasso that helps in gaining useful in-
sights in understanding the intriguing behavior of modern optimizers. Using Picasso, we have
attempted to analyze the behavior of (1-D and 2-D) plan and cost diagrams produced by mod-
ern optimizers on queries based on the TPC-H benchmark. Our study shows that many of the
gueries resultin highly intricate diagrams, with several tens of plans covering the space. Further,

there is heavy skew in the relative coverage of the plans, with 80 percent of the space typically

52

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 53

covered by 20 percent or less of the plans. We showed that through a process of plan reduction
where the query points associated with a small-sized plan are swallowed by a larger plan, it
is possible to significantly bring down the cardinality of the plan diagram, without materially
affecting the query cost.

We also demonstrated that a variety of complex and intricate patterns are produced in the
diagrams, which may be an overkill given the coarseness of the underlying cost space. These
patterns also indicate that the basic assumptions of parametric query optimization literature do
not hold in practice. However, with reduced plan diagrams, the gap between theory and practice
is considerably narrowed.

Not being privy to the internals of optimizers, our work is perforce speculative in nature.
However, we hope that it may serve as a stimulus to the database research community to in-
vestigate mechanisms for pruning the plan search space so as to directly generate reduced plan
diagrams, and thereby perhaps achieve substantial savings in the significant overheads normally
associated with the query optimization process.

In future, we plan to extend Plastic, which currently only handles basic SPJ queries, to sup-
port nested queries, groups and aggregates. We would also like to conduct a deeper investigation
into the kinds of queries that result in dense plan diagrams, such as, for example, the presence
of dynamic base relations. Also, a major limitation of our current work is its restriction to 1-D
and 2-D plan diagrams — in practice, there may be many more schema and system dimensions
affecting plan choices. Therefore, we intend to investigate higher dimensional plan diagrams in

our future research.

Chapter 10
Appendix

Towards the end of the project, we have also evaluated the PostgreSQL 8.0.3 [42] relational en-
gine. This optimizer [4] has two optimization levels, one which USesetic Query Optimizer

and the other that does exhaustive search. We could do only a preliminary study for Post-
greSQL. We hope to do a more detailed study of the plan diagrams generated in PostgreSQL as
part of our future work. We present here the results of our preliminary experiments for the op-
timization level that uses Genetic Query Optimizer here. The complete set of evaluated queries

and their associated plan, cost, and reduced-plan diagrams for PostgreSQL is available at [32].

TPC-H PostgreSQL
Query Plan 80% Gini

Number | Cardinality Coverage Index
2 7 28% 0.75
5 15 20% 0.80
7 19 21% 0.77
8 23 13% 0.82
9 9 22% 0.78
10 11 27% 0.72
18 19 31% 0.70
21 25 20% 0.79
Avg(dense) 18.6 22% 0.77

Table 10.1: Skew in Plan Space Coverage for PostgreSQL

54

CHAPTER 10. APPENDIX

PostgreSQL
TPC-H % Avgerage Maximum
Query Cardinality Cost Cost
Number Decrease Increase Increase
2 28.5 6.2 6.4
5 33.3 15 6.1
7 68.4 2.0 9.2
8 82.6 1.1 4.3
9 77.7 0.5 2.6
10 36.4 1.2 2.6
18 47.4 1.9 9.9
21 80.0 0.0 0.0
Avg(dense) 58.0 1.3 54

Table 10.2: Plan Cardinality Reduction by Swallowing in PostgreSQL

Databases # Duplicates # Islands
Original Reduced || Original Reduced
PostgreSQL 59 4 10 0

Table 10.3: Duplicates and Islands in PostgreSQL

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Betawadkar, “Query Optimization with One Parametdviaster's Thesis, Dept. of

Computer Science and Engineering, lIT Kangeebruary 1999.

R. Cole and G. Graefe, “Optimization of dynamic query evaluation plahsic. of ACM
SIGMOD Intl. Conf. on Management of Datday 1994.

R. Duda, P. Hart and D. Stork, “Pattern Classificatiowiley-Interscience, 2nd editipn
2000.

Z. Fong, “The design and implementation of the Postgres query optinNesters thesis,
Dept. of Computer Science, University of California, Berkefgyril 1986.

S. Ganguly, “Design and analysis of Parametric Query Optimization AlgorithRrst.
of 24th Intl. Conf. on Very Large Data Basesugust 1998.

S. Ganguly and R. Krishnamurthy, “Parametric Query Optimization for distributed data-
bases based on load conditionBtoc. of COMAD Intl. Conf. on Management of Data
December 1994.

A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selection based on Query Clustering”,
Proc. of 28th Intl. Conf. on Very Large Data Basé@sigust 2002.

R. Gopal and R. Ramesh, “The Query Clustering Problem: A Set Partitioning Approach”,
IEEE Trans. on Knowledge and Data Engineeriii¢g), December 1995.

G. Graefe and W. McKenna, “The Volcano optimizer generator: Extensibility and efficient
search” Proc. of 9th IEEE Intl. Conf. on Data Engineering (ICDBpril 1993.

56

BIBLIOGRAPHY 57

[10] A. Hartigan, “Clustering Algorithms”John Wiley and Sons, New Ypfl975.

[11] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise

Linear Cost Functions'Rroc. of 28th Intl. Conf. on Very Large Data Bas@gigust 2002.

[12] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Opti-
mization for Nonlinear Cost FunctionsRBroc. of 29th Intl. Conf. on Very Large Data

Bases September 2003.

[13] I. llyas, J. Rao, G. Lohman, D. Gao and E. Lin, “Estimating Compilation Time of a Query
Optimizer”, Proc. of ACM SIGMOD Intl. Conf. on Management of Dalane 2003.

[14] Y. loannidis, R. Ng, K. Shim, and T. Sellis, “Parametric Query Optimizatiggc. of
18th Intl. Conf. on Very Large Data Basesugust 1992.

[15] J. Park and A. Segev, “Using Common Subexpressions to Optimize Multiple Queries”,
Proc. of 4th IEEE Intl. Conf. on Data Engineering-ebruary 1988.

[16] V. Prasad, “Parametric Query Optimization: A Geometric Approabiéster’'s Thesis,
Dept. of Computer Science and Engineering, IIT Kanguril 1999.

[17] S. Rao, “Parametric Query Optimization: A Non-Geometric Approabtdster’s Thesis,
Dept. of Computer Science and Engineering, IIT Kanpdarch 1999.

[18] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query OptimiPeos”,
of 31st Intl. Conf. on Very Large Data Bas&eptember 2005.

[19] F. Reiss and T. Kanungo, “A Characterization of the Sensitivity of Query Optimization to
Storage Access Cost Parametec. of ACM SIGMOD Intl. Conf. on Management of
Data, June 2003.

[20] A. Rosenthal, U. Dayal and D. Reiner, “Speeding a query optimizer: the pilot pass ap-

proach”,Unpublished ManuscripComputer Corporation of America, 1990.

BIBLIOGRAPHY 58

[21] P. Roy, S. Seshadri, S. Sudarshan and S. Bhobe, “Efficient and Extensible Algorithms for
Multi Query Optimization”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data
June 2000.

[22] P. Sarda, “Green Query Optimization: Taming Query Optimization Overheads through
Plan Recycling”Master’s Thesis, Dept. of Computer Science and Automation, [ISc Ban-

galore May 2004.

[23] P. Sarda and J. Haritsa, “Green Query Optimization: Taming Query Optimization Over-
heads through Plan Recycling?roc. of 30th Intl. Conf. on Very Large Data Bas&ep-
tember 2004.

[24] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price, “Access Path Selection in a
Relational Database Management SysteRrgc. of ACM SIGMOD Intl. Conf. on Man-
agement of DataJune 1979.

[25] T. Sellis, “Multiple Query Optimization’ACM Trans. on Database Systerhi8(1), March
1988.

[26] V. Sengar and J. Haritsa, “PLASTIC: Reducing Query Optimization Overheads through
Plan Recycling”Proc. of ACM SIGMOD Intl. Conf. on Management of Datane 2003.

[27] K. Shim, T. Sellis and D. Nau, “Improvements on a heuristic algorithm for multiple-query

optimization”,Data and Knowledge Engineering2, February 1994.

[28] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO — DB2’s LEarning Optimizer”,
Proc. of 27th VLDB Intl. Conf. on Very Large Data Bases (VLDB)ptember 2001.

[29] M. Stonebraker, J. Frew, K. Gardels and J. Meredith, “The SEQUOIA 2000 Storage
Benchmark” Proc. of ACM SIGMOD Intl. Conf. on Management of Ddiéay 1993.

[30] F. Waas and C. Galindo-Legaria, “Counting, enumerating, and sampling of execution plans
in a cost-based query optimizeiPyoc. of ACM SIGMOD Intl. Conf. on Management of
Data, May 2000.

BIBLIOGRAPHY 59

[31] Y. Wang, D. DeWitt and J.Cai, “X-Diff: A Fast Change Detection Algorithm for XML-
Document”,Proc. of 19th IEEE Intl. Conf. on Data Engineerindarch 2003.

[32] http://dsl.serc.iisc.ernet.in/projects/PICASSO

[33] http://dsl.serc.iisc.ernet.in/projects/PLASTIC

[34] http://en.wikipedia.org/wiki/Gincoefficient

[35] http://www.artlex.com/ArtLex/c/cubism.html

[36] http://www.cs.jhu.edu/ salzberg/announce-ocl.html

[37] http://www.experlog.com/gibello/zql

[38] http://www.orchardhouse.vtrading.co.uk/Plot3D.htm

[39] http://www-306.ibm.com/software/data/db2/udb/v8/

[40] http://www.microsoft.com/sql/techinfo/productdoc/
2000/books.asp

[41] http://www.oracle.com/technology/products/

oracle9i/index.html
[42] http://www.postgresql.org/download/
[43] http://sourceforge.net/projects/weka
[44] http://www.ssec.wisc.edu/ billh/visad.html

[45] http://www.tpc.org/tpch

	Text1: June 2005

