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Abstract

Design and testing of database engines and applications requires to construct and evaluate

various alternative scenarios with respect to the database contents. To construct a scenario,

existing methodology consumes space and time at least proportional to database size. This may

limit the desired scenarios and/or make it infeasible to model them. In this work, we present

CODD, a graphical tool that alleviates the time and space constraints through the construction

of “dataless databases”. Specifically, CODD implements a unified visual interface through

which databases with the desired metadata characteristics can be efficiently simulated without

the explicit presence of data. Input metadata values are validated to ensure that the simulated

database is both legal and consistent. Additionally CODD provides two other features, which

is relevant to database test teams. First, it provides automated metadata transfer across database

engines to facilitate comparative study of systems. Second, it supports space and time based

metadata scaling. CODD is currently operational on a rich suite of popular database engines.

We present here the ability of CODD to construct alternative scenarios and its various features.
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Chapter 1

Introduction

Design and testing of database engines and applications requires to construct and evaluate

various alternative scenarios with respect to the database contents. Evaluating such various

scenarios exercises different segments of the codebase, or profiles module behaviour over a

range of parameters [4, 5, 6]. To construct the scenario, existing methodology consumes space

and time at least proportional to database size. Generating data and loading it to database are

the major time consuming processes in constructing the scenario. This may limit the desired

scenarios and/or make it infeasible to model them. In Database Management Systems there

exists a class of important functionalities, such as query plan generators, system monitoring

tools and schema advisory modules for which the inputs comprise solely the metadata, de-

rived from the underlying data. For such functionalities, developing a software that creates a

database instance with only metadata (i.e. without associated raw data) would be extremely

useful. In this work, we present CODD 1, a graphical tool that supports the ab initio creation of

metadata. CODD provides the following modes of operations, which covers the construction

of various alternative scenarios and various features of CODD.

1. Metadata Construction: This mode lets the user construct various alternative scenarios

ranging from empty to Big-Data (for instance, yottabyte [1024]) sized relational tables, uniform

to skew attribute-value distribution, etc., without requiring the presence of any prior data in-

stance. CODD provides engine specific metadata input interface, wherein the user has to input

1In archaic English, cod means “empty shell”, symbolising our dataless context.

1



Chapter 1. Introduction 2

relation cardinality, attribute-value distribution and other metadata statistics of the desired sce-

nario. CODD also provides a graphical editing interface to alter attribute-value distributions

visually. Further, CODD incorporates a graph-based validation algorithm to ensure that the

input metadata values are both legal (valid range, correct type) and consistent (compatible

with the other metadata values). After validating input metadata statistics, they are updated

into catalogs and thus the construction of desired scenario is completed. The whole process of

metadata input including visual alteration of histograms, validation and catalog updates can be

completed in few minutes.

2. Metadata Retention: In environments where metadata statistics are required to be

sourced only from the actual data, CODD makes it feasible to subsequently drop the raw data

without affecting the metadata statistics and gets back the raw data storage space.

3. Metadata Porting: CODD facilitates comparative studies of different systems by port-

ing the metadata statistics across database engines. Given source and destination database

engines, CODD transfers the metadata statistics from source to destination database engine

based on the predefined metadata statistics mapping between them.

4. Metadata Scaling: Testing on scaled versions of original database is a usual practice

in database engine testing. CODD achieves the scaling on metadata. It produces the scaled

metadata instance given a baseline metadata instance and a user-specified scaling factor. For

example, given a metadata instance of 1GB and scaling factor 100, CODD produces the scaled

metadata instance of 100GB. This is achieved by space scaling models that mimic the TPC-

H [16] and TPC-DS [15] data generators.

In addition, CODD provides a novel time scaling model in which metadata instance is

scaled such that the overall estimated execution time of a query workload is scaled by the user-

specified scaling factor. Our approach first models the optimizer’s plan costs for the query

workload as functions of the scaling factors of the relations featuring in the queries. Then we

compute an inverse minimization function to determine a suitable choice of relation scaling

factors oriented towards producing the desired time scaling.
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In a nutshell, CODD is an easy-to-use graphical tool for the automated creation, verifica-

tion, retention, porting and scaling of database metadata configurations.

1.1 Organization

The remainder of this thesis is organized as follows: Chapter 2 presents the motivation behind

the development of CODD. The overview of CODD tool is presented in Chapter 3. The process

of ab initio metadata creation is explained in Chapter 4. This chapter also includes the details of

visual construction of histograms and metadata validation process. Chapter 5 gives a detailed

description of metadata retention process and Chapter 6 presents the metadata inter-engine

portability. Metadata scaling is explained extensively in Chapter 7. Finally, in Chapter 8, we

summarize our conclusions and outline future works.



Chapter 2

Motivation

Let us consider a simple scenario of evaluating database query optimizer with relations of size

10GB. Figure 2.1(a) shows the execution of this scenario, which involves two steps: First, con-

struction step, desired database scenario (10GB sized relations) is constructed. The whole pro-

cess of construction step includes the sub-steps of data generation, data loading and statistics

collection. The first two sub-steps take time at least proportional to the database size (10GB).

Loading of data consumes additional time to check for referential integrity constraints, if such

constraints are present in the schema. Time taken by the last sub-step is dependent on the

method by which it is done. Statistics collection with database scan takes time proportional to

database size (10GB) whereas sampling takes constant time. Database consumes space at least

of database size (10GB) to store the data. Additional space is consumed if physical schema

constructs like indexes are present. Second, evaluation step, query optimizer is evaluated on

the constructed database scenario by obtaining the execution plan for the input query. The

evaluation of query optimizer depends only on the metadata store, which has the metadata of

the data. But the metadata store gets its metadata statistics of data only after the laborious

construction step.

The two step procedure is repeated for executing each of the various alternative scenarios.

It is clear from the two step procedure that the laborious construction step is a bottle neck in the

execution of scenarios and this may limit the desired scenarios. In worst case, it is infeasible

to model some of the desired scenarios such as futuristic Big-Data setup featuring yottabyte

4



Chapter 2. Motivation 5

(a) Existing execution method of a scenario

(b) Desired execution method of a scenario

Figure 2.1: Motivation test scenario

(1024) sized relational tables. In such cases, it would be good to have an execution method

of a scenario as in Figure 2.1(b), where the required database scenario is created by directly

inputting the metadata statistics. In this work, we deliver CODD Metadata Processor tool

which supports ab initio creation of metadata instance.



Chapter 3

CODD Overview

CODD Metadata Processor alleviates the time and space constraints in creating the alternative

scenarios through the construction of dataless databases. A dataless database is defined by its

metadata statistics. In modern database engines, metadata statistics cover a variety of aspects,

including schema organization, query processing, workload management, and performance

tuning. In CODD, we focus only on the metadata statistics related to query processing and

the extension to the other aspects is straightforward. In particular, our metadata statistics

include the following entities: (a) relational tables (row cardinality, row length, number of disk

blocks, etc.) (b) attribute columns (column width, number of distinct values, value distribution

histograms, etc.) (c) attribute indexes (number of leaf blocks, clustering factor, etc.) and (d)

system parameters (sort memory size, CPU utilization, etc).

Figure 3.1: CODD Metadata Processor Overview

Figure 3.1 shows the overview of CODD Metadata processor. It provides a vendor-neutral

interface through which the user can input the metadata statistics which represent the desired

6



Chapter 3. CODD Overview 7

database scenario. The input metadata values are validated for legality and consistency, then

they are updated into the metadata store of database engine to complete the construction of

desired database scenario. It also provides other features such as metadata retention, porting

and scaling, which are explained in further sections.

CODD is completely written in Java, running to over 40K lines of code, and is operational

on a rich suite of industrial-strength database systems including DB2, Oracle and SQLServer.

It functions solely through the database APIs in a non-invasive manner. Further, the graphical

interfaces are designed such that the user can focus only on the logical metadata semantics

without knowing about the implementation specifics of individual engines. The tool is freely

downloadable at [8].



Chapter 4

Metadata Construction

In this section, we showcase the ability of CODD to create or edit the metadata statistics

without requiring presence of any prior data instance, followed by the visual construction of

histograms and the technical details of underlying implementation of Metadata Construction in

CODD. A fundamental concern in ab initio creation of metadata is to ensure the input metadata

values are legal and consistent. CODD implements a graph based model to validate the input

metadata values and the validation process is described in the Section 4.4.

4.1 Ab initio metadata construction

In this section, we show the steps involved in constructing a metadata-only data instance for

DB2. Other database engines have a similar procedure. The relations (logical schema) are cre-

ated first followed by indexes (physical schema) and then the metadata construction procedure

is started.

Figure 4.1 shows the metadata construct interface for DB2. It features a wide range of

metadata statistics, which are grouped into three categories as relation level, column level and

index level based on the nature of values it represents. Relation level metadata statistics in-

cludes the relation cardinality and page count. Column level includes the metadata statistics

specific to a column such as the number of distinct values, number of null values, average

8



Chapter 4. Metadata Construction 9

column length (for string type columns), DB2 specific HIGH2KEY, LOW2KEY and data distri-

bution (histograms). Metadata entities HIGH2KEY and LOW2KEY signify the second-highest

and second-lowest values in the column, respectively. Index level metadata statistics include

B+-tree information such as counts of levels, leaf pages, empty leaf pages, density and cluster

factor.

Figure 4.1: CODD Interface (Metadata Construction on DB2)

For each relation, user inputs the relation level metadata statistics, followed by the column

level and index level metadata statistics for selected attributes of the relation using the Update

button. After each update (relation level or column level), CODD validates the input metadata

statistics and reports the user with the appropriate error message, if there is a validation error.

For example, if the entered HIGH2KEY value is less than the LOW2KEY value, then an error

message appears asking user to re-enter the correct values.
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DB2 hosts two kinds of column distribution statistics: First, frequency histograms corre-

sponding to the most common values. Second, quantile histograms which summarizes the

data distribution with a set of buckets [2]. For both these histogram types, the CODD inter-

face allows the user to input either manually or from a file. Subsequently, the constructed

histogram can be viewed graphically and its layout can be visually altered to the desired ge-

ometry (reflecting the data distribution) by simply reshaping the bucket boundaries. Section

4.2 describes the details of visual histogram and its implementation details. After inputting

the required metadata statistics the user can click on the Construct button to do the actual

construction of data instance by updating the database catalogs with the provided metadata

values.

4.2 Graphical Histogram Details

Figure 4.2: Graphical Histogram Interface

CODD provides a feature to modify the data distribution of a column through graphical
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interface. We use JFreeChart [13] to implement the graphical histogram. JFreeChart is a free

chart library to produce charts and graphs with extensive set of features. Figure 4.2 shows the

modified graph histogram instance of S ACCTBAL column of TPC-H SUPPLIER relation. The

Graph Histogram takes the total row count, total distinct values (distinct count) present in the

column and an initial histogram as input to produce the initial graph histogram. Histogram

is a set of buckets, where each bucket associates a range of column values (specified by its

minimum and maximum values) to count(i.e frequency) and distinct count of bucket range

values present in the column. Graph histogram shows each bucket as a bar in the graph, where

height represents the frequency or distinct count in percentage and width represents the range.

For the initial histogram and the final modified histogram, the total frequency and distinct

count percentage must be 100.

The graphical histogram is used in two modes of operation as given below:

• Frequency Mode - The graph represents and operates on the frequency values of the

buckets.

• Distinct Count Mode - The graph represents and operates on the distinct count values of

the buckets.

The user can reshape the graph to get the desired data distribution. Graph is reshaped

through a set of operations with mouse and buttons in the graph histogram interface. CODD

supports the following reshaping operations:

• Bucket height can be changed (increase or decrease).

• Bucket width can be changed for columns of type INTEGER and DOUBLE.

• Two or more adjacent buckets can be merged into one bucket.

• A bucket can be split into multiple buckets by defining the intermediate values and row

count percentage for new buckets.

• Buckets can be added or removed at both ends of the histogram.

• Reshaping the initial buckets may bring the total row, distinct count percentage to be

more or less than 100%. In such cases, the excess or less row, distinct count percentage

can be distributed among selected buckets of the histogram.

Also, CODD graph histogram stores last 10 reshaping operations to allow the user to undo or
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redo in case if she wants to revert an operation. Reshaping operations are constrained by the

legal and consistent values. For example, a bucket distinct count can not be increased beyond

its frequency value.

4.3 Implementation Details

In this section, we present the mechanism by which the input metadata statistics are added or

updated into the metadata store (catalog tables) of CODD supporting database engines. If the

user has not provided the input values for any of the metadata, then engine specific default

values are used for it.

DB2. Catalog tables SYSSTAT.TABLES, SYSSTAT.COLUMNS, SYSSTAT.COLDIST and SYS-

STAT.INDEXES stores the relation, column, column data distribution and index level metadata

statistics respectively. DB2 supports only UPDATE command on these tables and fresh addi-

tion to it is possible only through the statistics collection done by RUNSTATS command. So

CODD performs the ab initio metadata construction in two steps: First, it populates the catalog

tables by executing RUNSTATS command, and then updates (UPDATE command) them with

the user provided input metadata statistics.

Oracle. Catalog tables ALL TABLES, ALL TAB COL STATISTICS, ALL TAB HISTOGRAMS

and ALL IND STATISTICS stores the relation, column, column data distribution and index level

metadata statistics respectively. Oracle does not support direct insert or update on these cata-

log views. However, it provides sub-programs SET TABLE STATS, SET COLUMN STATS and

SET INDEX STATS through DBMS STATS package [7] to update the catalog tables. Each of

these sub-program takes the metadata statistics value as arguments. All the arguments are

of simple data type except for column data distribution, which requires the input to be in

a special internal representation. CODD uses PREPARE COLUMN VALUES sub-program of

DBMS STATS package to convert the user input to the required internal representation. CODD

defines dynamic SQL procedures to prepare user provided metadata statistics and to call these
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For table statistics:

DBMS STATS.SET TABLE STATS(own-name, tabname, numrows, numblks, avgrlen);

For index statistics:

DBMS STATS.SET INDEX STATS(ownname, indname, numrows, numblks, numdist, avglblk,
avgdblk, clstfct, indlevel);

For column with Frequency-Based Histogram:

Input: owner name, table name, column name, distinct count, density, null count, average length,
endpoint number array, endpoint value array, number of buckets

DECLARE

m distcnt number;

m density number;

m nullcnt number;

srec dbms stats.statrec;

m avgclen number;

n array dbms stats.numarray;

begin

m distcnt := dist cnt;

m density := density;

m nullcnt := null cnt;

m avgclencnt := avg col len;

n array := dbms stats.numarray(endpoint value input);

srec.bkvals := dbms stats.numarray(endpoint number input);

srec.epc := buckets;

dbms stats.prepare column values(srec, n array);

dbms stats.set column stats(ownname=>”’+own name.toUpperCase()+”’,
tabname=>”’+tab name.toUpperCase()+”’, colname=>”’+column+”’, distcnt=>m distcnt,
density=>m density, nullcnt=>m nullcnt, srec=>srec, avglen=>m avgclen);

end;

Figure 4.3: Procedure to update statistics in Oracle

sub programs with them. Then the dynamic procedures are executed, which update the cata-

logs and thus completes the ab initio metadata construction. Figure 4.3 shows a code snippet

which is used in CODD to implement the metadata construction.
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SQLServer. Catalog tables SYS.SYSOBJVALUES and SYSINDEXES store the relation and

index level metadata statistics respectively. Column data distribution is stored as a large bi-

nary object (STATLOB) in SYS.SYSOBJVALUES. The catalog tables are not directly accessible

to users [9]. However, commands UPDATE and CREATE STATISTICS have an option called

STATS STREAM which can be used to set all the statistics. This is a stream of hexadecimal val-

ues which can be viewed using the STATS STREAM option [9] in conjunction with the DBCC

SHOW STATISTICS command. Since its format is currently proprietary, it is not possible to di-

rectly create or edit these hexadecimal values. So currently CODD does not support metadata

construction for SQLServer. However, these commands can be used in inter engine metadata

statistics transfer as described in Chapter 6.

4.4 Metadata Validation

In metadata construction, user inputs the metadata statistics. Before updating these values to

the database catalogs, we need to ensure that each of the input metadata value satisfies the

following two constraints:

• Structural Constraint: Input metadata value must be of specified type and it must fall

in the specified range of values. For example, cardinality of a relation must be an integer

type and the value must be greater than or equal to zero.

• Consistency Constraint: Input metadata value must be compatible with other metadata

values. For example, number of distinct values present in a column of a relation must be

less than or equal to the cardinality of that relation.

In our validation process, we first construct a directed acyclic constraint graph, which

represent all the metadata entities along with its structural and consistency constraints precisely

as follows: Let G = (V,E) be a directed acyclic graph such that,

V - Set of nodes, where each node v ∈ V represents a single entity of the metadata which

includes the value given by user and its structural constraints. The value must adhere to the

structural constraints.

E - Set of edges, where each edge e(u, v) ∈ E represents the statistical consistency
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constraints associated between the two nodes. Directions on the edges specifies the traversal

order.

Since the consistency constraints are typically bi-directional, we keep a directed edge to

prevent duplicate edges. So the consistency constraint between any two nodes will be repre-

sented as a directed edge between them, where the direction is decided based on the following

rules. These rules are formulated such that it reflects the natural way in which schemas are

usually developed by human users.

• If the nodes are at different levels, then direction is added from the node at higher level

of abstraction to the node at lower level (e.g from relation to column level, relation to

index level).

• If the nodes are at same level, then direction is added from the node which represents

the aggregate information to the node representing detailed information (e.g for column

level nodes, direction is added from number of distinct values node to data distribution

node).

• For other nodes, lexicographic ordering of nodes is used to decide the direction.

Figure 4.4(a) shows the constructed directed acyclic constraint graph for DB2. The graph

nodes are populated from the Catalog table fields covering relation level, column level and

index level metadata entities. A sample structural constraint is shown for node CARD, which

represents the cardinality of the relation. The structural constraints of this node specifies that

the value should be a whole number (or the default value -1 signifying that the statistics is not

collected). The graph edges are added based on the consistency constraints between metadata

entities as listed in [11]. For example, edge connecting nodes CARD and COLCARD represents

the consistency constraint COLCARD ≤ CARD.

We observed that some applicable constraints are not listed in [11] and/or not enforced

during update. So we have added all such applicable constraints and shown as dashed edges in

constraint graph. Specifically the following are a few of the added constraints:

• Sum of NUMNULLS and COLCARD must be less than or equal to CARD of the relation.

• The VALCOUNT of a Quantile Histogram bin must be greater than the sum of all
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(a) Constraint Graph

(b) Super nodes of Constraint Graph

Figure 4.4: DB2 Metadata Constraint Graph

VALCOUNTs in the Frequency Histogram whose COLVALUE is less than the Quan-

tile Histogram bin COLVALUE.
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Numbers on the edges (in Figure 4.4(a)) represents the constraint numbers and the cor-

responding constraints are listed in Appendix A. Figure 4.4(a) shows the nodes QUANTILE

VALUE DISTRIBUTION, FREQUENCY VALUE DISTRIBUTION with double line border. These

nodes are called as “super-node”, as they are representing a graph inside it. Figure 4.4(b) shows

the expanded graph of the super-nodes, where the histogram bin values, frequency and distinct

count are represented as nodes and the ordering of the values are represented as edge con-

straints. Dashed edge between QUANTILE VALUE DISTRIBUTION and FREQUENCY VALUE

DISTRIBUTION shows that the former distribution is constrained by the latter one.

The constraint graph has a complex structure. It has a few independent nodes as well as

highly connected nodes. Node CARD has the highest outdegree of 8, which is referenced by

many other nodes. The total no. of nodes in the graph is 99 ( = 4 + 7 + [60 (Q) + 20 (F)] +

8), assuming that there are 20 Quantile histogram bins and 10 Frequency histogram bins. The

total number of edges in the graph is 90 ( = 10 + 10 + [ 57 (Q) + 9 (F)] + 4]).

Finally, after constructing the constraint graph G(V,E), we run a topological sort on G.

The sort provides a linear ordering Glinear of the nodes, and can be accomplished in time com-

plexity O(|V | + |E|) [1]. A sample linear ordering is shown through the numbers associated

with the nodes in Figure 4.4(a), beginning with CARD (1) and ending with DENSITY (19).

After getting the input from the user through CODD metadata construct interface (Figure 4.1),

the input values are validated by traversing through the linear ordering and at each node vali-

dating the structural and consistency constraints. If any of the constraint is not satisfied, then

it is reported to the user. After validating all the user input metadata values, they are updated

into the database catalogs to complete the metadata construction.

Similarly for other engines, the constraint graph is constructed and topological sorted con-

straint graph validation is incorporated into CODD. Figure 4.5 shows the constraint graph for

Oracle database engine and the constraints are listed in Appendix A.
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(a) Constraint Graph

(b) Super nodes of Constraint Graph

Figure 4.5: Oracle Metadata Constraint Graph



Chapter 5

Metadata Retention

Metadata retention drops the data and reclaims the raw data space back without affecting the

metadata statistics. This can be helpful in environments where

• metadata statistics are required to be sourced only from the actual data. As a case in

point, testers would like to temporarily load the real-world database scenarios without

incurring the storage and maintenance overheads of data during the testing process.

• database is already loaded with data and now the user wants to get rid of the data to get

the raw data space back.

The ability to retain the physical schema as-is, in spite of the data removal, is an important

semantic difference as compared to the data truncation facilities natively provided by database

engines. The challenge, of course, is to do so without this removal being reflected in the

metadata, since data updates automatically activate engine triggers that refresh the catalogs

(AutoStatsUpdateTrigger). The following subsection provides the implementation details of

Metadata Retention along with the handling of AutoStatsUpdateTrigger.

5.1 Implementation Details

In this section, we present the mechanism by which the data is dropped without affecting

the metadata statistics for CODD supporting database engines. RDBMS referential integrity

constraint does not allow a foreign key relation tuple to be present without its corresponding

19
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primary key relation tuple. So if a relation’s data has to be dropped, all its dependent relations

must be dropped before dropping the relation. For example, in TPC-H benchmark, dropping

REGION requires NATION to be dropped first as NATION refers to REGION by N REGIONKEY.

Given the set of relations to drop the data and CODD finds the dependent relations and adds

them to the drop list.

DB2. Since the referential constraints do not allow the data to be deleted from the relation, all

the referential constraints of drop list relations are dropped first. Then the data is deleted and

referential constraints are created back. Command TRUNCATE removes the rows in virtually

no time, and more importantly, does not update the statistics associated with the relations. The

storage space is reclaimed by using the DROP STORAGE option in conjunction with the TRUN-

CATE command. Automatic maintenance of statistics is stopped by setting the AUTO MAINT

configuration to OFF for the database.

Oracle. In order to delete the data, all the referential constraints are disabled first. Then the

data is deleted and the constraints are enabled back. Command TRUNCATE deletes the data

from the relation and also releases the space occupied by the raw data. The catalog tables

are locked using DBMS STATS package to block the update on catalog tables during data drop

operation. Disabling auto optimizer stats collection stops the automatic maintenance of statistics.

SQLServer. Availability of scripting facilities makes Metadata Retention easy to implement

as it substantially overlaps with the natively available metadata scripting. But a major differ-

ence with regard to the other engines is that the relations whose contents are to be removed

have to be completely dropped and their schema subsequently recreated. Specifically, the

scripts for the relations to be dropped are first generated, including only metadata information,

using SQL Server Management Objects (SMO) [10] in windows power-shell program. Then

the drop list relations are completely eliminated from the database using DROP command. To

reclaim the storage space, the SHRINK DATABASE command is used on the mdf database file.

Then the generated script file is run against the database to first recreate the schemas of the

relations that were dropped, and then to restore their statistics. Figure 5.1 shows the shell
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program used to script the database objects along with its metadata.

function global:RetainScript([string]$server, [string]$dbname, [string]$table) {

[System.Reflection.Assembly]::LoadWithPartialName (”Microsoft.SqlServer.SMO”)

$SMOserver = New-Object (’Microsoft.SqlServer.Management.Smo.Server’) -argumentlist $server

$db = $SMOserver.databases[$dbname]

$Objects = $db.Tables

$SavePath = $($dbname) + ”\\”

foreach ($ScriptThis in $Objects where | {!($ .IsSystemObject) }) {

$ScriptFile = $ScriptThis -replace ”\[|\]”

if($ScriptFile -eq $table) {

$scriptr = new-object (’Microsoft.SqlServer.Management.Smo.Scripter’) ($SMOserver)

$scriptr.Options.AppendToFile = $False

$scriptr.Options.AllowSystemObjects = $False

$scriptr.Options.ClusteredIndexes = $True

$scriptr.Options.DriAll = $True

$scriptr.Options.DriIncludeSystemNames = $True

$scriptr.Options.ScriptDrops = $False

$scriptr.Options.IncludeHeaders = $True

$scriptr.Options.ToFileOnly = $True

$scriptr.Options.Indexes = $True

$scriptr.Options.Permissions = $True

$scriptr.Options.WithDependencies = $False

$scriptr.Options.Statistics = $True

$scriptr.Options.OptimizerData = $True

Continued on next page....
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Continued from previous page....

$ScriptDrop = new-object (’Microsoft.SqlServer.Management.Smo.Scripter’) ($SMOserver)

$ScriptDrop.Options.AppendToFile = $False

$ScriptDrop.Options.AllowSystemObjects = $False

$ScriptDrop.Options.ClusteredIndexes = $True

$ScriptDrop.Options.DriAll = $True

$scriptr.Options.DriIncludeSystemNames = $True

$ScriptDrop.Options.ScriptDrops = $True

$ScriptDrop.Options.IncludeHeaders = $True

$ScriptDrop.Options.ToFileOnly = $True

$ScriptDrop.Options.Indexes = $True

$ScriptDrop.Options.WithDependencies = $False

$TypeFolder=$ScriptThis.GetType().Name

”Scripting Out ”+$TypeFolder + ” ” + $ScriptThis

$ScriptDrop.Options.FileName = ”” + $($SavePath) + $($ScriptFile) + ”-drop.SQL”

$scriptr.Options.FileName = ”” + $($SavePath) + $($ScriptFile) + ”-metadata.SQL”

$ScriptDrop.Script($ScriptThis)

$scriptr.Script($ScriptThis)

}

}

}

Figure 5.1: Procedure to script statistics in SQL Server
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Metadata Porting

Given the source and destination database engines, Metadata Porting transfers the metadata

statistics from source to destination database engine based on the predefined metadata statistics

mapping between them. It facilitates comparative studies of different systems by porting the

metadata statistics across database engines. Another useful application of this feature is that

it can be employed to assess, in advance, the potential impact of a data migration exercise

without having to load the data on the target engine.

As a first step in achieving the Metadata Porting, we have carefully worked out the se-

mantic mapping of metadata statistics across database engines. Although each engine has its

own idiosyncratic metadata, like HIGH2KEY and LOW2KEY in DB2, we have found that most

of relation, column and index level metadata statistics are portable across database engines.

However, the data distribution is stored differently in each of the engines. So we adopted a

common canonical representation for data distribution (which resembles DB2 style). During

statistics transfer, source data distribution is converted to canonical form and then converted

back to target engine format. Table 6.1 shows the metadata statistics mapping between DB2

and Oracle database engines.

The overall feasibility of the metadata transfer across different pairs of engines is summa-

rized in Table 6.2. In this table, a Y entry signifies that most of the metadata statistics can

be transferred, whereas a Partial entry means that all of the metadata statistics except column

23
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Statistics
Level

Oracle Corresponding statistics in
DB2

Table NUM ROWS CARD
BLOCKS NPAGES
AVG ROW LEN -

Attribute NUM DISTINCT COLCARD
NUM NULLS NUM NULLS
AVG COL LEN AVGCOLLEN

Distribution Height-Balanced or Frequency
Histogram

Quantile and Frequency
Histogram

Index IND LEAF BLOCKS NLEAFS
IND LEVELS INDLEVEL
CLUSTERING FACTOR CLUSTERFACTOR

Table 6.1: DB2-Oracle Mapping

level data distribution can be transferred, while the N entry indicates that the transfer is in-

feasible. As can be seen, it is only with SQLServer to which conversion is not possible due

to its proprietary format for communicating statistics. And the diagonal entries, where the

metadata statistics is transferred from one database instance to other instance of same engine,

intra-engine transfer, is always possible with 100% transformation.

Engine DB2 Oracle SQLServer
DB2 - Y N

Oracle Partial - N
SQLServer Y Y -

Table 6.2: Inter-Engine Metadata Transfer

6.1 Implementation Details

CODD provides the Metadata Porting in two ways as follows:

(a) on-line transfer. Source and target database instances are up and running. Metadata

statistics are read from source, transformed and written into target engine catalogs.
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(b) off-line transfer. Only the source database instance is up and running. Metadata statistics

are read from source, transformed into canonical form and written into a file. Later (after

the target database instance is up and running) the file is read and metadata statistics are

transformed into target engine specific format and written into the target engine catalogs.

In summary, metadata statistics porting involves three steps: read, transform and write meta-

data statistics. Step read is described later in this section for each of the CODD supporting

database engines. Step transform is achieved by the worked out metadata statistics mapping

across the database engines. All the mappings are incorporated into CODD and the appropriate

transformation is done based on the source and target database engines. The tail step, write,

is achieved as in Metadata Construction where the transferred metadata statistics is the user

input.

Though the database engines provide native scripting facilities (db2look utility [3] in DB2

and Script Wizard [12] in SQLServer) to transfer (inter-engine) the metadata statistics, CODD

automates the steps in transfer and packages them such that the user need not know about the

internal details.

DB2. SELECT commands on the catalog tables SYSSTAT.TABLES, SYSSTAT.COLUMNS, SYS-

STAT.COLDIST and SYSSTAT.INDEXES are used to read metadata statistics.

Oracle. Sub-programs GET TABLE STATS, GET COLUMN STATS and GET INDEX STATS

provided by DBMS STATS package [7] are used to read metadata statistics.

SQLServer. Command DBCC SHOW STATISTICS is used to read metadata statistics which

can be ported to other database engines. But other engine metadata statistics can not be ported

to SQLServer as it does not support Metadata Construction. However, intra-engine transfer is

possible. We have used native scripting facility to transfer the metadata statistics. Specifically,

we have automated the procedure described in [12] to complete the transfer. We have written

a dynamic windows power-shell program using SQL Server Management Objects (SMO) [10]

to script the metadata statistics information. Later the script is run on the target engine to

recreate the same metadata statistics environment.
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Metadata Scaling

A common activity in database engine testing exercises is to assess the behaviour of the system

on scaled versions of the original database, and this is the reason that benchmarks such as

TPC-H and TPC-DS are available in a variety of scale factors. Current benchmarks typically

implement a size-based scaling approach – for example, in TPC-H, the relation cardinalities

are linearly scaled, while domain-size scaling is implemented for the primary keys and foreign

keys referencing the scaled tables.

CODD supports these space-based scaling models of TPC-H and TPC-DS. In addition, it

also provides a novel time-based scaling model. These two scaling models are explained in

the further subsections.

7.1 Space Scaling

7.1.1 Problem Statement

Given a baseline metadata instance and a user specified scaling factor α, produce a scaled

metadata instance such that the space (size in Bytes) occupied by the scaled metadata instance

is α times of the baseline metadata instance.

26
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7.1.2 Approach

We assume the average row length and average column width for each column of scaled

database is same as baseline metadata. Thus achieving cardinality scaling of relation produces

space scaling on the relation.

7.1.3 Implementation Details

Cardinality scaling on metadata is implemented at relation, column and index level. At the

relation level, we scale the cardinality, pages or blocks metadata values by α. At the column

level, cardinality scaling is implemented differently for key columns and non-key columns.

For key columns domain scaling (data distribution domain is scaled) is implemented and the

distinct count is scaled by α. For non key columns, we keep the relative frequency distribution

same as baseline metadata. At the index level, number of leaf pages or blocks is scaled by α.

7.2 Time Scaling

7.2.1 Problem Statement

Given a baseline metadataM, query workload Q and a user specified scaling factor α, pro-

duce a scaled metadata instance Mα such that the total optimizer’s estimated cost (time) of

executing Q on the scaled version is α times the total optimizer’s estimated cost of executing

Q on the baseline metadata instance.

7.2.2 Approach

Scaled metadata instance Mα can be constructed if we have the individual scaling factors

of relations participating in the query workload Q. To obtain scaling factors for individual

relations, we solve the following optimization problem:

Produce anMα such that the sum over Q of the individual squared deviations from α in

cost scaling is minimized, subject to the constraint that the overall cost over Q is scaled by α.
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That is, given relationsR1, R2, . . . , Rh appearing inQ, identify a size-scaling vector (α1, α2, . . . , αh)

such that ∑
qi∈Q

[cSqi/c
O
qi
− α]2

is minimized subject to ∑
qi∈Q

cSqi = α ∗
∑
qi∈Q

cOqi

where cOqi and cSqi represent the costs of qi in the baseline and scaled databases, respectively. We

obtain cOqi from the estimated execution plan of qi in baseline metadata instance. Computing

cSqi is harder as it has to be modelled as a function of individual scaling factors of relations

participating inQ. However, we make the following assumptions for scaled metadata instance

to make the modelling of cSqi possible.

• Metadata scaling is implemented such that relative frequency distribution on non key

columns remains same as baseline metadata instance and for key columns domain (num-

ber of distinct values) is scaled.

• Execution plan tree for all the queries qi in Q remains same as baseline metadata in-

stance.

• The cost of each operator in query plan tree can be written as a simple function of input

data sizes (cardinalities).

Lemma 1. LetR1, R2, ...Rh be the input relations to operator op and α1, ...αh be their scal-
ing factors respectively. Then, if the relative frequency distributions of the scaled database
(SD) and the original database are identical for non-key columns and if the domain is scaled
for the key columns of the SD, then the output size of each operator op in the plan tree for
the SD is expressible as

s(αm, ...αn)× Original output size
where αm, ...αn are the subset of scaling factors such that ∀αi ∈ (αm...αn), the relation Ri

is not referenced by any other relationRj ∈ {R1, R2, ...Rh} \Ri; and s is a function on this
subset of scaling factors. Further, the relative frequency distribution of the scaled output is
identical to the frequency distribution of the original output.

Figure 7.1: Scaled output size and distribution

Given these assumptions, the output size of each operator is determined by Lemma 1 (Proof
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Input: Query qi

Result: Cost function cSqi

1. Obtain the query execution plan for the given query.

2. Determine the cost function for each operator in the execution plan with respect to the
sizes of the inputs.

3. Using Lemma 1, determine the scaled output size in terms of scaling factors for each
operator in the execution plan.

4. Calculate the cost of each operator for scaled inputs using the cost functions obtained in
Step 2.

5. Compute the total cost of the query as the aggregate of the costs of the operators present
in the execution plan.

Figure 7.2: Query costs in scaled database

Let x and y be the inputs to the operators.
Operator Cost
Hash Join x + y
NL Join x ∗ y

Index NL Join x + y
Sort Merge Join x + y

Table Scan x
Index Scan x

Filter x
Group by x

Sort xlogx

Table 7.1: Simple cost function of plan operators

is given in Appendix B) in Figure 7.1 and the steps to compute the cost function, cSqi , for each

query qi in Q, is given in Figure 7.2. As mentioned in the assumptions, we use the simple

cost model provided in Table 7.1 to compute cost function. Our cost model considers only the

CPU processing required for the operator. CPU processing cost of an operator is modelled as

a function of input cardinalities. Our scaling implementation assumption makes the average

tuple width of scaled database to be the same as the original database and thus makes the
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per tuple cost function to be same for both original and scaled database. Since per tuple cost

function for each operator is same for both original and scaled database, our cost model works

well and we have observed it for TPC-H query workloads.

Given the steps in calculating the cost function, we can now compute the individual scaling

factors by solving the optimization problem as described in Figure 7.3. Our assumption on the

implementation of metadata scaling introduces an additional constraint as described in Lemma

2. It bounds the scaling factor of relation in specific cases. The proof of Lemma 2 is presented

in Appendix B. When multiple solutions are available, we choose the result which is closest to

a traditional size-based scaling (Step 4 in Figure 7.3), since it is our expectation that this would

be more robust with regard to (a) addition of new queries to the workload, and (b) retention of

the same plans across the scaled databases.

7.2.3 Implementation Details

SuanShu [14] Java optimization library is used to solve the minimization problem. The library

takes initial point as an argument. In order to search the solution from multiple initial points,

we defined a k-dimensional cube space, where dimension i represents the scaling factor for

relation Ri. We considered values 1 and (10 times of α, where α is the desired time scaling

factor) as the end points in each dimension of the cube. The corner points of the cube and a

vector with traditional size-based scaling factor as multiple initial points to the optimization

library. The solution is reported to the user with their objective function values. Metadata

space scaling is done on the relations with user chosen solution vector to complete the time

scaling.

7.2.4 Example

Consider a 1GB TPC-H workload consisting of queries Q1, Q14, Q17 that operate on relations

PART and LINEITEM with probabilities (0.5, 0.48, 0.02) and scaling factor of 2 (α). The desired

scaling factors of PART and LINEITEM are assumed to be αp and αl. As a first step (Figure 7.3)

to solve the cost scaling problem, we have to determine the cost of queries in scaled database
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Lemma 2. If the key columns of relations are domain scaled and the primary key columns
Ca, ...Cn of relationRi are a combination of foreign key columns, which are referencing the
relations (Ra, ...Rn) respectively, then the scaling factor αi of relationRi is bounded by the
product of αa...αn, where αa...αn are the scaling factors of relations Ra, ...Rn respectively.

Algorithm

Input: Metadata InstanceM, Scaling factor α, query workload Q

Result: Scaled Metadata InstanceMα

1. Determine the cost of each query qi using our cost model. We obtain cSqi(α1...αk).

2. Cost of executing query in the original database cOqi is obtained from the execution plan.

3. Solve the optimization problem,

Minimize
∑
qi∈Q

[cSqi(α1...αk)/c
O
qi
− α]2

subject to∑
qi∈Q c

S
qi
= α ∗

∑
qi∈Q c

O
qi

for i between 1 and k
0 < αi <= Lemma 2 Bound, if applicable
0 < αi <∞, otherwise

cSqi(α1...αk) = α ∗ cOqi , if cost of individual query qi has to be scaled by α

4. From solutions S obtained in step 3, pick a solution s ∈ S that minimizes the following:

∑
αi∈s

(α− αi)2

5. Scale the input relations with the scaling factors obtained in step 4 to get the required
cost scaled metadataMα.

Figure 7.3: Time scaling of metadata

as in the procedure (Figure 7.2). The execution plans for the queries are obtained from DB2

optimizer and given in the Figures 7.4(a), 7.4(b), 7.4(c).

Cost Calculation for Q14: We illustrate here the steps 2 to 4 of Procedure (Figure 7.2) to

determine the cost of operator HSJOIN(5) in Figure 7.4(b). In a similar fashion, cost of other

operators can be calculated.
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(a) Query 1 (b) Query 14

(c) Query 17

Figure 7.4: Plan trees for TPC-H Queries Q1, Q14 and Q17
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Cost of HSJOIN(5):

• Determine the CPU cost (in millions of CPU instructions [M CPUInsts]) of the operator

from the execution plan tree and let it be CPU Cost.

E.g.: CPU Cost( HSJOIN(5) ) = 59 M CPUInsts

• Determine inputs x, y to the operator and find the cost of the operator using our simple

cost model in Table 7.1 (for Hash Join, cost is x + y) and let the cost of operator be

SCM OpCost.

E.g.: SCM OpCost( HSJOIN(5) ) = 200000 + 70390 = 270390 M CPUInsts i.e The

inputs to the operator HSJOIN(5) are the cardinality of TBSCAN operators [TBSCAN(7)

outputs entire PART relation and TBSCAN(9) outputs 70389.875 tuples after filtering

LINEITEM].

• Now, the DB2 cost function of this operator is obtained as

CostFn = (CPU Cost/SCM OpCost).

E.g.: CostFn( HSJOIN(5) ) = 59 / 270390 M CPUInsts

• We use the Lemma 1 to determine the scaled outputs of each input operator.

Scaled output of TBSCAN(7) = αp * 200000 tuples, TBSCAN(9) = αl * 70390 tuples

• Determine the cost of operator for scaled relations and let it Scaled SCM OpCost.

E.g.: Scaled SCM OpCost( HSJOIN(5) ) = αp * 200000 + αl * 70389.875 M CPUIn-

sts i.e scaled cardinality of operators TBSCAN(7) and TBSCAN(9).

• Now, the operator cost for scaled relations is obtained as follows:

CostFn ∗ Scaled SCM OpCost =

CPU Cost ∗ (Scaled SCM OpCost/SCM OpCost).

E.g.: Scaled Cost( HSJOIN(5) ) = CostFn ∗ Scaled SCM OpCost

= ( 59 / 270390) * (αp * 200000 + αl * 70390) M CPUInsts

Similar to the cost calculation of operator HSJOIN(5) for scaled relations, we computed

the cost (in M CPUInsts) of other operators of Query 14 execution plan tree (Figure 7.4(b)):

1. TBSCAN(7) : 391.54 * αp
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2. TBSCAN(9) : 17836 * αl

3. GRPBY(3) : 18 * αl

The total cost function (sum of cost of all operators) for Q14 is,

CostQ14(αp, αl) = 435 ∗ αp + 17869 ∗ αl M CPUInsts

The original (before scaling) cost obtained from the estimated plan (Sum of CPU cost of all

operators) is 18303 M CPUInsts.

In a similar fashion, cost function for queries Q1 and Q17 are calculated.

Cost function of Q1:

CostQ1(αl) = 14290 ∗ αl + 1147 ∗ αl ∗ log(5899930 ∗ αl) M CPUInsts

The original (before scaling) cost is 22054 M CPUInsts.

Cost function of Q17:

CostQ17(αp, αl) = 2729002 ∗ αp ∗ αl + 552.65056 ∗ αp

+25910 ∗ αl + 0.064 ∗ αp ∗ log(192 ∗ αp) M CPUInsts

The original (before scaling) cost is 2756519 M CPUInsts.

Now minimizing the objective function

((CostQ1(αl)/22054)− 2)2 + ((CostQ14(αp, αl)/18303)− 2)2

+((CostQ17(αp, αl)/2756519)− 2)2

on the constraints

CostQ1(αl) ∗ 0.5 + CostQ14(αp, αl) ∗ 0.48 + CostQ17(αp, αl) ∗ 0.02
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= 2 ∗ (22054 ∗ 0.5 + 18303 ∗ 0.48 + 2756519 ∗ 0.02) and

0 < αp, αl <∞

The local minimum obtained is (αp, αl) = (1, 2) (rounded to nearest integer). Relation

LINEITEM is scaled by two times and the cost (M CPUInsts) of queries before scaling and

after scaling is given in Table 7.2. The cost (M CPUInsts) of query workload is scaled by

the scaling factor 1.99. Similar cost scaling for individual queries and query workload are

achieved for the total cost (timerons).

Query /
Cost

Before Cost Scaling After Cost Scaling Obtained
Scaling

Total Time (M CPUInsts) Total Time (M CPUInsts)
Q1 22055 44108 1.99
Q14 18303 36180 1.97
Q17 2756519 5512481 1.99

Table 7.2: Cost of queries before and after scaling
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Conclusion

In this work, we have designed and implemented CODD software on a rich suite of popular

database engines. CODD provides a unified visual interface wherein the user inputs metadata

to construct various alternative scenarios within few minutes. Graphical histogram interface

provided with CODD lets the user to modify the column data distributions visually. While

allowing the user to play with arbitrary metadata values, CODD ensures that these values

are legal and consistent with engine requirements. CODD metadata retention is helpful in

environments where metadata is constructed from a data instance. It drops the data without

affecting the metadata and gets back the space occupied by the data. In addition, CODD

provides two other features such as metadata porting and scaling to help the database test

teams.

The CODD software currently can be used only in testing of metadata based modules

such as query optimizers. A very natural extension to CODD will be to construct alternative

scenarios for testing execution modules. As mentioned earlier, CODD constructs “dataless

databases”, where in only the metadata statistics are stored and the associated data is either

removed or never created. However, execution module requires data in evaluating scenarios.

One vital approach would be to create ”dynamic-data” environments using CODD by coupling

it with the on-the-fly synthetic generator. The objective of this idea can be described as follows:

Given a query Q and a metadata instance M, one can traverse through the query tree T such

that: At each level i, the expected result Ri for that level can be estimated. Using this estimated

36
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result Ri and the data characteristics obtained from M, one can generate the data required for

that level on-the-fly. Once the data is generated, the execution for the level i can be finished and

the performance can be measured. Moving towards the next level i+1, only the required data

can be propagated while the base data generated at the start of current level i can be deleted.
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Metadata Consistency Constraints

A.1 DB2 Metadata Consistency Constraints

Table A.1 lists the metadata consistency constraints of DB2 Constraint Graph shown in Figure

4.4.

Constraint Description

1 CARD must be greater than NPAGES.

2 FPAGES must be greater than NPAGES.

3 The sum of NUMNULLS and COLCARD must be lesser than the CARD

in SYSSTAT.TABLES.

4 The number of null values in a column (NUMNULLS in SYS-

STAT.COLUMNS) cannot be greater than the cardinality of its correspond-

ing table or statistical view (CARD in SYSSTAT.TABLES).

5 The cardinality of a column (COLCARD in SYSSTAT.COLUMNS) cannot

be greater than the cardinality of its corresponding table or statistical view

(CARD in SYSSTAT.TABLES).

Continued on next page...
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Continued from previous page...

Constraint Description

6 The largest COLVALUE value must have a corresponding entry in VAL-

COUNT that is equal to the number of rows in the column (CARD in

SYSSTAT.TABLES).

7 The sum of the values in VALCOUNT must be less than or equal to the num-

ber of rows in the column, which is stored in SYSSTAT.TABLES.CARD.

8 The largest COLVALUE value must have a corresponding entry in DIST-

COUNT that is equal to the COLCARD.

9 The number of COLVALUE values must be less than or equal to

the number of distinct values in the column, which is stored in

SYSSTAT.COLUMNS.COLCARD.

10 HIGH2KEY is greater than LOW2KEY whenever there are more than three

distinct values in the corresponding column (COLCARD).

11 In most cases, COLVALUE values should lie between the second-highest

and the second-lowest data values for the column, which are stored in

HIGH2KEY and LOW2KEY in SYSSTAT.COLUMNS, respectively.
12

13 In most cases, COLVALUE values should lie between the second-highest

and the second-lowest data values for the column, which are stored in

HIGH2KEY and LOW2KEY in SYSSTAT.COLUMNS, respectively.

There can be one frequent value that is greater than HIGH2KEY and one

frequent value that is less than LOW2KEY.

14

15 The VALCOUNT of a Quantile Histogram bin b must be greater than the

sum of VALCOUNTs in the Frequency Histogram whose COLVALUE is

less than the b’s COLVALUE.

16 NPAGES must be less than or equal to any ”fetch” value in the

PAGE FETCH PAIRS column of any index (assuming that this statistic is

relevant to the index).

Continued on next page...
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Continued from previous page...

Constraint Description

17 CARD must not be less than or equal to any ”fetch” value in the

PAGE FETCH PAIRS column of any index (assuming that this statistic is

relevant to the index).

18 INDEXCARD must be equal to CARD.

19 NUMRIDS must be greater than or equal to the INDCARD.

20 If CLUSTERFACTOR is a positive value, It must be accompanied by a valid

PAGE FETCG PAIRS value.

21 NUM EMPTY LEAFS must be less than or equal to the NLEAF.

22 NLEVELS must be less than or equal to the NLEAF.

23 COLVALUE values must be unchanging or increasing with increasing val-

ues of SEQNO.

24 VALCOUNT values must be unchanging or increasing with increasing val-

ues of SEQNO.

25 DISTCOUNT values must be unchanging or increasing with increasing val-

ues of SEQNO.

26 VALCOUNT values must be unchanging or decreasing with increasing val-

ues of SEQNO.

Table A.1: DB2 Metadata Consistency Constraints
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A.2 Oracle Metadata Consistency Constraints

Table A.2 lists the metadata consistency constraints of Oracle Constraint Graph shown in Fig-

ure 4.5.

Constraint Description

1 Cardinality must be greater than Blocks.

2 The sum of NULL Counts and Distinct Values must be lesser than the car-

dinality of its corresponding table.

3 The number of null values in a column cannot be greater than the cardinality

of its corresponding table.

4 The number of distinct values present in a column cannot be greater than

the cardinality of its corresponding table.

5 The sum of the values in VALCOUNT must be less than or equal to the

cardinality of its corresponding table.

6
The number of COLVALUE values must be less than or equal to the

number of distinct values in the column.7

8 Index number of rows must be equal to the cardinality of its corresponding

table.

9 Number of Distinct Keys in the index must be less than or equal to the index

cardinality.

10 COLVALUE values must be unchanging or decreasing.

Table A.2: Oracle Metadata Consistency Constraints
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Lemma Proof

This section presents the proof for Lemma 1 and 2 used in time scaling (Chapter 7).

B.1 Lemma 1 Proof

Notations.

Ak - Domain set of attribute k of relation R

Fk - Frequency distribution of k over Ak

i.e. Fk : Ak → Z+

and
∑
ak∈Ak

Fk(ak) = Card(R).

fk - Relative frequency distribution of k over Ak

i.e. fk : Ak → R+

defined as fk(ak) =
Fk(ak)
Card(R)

∀ak ∈ Ak
and

∑
ak∈Ak

fk(ak) = 1.

We present the proof of Lemma 1 on operator basis.

1. Select (Relational Access) Operator [e.g. Table Scan, Index Scan, Index Seek]

Let A be the relation which is selected with attributes a1, a2, ...am. Let N be the relation

cardinality and αa be the scaling factor of relation A. Let Si ⊆ Ai be the domain of values

selected on attribute ai after applying the predicate on it (if there is no predicate on ai, then

42
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Si = Ai), where i = 1, 2, ..m.

The output size of a select operator on multiple attributes is assumed by the optimizer using

attribute value independence assumption whereby the selectivity of each attribute is multiplied.

i.e. The output cardinality of Select A{ai∈Si,∀i} is defined as:

Original output cardinality = N ∗
∑
v ∈ S1

f1(v) ∗
∑
v ∈ S2

f2(v) ∗ ... ∗
∑
v ∈ Sm

fm(v)

The scaled cardinality of relation A is given by N ∗ αa. Hence, the scaled output cardinality

of select operator,

Scaled output cardinality = (αa ∗N) ∗
∑
v ∈ S1

f1(v) ∗
∑
v ∈ S2

f2(v) ∗ ... ∗
∑
v ∈ Sm

fm(v)

= αa ∗ Original output cardinality

This proves that, the output cardinality is expressed as a function of not referenced relations

(At leaf level, there is only one relation A, which is not referenced by any other relation in its

subtree) scaling factor and original output size �

2. Join Operator

2.1 Single predicate PK-FK equi-join Operator

We prove the lemma by induction on the level of the operator. Level 0 represents the join

nodes, where both of its input node subtree does not have any other join node. Level l join

nodes contain exactly l − 1 join operators in its input node subtree. For example, in Figure

7.4(c), NLJOIN(9) is a level 0 join node and HSJOIN(5) is a level 1 join node.

Let a, b be the joining attributes of relations A, B respectively, where b is a foreign key

referencing to a. Let Fa, Fa be the frequency distribution, fa, fb be the relative frequency

distribution and Da, Db be the domain of joining attributes a, b respectively. Let αa, αb be the

scaling factors of relations A, B respectively.

Basis Step (For level 0 join nodes): Let Na, Nb be the output cardinality of join operator

input nodes, where Na, Nb are the cardinality (or cardinality of filtered output tuples if there

are base predicates) of relations A, B respectively. The output cardinality of a join operator

A∞a=bB is defined as:

Original output cardinality = Nb ∗
∑

v ∈ Da∩Db

fb(v)

The scaled cardinality of input nodes is given by Na ∗ αa, Nb ∗ αb. Hence, the scaled output
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cardinality of join operator,

Scaled output cardinality = (αb ∗Nb) ∗
∑

v ∈ Da∩Db

fb(v)

= αb ∗ Original output cardinality

This proves that, the output cardinality is expressed as a function of not referenced relations

(Among the join input relations A and B, A is referenced by B and B is not referenced by any

one) scaling factor and original output size.

Induction Step (For level > 1 join nodes): We assume, that the claim is true till level

l−1 and here we prove it for level l. LetNa,Nb be the output cardinality of input nodes, where

Na, Nb comes from subtree containing relations A, B respectively. The output cardinality of a

join operator A∞a=bB is defined as:

Original output cardinality = Nb ∗
∑

v ∈ Da∩Db

fb(v)

The scaled cardinality of input nodes is given byNa∗s(αa1, ...),Nb∗s(αb1, ..), where s(αa1, ...),

s(αb1, ..) are functions of scaling factors derived at input node operators. The scaled output

cardinality of join operator,

Scaled output cardinality

= (s(αb1, ..) ∗Nb) ∗
∑

v ∈ Da∩Db

fb(v)

= s(αb1, ..) ∗ Original output cardinality

This proves that, the output cardinality is expressed as a function of not referenced relations

( function derived at input node containing relation B in its subtree) scaling factor and original

output size �

2.2 Multiple predicate PK-FK equi-join Operator

This proof is similar to Single predicate PK-FK equi-join except for the additional terms

in the original and scaled cardinalities corresponding to multiple predicates. Let b1 of B be an

another FK attribute corresponding to a1 of A. Thus the original and scaled output cardinality

of join operator A∞a=b, a1=b1B is written as,

Original output cardinality = Nb ∗
∑

v ∈ Da∩Db

fb(v) ∗
∑

v ∈ Da1∩Db1

fb1(v)

Scaled output cardinality = (αb ∗Nb) ∗
∑

v ∈ Da∩Db

fb(v) ∗
∑

v ∈ Da1∩Db1

fb1(v)

Other things follows as Single predicate PK-FK equi-join. Thus Lemma 1 is proved �
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2.3 Other join operators

We prove the lemma by induction on the level of the operator. Let a, b be the joining

attributes of relations A, B respectively. Let Fa, Fa be the frequency distribution, fa, fb be the

relative frequency distribution and Da, Db be the domain of joining attributes a, b respectively.

Let αa, αb be the scaling factors of relations A, B respectively. Let Sa ⊆ Da, Sb ⊆ Db be the

selected values of attributes a, b after applying join predicates on them.

Basis Step (For level 0 join nodes): Let Na, Nb be the output cardinality of join operator

input nodes, where Na, Nb are the cardinality (or cardinality of filtered output tuples if there

are base predicates) of relations A, B respectively. The output cardinality of a join operator

A∞B is defined as (cross product of two relations):

Original output cardinality = Na ∗ Nb ∗
∑
v ∈ Sa

fa(v) ∗
∑
v ∈ Sb

fb(v)

The scaled cardinality of input nodes is given by Na ∗ αa, Nb ∗ αb. Hence, the scaled output

cardinality of join operator,

Scaled output cardinality = (αa ∗Na) ∗ (αb ∗Nb) ∗
∑
v ∈ Sa

fa(v) ∗
∑
v ∈ Sb

fb(v)

= αa ∗ αb ∗ Original output cardinality

This proves that, the output cardinality is expressed as a function of not referenced relations

(Among the join input relations A and B are not referenced by each other) scaling factor and

original output size.

Induction Step (For level > 1 join nodes): We assume, that the claim is true till level

l−1 and here we prove it for level l. LetNa,Nb be the output cardinality of input nodes, where

Na, Nb comes from subtree containing relations A, B respectively. The output cardinality of a

join operator A∞B is defined as:

Original output cardinality = Na ∗ Nb ∗
∑
v ∈ Sa

fa(v) ∗
∑
v ∈ Sb

fb(v)

The scaled cardinality of input nodes is given byNa∗s(αa1, ...),Nb∗s(αb1, ..), where s(αa1, ...),

s(αb1, ..) are functions of scaling factors derived at input node operators. The scaled output

cardinality of join operator,

Scaled output cardinality

= (s(αa1, ..) ∗Na) ∗ (s(αb1, ..) ∗Nb) ∗
∑
v ∈ Sa

fa(v) ∗
∑
v ∈ Sb

fb(v)
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= s(αa1, ..) ∗ s(αb1, ..) ∗ Original output cardinality

This proves that, the output cardinality is expressed as a function of not referenced relations

( function derived at input nodes) scaling factor and original output size �

3. Aggregate Operator

The size of aggregate operator is 1 and will remain unchanged in the scaled database �

4. Group by Operator

The output cardinality of a group by operator on an attribute is simply the number of

distinct attribute values in it. Since the relative frequency distribution of attribute is retained,

number of distinct values in original and scaled relations would be the same. Therefore, for a

group by operator, the scaled output size will be same as the original output cardinality �

5. Sort Operator

Sort operator output cardinality is same as its input cardinality. Hence, for sort operator,

Original output cardinality = N

where N is input cardinality to the sort operator.

After scaling,

Scaled output cardinality = s(αa, ..) ∗ N

= s(αa, ..) Original output cardinality

where s(αa, ..) is the function derived at input node.

This proves that, the output cardinality is expressed as a function of not referenced relations

( function derived at input node) scaling factor and original output size �

Similar proof can be written for other operators. Our assumption of retaining relative fre-

quency distribution produces output whose relative frequency distribution of attributes is same

as original output. Hence, Lemma 1 is proved �



Appendix B. Lemma Proof 47

B.2 Lemma 2 Proof

Notations.

C ′
a, ...C

′
n - Referenced PK columns of Ca, ...Cn belonging to the relations Ra, ...Rn, re-

spectively.

da, ...dn - Distinct count (number of distinct values) present in the columns C ′
a, ...C

′
n, re-

spectively.

The maximum possible unique keys after combining the columns C ′
a, ...C

′
n is the product of

distinct count present in the combing columns, which defines the upper bound on cardinality

of relation Ri.

Card(Ri) ≤ da ∗ ... ∗ dn
Domain scaling on key columns, brings the distinct count of columnsC ′

a, ...C
′
n in the scaled

relations to be αa ∗ da, ...αn ∗ dn, respectively. Thus the maximum possible unique keys after

combining the columns C ′
a, ...C

′
n of scaled relation is the product of distinct count present

in the combing columns of scaled relations, which defines the upper bound on cardinality of

scaled relation Ri.

Card(scaled Ri) ≤ (αa ∗ da) ∗ ... ∗ (αn ∗ dn)

=⇒ αi ∗ Card(Ri) ≤ (αa ∗ ... ∗ αn) ∗ (da ∗ ... ∗ dn)

=⇒ αi ∗ Card(Ri) ≤ (αa ∗ ... ∗ αn) ∗ Card(Ri)

and αi ∗ Card(Ri) > (αa ∗ ... ∗ αn) ∗ Card(Ri)

=⇒ αi ≤ αa ∗ ... ∗ αn
and αi > αa ∗ ... ∗ αn

αi > αa ∗ ... ∗αn can happen only if Card(Ri) < da ∗ ... ∗ dn i.e relation Ri does not have

all possible unique keys. In such scenarios, our scaling implementation does not generate the

missing unique values for the scaled database as well. So this scenario is not possible in our

scaling implementation and can be ruled out.

=⇒ Thus, αi ≤ αa ∗ ... ∗ αn �

Example: Let us consider a query workload containing TPC-H relations PART, SUPPLIER and

PARTSUPP. Scaling factor of relation PARTSUPP is bounded as follows: αps ≤ αp ∗ αs, where

αp, αs and αps are the scaling factors of relations PART, SUPPLIER and PARTSUPP respectively.
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