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Abstract

With the increasing integration of global economy and proliferation of languages other

than English into information systems, capability to store and manage data in multiple

languages simultaneously is of vital importance. The problem of Multilingual database

tables and cross language query operators has been previously dealt with and two cross

lingual operators LexEQUAL[2] and SemEQUAL[3] were introduced. In this work,

we focus towards defining SemEQUAL operator, investigating issues related to imple-

mentation of the operator inside a relational engine and approaches towards further op-

timization. Specifically, we define the SemEQUAL operator from an implementation

point of view, and present a successful implementation of the SemEQUAL operator in-

side PostgreSQL[17] database system which is persistent in nature and optimized

by the optimizer of PostgreSQL. Also, we investigate HOPI Index[10] as a method to-

wards optimization of SemEQUAL operator and address issues related to adapting it to

large scale graph structures like WordNets[18] and implementing it in a seamless fashion

inside PostgreSQL. Our experiments demonstrate that SemEQUAL operator has a rea-

sonable performance when used with constants but is quite expensive for join operations

when used without indexes. With indexes however, the performance of join operation

improves manifold. This prototype implementation is the first internal implementation of

SemEQUAL which addresses all the issues related to its implementation inside a database

except for indexes. It is also for the first time that the impact of HOPI indexes has been

investigated in relation to SemEQUAL and WordNets.
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Chapter 1

Introduction

1.1 Motivation

The recent times have seen a huge proliferation of Internet and similar other communi-

cation systems with ever greater interoperability amongst themselves. At the same time,

the hardware and carrier costs have come down drastically, making them available to

more and more people across the globe. Consequently, today’s information systems are

dealing with a large amount of data which is in languages other than English. Currently,

multilingual data are stored in isolation with one another as different datasets and are

used in isolation to one another. Cross lingual datasets are very rare owing to unavail-

ability of operators that can deal with them in some meaningful manner. This is despite

of the fact that there are several cross-lingual queries that users might wish to ask. For

example, there are many e-governance and e-commerce portals or search engines where

data may be available in various languages. One might wish to query for certain kind

of information over all the languages. Currently, this is not possible in most information

systems. This requirement for cross lingual queries has been addressed through two oper-

ators called LexEQUAL[2] and SemEQUAL[3]. Consider a hypothetical e-Commerce

application, Books.com, that sells books across the globe; the Book table storing data in

multiple languages or a logical view assembled from data sourced off several databases,

shown in Figure 1.1, can be a possible schema for viewing data about all the books that

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Multilingual Books.com

Books.com has in its inventory.

In such an environment, a user may wish to ask basically two kinds of cross lingual queries:

1. A user may want to find out all the books written by a specific author in a particular

set of languages (possibly all the languages).

2. A user might wish to find out all the ’History’ books that are available in a certain

set of languages (possibly all languages).

For the first type of query the LexEQUAL[2] operator is used. This operator takes

as input, a name in one language (’Nehru’ in English for example), and returns all the

phonemically close names in a user specified set of languages.

The second type of query presents a different type of problem. Here, one has to find out

semantic similarity between words. This requires some kind of semantic analysis of the

word form. In the currently available SQL functionality one may write a query as shown

below.

The result of this query is shown in Figure 1.2. However we know that the entries written
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Simple SQL query

SELECT * from books

WHERE Category = ’History’;

Figure 1.2: Result for simple SQL query

in Hindi and Bengali are also books on ’History’. For this purpose, SemEQUAL[3] oper-

ator is used. It finds out the words belonging to different languages that are semantically

similar to each other. In order to do this, it uses available ontology like WordNets[18].

The output of SEMEQUAL query is given in Figure 1.3.

In this work, we will concentrate on the issues related to native, persistent implementa-

tion of SemEQUAL[3] inside PostgreSQL[17] and its optimization. The rest of the

paper is organized as follows. Sections 1.1 and 1.2 give a brief introduction about the

PostgreSQL[17] and the WordNet[18]. Section 2 describes SemEQUAL[3] operator

from an implementation perspective. Section 3 describes in detail the design and im-

plementation of a persistent SemEQUAL[3] operator inside PostgreSQL[17] database

system. Section 4 deals with the investigation that we have done related to efficacy of

employing index structures to SemEQUAL[3]. In Section 5, we give the experimental

results and future work.
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Figure 1.3: Result for SEMEQUAL query

1.2 The PostgreSQL Database Management System

PostgreSQL[17] is an Object Relational Database Management System that is

arguably the most advanced database in Open Source domain. It was developed at Com-

puter Science Department of University of California, Berkeley. POSTGRES pioneered

many concepts that only became available in some commercial databases much later. It

comes with all the advanced features of a contemporary database system. It has a full

fledged optimizer, rewriter, stored procedures etc. It supports complex queries, foreign

keys, triggers, views, transactional integrity etc. Also PostgreSQL[17] can be extended

by users in many ways for example adding new data types, functions, operators, aggregate

functions, index methods, procedural languages etc. Its source code is released under a

flexible BSD type license and is available for modifications.

1.3 The WORDNET

A WordNet[18] is a semantic lexicon for a given language. It groups words into set of

synonyms called synsets, provides short general definitions and records various semantic

relations between synonym sets. It has been created primarily for producing a combina-

tion of dictionary and thesaurus that is more intuitively usable, and to support automatic
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Figure 1.4: Sample Interlinked WordNet Noun Hierarchy

text analysis and artificial intelligence applications. The defining philosophy in the de-

sign of WordNet[18] is that a synset is sufficient to identify a concept for the user. Two

words are said to be synonymous or semantically the same, if they have the same synset

and hence map to the same mental concept. WordNet organizes all relationships between

the concepts of a language as a semantic network between synsets. A lexical matrix that

maps word forms to word senses constitutes the basis for mapping a word-form to synsets.

WordNets also provide a semantic functionality by providing inter WordNet links be-

tween WordNets of different languages as shown in Figure 1.4. Using the lexical matrix

function that is a part of WordNet linguistic resources, the operands (i.e., multilingual

word-forms), may be mapped onto distinct set of synsets associated with languages of the

respective operands. This facility of inter-language links will be later used to figure out

the semantically equivalent words in the target language. The WordNet[18] for English

language is currently the most developed one and the related database and software tools

have been released under a BSD style license and can be downloaded and used easily.

The database can also be browsed online. The WordNet used here is a English Word-

Net(version 1.5) which has about 110,000 word forms, 80,000 synsets and about 140,000
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relationships. The approximate disk size of this particular WordNet is 4MB.

WordNets[18] are also available in other languages but are in their infancy and are not

as usable as English. EuroWordNet[20] is a project for producing WordNets for several

European languages and to link them together; these are not freely available however.

The GlobalWordNet[21] project attempts to coordinate the production and linking of

WordNets of all languages. A WordNet for Hindi has also been initiated [19] and is in its

early stages of development.



Chapter 2

The SEMEQUAL Operator

The SemEQUAL[3] operator is a semantic matching functionality that is used in cases

where one has to determine if two words are semantically equivalent. For example, let us

take the example of Books.com. Suppose, a user wants to find out all the books whose

Category is semantically equivalent to ’History’ in a set of languages. In today’s databases

if you give a query with (Category = ’History’) selection condition, only those books

whose category is ’History’ in English will be returned despite the fact that the catalog

also contains history books in Hindi, Tamil and French. A multilingual user would be

better served if history books in the given language set were returned. If SemEQUAL[3]

operator is used for the same query, then it will return all the books on history in the

given language set, available in catalog. For an input given in Figure 2.1, a query using

SemEQUAL[3] and the consequent result is given in Figure 2.2.

It should be noted however that the SemEQUAL[3] operator shown here is generalized

to return not only the tuples that are equivalent in meaning, but also with respect to

semantic generalizations and specializations, as evident by the last three tuples that are

reported in the output.

In order to determine the semantic equivalence of word-forms across languages in SemEQUAL[3]

operator, we rely on the WordNets[18]. The basic idea is to use the WordNets[18] to

7
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Figure 2.1: Result for SEMEQUAL query

Figure 2.2: Multilingual Semantic Selection
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find out the inter-language and intra-language semantic equivalence to match words. The

methodology that we use to implement SemEQUAL[3] is shown in Algorithm SemE-

QUAL. As one can see, SemEQUAL[3] operation has three important steps:

Algorithm 1 Algorithm SemEQUAL
Input: Data String w

Query String q

Language Set L

Output: TRUE or FALSE

1. for each l ∈ L

(a) W ← WordNet of l.

(b) C ← Closure (ql, W ).

(c) TC ← TC ∩ C.

2. if w ∈ TC

return TRUE.

3. else
return FALSE.

1. Finding out per language equivalent word of the RHS operand through inter-language

links.

2. Computation of closure of synsets corresponding to the equivalent of the RHS

operand in the specified languages.

3. Testing if the LHS component belongs in the closure.

We define ’a’ SemEQUAL ’b’ INLANGUAGESx,y as true iff ’a’ belongs to the union of

closures of word form ’b’ in wordnet of languages ’x’ and ’y’. We will continue with the

above definition of SemEQUAL[3] for the rest of the paper. The second step involving

computation of closure is a computation intensive process and the most costly and the

most crucial of all the steps in computation of SemEQUAL[3]. Note that the SemE-

QUAL operation according to the above definition is not commutative. This is because

one word-form may belong to the closure of another but the reverse may not be true.
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Also note that if the inter WordNet links are transitive then the SemEQUAL operator is

transitive.



Chapter 3

SEMEQUAL in PostgreSQL

3.1 Logical Design Process and Implementation Chal-

lenges

As a platform for implementing SemEQUAL[3], PostgreSQL was chosen. It was a nat-

ural choice as PostgreSQL[17] is the most complete database system available in open

source world and hence all the issues related to SemEQUAL implementation will be en-

countered while implementing it in PostgreSQL. This also means that all the possible

avenues of implementation will be available and a complete and comprehensive imple-

mentation can be worked out.

At the outset, the primary goal of the project was to implement a SemEQUAL function-

ality inside PostgreSQL that can scale for any sized WordNet or dataset used. That is,

if the size of the WordNet or total size of all the WordNets of all the languages exceed

the main memory size, the closure computation operation should continue seamlessly. A

related objective was to implement the functionality in a manner that enmeshed into the

rest of database modules. This basically means that all the database modules should be

able to interact and do their job if a query involving SemEQUAL comes through. That

is, the query rewriter should still be able to rewrite queries, the query optimizer should

still be able to optimize the query, all the sanity checks could still be run on the query

11
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Figure 3.1: Flow of Query through PostgreSQL

structure, it should still be possible to pull up sub-queries where ever the opportunity

presents itself, all the new data structures introduced should be recognizable to rest of

the database modules and they should know how to deal with them; for example, print-

ing function for debugging, data structure tree copying functions, explain modules etc.

should not be broken. This is important if the implementation has to be kept bug free

and practically usable.

There were some daunting challenges in implementing SemEQUAL inside PostgreSQL.

1. There are many details in SemEQUAL implementation that can be chosen from

a set of choices. These choices will effect the complexity of final implementation

considerably.

2. PostgreSQL doesn’t have support for computing closure. This is partly because of

the structure of PostgreSQL implementation which is based on recursive invocation

of sub-queries.

3. There is not enough available literature on various aspects of closure computation

and optimization both theoretical and implementation wise.

4. Though WordNets are reportedly DAGs[16] i.e. Directed Acyclic Graphs[16], on

analysis of actual data they were in fact found to have cycles. Thus any implemen-

tation has to handle cycles.

5. Finally whatever method is used for implementation, it should be persistent in
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nature i.e. it should be able to handle data (both input and data produced during

computation) beyond the capacity of main memory.

All these challenges and constraints pose a difficult problem if reliable implementation is

to be secured. The first design decision was with regards to the choice of schema used for

WordNet table. The WordNet used here for experiments is an English WordNet (Version

1.5), totaling about 110,000 word forms and 80,000 synsets and about 140,000 relation-

ships between them. The fan out from any given node in this particular WordNet is 16

for more than 90% of cases. Thus, at least two possible schemas are possible. One was

the simple (parent, child) schema which we will from now on call PC and the other was

(parent, child1, ..., child16) schema which we will from now on call PC16. The PC16

schema does offer some advantages over PC schema like it would have less number of

records then the simpler PC schema. However, it is much harder to process than PC

schema while finding closure. PC schema on the other hand, could be used to compute

closure by using recursive queries in standardized, conventional way if support is available.

Thus, PC schema was chosen for representation of WordNet data in the database.

The second design decision was regarding the interpretation of query by the DBMS and

the format and content of the meta data. As is clear from the query syntax for SemE-

QUAL, the information provided by the query includes the name of the languages besides

the two operators. The actual execution of the query however requires the crosslink tables

between languages and the wordnets of the languages or the HOPI index, in case they

were available, besides the operators. Thus it was decided that the language name will be

used to resolve the names of the wordnet table and the HOPI index tables, while a sin-

gle crosslink file is maintained for all the languages. All the other information regarding

the schema of the tables etc are predetermined. The predetermined data is hard coded

in the implementation whereas the rest of the meta data is stored in the catalog table

named pg multilingual. All the data used for computation of SemEQUAL i.e. wordnet,

crosslink table etc. are stored in separate multilingual schema.
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The next design decision was with regards to the implementation strategy for closure. It

was decided to make the least complicated and least intrusive implementation decisions so

as to achieve above mentioned goals. Emphasis was laid on reusing as much of the existing

infrastructure as possible and limit the modification of functions to an extent where they

are just an extension of the original so that cross dependencies are not broken. Very few

new data structures were added and mostly the existing data structures were modified.

This made the extentions of existing copy and traversal functions easy or non necessary.

No existing function definitions were changed and although a lot of new functions were

added they mostly called each other and only a few were called by existing functions.

3.2 Persistent SEMEQUAL Implementation

PostgreSQL database system, being a full fledged system, includes many kind of function-

alities. From the input of a SQL query to the output of results, functions implementing

these functionalities take in the query as input and try to apply their transformations.

While implementing SemEQUAL or any new functionality for that matter, one has to

be careful that the data structures introduced or modified, still works with rest of the

functions. PostgreSQL has a structure, where sub queries are recursively invoked while

computing the query. This intrinsic assumption here is that the query is like a tree with

sub queries like subtrees. While this brings a logical clarity to various implementation

details, this assumption that the query is a tree structure runs counter to the idea of

recursive queries. The effects of this assumption are visible in all the modules of Post-

greSQL. In Figure 3.1 we can see the path of a query through the PostgreSQL database

system.

The parser stage parses the raw SQL query into a parse tree. This is dumb parsing, in the

sense that there are only syntactic checks done at this stage. This stage converts the raw

query string into a parse tree structure. The changes required in this stage are related to

supporting the SemEQUAL syntax and converting it into a meaningful structure. The

optimal design of the structure depends on its use in later stages and future extension
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possibilities. Basically, all relevant information needs to be retained in a hierarchical

manner so that later stages can see information that they need.

The next stage which has been named here as rewriter, converts the parse tree structure

into a query tree structure. This is the stage where many other checks are done and query

parameters are classified, located and linked with each other. For example, it is checked

if the tables mentioned actually exist, and if so then the rel cache is updated and the

disk identifier of the table is found and stored in a special data structure for relations.

Then, the column names are searched through the tables and their corresponding relation

structures are linked to them. Similar operations are done for conditions as well. The

major task here is that appropriate structure is prepared for the new kind of parse tree

that is now generated by the parser for SemEQUAL. One of the major operations here

is to see that the tree structure of a normal query is changed to a graph structure for

the recursive SemEQUAL query. There are several rewriting tasks also that are carried

out in this stage. We make sure that in case of SemEQUAL, where not necessary they

are safely skipped. Another important task done during this stage is to complete the

query in the sense that the language names are looked up in the catalog tables and the

corresponding wordnet tables are identified and inserted into the query structure. Further

if the language has index support, then the query structure is modified recursively to

incorporate the index into the query. In case of conflicts or inconsistent data, appropriate

error is returned.

The last stage is the executor stage. It follows the instructions in the path tree to the

letter and retrieves tuples and stores them in tuple store as intermediate results. At

this stage, we had to extend the executor so that whenever it sees the sub query related

to SemEQUAL, it calls it repeatedly till the whole operation is done. Tuple store is

a place where intermediate results are stored. It has a predefined memory budget and

if it gets more tuples to store than its budget would allow, it stores them in flat disk

files. Thus, we do not need to do anything special to make this whole operation disk

persistent as PostgreSQL already deals with this problem. If we can ensure that we use
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the atomic operations and functions repeatedly to execute SemEQUAL query then we

are sure that it is a persistent implementation, as each of its constituent functions are

persistent. The only remaining issue is existence of cycles. This is handled by adding

an extra condition that if tuple store already has a tuple which is being entered then

backtrack to last unfinished path.



Chapter 4

Optimizing SEMEQUAL through

Index

Though the current implementation of SemEQUAL gives reasonable performance (cou-

ple of seconds for queries involving huge closure sizes) for queries asked against some

constant, i.e. say one has to find all the books in Hindi whose category is ’History’, the

performance deteriorates quickly as number of target languages or ontology increase. This

is because closure (which happens to be the most computationally expensive part in the

whole process) has to be computed for each of the target languages during every compar-

ison. The situation becomes even more grim when a SemEQUAL join is done instead of

comparison against a constant. This effect is evident from Figure 5.4 in Section 5. Thus,

there is a case for further optimization of SemEQUAL.

The primary target for such an optimization would be the time taken by closure computa-

tion. There is some scope in making closure computation fast. But as already mentioned,

these have been already implemented. Some more careful implementation might bring

down this time further. But, it is a fundamental nature of closure computation that it

is costly. Any optimization of closure computation is likely to bring down the constants

but the complexity still remains. One way to solve this problem is to forego the closure

computation all together. One way to do this is to precompute the whole closure and use

17
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it. Then the potential recursive nature of SemEQUAL will be converted to a simple join

operation. This will bring down the time taken to compute closure to a constant value

regardless of closure size. Precomputation of closure however can be a costly affair, but

since it has to be done only once, it seems justified. However, it also bloats the space over-

head for supporting an additional language. As the WordNets of the languages mature

there sizes will grow considerably and that of their closure even more. Thus, supporting

multiple languages in precomputed format will be a drag on system’s resources. One way

around this problem is to compress the closure so that the size is in the order of the

WordNet size itself. HOPI index is a method to accomplish this.

4.1 The HOPI Index

HOPI Index[10] is basically a compressed representation of all possible paths in a graph.

It is based on the concept of 2-hop cover[9] which will be explained subsequently. It

has found application as a connection index for XML documents, which provide space

and time efficient reachability tests along the ancestor, descendent and link axes to sup-

port path expressions with wild cards in XML search engines. The problem presented in

case of SemEQUAL is also concerned with finding out the reachability of one node from

other (in this case nodes are word forms). Thus, HOPI index is applicable in this case too.

A 2-hop cover of a graph G = (V, E) is a compact representation of connections in the

graph that has been developed by Cohen et al. [9]. Let, C(G) = (V, T (G)) be the reflexive

and transitive closure of G, i.e. T (G) = {(x, y)| there is a path from x to y in G} is the

set of all connections in G. For each connection (x, y) in G i.e. ((x, y) ∈ T ), we choose

a node w on a path from x to y as so called center node and add w to a set Lout(x) of

descendents of x and to a set Lin(y) of ancestors of y. Now, we can test efficiently if two

nodes u and v are connected by a path in G by checking if Lout(u)∩Lin(v) = φ. There is a

path from u to v iff Lout(u)∩Lin(v) 6= φ; and this connection from u to v is given by first

hop from u to some node w ∈ (Lout(u)∩ Lin(v)) and second hop from w to v. Thus, w is

a 2-hop node in a path from u to v. For a node x, we say that L(x) = (Lin(x), Lout(x))
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is a 2-hop label of x. A 2-hop cover of G is a set of 2-hop labels for each node in G that

covers all the connections in G, i.e. for each edge (x, y) ∈ T (G), Lout(x) ∩ Lin(y) 6= φ.

This 2-hop cover i.e. sets Lin(x) and Lout(x) for each node x in graph G is called the

HOPI Index for the graph. The size of HOPI Index is the sum of sizes of all node labels:

|L| =
∑

v∈V
(|Lin(v)|+ |Lout(v)|).

Building an optimal 2-hop cover is an NP hard problem. Thus, one generally uses ap-

proximation algorithms. We describe approximation algorithms for building 2-hop cover.

The first one is a näıve algorithm and the second is the algorithm given in [9] and [10].

We need to define a few more terms before we look at these two algorithms.

For a node w ∈ V , Cin(w) = {v ∈ V |(w, v) ∈ T} denotes the set of ancestors of w in G,

Cout(w) = {v ∈ V |(w, v) ∈ T} the set of descendents of w. For subsets C
′

in
of Cin(w) and

C
′

out of Cout(w), the set

S(C
′

in
, w, C

′

out
) = {(u, v) ∈ T |u ∈ C

′

in
and v ∈ C

′

out
}

All these algorithms take the reflexive and transitive closure of the graph G, i.e. C(G) =

(V, T (G)), as input and produce Lin(x) and Lout(x) sets for every node x ∈ V as the

output.

Algorithm 2 is a pretty straight forward algorithm and is quite fast in execution and easy

to implement. This is because of the fact that it does not try to cover the graph in some

intelligent fashion. Instead, it covers the graph with nodes as they come to it one by

one. This will still lead to compression but will not approach the best that can be done.

This is because, it is not trying to find fittest nodes and corresponding links that could

be covered in certain order to achieve much better compression. Thus, this algorithm is

very fast but does not select nodes intelligently and only achieves minimal compression.
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Algorithm 2 Näıve Algorithm

Input: Reflexive and Transitive Closure C(G)
Output: Lin(x) and Lout(x) for each x ∈ V

1. Initialize T
′

←− C(G). T
′

contains yet to be uncovered paths.

2. for each node w ∈ V in the graph.

(a) Find the sets Cin(w) and Cout(w).

(b) Find all the paths from nodes in Cin(w) to nodes in Cout(w) i.e.
S(Cin(w), w, Cout(w)).

(c) Delete all the path links in the set S(Cin(w), w, Cout(w)
⋂

T
′

) from T
′

.

(d) Insert the node w into the set Lout(x) for each node x ∈ Cin(w).

(e) Insert the node w into the set Lin(y) for each node y ∈ Cout(w).

3. Return Lin(x) and Lout(x) for each x ∈ V .

The next algorithm proposed in [9] and [10] tries to make choices in an intelligent fash-

ion in order to exploit redundancies in the graph better and achieve far better compression.

To decide which node to pick in order to arrive at a cover with a small size, we consider

for a node w and C
′

in
(w) and C

′

out
(w) and the set S(C

′

in
(w), w, C

′

out
(w))∩T

′

that contains

all the paths in G from nodes in C
′

in
(w) to nodes in C

′

out
(w) that are not yet covered and

for which the score r(w) is maximized. The value of r(w) describes the optimal relation

between the number of connections via w that are not yet covered and total number of

nodes that lie on such connections. If we choose w with highest r(w) among all nodes,

we have to update labels of only a small set of nodes while covering many of the uncov-

ered connections, thus deriving the most benefit out of corresponding increase in size of L.

The problem of finding the sets C
′

in
(w) and C

′

out
(w) for a given node w ∈ V that max-

imizes the quotient r(w) is equivalent to the problem of finding densest subgraph of the

so-called center graph of w. This undirected bipartite graph CGw = (Vw, Ew) contains

two nodes vin and vout for each node v ∈ V of the original graph. There is an undirected

edge (uout, vin) ∈ Ew) if (u, v) ∈ T
′

is a not yet covered connection, u ∈ Cin(w) and
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v ∈ Cout(w). All isolated nodes are removed from Vw.

The density δw of the subgraph CG
′

w
= (V

′

w
, E

′

w
) is the average degree i.e. the number of

incoming and out going edges, of its nodes (δw = |E
′

w|

|V ′

w
|
), and the densest subgraph of Gw is

the subgraph with the highest density. It can be computed by linear time 2-approximation

algorithm which interactively removes a node of minimum degree from the graph. This

generates a sequence of subgraphs and their densities and the algorithm returns the sub-

graph with the highest density. The algorithm for computing a 2-hop cover chooses in

each step the node w whose center graph has the subgraph G
′

w
with highest density among

all nodes in V . From G
′

w
, the sets C

′

in
(w) and C

′

out
(w) are derived and used for updating

the cover.

Unlike the näıve algorithm, this one tries to make choices of nodes in an intelligent order,

based on some heuristics, to achieve maximum compression. To do this it computes score

in linear time for each node in every iteration. There are some improvements by which the

number of nodes for which score is recomputed in each iteration can be further reduced,

by maintaining all the nodes in some type of priority queue.

4.2 Adaptation for WORDNETs

As we saw in the previous section, we can make intelligent choice of the order of node

selection thereby covering all the paths with less number of nodes. Also, we can see that

Algorithm 3 scales reasonably as the size of graph increases. However if the graph is so

large that it cannot fit into main memory then the algorithm does not scale that well.

Though the score comparison is linear time theoretically, if the reflexive and transitive

closure is large enough, then there will be considerable disk access in which case linear

theoretical complexity holds little value. The optimizations proposed rely on maintain-

ing nodes in some form of data structures which becomes harder to implement and less

efficient to run.WordNet also presents the problem of handling large graphs. Hence, it

becomes imperative that any algorithm employed to construct 2-hop cover for WordNet
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has to be backed by disk i.e. most part of the data required for computation remains

on the hard disk (in this case, in form of database tables) and only a small portion is

copied into main memory and worked on, at any given time. Thus, the algorithm has

to be disk aware and try to minimize disk access as much as possible. Furthermore, any

arrangement of data based on some kind of data structure which does not perform well

on disk can’t be used.

In this paper we modified Algorithm 3 so that:

1. It is backed by disk during the entire computation period, so that large WordNets

can be handled.

2. It performs reasonably fast enough while still making intelligent choices of order of

node selection to cover all the path links in the WordNet with less number of nodes.

3. Also of importance is reduction of CPU time which too is substantial for big Word-

Nets.

First change was to discard instances of direct or intrinsic assumption that the substantial

part of data will be in main memory at any given point of time. Also, any optimization

based on priority queue was discarded as it would entail sorting and searching. At the

same time, scoring of all the nodes at every iteration has to be somehow eschewed and

reduced as the computation proceeds, so as to reduce time between successive node selec-

tion. Another observation made was that all nodes will figure in Lin and Lout of at least

some node in the graph, hence it would be efficient to identify those nodes which won’t

produce big savings and not to spend much time intelligently optimizing for such nodes.

Also, the implementation should give a bound on maximum main memory required dur-

ing any point of execution to avoid running out of memory. We present the modified

algorithm as Algorithm 4.

First thing to note is that T
′

i.e. the reflexive and transitive closure, is stored as a table

in a database in a (ancestor, descendent) schema and only the nodes are read from disk
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one by one from the result set. This set of nodes is only sequentially scanned in chunks

of some fixed constant size from database. No other operation is done as this is expected

to be a huge number of nodes which are not going to be in main memory all at the same

time. The only substantial data stored in main memory is the Cin’s and Cout’s of nodes

as they are scanned sequentially. These are also read in fixed chunks from the data base

and also freed as the algorithm moves to next node. Rest of miscellaneous variables are

all constant memory requirements. This gives a reasonable upper bound on memory re-

quirement. Also the required memory remains constant as the size of the graph, in this

case WordNet grows.

At first look the algorithm seems like a coarser version of Algorithm 3 which it is, since the

2-hop cover that it produces is expected to be inferior to that produced by Algorithm 3.

However, this algorithm is much more disk friendly. First, the scoring method is much

simpler as it does not look into subsets of Cin and Cout. This reduces additional call to

disk and extra processing. The rationale behind the score is that we want to pick those

nodes for storing in Lin and Lout which have a large number of ancestors and descendents

both. This is because all the paths connecting all ancestors with all descendents will be

covered which accounts for almost entire compression. However, this method may give

a higher score to a node whose links are already covered as WordNet is a DAG. That is

why it maintains a priority queue called best node list of very limited size (say 5) which

helps in ensuring (with high probability) that a really good node will be also caught along

with some bad nodes. As the computation proceeds more and more bad nodes will be

caught. In order to avoid this, they are removed from V
′

to B
′

which is actually a list

of bad nodes. Thus, after each iteration the total number of nodes to be checked reduces

by at least one and as computation proceeds more than one node is removed making

subsequent iterations even faster. This leads to shortening of a long tail where expensive

computations and disk accesses are made to select best node from lots of bad nodes with

little path links to cover. In Algorithm 3, all the bad nodes are disposed of with näıve

algorithm(which is much faster) with little loss in compression as these nodes have little
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value to offer from point of view of compression.

Regardless of which algorithm is used, certain tricks will improve the performance man-

ifold. One is virtually indispensable. This is the creation of indexes. While calculating

Cin and Cout, we find out all the descendents for a particular ancestor and vice-versa.

Also, while checking if a particular path link exists between a node in Cin to a node

in Cout, we specify both ancestor and descendent. Thus, we create two B-Tree indexes;

one on (ancestor, descendent) and other on(descendent, ancestor) on T
′

. This speeds up

the process many times as raw table is of large size, making sequential scan infeasible.

The sets T
′

, B
′

, Lin and Lout are resident in table format in the database backing up

the program to create HOPI index. These sets, combined together represents the current

state of the program. Thus the entire program’s state is persistent on the disk except the

calculation of fitness of the nodes which are computed one by one, then compared to the

previous best nodes and finally discarded. Thus the main memory budget of the program

is constant which mans that the program is scalable to graphs (in this case WordNets) of

any size.

4.3 Issues in adapting HOPI index inside PostgreSQL

Let’s look at how the HOPI index changes the computation of SemEQUAL query. We

show in Figure 5, two equivalent queries that return a tuple if the word form ’b’ belongs

in the closure of word form ’a’. Note that this is the most expensive part of the whole

SemEQUAL operation. Here we assume that that WordNet is in (parent, child) schema

and the HOPI index (i.e. LIN and LOUT) is in (node, element) schema where ’node’

represents the particular word form and ’element’ represents the word forms that belong

to the LIN or LOUT set of the word form in corresponding ’node’ column.

The first thing to notice is that the two queries, although equivalent, are totally different.

They use different constructs. While the first query calculates the whole closure and then

checks if ’b’ belongs in the closure of ’a’, the second one is a simple join operation.
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Classical Closure

WITH anscdesc as

(SELECT * from parentchild

UNION

SELECT anscdesc.parent, parentchild.child

WHERE anscdesc.child = parentchild.parent

)

SELECT * from anscdesc

where parent = ’a’

and child = ’b’;

Closure with HOPI Index

SELECT * from lin, lout

where lout.node = ’a’

and lin.element = ’b’

and lout.element = lin.element;

Figure 4.1: Example Rewritten Query

In the previous section, we saw how to efficiently compute HOPI index. This computa-

tion is however done by an external program from outside the core engine. This logic can

also be pushed into the database engine and done from inside by a create index query.

However, there are many issues that has to be addressed before this can be done and the

index to be subsequently used. There are certain fundamental differences between HOPI

index and other classical indexes like B tree, B+ tree or the R trees.

First, HOPI index is not a tree unlike all the other indexes. B trees etc. have a hier-

archical structure and have certain properties. They may be balanced (e.g. B trees) or

unbalanced (e.g. suffix trees) but they are all trees. In contrast, HOPI index has a flat

structure and is in a form of table (or two tables depending on schema). This makes it

logically and technically difficult to implement through standard index implementation

interfaces like GiST[22]. A related problem is that while other indexes traverse from root
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downwards to answer queries, the way to use a HOPI Index is to run a union operation

on two selections and checking if there is any result.

A far more serious problem both logically and implementation wise is that while all the

other indexes are some kind of access methods, HOPI index is a tool for making the op-

eration of checking membership of closure fast. This makes it difficult to place it logically

as a index. For example, while in case of other indexes, it is the optimizer which decides

whether to use them or not, based on some cost model; it seems that the module that

will decide whether HOPI index has to be used or not is the rewriting module. Even this

is not going to be straight forward since membership of closure can be represented as a

complex query rather than a single operator.

Due to these problems, HOPI index implementation is a complex process. The process

is further complicated by the fact that during the bottom up parsing of the query the

parent pointer information is lost to the child query structures. This requires mainte-

nance of extra data structures and in place modifications of the data structures during

rewriting so that the parents still point to the correct positions. This transformation is

done during rewriting phase of the query processing and requires accessing catalog ta-

ble pg multilingual to resolve wordnet table names corresponding to the language and

HOPI index tables is available.
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Algorithm 3 Dense Set Algorithm

Input: Reflexive and Transitive Closure C(G)
Output: Lin(x) and Lout(x) for each x ∈ V

1. Initialize T
′

←− C(G). T
′

contains yet to be uncovered paths.

2. for each node w ∈ V in G.

(a) Find out the sets Cin(w) and Cout(w).

(b) Pick sets C
′

in
and C

′

out
such that C

′

in
∈ Cin(w) and C

′

out
∈ Cout(w) according

to some criteria.

(c) Score the node w according to the following formulae

r(w) = max
C

′

in
⊂ Cin(w)

C
′

out
⊂ Cout(w)

S(C
′

in
, w, C

′

out
∩ T

′

)

|C
′

in
|+ |C

′

out|

3. Find node w such that,

r(w) = max
n∈V

r(n)

4. Find out all the paths from nodes in C
′

in
(w) to nodes in C

′

out
(w) i.e.

S(C
′

in(w), w, C
′

out(w)).

5. Delete all the path links in the set S(C
′

in
(w), w, C

′

out
(w)) from T .

6. Insert the node w into the set Lout(x) for each node x ∈ C
′

in(w).

7. Insert the node w into the set Lin(y) for each node y ∈ C
′

out
(w).

8. if (T
′

6= φ)

goto step 2.

9. else

Return Lin(x) and Lout(x) for each x ∈ V .
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Algorithm 4 Modified Algorithm

Input: Reflexive and Transitive Closure C(G)
Output: Lin(x) and Lout(x) for each x ∈ V

1. Initialize T
′

←− C(G). T
′

contains yet to be uncovered paths.

2. Initialize V
′

←− V . V
′

contains yet to selected nodes.

3. Initialize B
′

←− φ. B
′

contains suspected low saving nodes.

4. for each node w ∈ V
′

in G

(a) Find out the sets Cin(w) and Cout(w) for node w.

(b) Score the node w according to the following formulae

r(w) = {1− {
|(|Cin(w)| − |Cout(w)|)|

(|Cin(w)|+ |Cout(w)|)
}} × (|Cin(w)|+ |Cout(w)|)

(c) If the score of node w is better than the least scoring node in best node list OR
best node list is still not full then

i. Store w in best node list.

ii. Delete the previous least scoring node from best node list in case it was
full.

5. for each node w in best node list.

(a) Count the size of the set S(Cin(w), w, Cout(w) ∩ T
′

) for w.

(b) If |S(Cin(w), w, Cout(w) ∩ T
′

)| ≤ threshold× |V | then move w from V
′

to B
′

.

(c) Else

i. Delete all the path links in the set S(Cin(w), w, Cout(w) ∩ T
′

) from T
′

.

ii. Insert the node w into the set Lout(x) for each node x ∈ Cin(w).

iii. Insert the node w into the set Lin(y) for each node y ∈ Cout(w).

6. If (V
′

= φ‖T
′

= φ) goto step 8

7. Else goto step 4 if a good node is found or if best node list is empty.

8. If (T
′

= φ) then return Lin(x) and Lout(x) for each x ∈ V .

9. Else use Algorithm 1 for node list B
′

and rest of path links in T
′

to further update
Lin and Lout.

10. Return Lin(x) and Lout(x) for each x ∈ V .



Chapter 5

Experimental results and

Performance studies

5.1 Setup

In this section, we experimentally evaluate the persistent database implementation of

SemEQUAL and give the results related to building and effect of HOPI index. The

WordNet used here is the English WordNet (version 1.5) which has about 110,000 word

forms, 80,000 synsets and about 140,000 relationships. The WordNet is represented as

a table in PC schema. The basic PostgreSQL on which all the studies were performed

is of version 8.1.2. The SemEQUAL implementation inside PostgreSQL is in native C

language, while the HOPI index creation program is written in Java and connects to

the backend PostgreSQL database through JDBC interface. All the experiments were

done on 32bit Pentium 4 machine with 1GB RAM and 160GB hard disk. All the timing

information provided in the following tables are wall clock times of execution.

5.2 Performance Studies

The first study that was performed was the time taken to compute closure for different

word forms in the WordNet. This is shown as a graph in Figure 5.1. The x-axis represents

29
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Figure 5.1: Baseline Performance of Closure Computation

the size of closure in number of words. The y-axis represents the time taken to compute

closure in milliseconds.

As can be seen in the Figure 5.1, as the size of the closure increases the time required to

compute it also increases. But these times in absolute terms are around a second which

might be reasonable for most applications and users.

After this, we move our attention to the time taken by SemEQUAL query, when run

against a given word form. We plot the time taken by SemEQUAL against a given word

form with increasing sizes of closure. This is shown in Figure 5.2.

We see a similar behavior as that of closure computation. This is along expected lines as

SemEQUAL does a membership test over base closure computation. Thus, the behavior

of SemEQUAL almost mirrors that of closure computation. It also shows that just like
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Figure 5.2: Baseline Performance of SemEQUAL Operator

closure computation, the time taken by SemEQUAL for various closure sizes is tolerable.

Next, we compare the performance of SemEQUAL against a given word form but mul-

tiple target languages. Currently, we do not have WordNets for languages other than

English. Thus, to simulate the desired effect we repeat English in the target language list

as many times as number of languages we want. Of course, the assumption here is that

WordNets of other languages will be of comparable sizes. Nevertheless, it helps us to see

if the response times will be tolerable enough in case of multiple target languages. This

is shown in Figure 5.3.

As is evident from Figure 5.3, the performance of SemEQUAL with multiple target lan-

guages detoriates rapidly and is not very usable for more than a couple of languages.

Another important test is to analyze the performance of SemEQUAL in case of join



CHAPTER 5. EXPERIMENTAL RESULTS AND PERFORMANCE STUDIES 32

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1  2  3  4  5  6  7  8

T
im

e 
(n

s)

Number of Languages

Figure 5.3: Scaling of SemEQUAL with number of Languages

operation. In this case, we join two columns of same or different tables through the Se-

mEQUAL operator. The result of the analysis is presented in Figure 5.4.

As can be seen from Figure 5.4 the performance of SemEQUAL is poor for table sizes

larger than few dozens of rows. One should remember however, that these values in Fig-

ure 5.3 and Figure 5.4 are dependent on the contents of table and the word forms used.

If the closure sizes are large these operations will take more time. In these experiments

we have created tables with word forms which have closure size on the higher side. In

that sense these are conservative. Still, for large table sizes we can safely conclude from

the above experiments that SemEQUAL will be a costly operation to perform.

Thus, there is a motivation towards improving on this performance. One way to do this

is to precompute the closure. We analyzed the time required to find out closure from

precomputed closure table, both with index and without index. The results are presented
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Figure 5.4: Scaling of SemEQUAL with increasing table size

in Figure 5.5.

Figure 5.5 plots the time taken for finding out closure from precomputed tables, with and

without B-Tree index, in log scale. It can be clearly seen, that the performance without

indexes is unacceptably high, but when indexes are used the results are quite encour-

aging. Closures of all sizes can be found in under one second. However, the drawback

of precomputed closure is that it takes lot of time to compute. However, since this is

a one time job, this can be justified in lieu of tremendous improvement in SemEQUAL

performance. The more serious problem with precomputed closure is the blow up in the

space required. While, the WordNet size is only about 4MB the closure size is 300MB.

When supporting multiple languages this can be a strain on systems resources. With

the WordNets getting larger the problem will only aggravate. Thus, there is a case for

investigating HOPI indexes.
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Figure 5.5: Closure Computation for Precomputed Closure With and Without Index

Figure 5.6: Performance of Modified Algorithm compared to Dense Set Algorithm
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Figure 5.7: Performance of SemEQUAL with and without HOPI Index

Figure 5.6 shows how the performance of modified algorithm given in Algorithm 4 com-

pares with dense set algorithm given in Algorithm 3. Though Algorithm 3 is more so-

phisticated in its choice of nodes, it can not scale in terms of memory requirement for

large graphs. The dense set algorithm has been modified by Prof. Ralf Schenkel and his

team to work on large graphs by partitioning them. The performance results for dense set

algorithm shown here has been done by his team and has been used by us for comparison

purposes. It can be seen quite clearly that modified algorithm gives much better com-

pression then dense set algorithm working on partitioned graphs, as modified algorithm

works on the full graph.

As can be seen from Figure 5.7, while the normal SemEQUAL implementation based on

recursive computation of closure, takes increasingly more time as the closure size increases,

the equivalent query running on HOPI index is immune to increase in closure size. This

is expected as because of HOPI index, the recursive closure computation is replaced by a

join operation which has almost constant time requirement across different closure sizes.
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HOPI index calculation took around five days time. Around fifty good nodes were found

to cover more than ninety percent of the entire path links. The final size of the HOPI

index was of the same order as that of the original WordNet.



Chapter 6

Conclusions and Future Work

This paper defines SemEQUAL functionality from a implementation perspective and

presents a complete, persistent and seamless implementation of SemEQUAL function-

ality on PostgreSQL database management system. The paper also investigates the ef-

fectiveness of HOPI index for computation of SemEQUAL and proposes an disk friendly

approximation algorithm to compute HOPI index for large ontology.

The future work in this field will focus on the following areas:

1. Implementing LEXEQUAL functionality so that complete multilingual functionality

is provided.

2. Further exploration into issues related to HOPI index compatibility with existing

index infrastructure with the ultimate goal to seamlessly integrate HOPI index into

a database engine such that all recursive queries can benefit from HOPI index and

not just SEMEQUAL operator.
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