
Holistic Source-centric Schema Mappings

for XML-on-RDBMS

A Thesis

Submitted for the Degree of

Master of Science (Engineering)

in the Faculty of Engineering

By

Priti Patil

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE

BANGALORE – 560 012, INDIA

September 2005

Abstract

When hosting XML information on relational backends, a mapping has to be established be-

tween the schemas of the information source and the target storage repositories. A rich body

of recent literature exists for mappingisolatedcomponents of the XML Schema to their rela-

tional counterparts, especially with regard to table configurations. However, for a viable real-

world implementation, aholisticmapping that incorporates all fundamental aspects of relational

schemas, including table configurations, integrity constraints, indices, triggers and views, is re-

quired. In this thesis, we address this lacuna and present the Elixir system for producing holistic

relational schemas that are tuned to the XML application workload.

A key design feature of Elixir is that it performsall its mapping-related optimizations in the

XML source space, rather than in the relational target space. For example, Elixir significantly

extends prior table configuration techniques, based on XML schema transformations, to seam-

lessly preserve XML integrity constraints. On a variety of real and synthetic XML schemas

operating under a representative set of XQuery queries, we find beneficial side effects of in-

corporating these constraints in terms of more efficient table configurations and a substantial

reduction in the configuration search space. With regard to index selection, too, Elixir makes

path-index choices at the XML source and then maps them to relational equivalents – our ex-

periments show that this is more desirable than the prevalent practice of using the relational

engine’s index advisor to identify a good set of indices. Elixir can also map XML triggers and

XML views to obtain relational triggers and relational views respectively.

In a nutshell, the Elixir system attempts to make progress towards achieving “industrial-

strength” mappings for XML-on-RDBMS.

i

Contents

Abstract i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 XML-to-relational mapping . 1

1.1.1 Generic Methods . 2

1.1.2 Schema-driven Mapping Methods . 2

1.1.3 User-defined Mapping Methods . 4

1.2 Storing XML in RDBMS . 4

1.3 The Elixir system . 5

1.4 Architecture of Elixir system . 8

1.5 Contributions . 10

1.6 Organization . 10

2 Survey of Related Research 13

2.1 XML-to-relational mapping . 13

2.1.1 Inlining Techniques . 13

2.1.2 Constraints-Preserving Inlining Techniques 14

2.1.3 Cost-based Flexible Mapping Techniques 16

2.2 Index selection . 16

ii

CONTENTS iii

2.2.1 In Native XML databases . 16

2.2.2 In Relational databases . 18

2.3 XML Triggers . 18

2.4 XML Views . 19

3 Elixir System and Performance Methodology 20

3.1 Input . 20

3.1.1 XML Schema . 20

3.1.2 XML Constraints . 21

3.1.3 XQuery Workload . 22

3.1.4 XML Triggers . 23

3.1.5 XML Views . 25

3.1.6 XML Documents . 26

3.1.7 Disk Budget . 26

3.2 The Elixir schema mapping algorithm . 27

3.3 Performance Methodology . 28

4 XML Constraints to Relational Constraints 32

4.1 XML Keys . 32

4.2 Generating Constraint-Preserving Relations 34

4.2.1 Schema Tree . 36

4.2.2 Association of Subtrees . 37

4.2.3 From Schema Tree to Table Configuration 37

4.2.4 Incorporation of Relational Keys . 39

4.3 Integration with Cost-based Search . 41

4.3.1 Filtering of Schema Transformations 42

4.3.2 Evaluating Configuration Efficiency 49

4.4 Experimental Evaluation . 50

4.4.1 Experimental settings . 50

4.4.2 Effect of Keys . 50

CONTENTS iv

5 Index Selection in Elixir 53

5.1 XIST tool . 54

5.2 Path Index to Relational Index conversion . 55

5.2.1 Naive approach for converting Path Index to Relational Index 56

5.2.2 Approach based on concept ofequivalence classes. 56

5.3 Disk Budget Maintenance . 58

5.4 Query Rewriting for Path Indices . 59

5.5 Experimental evaluation . 61

6 Mapping of XML Triggers and XML Views 63

6.1 XML Triggers . 63

6.1.1 Mappable XML Triggers and Non-mappable XML Triggers 63

6.1.2 Detecting Mappability of XML trigger 65

6.1.3 Mappable XML trigger to SQL trigger 67

6.1.4 Processing non-mappable XML Triggers 70

6.2 XML Views . 72

6.3 Experimental Evaluation . 73

6.3.1 Effect of XML Triggers . 74

6.3.2 Effect of XML Views . 74

6.4 Overall performance of Elixir system . 75

7 Conclusions 78

7.1 Future Work . 79

References 80

List of Figures

1.1 A typical system for storing XML using RDBMS 5

1.2 Existing XML-to-relational Mapping approaches 6

1.3 Our proposed XML-to-relational Mapping approach 7

1.4 Architecture of the Elixir system . 8

1.5 Sample input from XML Banking Application 11

1.6 Example Elixir Mapping . 12

3.1 Elixir system . 21

3.2 Sample XML Document (bank.xml) . 23

4.1 Schema tree for bank schema . 36

4.2 Partial Bank schema tree . 38

4.3 Union distribution of savings-acc-number| checking-acc-number 42

4.4 Schema tree after union distribution of branch-office| atm 45

4.5 Type-Split and Type-Merge . 46

4.6 Example of Repetition Split . 47

4.7 Impact of Keys . 51

5.1 The XIST architecture . 54

5.2 Example relational configuration . 55

5.3 Impact of Index selection with space constraint 62

6.1 Effect of XML triggers on tuning process . 74

6.2 Effect of XML Views tuning process . 75

v

L IST OF FIGURES vi

6.3 Elixir Performance . 77

List of Tables

3.1 Details of the schemas used in the experiments 29

4.1 Cost of final relational configuration . 52

6.1 Summary of techniques used in Elixir . 76

vii

Chapter 1

Introduction

Over the past five years, XML (eXtensible Markup Language), by virtue of its powerful and

flexible data formatting capabilities, has become a dominant standard for information exchange

between applications, especially on the internet. As an increasing amount of XML data are be-

ing processed, efficient and reliable storage of XML data becomes an important issue. For per-

sistently storing information from XML sources, there are primarily two technological choices

available: A specialized native XML store (e.g. Tamino [47], Natix [29], Timber [27]), or a stan-

dard relational engine (e.g. IBM DB2 [25], Oracle [38], Microsoft SQL Server [19]). From a

pragmatic viewpoint, the latter approach brings with it the benefits of highly functional, efficient

and mature technology. However, there is a fundamental mismatch in the way the information

is modeled in XML and in relational database, this is because XML has a flexible and extensible

tree structure, whereas relational databases has a strict homogeneous flat table structure.

1.1 XML-to-relational mapping

A rich body of literature has emerged in the last five years on the mechanics of hosting XML

documents on relational backends. Specifically, there have been several proposals for generating

efficient relational mappings. Mapping primitives can be broadly classified as follows:

• generic methods, which do not use any schema of stored XML documents.

• schema-driven methods, which are based on pre-defined schema of stored XML docu-

1

CHAPTER 1. INTRODUCTION 2

ments.

• user-defined methods, which are based on user-defined mapping.

1.1.1 Generic Methods

One of the first proposals for mapping XML documents was Edge mapping approach [21],

where entire XML tree is stored in a single table schema (SourceId , Tag, Ordinal ,

TargetId , Data). The table contains identifiers of nodes connected by the edge (SourceId

andTargetId), name of the edge (Tag), a flag that indicates whether the edge is internal or

points to a leaf (Data), and an ordinal number of the edge within sibling edges (Ordinal). If

target node is leaf, then its text is included inData otherwiseData is assignedNULL value.

Similarly, Binary [21] approach groups the tuples in Edge table based on tag name (horizon-

tal partitioning). This leads to better clustering and improves query performance. Moreover,

the storage space is reduced, as tag name is not stored for each tuple in partition table. XRel

[55] shreds the XML documents into nodes, where each node is encoded with a unique range

(region encoding). The encoded nodes are stored in relational database management system

along with path information from root to the node. XParent [28] uses two tables:Path-table

andData-table . Path-table stores all distinct paths identified by unique ID;Data-table

stores all the node-pairs:SourceId andTargetId . Monet [44] partitions theEdge table based

on distinct label paths appeared in the XML document, i.e. for each distinct label-path, Monet

creates separate table. This type of structural clustering reduces the scans over large amounts

of data irrelevant to the query.

1.1.2 Schema-driven Mapping Methods

Schema-driven mapping methods are based on existing schema of stored XML documents,

which is mapped to a relational schema. A schema is a definition of the syntax of an XML-

based language (i.e., it defines a class of XML documents). A schema language is a formal

language for expressing schemas. There have been many schema language proposals, such as

DTD (Document Type Definition) [7], XML Schema [49], XML-Data [35], DCD (Document

CHAPTER 1. INTRODUCTION 3

Content Description) [8], Schematron [43], etc. DTD and XML schema are the most widely

used standards. Most of the schema-driven mapping methods are based on either a DTD or a

XML schema of stored XML documents. The schema-driven mapping methods can be further

classified in two classes : fixed and cost-based methods.

Fixed methods

Fixed methods do not use any other information than the source schema itself; their mapping

algorithm is straightforward. For example, shared inlining [45] is fixed method, in which el-

ements having multiple occurrences are mapped into tables, whereas elements with a single

occurrence are mapped as a column of the table corresponding to its parent element. Note that

while most techniques consider primitives that map XML constructs to pure relational systems,

some [32, 41] leverage object-relational features of relational systems. Some of the techniques

such as X2R [13], are the extension of hybrid inline method [45] that preserves the content,

structure, and semantic information as expressed in key and foreign key constraints. RRXS

[12] pioneers in translation from XFDs (XML Functional Dependencies) to relational depen-

dencies and it creates third normal form decomposition.

Cost-based methods

Cost-based methods use the additional information (usually query statistics, element statistics,

etc.) and focus on creating an optimal schema for a certain application. LegoDB [5, 40] takes

a cost-based approach, to derive a mapping that best suits a given application (characterized by

a schema, query workload and document samples). It uses the information in the XML schema

to derive several possible mapping alternatives, and selects the one that leads to the lowest cost

for executing a given query workload over sample documents. Recently Microsoft researchers

have proposed a search algorithm [10] that explores the combined space of logical and physical

design, in conjunction with the relational advisor.

CHAPTER 1. INTRODUCTION 4

1.1.3 User-defined Mapping Methods

User-defined mapping methods are often used in commercial systems. This approach requires

that the user first defines a target schema and then expresses required mapping using a system-

dependent mechanism.

Nearly all leading relational vendors are also introducing XML capabilities. Many commer-

cial tools (DB2, Oracle) provide basic support for querying XML documents using a relational

engine. For instance, Oracle [38] provides an XMLTYPE to map XML data into an object table

or view. IBM’s DB2 Extender [25] provides two primary storage and access methods for XML

documents: XML column and XML collection. MS SQL Server [19] uses OpenXML rowset

providers to support XML. It maps XML data into an edge table, a parent-child hierarchical

graph representation of XML data. POET [39] is an object-oriented database system. It maps

each XML element into a separate object.

1.2 Storing XML in RDBMS

A typical system for storing XML using RDBMS is shown in Figure 1.1.Relational schema

generatorgenerates relational mapping for XML data. Relational mapping can be done by

any of the methods, described in previous section. For relational mapping, the main objective

is to find a relational configuration, which requires less storage size, yet handles XML query

efficiently and correctly. XML documents are shredded byXML shredderand are stored in

relational database.Query mapping processormaps input XQueries to SQL queries in order

to retrieve data from relational database. The query results in the form of relational tuples are

tagged and published back as XML data byXML converter.

A common feature of much of the previous work is that it has focused onisolatedcompo-

nents of the relational schema, typically the table configurations (refer to Figure 1.2). A com-

plete relational schema, however, consists of much more than just table configurations – it also

includes integrity constraints, indices, triggers, and views. Therefore, viable XML-to-relational

systems that intend to support real-world applications need to provide aholistic mapping that

incorporates all fundamental aspects of relational schemas. In this thesis, we attempt to address

CHAPTER 1. INTRODUCTION 5

XML DTD/ XML

Schema

Source XML
Documents

SQL queryXML query

Result XML

Documents

XML

Shredder

Query
Mapping

Processor

XML
Converter

Application Middleware Relational Database

Relational
Schema

Generator

Database

Schema

(2)

(4)

(1)

(3)

Relational
tuples

Figure 1.1: A typical system for storing XML using RDBMS

this issue by presenting a system calledELIXIR (Establishing hoLI stic schemas forXML In

Rdbms) that produces holistic relational schemas tuned to the application workload (refer to

Figure 1.3). Elixir incorporates schema-driven cost-based XML-to-relational mapping tech-

nique.

1.3 The Elixir system

The Elixir system is built around the LegoDB cost-based table-configuration framework [5, 22,

40], and has been successfully evaluated on a variety of real-world and synthetic XML schemas

operating under a representative set of XQuery queries, using the DB2 database engine as the

backend.

In producing XML-to-relational mappings, there are two possibilities: Asource-centricap-

proach, wherein the optimization of the mapping is carried out in the XML space, and then

translated to the equivalent in the relational space; or atarget-centricapproach, where a map-

ping is made from the XML space to the relational space, and then optimized in the relational

space to fine-tune the mapping. A key design feature of Elixir is that it performsall its mapping-

related optimizations in the XML source space, rather than in the relational target space. The

CHAPTER 1. INTRODUCTION 6

XML Documents

XML Keys

XML Schema

XQuery Workload

XQuery Triggers

XQuery Views

XML World

Tables

Indexes

Relational keys

Views

Triggers

Relational World

LegoDB,
FleXMap

(a)

XML Documents

XML Keys

XML Schema

XQuery Workload

XQuery Triggers

XQuery Views

XML World

Tables

Indexes

Relational keys

Views

Triggers

Relational World

X2R,
RRXS

(b)

XML Documents

XML Keys

XML Schema

XQuery Workload

XQuery Triggers

XQuery Views

XML World

Tables

Indexes

Relational keys

Views

Triggers

Relational World

Approach
Proposed
by Microsoft
Researchers

(c)

Figure 1.2: Existing XML-to-relational Mapping approaches

evaluation of the quality of these optimizations is done at the target, and the feedback is used

to guide the optimization process in the XML space, in an iterative manner, resulting in a

dynamically-derivedmapping tuned to the application.

This approach is based on our observation that an organic understanding of the XML source

can result in more informed choices from the performance perspective. As a case in point, Elixir

significantly extends prior table-configuration cost based techniques, based on XML schema

transformations, to seamlessly preserve theunique, key and keyref integrity constraints. In

relational databases, XML key constraints can always be checked using triggered procedures

involving joins or unions. However, such stored procedures are much more expensive to evalu-

ate than key and foreign key constraints in relational databases [14]. To fully leverage database

technology for constraint checking, we therefore wish to map XML key and keyref constraints

to relational key and foreign key constraints. Cost-based strategies use schema transforma-

tions to explore the search space of different relational configurations. Our study shows that

CHAPTER 1. INTRODUCTION 7

XML Documents

XML Keys

XML Schema

XQuery Workload

XQuery Triggers

XQuery Views

XML World

Tables

Indexes

Relational keys

Views

Triggers

Relational World

Elixir

Figure 1.3: Our proposed XML-to-relational Mapping approach

propagating XML keys to relations in the form of primary keys and foreign keys results in the

invalidation of schema transformations. We have developed the rules that are based on XML

keys to determine the validity of a transformation before applying that transformation. We have

also introduced more powerful variant of type split and type merge, which is necessary for map-

ping XML keys to relational keys. Beneficial side-effects of incorporating these constraints are

improved table configurations and a substantial reduction in the optimization search space.

With regard to index selection too, we quantitatively show that the source-centric approach

is preferable – that is, it is better to choose the best set of path-indices at the XML source and

then map these choices to relational equivalents, as compared to using the relational engine’s

index advisor to identify a good choice (the latter approach has been taken in a recent paper

by Microsoft researchers [10]). An additional benefit of source-based index choices is that the

knowledge can be used to guide the XQuery-to-SQL translation during query processing. This

is consistent with the observation in [33] that schema decomposition and query translation are

interdependent and should therefore be handled in an integrated manner.

In addition to production of table configurations, integrity constraints, indices, Elixir can

also map XML triggers and XML views to SQL triggers and relational views, respectively. We

demonstrate that only a subset of XML triggers appear to be directly mappable to SQL triggers

and Elixir incorporates an algorithm for detecting such mappable triggers and generating the

associated mapping. For the remainder, that is, the non-mappable triggers, Elixir uses stored

procedures that can be called by the middleware at run-time. While the costs of mappable trig-

CHAPTER 1. INTRODUCTION 8

StatiX

Phyisical Schema
 Generation

Phyisical Schema
Transformation

XIST

Translation
 Module

Relational Optimizer

XQuery
Rewriting

XML Trigger
 Processor

XML Schema
 with keys

 XML
Documents

XML Data
 Statistics

 Disk
Budget

Path Indices

Relational tables, keys,
indexes, statistics
and SQL Workload

P-schema

Cost

Efficient Relational configuration
consisting of table, keys, indices,
SQL triggers, Relational views

XQuery
Workload

Additional
XQuery
Workload

 SQL
Triggers

XQuery
Triggers

 Stored
Procedures

XML View
 Processor

XQuery
Views

 Relational
 Views

Figure 1.4: Architecture of the Elixir system

gers are natively modeled by the relational optimizer, an additional query workload equivalent

to the non-mappable triggers is included in the XML query workload. The advantage of con-

sidering XML triggers (i.e. creating SQL triggers formappable XML triggersand additional

query workload fornon-mappable XML triggers) is that the resultant relational configuration is

efficient not only for the given workload but also for the queries involved in triggered actions.

Our experimental results show that considering XML triggers during the tuning of relational

configuration result in better final relational configuration as compared to that when XML trig-

gers are ignored. With regard to views as well, translating materialized views specified in XML

to relational backends, result in better relational configuration.

In a nutshell, the Elixir system attempts to make progress towards achieving “industrial-

strength” mappings for XML-on-RDBMS.

1.4 Architecture of Elixir system

In designing Elixir, we have consciously attempted, wherever possible, to incorporate the ideas

previously presented in the literature – in particular, we use the LegoDB system [5], with its

CHAPTER 1. INTRODUCTION 9

associated FleXMap [40] and StatiX [22] components, and the XIST path-index selection tool

proposed in [42].

The overall architecture of the Elixir system is depicted in Figure 1.4. Given an XML

schema and statistics extracted from XML documents (using StatiX [22]), Elixir first generates

an initial physical schema. Propagation of XML keys to relational keys is possible only for the

valid physical schema that is obtained after applyingvalid schema transformations(details of

valid schema transformationsare given in Chapter 4). Valid schema transformations are then

repeatedly applied to initial physical schema and the process of schema/query translation and

cost estimation is repeated for each transformed physical schema until a good configuration is

found.

XML Trigger Processor mapsmappable XML triggersto SQL triggers andnon-mappable

XML triggers to stored procedures, which can be called by middleware at runtime. To ac-

count for the cost of thenon-mappable triggers, Elixir adds query workload equivalent tonon-

mappable triggersto input query workload. XML view processor maps XML views and ma-

terialized XML views specified by the user to relational views and materialized query tables,

respectively.

XIST (XML Index Selection Tool) [42] selects the set of indices given a combination of a

query workload, XML schema, and data statistics. It evaluates the benefit of an index by com-

paring the total execution costs for all queries in the workload before and after index is available.

In addition, it compares this benefit with the cost of updating the index and recommends a set

of indices that is most effective for a constraint on the amount of disk space. The advantage

of using XIST is that it can make best use of information extracted from the XML schema and

the statistics information. For efficient computation of path indexes at the relational backend,

we convert the path index to set of relational indices. We also need to rewrite the XQueries to

take benefit from the available path indices. This query rewriting is based on the concept of

path equivalence classesof XML schema. These relational indices are given to optimizer, in

addition to relational tables, statistics, and SQL workload (equivalent to rewritten XQueries),

for computing the cost of the queries.

To make our objectives concrete, a sample fragment of inputs from XML banking applica-

CHAPTER 1. INTRODUCTION 10

tion are shown in Figure 1.5 and a relational mapping derived from Elixir for these inputs is

shown in Figure 1.6.

1.5 Contributions

In summary, the contributions of the thesis work include

• Techniques for translating XML Schema integrity constraints to relational constraints,

for integrating these XML Schema integrity constraints into the optimization process,

and quantitative demonstration of their benefit in pruning the mapping search space.

• Techniques for propagating XML index selections to the relational target, quantitative

demonstration of their improvement over the choices made by the relational index advisor,

and utilizing the index choices to guide the XQuery-to-SQL translation process.

• Techniques for handling XML Triggers and XML views, empirical results of improve-

ment of final relational configuration obtained (due to consideration of XML Triggers

and XML views) during tuning process of relational configuration.

• Incorporation of these techniques in the Elixir system, which produces holistic schema

mappings from XML sources to relational backends.

1.6 Organization

The remainder of this thesis is organized as follows: Related work is reviewed in Chapter 2.

In Chapter 3, an overview of the Elixir system is presented. The constraint mapping technique

and its integration with cost-based optimization is discussed in Chapter 4. Index mapping is

addressed in Chapter 5. Chapter 6 explains the mapping procedure for XML triggers and XML

views. Our conclusions are summarized in Chapter 7.

CHAPTER 1. INTRODUCTION 11

– – XML Schema
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>

<xsd:element name=”bank”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”country” type=”CountryType” minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
. . .

</xsd:schema>
– – XML Documents
<?xml version=”1.0”?>
<bank>

<country>
<name>India</name>
...

</country> ...
</bank>
. . .
– – XML Query workload

FOR $customer IN // customer
FOR $account IN // account
WHERE ($customer/ acc-number = $account/ savings-acc-number OR

$customer/ acc-number = $account/ checking-acc-number) AND
$customer/ cust-id = ’1000’

return <balance>$account/ balance</balance>
Frequency 20000
FOR $country IN /bank/country
WHERE $country/ name/text() = "INDIA"
UPDATE $country/ city { INSERT <name>Nasik</name> ... }
Frequency 100

– – XQuery Triggers

CREATE TRIGGERNewCityTrigger
AFTER INSERT OF/bank/country/city
FOR EACH NODE DO (...)

. . .
– – XML Views

CREATE VIEWimportant customer AS
FOR $customer IN // customer
FOR $account IN // account
WHERE ($customer/ acc-number = $account/ savings-acc-number OR

$customer/ acc-number = $account/ checking-acc-number) AND
$account/ balance > 100000

return <balance>$account/ balance</balance>

. . .
– – Materialized XML views

CREATE MATERIALIZED VIEWcustomer balance AS
FOR $customer IN // customer
FOR $account IN // account
WHERE $customer/ acc-number = $account/ savings-acc-number OR

$customer/ acc-number = $account/ checking-acc-number
return

<customer-balance>
<id>$customer/ cust-id</id>
<acc-number>$customer/ acc-number</customer-acc-number>
<balance>$customer/ balance</balance>

</customer-balance>
DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

. . .

Figure 1.5: Sample input from XML Banking Application

CHAPTER 1. INTRODUCTION 12

– – Tables
CREATE TABLE Customer (Customer-id-key INTEGER PRIMARY KEY, id INTEGER NOT NULL, name VAR-
CHAR(25), address VARCHAR(25), acc-number INTGER NOT NULL, parent-Country INTEGER, parent-City IN-
TEGER);
CREATE TABLE Account (Account-id-key INTEGER PRIMARY KEY, Savings-or-Checking-account-number INTE-
GER, parent-Country INTEGER, Balance DECIMAL(10,2));
. . .
– – Relational keys equivalent to XML keys
ALTER TABLE Customer ADD CONSTRAINT Customer-key UNIQUE (id, parent-Bank);
ALTER TABLE Account ADD CONSTRAINT Account-key UNIQUE (Savings-or-Checking-account-number, parent-
Country);
ALTER TABLE Customer ADD CONSTRAINT Account-fkey FOREIGN KEY (account-number, parent-Country)
REFERENCES Account(Savings-or-Checking-account-number, parent-Country);
. . .
– – Recommended Indices
CREATE INDEX name-index ON Customer(name);
CREATE INDEX acc-number-index ON Account(Savings-or-Checking-account-number, parent-Country);
. . .
– – SQL Triggers

CREATE TRIGGERIncrement-Counter
AFTER INSERT ON Customer
REFERENCING NEW ASnew_row
FOR EACH ROW
BEGIN ATOMIC

UPDATE Branch-office
SET Acc-counter = Acc-counter + 1
WHERE Branch-office.Id = new_row.Branch

END

. . .
– – Stored Procedure

CREATE PROCEDURENewCityTrigger (IN customer-name STRING,
IN city-name STRING, IN city-state STRING,...)

BEGIN
Send-mail(customer-name, city-name, city-state, ...)

END

. . .
– – Materialized Query Tables

CREATE TABLEcustomer balance AS
(SELECT Customer.id, Customer.acc-number, Account.balance

FROM Customer, Account
WHERE Customer.acc-number = Account.Savings-or-checking-acc-number)

DATA INITIALLY IMMEDIATE
REFRESH IMMEDIATE

. . .
– – Relational views

CREATE VIEWimportant customer AS
(SELECT Customer.id, Customer.acc-number, Account.balance

FROM Customer, Account
WHERE Customer.acc-number = Account.Savings-or-checking-acc-number
AND Account.balance > 10000)

. . .

Figure 1.6: Example Elixir Mapping

Chapter 2

Survey of Related Research

A rich body of literature has arisen in the last few years with regard to efficiently storing XML

documents in RDBMS. Most of this prior literature focuses on isolated components of the

mapping from the XML space to the relational space, and assumes static mappings between the

spaces. In contrast, our goal is to design a holistic mapping that covers all the major components

and integrates cleanly with a cost-based dynamic mapping process. In this chapter, we shall

briefly overview previous works that are related to this thesis.

2.1 XML-to-relational mapping

Several XML-to-relational mapping techniques have been proposed, which define set of rules

to map XML schema primitives to their relational counterparts. This section includes the brief

summary of these techniques.

2.1.1 Inlining Techniques

In [45], authors have proposed various DTD-driven inlining techniques for XML-to-relational

mapping: Basic, Shared and Hybrid. The decision of whether to create a table for an element

or to inline it with its parent is central to these approaches and is made on the basis of whether

or not an element is shared by other elements in the DTD. These solutions vary in the amount

of redundancy they may generate (an element could be inlined in several of its referencing

13

CHAPTER 2. SURVEY OF RELATED RESEARCH 14

elements). In all of them, key-foreign key relationship is used to capture document structure.

2.1.2 Constraints-Preserving Inlining Techniques

Inlining methods discussed in earlier section, only take into account structural constraints of

the existing XML documents. With regard to XML keys, CPI [36], X2R [13] techniques have

been proposed for mapping to relational equivalents. These systems are applicable for static

mapping techniques like those proposed in [45]. A framework called XFD is presented in [12],

to express functional dependencies including keys, then map them to relational dependencies

and finally create a third normal form decomposition.

In this thesis, we have focused only on integrity constraints in the form ofkeyandkeyrefs

but our approach can be easily extended to handle XFDs. Further, functional dependencies

are not currently part of the XML Schema standard. A major difference between all the ear-

lier work and Elixir is that the former produces a relational mapping, which is optimized for

updates (enforcing constraints efficiently), whereas Elixir produces a relational mapping opti-

mized for the actual query workload of the application. This section provides brief overview of

constraints-preserving inlining techniques.

CPI

CPI is a constraints-preserving algorithm based on the hybrid inlining algorithms proposed in

[45]. Given a DTD, CPI can derive semantic knowledge from it and it is possible for CPI to

preserve the knowledge by representing it as semantic constraints in relational database. This is

different from techniques that merely consider the structural constraints of DTD. CPI prevents

the possibility that transformation algorithm may cause inconsistency between the DTD and

the generated relational schema. The algorithm derives semantic knowledge only from DTD

files. This leads to another potential problem. DTD is the simplest XML structural definition

language. It has limited expressive power to represent semantic constraints compared with

XML schema, in which semantic information captured is far greater than in a DTD.

CHAPTER 2. SURVEY OF RELATED RESEARCH 15

X2R

X2R maps an XML document together with its constraints into a relational schema so as to

check XML key and keyref constraints using key and foreign key constraints. There are some

differences between the X2R algorithm, hybrid-inlining, and CPI. First, X2R starts from a set

of key and reference relations, which capture semantic information. Second, relations that are

separated in hybrid inlining may be coalesced by paths that end with a disjunction. Moreover,

the key and the referential relations may inline ancestors other than the parent, i.e. the context

node may be a non-parent ancestor. In the process of X2R, the notion of constraint relations,

which explicitly capture XML key and keyref constraints, is proposed. It also presents a map-

ping from an XML document to a relational instance, which extends constraint relations to

capture the complete content and structure of the document. Unlike CPI, mapping in X2R is

guided by the XML key and keyref constraints rather than by the DTD. Another direct benefit

of this storage mapping is the ability to efficiently check XML constraints using relational key

and foreign key constraints.

RRXS Redundancy Reducing XML storage in relations

As in relational databases, functional dependencies for XML (XFDs) are used to describe the

property that the values of some attributes of a tuple uniquely determine the values of other

attributes of the tuple. The difference lies in that attributes and tuples are basic units in relational

databases, whereas in XML data, they must be defined using path expressions. For example,

consider a constraints such as if two books have the same ISBN, they must have the same title.

In the form of XFD, it can be written as follows:

//book/ISBN/value()→ //book/title/value()

RRXS [12] provides a framework (XFDs) to express structural and semantic constraints. It

uses a reduced set of the input XFDs to guide the design of the target relational schema, by

translating XFDs to relational functional dependencies and creating a third normal form (3NF)

decomposition.

CHAPTER 2. SURVEY OF RELATED RESEARCH 16

2.1.3 Cost-based Flexible Mapping Techniques

Most of the previous techniques focus on lossless translation of XML documents into relational

database. Various techniques are proposed to make sure that the content, structure, and seman-

tics are preserved in the produced relational configuration. However, all previous techniques

give fixed mapping regardless of the types of XML applications used. This is not desirable

since different applications imply different query patterns and thus impose different demands

on the underlying relational database.

Considering all these, it might be a good idea to make use of application characteristics to

guide XML-to-relational mapping process. LegoDB [5, 40] proposed a novel cost-based ap-

proach to generate relational storage mappings for XML data by taking into account the appli-

cation characteristics such as XML schema, query workload, and document samples. LegoDB

system exploits a richer set of mapping primitives. In addition to parent-child relationships,

LegoDB also takes into account additional schema constructs such as choice and repetition, and

it allows multiple mapping functions for a given construct. For example, besides the option to

create a table for a set-valued element, LegoDB also considers inlining one or more occurrences

of the repeated element within its parent (through the repetition split transformation). LegoDB

uses the information in the XML schema to derive several possible mapping alternatives and

selects the one that leads to the lowest cost for executing a given query workload over sample

documents.

2.2 Index selection

Index selection is one of the important aspects of physical database design. In this section, we

will review various index selection techniques proposed in native XML databases and relational

databases.

2.2.1 In Native XML databases

For native XML databases, a variety of path indices such as Dataguides [24], T-indices [37],

APEX [16], etc. have been proposed.

CHAPTER 2. SURVEY OF RELATED RESEARCH 17

In [37], Milo and Suciu describe T-indexes, a generalized path index structure for semi-

structured documents. A particular T-index is associated with a set of paths that match a path

template. Their approach uses bisimulation relations to efficiently group together nodes that

are indistinguishable with respect to the given template into path equivalence classes. If two

nodes are bisimilar, they have the same node label and their parents share the same label. In

the 1-index [37], data nodes that are bisimilar from the root node are stored in the same node

of the index graph. The size of the 1-index can be very large compared to the data size, thus

A(k)-index [31] has been proposed to make a trade off between the index performance and the

index size.

Chung et al. have proposed APEX [16], an adaptive path index for XML documents. The

main contributions of APEX are the use of data-mining techniques to identify frequently used

subpaths, and the implementation of index structures that enable incrementally updates to match

the workload variations. APEX exploits the query workload to find indices that are most likely

to be useful.

In [30], Kaushik et al. have proposed F&B indexes that use the structural features of the

input XML documents. F&B indexes are forward-and-backward indices for answering branch-

ing path queries. Authors have also proposed some heuristics in choosing indices, such as

prioritizing short path indices over long path indices [30].

Recently proposed XIST [42] is a tool that can be used by an XML DBMS as an index

selection tool. XIST exploits XML structural information, data statistics, and query workload

to select the most beneficial indices. XIST employs a technique that organizes paths that are

evaluated to the same result into equivalence classes and uses this concept to reduce the num-

ber of paths considered as candidates for indexing. XIST selects a set of candidate paths and

evaluates the benefit of an index on each candidate path based on performance gains for non-

update queries and penalty for update queries. XIST also recognizes that an index on a path can

influence the benefit of an index on another path and accounts for such index interactions.

While in principle, any of these could have been used for source-centric index choices in

Elixir, we have chosen to use the XIST [42] tool because of its workload and resource-based

index choices, an essential feature in practice.

CHAPTER 2. SURVEY OF RELATED RESEARCH 18

2.2.2 In Relational databases

Many commercial relational database systems employ index selection features in their query

optimizers. For example, IBM’s DB2 Universal Database (UDB) uses DB2 Advisor [52], which

recommends candidate indices based on the analysis of workload of SQL queries and models

the index selection problem as a variation of the knapsack problem. The Microsoft SQL Server

[11] uses simpler single-column indices in an iterative manner to recommend multi-column

indices. That is, the indices on fewer columns are considered before indices on more number

of columns.

Recently, Microsoft researchers [10] have proposed a search algorithm that explores the

combined space of logical and physical design, in conjunction with the relational advisor for

given XML schema, sample documents and query workload. The index advisor of the Mi-

crosoft SQL server 2000 is used to get the recommendation for indexes, materialized views,

and partitions to improve the performance of queries in the workload. On the other hand, Elixir

takes a consistently source-centric approach, where all optimization is done in the XML world,

rather than at the relational target. Moreover, the techniques they suggest to prune the search

space can also be incorporated in Elixir to improve the time efficiency. Finally, they do not take

into account XML keys in mapping to the relational world.

2.3 XML Triggers

In order to make XML repositories fully equipped with data management capabilities, suitable

query and update languages are being developed. However, once the user is allowed to perform

updates, it is perceivably necessary to guarantee the correctness of his/her updates, especially if

document validity or semantic constraints are violated [6]. This problem can be addressed by

exploiting the well-grounded concept of active rules.

XQuery [4] is a language from the W3C designed to query and format XML data. In [6],

authors have proposedActive XQuery, which is an active extension to W3C proposed standard

XQuery [4] language for defining XQuery triggers.

In [46], authors have addressed the issue of triggers over XML view of relational data by

CHAPTER 2. SURVEY OF RELATED RESEARCH 19

translating triggers over XML views to SQL triggers and update over relational data will trigger

the action. However, in Elixir, updates are done on the XML data and updates are done in

transparent manner to the relational data.

2.4 XML Views

Since the early days of data models, the concepts of views were used to give different perspec-

tives and abstraction for underlying base data, for different users and uses.

Serge Abiteboul [1] have proposed a declarative notion of XML views. Abiteboul pointed

out that, a view for XML, unlike classical views, should do more than just providing different

presentations of underlying data [1]. In addition, he argues that an XML view specification

should rely on a data model (like ODMG model) and a query language. Later, Sophie Cluet et

al. [18] formally provided an XML view definition as

”....A view defined by a set of pairs< p, p >, called mappings, wherep is a path in the

abstract DTD andp a path in some concrete DTD..” [18].

In [15], authors have proposed a systematic approach to design valid XML views. In our

system, we assume only valid XML views are provided as input. In [2], authors have proposed

a framework for exploiting materialized XPath views to expedite processing of XML queries.

They have developed XPath matching algorithm to determine when such materialized XPath

views can be used to answer a user query containing XPath expressions.

Chapter 3

Elixir System and Performance Methodology

Input XML source environment consists of element-schema, constraints (unique,key,keyref),

document statistics, and query workload, XML triggers, and XML views as also an index space

budget. The Elixir system aims to establish an efficient and holistic relational schema, consist-

ing of table configurations, relational keys, a set of relational indices that adhere to the space

budget, SQL triggers, and views for given input XML source environment. In this chapter, we

describe the detailed algorithm of the Elixir system.

3.1 Input

Consider input XML source environment given to Elixir system (refer to Figure 3.1). The

XML element-schema, constraints, query workload, XML Triggers, XML views are typically

supplied by the user, the XML document statistics can be generated by tools like StatiX [22]

from the document repository. This section discusses the various inputs taken by Elixir.

3.1.1 XML Schema

XML Schema [49] describes contents, structure, and semantics of XML documents. XML

schemas provide a consistent way to validate XML. XML Schema reproduces the full capabili-

ties of DTD [7], so existing DTD document schemas can be translated to XML Schema without

problems. However, it goes beyond these capabilities, allowing additional types of constraints to

20

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 21

XML Documents

XML Keys

XML Schema

XQuery Workload

XQuery Triggers

XQuery Views

XML World

Tables

Indexes

Relational keys

Views

Triggers

Relational World

Elixir

Figure 3.1: Elixir system

be specified such as more built-in data types, support for user-defined data types, more flexible

occurrence indicators, import/export mechanism, integrity constraints mechanism, refinement

mechanism, and extensibility mechanism.

3.1.2 XML Constraints

Before giving XML schema key specifications, consider the sample document shown in Fig-

ure 3.2. The document contains information about bank customers by country and bank

branches by country and cities. Suppose, we wish to assert that all accounts should have unique

account number. For example, since there is savings-account with account number 101, we can-

not add savings account or checking account with the same account number. We might wish to

assert that customer’s account number should be one of the account numbers, which is defined

as savings-account-number or checking-account-number.

In XML Schema, three types of identity constraints can be defined:unique, key, andkeyref.

Examples of these XML constraints are shown in the following XML schema fragment:

<element name=”country” type=”Country ”>

<key name=”account-number-key”>

<selector xpath=”.//account”/>

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 22

<field xpath=”savings-acc-number | checking-acc-number”>

</key>

<keyref name=”customer-account” refer=”account-number-key”>

<selector xpath=”./customer”/>

<field xpath=”acc-number”>

</key>

</element>

3.1.3 XQuery Workload

Different queries have different importance according to the frequency of execution. Thus,

Elixir system uses the XQuery workload, which consists of set of XQueries along with their

frequency of execution. Frequency of execution is used for weighting the cost of the query. All

previous approaches such as LegoDB [5], FleXMap [40], [10] have considered onlyread only

workload of the queries. Elixir considers read only queries as well as update queries. As update

extension is not part of XQuery standard, we have used update extension proposed in [48]. An

update is a sequence of primitive operations of the following types:

Insert(content): inserts new content (which can be simple type, element, attribute, or refer-

ence) into target. An attempt to insert an attribute with the same name as an existing at-

tribute fails. An attempt to insert a reference with the same name as an existing IDREFS

adds an extra entry into the IDREFS.

Delete(child): if the child is a member of the target object, it is removed. Valid types for child

include simple type, attribute, IDREF within an IDREFS list, and element. If the child

is a reference within an IDREFS, only the single entry is removed – the remainder of the

IDREFS is preserved.

Rename(child, name): if the child is a non-simple type member of the target object, it is given

a new name. Note that we cannot rename an individual IDREF within an IDREFS; such

a rename operation will rename the entire IDREFS.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 23

<bank>
<country>

<name>India</name>
<customer>

<cust-id>1</cust-id>
<name>abc</name>
<address>...</address>
<acc-number>101</acc-number>

</customer>
<customer>

<cust-id>2</cust-id>
<name>xyz</name>
<address>...</address>
<acc-number>102</acc-number>

</customer> ...
<city>

<name>Bangalore</name>
<state>Karnataka</state>
<head-office>

<id>O112</id>
<address>...</address>

</head-office>
<branch-office>

<id>O321</id>
<address>...</address>

</branch-office> ...
<atm>

<id>A1231</id>
<address>...</address>

</atm> ...
<account>

<savings-acc-number>101</savings-acc-number>
<balance>1232423</balance>

</account>
<account>

<checking-acc-number>102</checking-acc-number>
<balance>645634</balance>

</account>...
</city> ...

</country> ...
</bank>

Figure 3.2: Sample XML Document (bank.xml)

Replace(child, content): atomic replace operation, equivalent to (Insert(content),

Delete(child)).

3.1.4 XML Triggers

As XML triggers are not a part of XQuery standard, here we useActive XQuery[6], an active

extension to the W3C-proposed standard XQuery [4] language, adapting the SQL3 notions.

An XQuery trigger consists of four components: the triggering operation, the triggering

granularity, the trigger condition, and the trigger action. A trigger is invoked when one of its

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 24

triggering operations occur. It is being considered when its condition is under evaluation. It is

executed when its action is performed.

The syntax of an XQuery trigger [6] is the following:

CREATE TRIGGERTrigger-Name

[WITH PRIORITY Signed-Integer-Number]

(BEFORE|AFTER)

(INSERT|DELETE|REPLACE|RENAME)+

OF XPathExpression (, XPathExpression) *

[FOR EACH (NODE | STATEMENT)]

[XQuery-Let-Clause]

[WHEN XQuery-Where-Clause]

DO (XQuery-UpdateOp | ExternalOp)

• TheCREATE TRIGGERclause is used to define a new XQuery trigger, with the specified

name.

• Rules can be prioritized in an absolute ordering, expressed with an optionalWITH

PRIORITY clause, which takes as argument any signed integer number. If this clause

is omitted, the default priority is zero.

• TheBEFORE/AFTERclause expresses the triggering time relative to the operation.

• Each trigger is associated with a set of update operations (insert, delete, rename, replace),

adopted from the update extension of XQuery [48].

• The operation is relative to elements that match an XPath expression (specified after the

OF keyword), i.e. a step-by-step path descending the hierarchy of documents (according

to [17] and its update-related extensions). One or more predicates (XPath filters) are

allowed in the steps to eliminate nodes that fail to satisfy given conditions. Once evaluated

on document instances, the XPath expressions result into sequences of nodes, possibly

belonging to different documents.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 25

• The optional clauseFOR EACH NODE/STATEMENTexpresses the trigger granularity.

A statement-level trigger executes once for each set of nodes extracted by evaluating the

XPath expressions mentioned above, while a node-level trigger executes once for each

of those nodes. Based on the trigger granularity, it is possible to mention the transition

variables in the trigger :

– If the trigger is node-level, variablesOLDNODEandNEWNODEdenote the affected

XML element in its before and after state.

– If the trigger is statement-level, variablesOLDNODESandNEWNODESdenote the

sequence of affected XML elements in their before and after state.

• An optionalXQuery-Let-Clauseis used to define XQuery variables whose scope covers

both the condition and the action of the trigger. This clause extends theREFERENCING

clause of SQL3, because it can be used to redefine transition variables.

• The WHENclause represents the trigger condition, and can be an arbitrarily complex

XQuery where clause. IfWHENclause is omitted, default value isTRUE.

• The action is expressed by means of theDOclause, and it can contain accomplished

through the invocation of an arbitrarily complex update operation. In addition, a generic

ExternalOpsyntax indicates the possibility of extending the XQuery trigger language

with support to external operations, permitting, e.g., to send mail or to invoke SOAP

procedures.

For a complete syntax of XQuery refer to [4] and for the syntax of the update language, refer to

[48].

3.1.5 XML Views

The notion of views is essential in databases. It allows various users to see data from different

viewpoints. Although XQuery [4] currently does not provide standard for defining XML views,

we can easily extend it to include the definition of views [15] as follows:

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 26

”CREATE VIEWview nameAS” followed by FLWR expression

Above definition can be extended to define materialized XML views as follows:

CREATE MATERIALIZED VIEWview nameAS

FLWR expression

DATA INITIALLY (IMMEDIATE | DEFERRED)

REFRESH(IMMEDIATE | DEFERRED)

DATA INITIALLY IMMEDIATE clause allows user to populate data in table immedi-

ately. The clauseDATA INITIALLY DEFERRED means that data is not inserted as a part

of theCREATE TABLEstatement. Instead, user has to do aREFRESH TABLEstatement to

populate table. Syntax forREFRESH TABLEis as follows:

REFRESH TABLEview name

Since the materialized view is built on underlying data that is periodically changed, user

must specify how and when he wants to refresh the data in the view. User can specify that

he wants anIMMEDIATE refresh orDEFERREDrefresh. The clauseREFRESH DEFERRED

means that the data in the table only reflects the results of the query as a snapshot, at the time

user issuesREFRESH TABLEstatement.

3.1.6 XML Documents

Statistical information (about the values and structure) from the given XML document is nec-

essary to derive accurate relational statistics, which are needed by the relational optimizer to

accurately estimate the cost of the query workload. We have used recently proposed StatiX

[22], which is a XML Schema-aware statistics framework to gather the statistics of input XML

documents.

3.1.7 Disk Budget

Disk budget is the limit for the size of indexes in the output relational configuration. Elixir also

allows user to specify no disk limit by providing disk limit as -1.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 27

3.2 The Elixir schema mapping algorithm

A high-level pseudocode of the mapping algorithm of Elixir system is given in Algorithm 1.

Since the space of potential relational mappings is exponentially large, a greedy heuristic is

used to find an efficient mapping [5]. The first step in the algorithm (line 2) is to obtain the

equivalence classes, which represent the structural equivalent groups of the XML schema –

details in Chapter 5. Next, a relational schema is generated on the basis of original XML

environment (line 3). XML views are mapped to relational views byMapXMLViews(line 4). In

next step, additional query workload to account forNon-mappable XML triggeris obtained (line

5) and then, the runtime cost of the XML workload, after translation to SQL, on this schema,

is determined by accessing the relational engine’s query optimizer (lines 6, 7) – in our current

system, the IBM DB2 engine is utilized for this purpose. Subsequently, the original XML

schema is transformed in a variety of ways (lines 9, 10), the relational runtime cost for each of

these new schemas is evaluated, and the transformed schema with the lowest cost is identified

(line 25). This whole process is repeated with the new XML schema, and the iteration continues

until the cost cannot be improved with any of the transformed schemas.

The procedure for obtaining a relational schema – functionConvertToHolisticRelSchema–

is described in Algorithm 2. Here, the functionGenerateRelationsAndKeysgenerates the table

configuration and relational keys for the given XML element-schema and keys (line 1). Addi-

tional workload corresponding tonon-mappable XML triggersis obtained usingGetAdditional-

Workload(line 2). Subsequently, the appropriate indices in the XML world are determined – in

our current system, this is done using the XIST tool [42], which takes an XML element-schema,

query workload (which consists of input XML query workload and additional query workload),

and disk space constraint as input, and recommends the most beneficialpath indices. XIST

uses path equivalence classes (EQs) to reduce the number of paths considered as candidates for

indexing. For each path index recommended by XIST, the appropriate relational indices need

to be created such that the corresponding path can be evaluated efficiently (line 6). The con-

version of path indices to relational indices involves adding of extra columns to the relations,

and therefore this function returns a modified relational table configuration. Elixir applies disk

limit to the path-indices by taking into account the size of their relational equivalents (details

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 28

are given in Chapter 5). The statistical summary of XML data in the form of structural and

value histograms is converted to relational statistics such as, for tables, the number of data pages

and number of rows, and for columns, the number and distribution of distinct values, and the

number of nulls (line 9). Finally, XML triggers are processed andmappable XML triggersare

converted to SQL triggers andnon-mappable XML triggersare converted to stored procedures

(details are given in Chapter 6) .

The translation of XML queries to SQL – functionTranslateToSQL– uses the path indices

recommended by XIST and the path equivalence classes to come up with a good mapping.

With regard to the XML schema transforms, we consider those presented in [5], namely,In-

line/Outline, Type-split/merge, Union distribution/factorization, andRepetition split/merge. A

major difference, however, is that only asubsetof the applicable transforms may be valid at each

step, because the other transforms lead to violations of the XML key constraints. Therefore, in

each iteration, a list of valid transforms is generated from the set of applicable transforms (lines

8,9). Each valid transform is applied in turn to the schema and the transform that results in the

minimum cost relational configuration is chosen to produce the XML schema that will be used

as input in the next iteration of the algorithm (lines 12-24). This process is repeated until the

current relational configuration reaches a fixed point and cannot be improved.

3.3 Performance Methodology

Elixir has been successfully evaluated on a variety of real-world and synthetic XML schemas

operating under a representative set of XQuery queries, using the DB2 database engine as the

backend. Our experimental setup consists of a standard Pentium-IV machine running Linux,

with DB2 UDB v8.1 as the backend database engine. Four representative real-world XML

schemas:Genex[23], EPML [20], ICRFS[26], TourML [50], which deal with gene expressions,

business processes, enterprise analysis, and tourism, respectively, are used in our study. In

addition, we also evaluate the performance for the synthetic XMark benchmark schema.1 The

salient summary statistics of these documents are given in Table 3.1.

1Since XMark is available only as a DTD, we created the equivalent XML Schema and incorporated keys by
mapping the IDs and IDREFs.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 29

Genex EPML ICRFS TourML XMark
unions 0 9 1 0 0

repetitions 9 115 11 57 21
height 4 13 6 10 9

(#E + #A) 75 159 63 145 93
#keys 15 15 16 24 14

E: Element, A: Attribute

Table 3.1: Details of the schemas used in the experiments

As Elixir aims to establish an efficient and holistic relational schema, we usecost of final

relational configurationas the performance metric in our experiments. It is the cost given

by optimizer (in timerons) for executing the target workload on the relational configuration

obtained at the end of tuning process.

In the following chapters, we discuss in detail the generation of the holistic relational

schema, including Table Configurations, Key Constraints, Indices, Triggers and, Views.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 30

Algorithm 1 Elixir Schema Mapping Algorithm
Input: xS: XML schema,xK: XML keys, xW : XML query workload,xTr: XML Triggers, xV :

XML Views, xStats: XML data statistics,dlimit : disk space constraint
Output: rT : relational table-configuration,rK: relational keys,rStats: relational statistics,rI: rela-

tional indices,rTr: relational triggers,rSp: relational stored procedures,rV : relational views
1: PrevCost =∞;
2: EQ = FindEQs (xS);
3: (rT , rK, rStats, rI, xPI, rTr, rSp) = ConvertToHolisticRelSchema (xS, xK, xW , EQ, xStats,

dlimit);
4: rV = MapXMLViews (xV , rT);
5: xAw = GetAdditionalWorkload (xTr, xW);
6: SQL W = TranslateToSQL (rT , xPI, EQ,(xW+xAw));
7: Cost = GetCost (rT , rK, rStats, SQL W , rI, rTr, rV);
8: while Cost < PrevCost do
9: PrevCost = Cost;

10: xforms = ApplicableTransfroms(xS);
11: vxforms = FilterInvalidTransforms (xforms, xK);
12: for all Tv in vxforms do
13: xS′ = ApplyTransform(Tv, xS);
14: EQ′ = FindEQs (xS′);
15: (rT ′, rK ′, rStats′, rI ′, xPI, rTr, rSp) = ConvertToHolisticRelSchema (xS′, xK, xW , EQ′,

xStats, dlimit);
16: rV = MapXMLViews (xV , rT);
17: xAw = GetAdditionalWorkload (xTr, xW);
18: SQL W = TranslateToSQL (rT ′, xPI, EQ′,(xW+xAw));
19: Cost′ = GetCost (rT ′, rK ′, rStats′, SQL W , rI ′, rTr, rV);
20: if Cost′ < Cost then
21: Cost = Cost′;
22: xform = Tv;
23: end if
24: end for
25: xS = ApplyTransform (xform, xS);
26: end while
27: (rT , rK, rStats, rI, xPI, rTr, rSp) = ConvertToHolisticRelSchema(xS, xK, xW , EQ, xStats,

dlimit);
28: rV = MapXMLViews (xV , rT);
29: return (rT , rK, rStats, rI, rTr, rSp, rV)

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 31

Algorithm 2 Deriving holistic relational schema
Function: ConvertToHolisticRelSchema
Input: xS: XML schema,xK: XML keys, xW : XML query workload,xTr: XML Triggers EQ:

Equivalence classes ofxS, xStats: XML data statistics,dlimit : disk space constraint
Output: rT : relational table configuration,rK: relational keys,rStats: relational statisticsrI: rela-

tional indices,xPI: XML path indices,rTr: relational triggers,rSp: relational stored procedures
1: (rT , rK) = GenerateRelationsAndKeys (xS, xK);
2: xAw = GetAdditionalWorkload (xTr, xW);
3: xPI = XIST(xS, (xW + xAw), EQ, dlimit);
4: I = {};
5: for all PI in xPI do
6: (rT ′′, rI ′) = ConvertIndex (rT , PI, EQ);
7: T = T ′; I = I ∪ I ′;
8: end for
9: rStats = ConvertStats (rT , xStats);

10: (rTr, rSp) = ProcessXMLTriggers(xTr, rT);
11: return (rT , rK, rStats, rI, xPI, rTr, rSp)

Chapter 4

XML Constraints to Relational Constraints

XML Schema allows one to mix DTD features with semantic information, such as integrity

constraints in the form of keys and foreign keys. Integrity constraints are useful for semantic

specification, query optimization, and data integration. In this chapter, we discuss the tech-

nique for translating XML integrity constraints to relational constraints. Initially, we describe

the XML keys and related concepts in detail. In Section 4.2, the technique for generating

constraints-preserving relations (by propagating XML keys to relational keys) is presented. In-

tegration of these XML Schema integrity constraints into the optimization process is addressed

in Section 4.3. Finally, we describe experimental evaluation of the technique discussed in this

chapter.

4.1 XML Keys

XML Schema provides three integrity constraints:unique, keyandkeyref. To define aunique

or keyconstraint for XML, the following factors have to be specified: 1) the context in which

the key must hold; 2) the set of nodes on which the key is defined; and 3) the values, which

distinguish each element of the set. To define akeyref constraint, the key to which it refers

needs to be additionally specified.

Using the syntax of [9], theuniqueandkeyconstraints can be written as

K : (Q, (Q′, {P1, . . . , Pp}))

32

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 33

while thekeyrefconstraint can be written as

R : (Q, (Q′, {P1, . . . , Pp})) KEYREFK

whereQ, Q′, andP1,. . . ,Pp are all path expressions. The element within which the key is

defined is called thecontext elementE, andQ, the path leading to this context element, is

called thecontext path. On similar lines, the set of nodes on which the key is to be defined,

relative to the context element, is called astarget node set, andQ′, the path leading to this set

of nodes, is called thetarget path. P1,. . .,Pp are thefield paths, which are relative to the target

path and identify the set of nodes whose values are used to distinguish nodes of the target node

set. Finally,K is the name of theuniqueor keyconstraint, andR is the name of thekeyref

constraint.

The path expression language used to define keys in XML schema is a restriction of XPath,

and includes navigation along the child axis, disjunction at top level, and wildcards in paths.

This path language can be expressed as follows:

c ::= . | / | .q | /q | .//q | (c|c)
q ::= l | (q/q) | −

where ”/” denotes the root or is used to concatenate two path expressions, ”.” denotes the current

context,l is an element tag or attribute name, ”-” matches a single label, and ”.//” matches zero

or more labels out of the root.

Using above notation, example keys for the samplebank.xmldocument shown in Figure 3.2,

are given below:

• account-number-key: (//country,(.//account, {savings-acc-number | checking-acc-

number}))

Within a country, each account is uniquely identified by savings account number or check-

ing account number.

• customer-account : (//country,(./customer,{acc-number})) KEYREF account-

number-key

Within a country, each customer refers to a savings account number or checking account

number by acc-number.

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 34

Consider the bank example discussed earlier. As for the semantics of the document, one

might wish to assert that country is identified by name and within a country, city is identified

by its name and state. Within a country, offices i.e. head offices and branch offices are uniquely

identified by their ID. Similarly, within a country, ATMs are also identified by their ID. For

example, since there is already the branch office having ID ”O321” in India, we could not add

another head office or branch office with the same ID in India. However, we could add another

office with same ID in country other than India. Using syntax described earlier, these additional

constraints can be written as follows:

• country-key: (//bank, (./country, {name}))

• city-key: (//country, (./city, {./name,./state}))

• office-key: (//country, (./city/head-office | ./city/branch-office , {id}))

• atm-key: (//country, (./city/atm, {id}))

• customer-key: (//country, (./customer, {cust-id}))

4.2 Generating Constraint-Preserving Relations

TheGenerateRelationsAndKeysprocedure takes an XML schema with constraints as input and

produces a constraint-preserving equivalent relational schema. In relational databases, XML

key constraints can always be checked using triggered procedures, involving joins or unions.

However, such stored procedures are much more expensive to evaluate than key and foreign

key constraints in relational databases [14]. For example, consider the XML keyaccount-

number-key: (//country,(.//account, {savings-acc-number | checking-acc-number})) and

relational configuration as follows :

TABLE City (City-id-key INT, name STRING, state STRING,

Head-office-address STRING, parent-country INT)

TABLE SAccount(SAccount-id-key INT, savings-acc-number INT, balance

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 35

INT, parent-City INT)

TABLE CAccount(CAccount-id-key INT, checking-acc-number INT, balance

INT, parent-City INT)

Then to check theaccount-number-key, we need to define a trigger, which gets triggered when

row is added inSAccount or CAccount and trigger performs the following steps:

1. Join SAccount with City and selectSAccount-id-key , Country-id-key as

Account-id-key , Country-id-key

2. Join CAccount with City and selectCAccount-id-key , Country-id-key as

Account-id-key , Country-id-key

3. Union the results obtained in step 1 and 2

4. Check if there is any duplicate value for pair ofAccount-id-key , Country-id-key .

If yes, then it implies that addition of row is violating XML key, thus triggering action

(i.e. addition of row) should be roll backed. Otherwise, there is no violation ofaccount-

number-key.

Execution of such stored procedure is very inefficient as compared to the constraints check-

ing using primary keys and foreign keys [14]. Thus, to fully leverage database technology for

constraint checking, we therefore wish to map XML key and keyref constraints to relational

key and foreign key constraints. Recently proposed X2R [13] technique address the problem

of mapping an XML document together with its constraints, into a relational schema so as to

check XML key and keyref constraints using key and foreign key constraints.

Our technique is superficially similar to the X2R storage mapping algorithm [13], but a cru-

cial difference is that they tailor the schema to fit the key constraints, thereby risking efficiency,

whereas Elixir takes the opposite approach of integrating the key constraints with an efficient

schema. Specifically, X2R uses XML keys to define constraint relations, relational keys and

then uses inlining into constraint relations for the nodes that are not mapped in constraint map-

ping. In contrast, theGenerateRelationsAndKeysprocedure first produces a schema using the

LegoDB fixed mapping process, and then integrates the keys with this schema. Yet another dif-

ference is that in X2R the schema production is a one-time process, whereas Elixir employs a

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 36

bank

customer
city

address

*

name

country

*

branch-office atm

id

*
account

savings-acc-number checking-acc-number

acc-number

balance

+

state

cust-id

,

,

,

,

name

,

name ,

*

,

,

address

,,

id address

,

head-office

(Customer)

(Cust-id)

(Name)

(Name)

(Name)

(Country)

(City)

(State)

(Head-office)

(Branch-office) (Atm)

(Id)

(Id)

,

id address
(Id)

(Address)

(Address)

(Address)(Address)

(Account)

(Balance)

(Savings-acc-number)
(Checking-acc-number)

(Bank)

(Acc-number)

,

Figure 4.1: Schema tree for bank schema

cost-based iterative process to find the best constraint-preserving schema (this iterative process

is discussed in the following section).

4.2.1 Schema Tree

The input XML schema is first converted into aschema treeusing the representation proposed in

FleXMap [40], in which the XML schema is expressed in terms of the following type construc-

tors: sequence(”,”), repetition(”*”), option(”?”), union(” |”), < tagname > (corresponding to a

tag), and< simpletype > corresponding to base types (e.g. integer). To make this concrete,

a schema tree for the banking example discussed earlier is shown in Figure 4.1. Schema tree

nodes areannotatedwith thenamesof the types and these annotations are shown in boldface

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 37

and parenthesized next to the tags (the base types are omitted for readability). Each annotated

node corresponds to a separate table in the relational schema, and although we start off with

every node being annotated, nodes may lose their annotation during the optimization process

(discussed in Section 4.3).

4.2.2 Association of Subtrees

In the first step, subtrees corresponding to different paths of a single field path areassociated.

Let tP1 , . . . , tPp be the subtrees of the schema tree corresponding to field pathsP1, . . . , Pp. If

Pi is of the form(p1|p2| . . . |pn) wherep1, . . . , pn are the different paths of a single field path

Pi andN1, N2 . . . , Nn are the corresponding nodes in the schema tree, these nodes need to be

associated so as to map them all to a common attribute of a common relation. For example,

consider the key:

account-number-key: (//country,(.//account, {savings-acc-number |
checking-acc-number}))

As per this key, bothSavings-acc-number andChecking-acc-number need to be mapped

to the same column of the relationAccount. Thus, the nodes corresponding toSavings-acc-

number andChecking-acc-number from the schema tree should be associated.

4.2.3 From Schema Tree to Table Configuration

In the next step, the XML-to-relational mapping procedure proposed in LegoDB [5] is used in

Elixir to create the table configuration, with an enhancement to handle the associated trees, as

described below:

1. Create table TN corresponding to each annotated nodeN , with a key column, and a

parent-id column that points to a key column of the table corresponding to theclosest

named ancestorof the current node, if it exists.

2. If the annotated node is a simple type, then TN additionally contains a column corre-

sponding to that type to store its values.

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 38

city

branch-office atm

id

*
account

savings-acc-number checking-acc-number

balance

state

,

name ,

*

,

,

address

,
,

id address

,

head-office

(City)

(Branch-office)
(Atm)

,

id address

(Account)

(Office-Id)

(Office-Id)

Figure 4.2: Partial Bank schema tree

3. For each associated group of descendants, create an additional column to which all de-

scendants in the group are mapped, and create a column to identify the descendant in the

group.

Note here that, in case of shared types, it is possible that two or more path expressions map

to same relational schema. For shared types, we create the column corresponding to all parents,

which stores ids for respective parents. Thus, it is possible to reverse the mapping without

losing semantics.

For example, executing the above process on the schema tree shown in Figure 4.2 leads to

the relational configuration, which is as follows:

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 39

TABLE City (

City-id-key INT ,

name STRING,

state STRING ,

Head-office-address STRING ,

parent-country INT)

TABLE Branch-office (

Branch-office-id-key INT ,

address STRING ,

parent-City INT)

TABLE Office-Id (

Office-id-key INT ,

id STRING ,

parent-City INT ,

parent-Branch-office INT)

TABLE Atm (

Atm-id-key INT ,

id INT ,

address STRING ,

parent-City INT)

TABLE Account (

Account-id-key INT ,

Savings-or-checking-acc-number INT ,

acc-number-flag INT ,

balance INT ,

parent-City INT)

Note here that the relational configuration consists of five tables corresponding to the

type namesCity , Branch-office , Office-Id , Atm , and Account . All the simple types

are mapped to columns. The associated tree ofSavings-acc-number andChecking-acc-

number is mapped to columnSavings-or-checking-acc-number , and an additional col-

umn,acc-number-flag , is created for identifying the account number type.

4.2.4 Incorporation of Relational Keys

After mapping the XML schema to tables, the final step is to incorporate the relational keys that

are equivalent to the original XML keys. Since Elixir restricts its attention tovalid schema trees,

it is assured that the subtreestP1 , . . . , tPp will always have the parent with the same type name,

which means that they will all get mapped to columns of a single relation. LetCP1 , . . . , CPp be

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 40

these corresponding columns of the relation TN , and letE be thecontext element. The relational

key is now defined as follows:

• If E is an immediate parent ofN , then there must be a column, namedparent-E, storing

the key forE. Otherwise, add an additional columnparent-Eto TN for storing the Id

of ancestor elementE. Theparent-Ecolumn is required to distinguish between different

contexts created by context elementE.

• Create{CP1 , . . . , CPp , parent-E} as a key/unique for relation TN .

For example, consider the following relational configuration obtained after the second step

for typeAccount :

TABLE Account (

Account-id-key INT,

Savings-or-checking-acc-number INT,

acc-number-flag INT,

balance INT,

parent-City INT)

Note here that for typeAccount , a relation namedAccount is created. The asso-

ciated tree ofSavings-acc-number and Checking-acc-number is mapped to column

Savings-or-checking-acc-number , and an additional column,acc-number-flag , is

created for identifying the account number type. All the remaining simple type children are

mapped to columns of relationAccount.

For the XML keyaccount-number-key, the context element iscountry, which is not an im-

mediate parent ofAccount . Therefore, a column has to be added toAccount relation, which

refers to country-id-key and create key as{Savings-or-checking-acc-number ,

parent-Country }. The resulting final relational configuration is as follows:

TABLE Account (

Account-id-key INT,

Savings-or-checking-acc-number INT,

parent-Country INT,

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 41

acc-number-flag INT,

balance INT,

parent-City INT)

A similar process to the above can be used for integratingkeyref constraints – the only

difference is the following: LetKr be the relational key corresponding to XML key/uniqueK,

obtained using above rule, and letR be the keyref that refers toK. Use same rule forR with a

change that instead of defining key/unique, define the foreign key that refers toKr.

For example, consider a keyrefcustomer-account: (//country,(./customer,{acc-

number})) KEYREF account-number-keyand the relation for typeCustomer is as follows:

TABLE Customer (

Customer-id-key INT,

Cust-id INT,

Name STRING,

Address STRING,

Acc-number STRING,

parent-Country INT)

For the XML keyrefcustomer-account, the context element iscountry, which is an imme-

diate parent ofCustomer . There is no need to add column toCustomer relation that

refers tocountry-id-key , as it is already present. Create foreign key as{Acc-number ,

parent-Country }, which refers to the relational key equivalent toaccount-number-keyi.e.

{Savings-or-checking-acc-number , parent-Country } of Account .

4.3 Integration with Cost-based Search

Cost based strategies explore the optimization space, by applying various transformations to the

XML schema, and evaluating the costs of the corresponding relational configurations. A rich set

of transformations have been proposed in [5, 40], that exploit the regular expressions and typ-

ing present in XML Schema. These transformations includeInline/Outline, Type-split/merge,

Union distribution/factorization, andRepetition split/merge.

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 42

*
account

savings-acc-number checking-acc-number

balance

,
(Account)

(a) Before union distribution

*

account

savings-acc-number
checking-acc-number

balance

,

(SAccount)

account

(CAccount)

balance

,

(b) After union distribution

Figure 4.3: Union distribution of savings-acc-number| checking-acc-number

4.3.1 Filtering of Schema Transformations

As mentioned earlier, Elixir restricts the search space to onlyvalid schema treesby filtering out

the invalid schema transformations. In this section, we will explain the motivation for filtering

of transformations followed by the procedure for filtering invalid transforms.

Motivation

Consider union distribution ofaccount = savings-acc-number | checking-acc-number is

distributed (refer to Figure 4.3(a)) , then the resulting schema tree is shown in Figure 4.3(b)

and corresponding relational configuration will have account-numbers stored in two relations

as follows:

TABLE SAccount(

SAccount-id-key INT,

savings-acc-number INT,

balance INT,

parent-City INT)

TABLE CAccount(

CAccount-id-key INT,

checking-acc-number INT,

balance INT,

parent-City INT)

Here our goal is to map the XML key and keyref in the form of primary key and foreign

key, respectively. According toaccount-number-keyconstraint,savings-acc-number and

checking-account-number should be mapped to single column, in order to define the

relational key, thereby rendering the union distribution invalid. By avoiding this distribution,

the following relational configuration is obtained:

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 43

TABLE Account (

Account-id-key INT,

Savings-or-checking-acc-number INT,

parent-Country INT,

acc-number-flag INT,

balance INT,

parent-City INT)

This example shows that not all relational configurations obtained by schema transforma-

tions are valid. Thus, while exploring the search space of relational configuration, we need to

explore space of only valid relational configuration. The simple solution for this is that carry out

the transformation on schema tree and then check if relational keys equivalent to given XML

constraints can be defined on the resulting relational configuration. If it is not possible then

that relational configuration can be ignored otherwise it should be evaluated for the given query

workload. This solution results in to lot of unnecessary work, which can be avoided, if we can

detect the invalidity schema transformations before carrying out the schema transformation. In

remaining chapter, we discuss each schema transformations and rules for filtering these invalid

schema transformations.

Before we describe the schema transformations and filtering process in detail, the following

notions are required: Given an XML key, aKey Pathis the concatenation ofQ, Q′, Pi wherePi

is one component of thefield path. Thus, a key will haven key paths, wheren is the number

of field paths in that key. For Example,city-keyhas two key paths://country/city/name and

//country/city/state.

A subtreet of the schema tree is said to bereachableby pathP if its root node is traversed

while traversingP along schema treet. For example, considert = (branch-office | atm) in

Figure 4.1, withP being //country/city/branch-office/id. Traversingt according toP will

have to include the root node (”|”) in order to reach thebranch-office element. Thus, the

schema subtreet is reachable by pathP .

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 44

Union Distribution and Factorization

Union distribution can be used to separate out components of a union:(a, (b|c)) ≡ (a, b)|(a, c).

Conversely, the union factorization transform would factorize a union. Assume that uniont1|t2
is being distributed, wheret1 andt2 are subtrees of the schema tree.

This union distribution will be invalidated by the XML key constraints in the following two

cases:

Case 1: Consider the example discussed in previous section. Now we will try to analyze the

cause for invalidation. The subtrees corresponding tosavings-acc-number (t1) and

checking-account-number (t2). Note that both the subtrees are on same field path of

theaccount-number-keyconstraint. Thus, if the union distribution of these tree i.e.t1|t2
is distributed, then in the resulting configuration,t1 andt2 will be mapped to different

relations. In general,if subtreest1 and t2 are both on the same field path, then union

distribution of t1|t2 is invalid.

Case 2: Consider union distribution ofbranch-office (t1) and atm (t2), which results in a

relational configuration (incorrectly) storingname andstate in two separate relations

(refer to Figure 4.4). The analysis of this case shows that the union distribution oft1|t2,
where the siblings oft1 andt2 (i.e. name andstate) are key fields, result in distribution

of the key fields into multiple relations. This is also true even if sibling is not a key

field but its descendant is a key field. Thus, the general rule is thatif subtrees t1 and t2

are not on the field path, but their common parent is on the key path, then union

distribution of t1|t2 is invalid.

Turning our attention to Union Factorizations, we find that they arealways valideven in the

presence of constraints. The reason is that XML keys never imply that particular information

shouldnot be stored in a single relation, i.e. applying union factorization on a pair of elements

stored in different relations will result in storing these elements into individual columns of a

single relation. Thus, Union Factorization is valid in all cases.

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 45

city

branch-office atm

state

,

name ,

*

,

head-office

(City)

,

*
account

(Account)

(a) Before union distribution

branch-office

state

,

name ,

,

head-office

atm

*

state

,

name ,

,

head-office

*

city
(City1)

city
(City2)

,

*
account

,

*
account

(Account) (Account)

(b) After union distribution

Figure 4.4: Schema tree after union distribution of branch-office| atm

Type-Split and Type-Merge

Type-Split and Type-Merge are based on the renaming of nodes. A type is said to be shared

when it has distinct annotated parents. For example, in Figure 4.5(a), the typeId is shared by

the typesHead-office , Branch-office andAtm .

While, in principle, Type-Split and Type-Merge can be done with various subsets of the

type occurrences in the schema, earlier work [40] focused on the extremes oftype-split-alland

type-merge-all. For example, the typeId is fully split in Figure 4.5(b) intoHead-office-Id ,

Branch-office-Id , andAtm-Id . Similarly, while merging, full merging ofHead-office-Id ,

Branch-office-Id , andAtm-Id into typeId is attempted.

Consider the XML constraintsoffice-key: (//country, (./city/head-office | ./city/branch-

office, {id})) andatm-key: (//country, (./city/atm, {id})). In order to define the relational

keys foroffice-key, theHead-office-Id andBranch-office-Id should be mapped to the same

column, i.e. they should be type-merged, and foratm-key, Atm-Id should be mapped to the

other relation. According tooffice-keyandatm-key, both the transformations i.etype-split-all

andtype-merge-all, are invalid. Thus, we need to do selective type-merge and selective type-

split, as shown in Figure 4.5(c).

Let T be the type to be split andParent1, . . . , Parentn be the parents ofT with distinct

annotations. The following procedure is used for selective type-split/merge:

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 46

city

branch-office atm

id

,

*

id

head-office

(City)

(Head-office)

(Branch-office)
(Atm)

(Id) (Id)

id(Id)

(a) type-merge-all

city

branch-office atm

id

,

*

id

head-office

(City)

(Head-office)

(Branch-office)
(Atm)

id
(Head-offiice-Id)

(Branch-office-Id)
(Atm-Id)

(b) type-split-all

city

branch-office atm

id

,

*

id

head-office

(City)

(Head-office)

(Branch-office)
(Atm)

(Atm-Id)

id
(Office-Id)

(Office-Id)

(c)selective type split and merge

Figure 4.5: Type-Split and Type-Merge

Step 1: Do the type-split-all of T into T1, . . . , Tn corresponding to the parents

Parent1, . . . , Parentn.

Step 2: Group the parents into different classes according tokey paths.

Step 3: Merge typesTi whose parents are in the same class.

Consider the partial schema shown in Figure 4.5(a). In Step 1,Id is type-split asHead-

office-Id , Branch-office-Id andAtm-Id . In Step 2, classes of the parents are formed ac-

cording to key paths, which are{Head-office-Id , Branch-office-Id } and{Atm-Id }. Then,

parents in the same class are merged – thus,Head-office-Id andBranch-office-Id are type-

merged intoOffice-Id , as shown in Figure 4.5(c). This schema is consistent with theoffice-key

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 47

CUSTOMER

ADDRESS

NAME

ACC-NUMBER

+

CUST-ID

,

,

,

(Customer)

COUNTRY
(Country)

CUSTOMER

ADDRESS

NAME

ACC-NUMBER

CUST-ID

,

,

,

CUSTOMER

ADDRESS

NAME

ACC-NUMBER

CUST-ID

,

,

,

(Customer)
*

,
COUNTRY

(Country)

(a) Before Repetition Split (b) After Repetition Split

Figure 4.6: Example of Repetition Split

andatm-keyconstraints. The selective merge is necessary because it assures that type splits,

which violate any key, will be filtered.

A similar procedure can be used for type-merge, which is as follows: Group the parents into

differentkey classesaccording tokey pathsand place the remaining parents in a separate class,

calledNon-key class. The classes formed i.e.key classesandNon key class, represent the valid

type-merges.

For example, assume that Figure 4.5(b) is the input schema tree in which type Id is already

type-split. Thus, while exploring the relational configuration search space, the type merge of

Head-office-Id , Branch-office-Id andAtm-Id has to be considered. Grouping the parents

according to key paths results in twokey classes: {Head-office-Id , Branch-office-Id } and

{Atm-Id }, while Non key class is {}. Thus, it is valid to type-mergeHead-office-Id and

Branch-office-Id , as in Figure 4.5(c).

Repetition Split and Merge

Repetition Split and Merge exploit the relationship between sequencing and repetition in regular

expressions by turning one into the other. They are based on the law over regular expressions

(a+ == a, a∗).
Consider the repetition split of typeT. Let E1, E2, . . . , En be the children ofT, which could

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 48

be of type element or attribute. If at least one of the children ofT is on the field path, then

the repetition split is invalid because then the child becomes mapped to two elements. For

example, consider repetition split ofcustomer (refer to Figure 4.6 under constraintcustomer-

key: (//country, (./customer, {cust-id})). Repetition split of typeCustomer , followed by

inlining will result in storingcust-id in two relations, conflicting our goal of defining a relational

key corresponding tocustomer-key. Thus, this repetition split is invalid.

Note that, like union factorization and for the same reason, repetition merge is always valid.

Type Inline and Outline

A type can be outline or inlined by, respectively, annotating a node or removing annotations.

For each key, the process of determining inline or outline for the element can be done in two

steps:

Step 1 :

Outline-all-field-paths = false

For each field path of field

Let field-tree = tree obtained by associating different

paths in the fieldP1, . . . , Pp

Inline all the elements of field tree

If field-tree is shared

(i.e. their parents are mapped to different relations) then

Outline-all-field-paths = true

Step 2:

Let final-tree = associate all trees of fields

If Outline-all-field-paths then

outline root of final tree.

Letfield-treebe the tree obtained by associating different paths of the field path, and letfinal-

treebe the tree obtained after associating all field trees corresponding to field pathsP1, . . . , Pp.

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 49

The first step performs the inlining of all field-trees and checks if any of these trees are shared.

The second step associates all the field-trees and then, if there are one or more shared field-trees,

outlines the root of the final-tree so that all the field-trees are mapped to the same relation.

According to account-number-keyconstraint, Savings-acc-number and Checking-

acc-number should be mapped to the same column of the relationAccount . Thus, the nodes

corresponding toSavings-acc-number andChecking-acc-number from the schema tree

should be associated. The field tree corresponding to the field path ofaccount-number-keyis

the tree obtained after associating the trees corresponding toSavings-account-number and

Checking-account-number . Since this field tree is not shared, the associated tree is inlined

in the typeAccount . Foroffice-keyconstraint, the final tree will containid. Since it is shared

betweenhead-office andbranch-office, the tree should be outlined.

4.3.2 Evaluating Configuration Efficiency

The XML schema tree obtained by applying the transformations is translated to relational con-

figurations using the procedure explained in Section 4.2. The quality of the new relational

configuration is assessed by computing cost estimates of executing the given query workload.

This requires accurate statistics but since it is not practical to scan the base data to produce

the statistics for each derived relational configuration, it is crucial that these statistics be accu-

rately propagated as transformations are applied [40]. Merge operations preserve the accuracy

of statistics, whereas split operations do not. Hence, in order to preserve the accuracy of the

statistics, before the search procedure starts, all possible valid split operations are applied to the

user-given XML schema, resulting in the so-called “fully-decomposed” schema [22]. Statis-

tics are then collected for this fully decomposed schema, and subsequently, during the search

process, only valid merge operations are considered. We use StatiX [22] to collect statistics of

the filtered decomposed schema i.e. the schema obtained by applying only valid distributive

transformations, and the cost of executing the query workload is obtained from the backend

relational optimizer.

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 50

4.4 Experimental Evaluation

In this section, we present our experimental evaluation of the Elixir system. Specifically, we

investigate the performance effects of source-centric inclusion of keys in the mapping process.

4.4.1 Experimental settings

We carry out the experiments on the 4 real-world schema –Genex[23], EPML [20], ICRFS

[26], TourML [50] and a synthetic XMark benchmark schema. Using the ToXgene tool [51],

three types of documents were generated for each XML schema by varying the distribution

of elements asall-uniform, uniform-exponential, andall-exponential, resulting in documents

with uniform data, moderately skewed data, and highly skewed data, respectively. The query

workload involves 10 representative queries for each XML schema. The number of joins in

SQL equivalent of the query workload range from 5 to 15.

4.4.2 Effect of Keys

To serve as a baseline for assessing the effect of key inclusion, we compare the performance of

Elixir (in the absence of other features like indices, triggers, and views) with that of FleXMap

(FM) [40], which is a framework for expressing XML schema transformations and for searching

the equivalent relational configuration space. Specifically, we compare against the DeepGreedy

(DG) search algorithm, which was found to be the best overall among the various search alter-

natives considered in [40].

Runtime Efficiency

We first compare the runtime efficiency of Elixir and FleXMap with regard to the following

metrics: (a) The percentage reduction in search space, and (b) The time speedup due to this

reduction. The average number of transformations evaluated by Elixir and FM are shown in

Figure 4.7(a) for the five XML schemas. We see there that the reduction ranges from 30% to

60%, arising out of the restrictive distributive transformation and selective merging transfor-

mations discussed in Section 4.3. For example, for the ICRFS schema, the average numbers

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 51

0

1000

2000

3000

4000

5000

6000

XML Schemas

A
ve

ra
g

e
N

u
m

b
er

 o
f

T
ra

n
sf

o
rm

at
io

n
s

FM
Elixir

Genex EPML ICRFS TourML XMark

(a) Comparison of Search space

0

100

200

300

400

500

600

XML Schemas

A
ve

ra
g

e
T

im
e

(i
n

 M
in

.)

FM
Elixir

Genex EPML ICRFS TourML XMark

(b) Comparison of Time efficiency

Figure 4.7: Impact of Keys

of transformations performed by FleXMap are about 1860, whereas Elixir only requires about

860.

The time speedup due to the search space reduction is shown in Figure 4.7(b), which cap-

tures the average time required to obtain the final relational configuration for the same set of

schemas. Here, we observe that the runtime reductions range from 50% to 85%.

It is interesting to note here that the speedup issuper-linearin the percentage space re-

duction. For example, the 50% search space reduction for ICRFS may be expected to result

in a speedup of 2, but the speedup actually obtained is greater than 4. The reason for this is

as follows: A given XQuery workload satisfies more paths in the fully decomposed schema

of FleXMap resulting inmore subqueriesin the equivalent SQL workload, as compared to the

number derived from the restrictive decomposed schema of Elixir. Thus, the time required for

evaluating the cost of an individual transformation using the relational optimizer is more for

FleXMap than for Elixir. In a nutshell, Elixir has “fewer and cheaper” transformations.

Table Configuration Quality

We also compared the quality of the final relational configuration in terms of thecostof execut-

ing the user query workload, and the results are shown in Table 4.1. In this table, the∗ indicates

situations where the final FleXMap configuration did not satisfy the key constraints. Note here

CHAPTER 4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 52

all-uniform uniform-exponential all-exponential
FM Elixir FM Elixir FM Elixir

Genex ∗ 6193 6459 3367 ∗ 6191
EPML 2335 1707 ∗ 1151 ∗ 425
ICRFS 4565 4249 ∗ 4414 ∗ 9630

TourML ∗ 11817 ∗ 3356 ∗ 5146
XMark 2626 1956 ∗ 1453 3265 1645

Table 4.1: Cost of final relational configuration

that the final relational configuration (valid or invalid) is dependent on the data statistics. The

reason for this is different set of transformations are selected in tuning process for different data

statistics and resulting in different relational configuration.

In the remainder, we see that Elixir typically obtains configurations that are significantly

lower cost as compared to FleXMap. The primary reason for the improvement is that Elixir

explores an additional part of the overall search space of relational configurations due to per-

forming selective type-merge/split guided by the XML key constraints.

Chapter 5

Index Selection in Elixir

In this chapter, we discuss a different component of the holistic mapping, namely deciding on

the best choice of relationalindices, given a disk space budget. As mentioned earlier, Elixir

takes the approach of finding a good set of indices in the XML space and then mapping them

to equivalent indices in the relational space. This is marked contrast to the technique recently

advocated by Microsoft researchers [10], where they use the index advisor of the SQL Server

relational engine to propose a good set of indices.

Solving logical design and physical design independently leads to suboptimal performance

[10] (i.e. if we first select logical mapping without considering physical design and then opti-

mize the physical design of selected mapping leads to suboptimal performance) . On similar

lines, Elixir explores the combined space of logical design (relational mapping by means of

schema transformations) and physical design (index selection).

For finding good XML indices, we leverage the recently proposed XIST tool [42], which

makespath indexrecommendations for given input consisting of an XML schema, query work-

load, data statistics, and disk budget. The benefit of an index is assessed by comparing the total

execution costs for all queries in the workload with and without the index, and this benefit is

compared against the cost of updating the index. Finally, the most effective set of indices that

fit within the given disk budget is recommended.

A variety of path indices have been proposed for native XML databases, including

DataGuide [24], T-index [37], APEX [16], etc. In object-oriented databases too, path indices

53

CHAPTER 5. INDEX SELECTION IN ELIXIR 54

Candidate Path Selection

Candidate Paths

 Heuristics-based
Benefit Computation

 Cost-based
 Benefit Computation

 Configuration Enumeration

Target Workload

Selected Indices

Schema Query Workload Data Statistics

XIST

Figure 5.1: The XIST architecture

are used for efficient processing of queries [3]. However, the path index concept is not directly

available in relational databases and therefore a mapping has to be established between the path

indices and the defacto standard B-tree indices used in the relational world.

In this chapter, we describe the XIST tool in detail and the issues involved in mapping the

XIST choices to the relational world, which are as follows: Firstly, a strategy to convert path

indices to equivalent relational indices has to be designed (Section 5.2). Secondly, the disk

space usage of therelational indicesshould be within the user-specified budget – therefore, an

equivalence mapping between the disk budgets in the two spaces has to be identified (Section

5.3). Finally, the XQuery-to-SQL translation process should take advantage of the presence of

the relational indices (Section 5.4).

5.1 XIST tool

Figure 5.1 shows an overview of XIST [42], which consists of four modules that adapt to

a given set of input configuration. The first module is thecandidate path selectionmodule,

CHAPTER 5. INDEX SELECTION IN ELIXIR 55

africa

item

samerica

(Item)

(Africa) (Samerica)

mailbox

*

mail

(Mailbox)

from to text
(Mailbox.text)(Mailbox.from) (Mailbox.to)

regions

site(Site)

* *

Figure 5.2: Example relational configuration

which eliminates a large number of potentially irrelevant path indices. It uses the following two

techniques: (i) If the query workload is available, this module eliminates paths that are not in

the query workload, and (ii) If the schema is available, the tool identifies and prunes equivalent

paths that can be evaluated using a common index.

To compute the benefits of indices on candidate paths, XIST use either thecost-based ben-

efit computationmodule or theheuristic-based benefit computationmodule, depending on the

availability of data statistics. When data statistics are available, the cost based benefit compu-

tation module is employed. When data statistics are not available, the heuristic-based benefit

computation module is operated instead.

The last module isconfiguration enumeration, which in each iteration chooses an index

from the candidate index set that yields the maximum benefit. The configuration enumeration

module continues selecting indices until a space constraint, such as a limit on the available disk

space, is met.

5.2 Path Index to Relational Index conversion

We now discuss a strategy to convert path indices to equivalent relational indices. Consider

an XML-to-relational mapping, as shown in Figure 5.2 for a fragment of XMark benchmark

schema [53]. A non-leaf node is annotated with a relation name, while a leaf node is anno-

CHAPTER 5. INDEX SELECTION IN ELIXIR 56

tated with the name of a relational column. RelationsSite , Africa , . . ., Samerica , Item ,

andMailbox are created for elementssite, africa, . . ., samerica, item, andmailbox, respec-

tively. For this environment, assume that the following path index,PI, has been recommended:

/site/regions/africa/item/mailbox/mail/from. To evaluate this path index, the four relations{
Site , Africa , Item , andMailbox } have to be joined.

5.2.1 Naive approach for converting Path Index to Relational Index

An obvious translation process for converting Path Index to Relational Index, is to sim-

ply build the indices on the key and foreign-key pair for each parent-child involved in the

path, namely areSite.Site-id-key , Africa.parent-Site , Africa.Africa-id-key ,

Item.parent-Africa , Item.Item-id-key andMailbox.parent-Item .

If we assume that for each relation, the column that stores IDs is defined as the primary key,

and that relational engines by default create an index on the primary key column, then the ad-

ditional indices that have to be created areAfrica.parent-Site , Item.parent-Africa ,

andMailbox.parent-Item . Further, a value index has to be created onMailbox.from to

reflect the last element (from) in the path index, which is of simple type.

Overall, the single path index has resulted in four (additional) relational indices. As indices

are available on all the join attributes, the resulting join query can be evaluated efficiently.

However, the drawback of this approach is that the number of relational indices that need to

be created for a path index is a function of the path length, and can therefore become very

expensive to maintain.

5.2.2 Approach based on concept ofequivalence classes

We propose an alternative and less expensive approach, which use the concept ofequivalence

classes[42] to reduce the number of relational indices. To explain this approach we first explain

the concept of equivalence classes of XML schema, followed by detailed algorithm.

CHAPTER 5. INDEX SELECTION IN ELIXIR 57

Algorithm 3 Converting Path Index to Relational Indices
Function: ConvertIndex
Input: rT : tables,xPI: Path index,EQ: path equivalence classes
Output: rT ′: tables,rI: relational indices equivalent toxPI
1: let e1/e2/ . . . /en = xPI;
2: split paths = SplitPath(xPI, EQ); // Split path index according to equivalence groups
3: rI = {}; rT ′ = rT ;
4: let {c1,c2,. . .,cm} be the EQ groups for splitpaths{p1,p2,. . .,pm}
5: for i = 2 to mdo
6: Tei = table fromrT ′ to which last element ofpi is mapped;
7: Tei−1 = table fromrT ′ to which last element ofpi−1 is mapped;
8: Add column (C) toTei which stores information about the parent fromTei−1;
9: Define foreign key on column (C) ofTei, which refers to key ofTei−1;

10: rI = rI ∪ {(Tei,C)}
11: end for
12: if last element ofpm is of simple typethen
13: (Tem,Cem) = relation and column to which last element ofpm is mapped;
14: rI = rI ∪ {(Tem,Cem)}
15: end if
16: return (rT ′, rI)

Equivalence classes

Two pathsP1 andP2 are in the same equivalence class, if the evaluation of both paths against

XML data results in selection of the same nodes. These equivalence classes can be determined

directly from the XML schema and are valid for all XML documents conforming to the XML

schema. The detailed algorithm to establish equivalence classes is given in [42].

For example, the pathssite/regions/africa, regions/africa, andafrica belong to a common

equivalence class. However, the pathsafrica/item and item are not in the same equivalence

class because the pathafrica/item matches with the items that are children of theafrica element,

whereas theitem path matches toall item nodes, some of which may not be children of the

africa element.

Detailed Algorithm

Based on the above approach, we have developed a procedure that uses the path equivalence

classes (EQs) to convert the index to relational indices corresponding to each EQ on the path

(refer to Algorithm 3).

CHAPTER 5. INDEX SELECTION IN ELIXIR 58

Algorithm 4 Algorithm to split path according to path equivalence classes

Function: SplitPath
Input: P : Path,EQ: path equivalence classes
Output: split paths: split paths according to EQs

1: j=n; split paths = {};
2: while j > 1 do
3: let ei/ . . . /ej be the longest equivalent path ofej;
4: split paths = split paths ∪ {ei/ . . . /ej};
5: j = i-1;
6: end while
7: return (split paths)

In this algorithm, the first step is to split the path index such that each sub path corresponds

to different equivalence classes (line 2). For details of SplitPath refer to Algorithm 4. For each

equivalence class, the information about the closest parent that is mapped to a relation and is

from the previous equivalence class is stored (lines 4 through 11). Then, indices on the columns

added in previous step are created (line 10). If the last element of the path index is of simple

type, then an index is created on the column to which it is mapped (lines 12 through 15).

To make the above algorithm concrete, consider the path index,PI =

/site/regions/africa/item/mailbox/mail/from. In the first step, PI is split into

/site/regions/africa and /item/mailbox/from. The next step adds the column

parent-Africa to the relationMailbox , and an index is created on this column, namely,

Mailbox.parent-africa . Also since the last element,from, is of simple type, an index is

created on theMailbox.from column. Note that overall, the path indexPI has resulted in

only two relational indices (as compared to the four of the naive approach).

5.3 Disk Budget Maintenance

The user-specified disk budget of XML indices has to be considered with regard to the space

occupied by the equivalentrelational indices. To estimate the size of the relational indices, we

use the following heuristic formula, which computes the size of the index using the cardinality

of the table (N) and size (Sic) of the data type of that column as inputs. The column statistics

can be obtained from the XML data statistics of the corresponding type [22]. Assuming the

CHAPTER 5. INDEX SELECTION IN ELIXIR 59

index is implemented as B+ tree, the size of index can be calculated as follows:

Let Sic = total size of the indexed columns

Let Spage = size of page typically 4KB

Let Sptr = size of the pointer typically 4 bytes

Let Pk = Total number of keys in a page =Spage

Sic+Sptr

Then Size of the Index (SI) is given as

SI =
N

Pk ∗ average page occupancy factor
∗ Spage (5.1)

Note that, here we assume thataverage page occupancy factor is 0.69, which is the typ-

ical fill factor for B+ tree index [54].

5.4 Query Rewriting for Path Indices

Recent work [34] has discussed use of integrity constraints information to guide XQuery-to-

SQL query translation. In this section, we focus on the use of available path indices to guide

XQuery-to-SQL query translation. XQuery-to-SQL translation, which is aware of the available

path indices, can derive a more efficient rewriting of the query.

The procedure for achieving this conversion is described in Algorithm 5. Here, the first step

is to identify all paths in the schema that satisfy the query (line 2). For each path, split the path

such that each sub path is either an element or is a path corresponding to the available path index,

and then compute the path equivalence classes for each sub path. This can be achieved by first

splitting the path using the SplitPath function of Algorithm 4 and then finding the equivalence

classes for each split path (lines 6 through 15). The relational query components are generated

by joining the relations corresponding to the EQ classes (line 16), and the final query is the

union of all these queries (line 23).

Consider the example query

FOR $mail = /site/regions/africa/item/mailbox/mail

WHERE $mail/from/text() = "priti@dsl.serc.iisc.ernet.in"

RETURN count($mail)

CHAPTER 5. INDEX SELECTION IN ELIXIR 60

Algorithm 5 Algorithm for Translating XQuery-to-SQL
Function: TranslateToSQL
Input: rT : Tables with statistics,xPI: Path indices,EQ : path equivalence classes,xW : XML query

workload
Output: W SQL : SQL queries equivalent toxW
1: for all q in xW do
2: let paths = all paths in the schema that satisfy the query
3: SQL = {};
4: for all P in paths do
5: let ep1/ep2/ . . . /epn = P ; //epi is either an element or a available path index (xPI)
6: path EQs = {}
7: for i = 1 to ndo
8: if epi is elementthen
9: path EQs = path EQs ∪ {epi};

10: else
11: path EQs = path EQs ∪ SplitPath(epi, EQ);
12: end if
13: end for
14: join relations = {};
15: let {c1,c2,. . .,cm} be theEQ classes forpath EQs {p1,p2,. . .,pm}
16: P SQL = join of available tables formrT corresponding to theEQ classes
17: SQL = SQL ∪ P SQL;
18: end for
19: W SQL = W SQL ∪ {query which is union of all queries that are in SQL}
20: end for
21: return (W SQL)

The relevant pathP here is/site/regions/africa/item/mailbox/mail/from. If there is no path

index onP , then the SQL translation of the above query will be as follows:

SELECT count(*)

FROM Site S, Africa A, Item I, Mailbox M

WHERE S.site-key = A.parent-site

AND A.africa-key = I.parent-africa

AND I.item-key = M.parent-item

AND M.from = ’priti@dsl.serc.iisc.ernet.in’

On the other hand, if a path index onP is available, then the translation module uses this

information to translate the query as follows:

SELECT count(*)

CHAPTER 5. INDEX SELECTION IN ELIXIR 61

FROM Africa A, Mailbox M

WHERE A.africa-key = M.parent-africa

AND M.from = ’priti@dsl.serc.iisc.ernet.in’

5.5 Experimental evaluation

We compare Elixir, with its path-index-based selection, against two alternatives:BasicDB2,

where the system has only its default primary key indices, andDB2Advisor, where DB2’s Index

Advisor tool is used to suggest a good set of indices which is on similar lines to Microsoft

researchers work in [10].

We report here the results of experiments, on two real world schemas: EPML [20], ICRFS

[26] and a synthetic XMark benchmark schema [53] with various sizes of XML documents

ranging from 1 MB to 500 MB. The query workload involves 20 queries (with identical fre-

quencies).

The index disk budget was set to be 10 percent of the space occupied by the XML docu-

ment repository, a common rule-of-thumb in practice. The results for this set of experiments are

shown in Figure 5.3, where we see that the cost of the final relational configuration is signifi-

cantly lower for Elixir as compared toBasicDB2as well asDB2Advisor. The results obtained

for other schemas were also similar.

Analysis of the set of indices chosen by Elixir andDB2Advisoris summarized as follows:

The SQL workload equivalent to the given XQuery workload involves several joins. DB2 at-

tempts to improve the query performance by creating multicolumn indexes or single column

indexes with include clause. Elixir, on the other hand, uses the path indices suggested by XIST

and converts path indices to equivalent single column relational indices. The set of indexes

chosen by DB2Advisor and Elixir are quite different in that the overlap is only between 20 %

and 50 %.

CHAPTER 5. INDEX SELECTION IN ELIXIR 62

0

0.2

0.4

0.6

0.8

1

Document Size

R
el

at
iv

e
C

o
st

BasicDB2
DB2Advisor
Elixir

1 MB 10 MB 100 MB 500 MB

(a) For EPML schema

0

0.2

0.4

0.6

0.8

1

Document Size

R
el

at
iv

e
C

o
st

BasicDB2
DB2Advisor
Elixir

1 MB 10 MB 100 MB 500 MB

(b) For ICRFS schema

0

0.2

0.4

0.6

0.8

1

Document Size

R
el

at
iv

e
C

o
st

BasicDB2
DB2Advisor
Elixir

1 MB 10 MB 100 MB 500 MB

(c) For XMark schema

Figure 5.3: Impact of Index selection with space constraint

Chapter 6

Mapping of XML Triggers and XML Views

Having described core components of holistic schema, we move on to specialized components

like XML triggers and XML views. In this chapter, we describe how XML triggers and XML

views are mapped in Elixir.

6.1 XML Triggers

In order to make XML repositories fully equipped with data management capabilities, suitable

query and update languages are being developed. However, once the user is allowed to perform

updates, it is perceivably necessary to guarantee the correctness of his/her updates, especially

if document validity or semantic constraints are violated [6]. This problem can be addressed

by exploiting the well-grounded concept of active rules. In [6], authors have proposedAc-

tive XQuery, which is an active extension to W3C proposed standard XQuery [4] language for

defining XQuery triggers. As XQuery triggers (XML triggers) are not part of standard , we have

used the extension of XQuery for defining triggers, which is proposed in [6]. In this section, we

discuss how XML triggers are mapped by Elixir.

6.1.1 Mappable XML Triggers and Non-mappable XML Triggers

Our main goal of handling XML triggers in Elixir is to map the XML triggers to SQL triggers.

Compared to relational updates XQuery updates can be seen as bulk statements since they

63

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 64

may involve arbitrarily large fragments of documents that are inserted or dropped by means

of single statement. For example consider a fragment of Bank schema (refer to Figure 4.2) and

corresponding relational mapping. When bank sets up its operation in new city, the application

performs insert query on the XPath /bank/country/city, which is as follows:

FOR $country IN /bank/country

WHERE $country/ name/text() = "INDIA"

UPDATE $country/ city {
INSERT

<name>Nasik</name>

<state>Maharashtra</state>

<head-office>...</head-office>

<branch-office>...</branch-office> ...

<atm>...</atm> ...

<account>

<savings-acc-number>201</savings-acc-number>

<balance>1232423</balance>

</account> ...

}
Above insert XQuery results into several SQL insert queries that are as follows:

INSERT INTO City (1000,’Nasik’,’Maharashtra’, ...)

INSERT INTO Branch-office (...)

...

INSERT INTO Office-Id (...)

...

INSERT INTO Atm (...)

...

INSERT INTO Account (...)

...

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 65

Consider an XML trigger, which sends e-mail to all customers who are from the same

country as that of inserted city, for giving information about newly opened offices and ATMs.

CREATE TRIGGERNewCityTrigger

AFTER INSERT OF/bank/country/city

FOR EACH NODE

DO (

LET $city-name = NEW NODE/name

LET $city-state = NEW NODE/state

LET $city-head-office-id = NEW NODE/head-office-id

LET $city-head-office-address = NEW NODE/head-office-address

LET $city-branch-offices = NEW NODE/branch-office

...

FOR $customer IN NEW NODE/../ country/ customer

send-email ($customer, $city-name, $city-state, $city-head-office-id,

$city-head-office-address, $city-branch-offices,...)

)

The above trigger needs to be executed after all the insert statements to relationsCity ,

Branch-office , Office-Id , Atm, Account are executed. However, in relational SQL trig-

gers, we cannot specify triggering operation as a set of operations on different tables. Clearly,

such XML triggers are not mappable to relational triggers. We refer to such triggers asnon-

mappable XML triggers. If we can define the SQL trigger, which has same semantics as that of

XML trigger, then such XML triggers are called asmappable XML triggers. Elixir mapsmap-

pable XML triggersto SQL triggers andnon-mappable XML triggersto stored procedure, which

can be called by middleware at runtime. Cost of SQL triggers that are invoked by the query are

taken into account by relational optimizer. To model cost of thenon-mappable triggers, Elixir

adds query workload equivalent tonon-mappable triggersto input query workload.

6.1.2 Detecting Mappability of XML trigger

Mappability of XML trigger is determined as follows:

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 66

• If the triggering time isBEFOREthen the XML trigger is always mappable. In case of

BEFOREtrigger, it is always possible to define equivalent SQL trigger on the relationR,

which corresponds to node identified by path specified intriggering operation. Trigger

action is executed before doing thetriggering operationon the relationR, which is the

exact semantics of XML trigger.

• If the triggering operation isDELETEthen the XML trigger is always mappable. Though

deletion operation on XPath (P) may cause the deletion of rows from different relations

(corresponding to node itself and its descendants), it can be written as oneDELETESQL

statement on single relationR. R is the relation corresponding to node identified byP .

Deletion of descendants of node is automatically done because of defining the foreign key

with CASCADE DELETEoption. Thus, if we define a delete trigger on relationR, then

integrity constraints are enforced before execution of trigger, which simulates the exact

semantics of delete XML trigger.

• If the triggering time isAFTERand triggering operation isINSERT or REPLACEthen

1. Convert XPath expressions specified in triggering event to simple XPath expressions

containing only child axis and no wild characters.

2. Group these simple XPath expressions according to the relation in which the nodes

identified by XPath are mapped.

3. For each group

– Check if all descendants of the elements or attributes, identified by XPath ex-

pression from group, are mapped to the same relation. This condition ensures

that SQL equivalent oftriggering operationcontains single insert or update

statement.

– Check if none of the elements other than descendants of the elements or at-

tributes, identified by XPath expressions from group, is mapped to the relation

corresponding to the group. This condition ensures that there are no false trig-

gers i.e. there are no triggers on the path, which are incorrect according to

semantics of corresponding XML trigger.

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 67

– If both of the above conditions (mappability conditions) are true then XML

trigger is mappable otherwise, it is non-mappable.

• If the triggering time isAFTERand triggering operation isRENAMEthen XML trigger

is not mappable.RENAMEoperation always involve two sub-operations i.e. insertion

followed by deletion. Thus, XQuery involvingRENAMEoperation on the given XPath

expression always result into more than one SQL statement causing the XML trigger to

be non-mappable.

For example consider a trigger as follows:

CREATE TRIGGER Office-or-atm-trigger

AFTER INSERT OF//id

...

Simple XPath expressions corresponding to //id are /bank/country/head-office/id |
/bank/country/branch-office/id | /bank/country/atm/id

Next step is to group the Simple XPath expressions according to relations. These groups are

as follows:

Group-1: /bank/country/head-office/id | /bank/country/branch-office/id

Group-2: /bank/country/atm/id

The relations corresponding to Group-1 and Group-2 areOffice-Id andAtm-Id , respec-

tively. As there are no descendants forid, mappability conditionsspecified earlier are true, thus

this XML trigger is mappable for both the groups.

XML trigger can result in more than one SQL trigger. For example, above XML trigger is

converted into two SQL triggers, one on relationOffice-Id and other on relationAtm-Id .

Note that, XML trigger could be mappable for some XPath expressions and non-mappable for

remaining XPath expressions.

6.1.3 Mappable XML trigger to SQL trigger

Different components of SQL triggers can be derived from XML trigger as follows:

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 68

name of SQL trigger: As explained earlier one XML trigger might be mapped to more than

one SQL trigger. If XML trigger is mapped to single SQL trigger then we can use the

XML trigger name to define SQL trigger. Otherwise, we generate unique name for each

trigger concatenating the name of XML trigger and relation (on which trigger is defined).

triggering time: Triggering time for SQL trigger is same as that of XML trigger i.e.BEFORE

or AFTER.

triggering operation type: Triggering operation type can be decided as per triggering opera-

tion specified in XML trigger.

• INSERT: If the node identified by XPath expression of XML trigger is of simple

type, then equivalent SQL of the insert XQuery on the specified path is an update

query. In this case triggering operation type in SQL trigger isUPDATEand the col-

umn that corresponds to the simple type. If the node identified by XPath expression

of XML trigger is nested element then operation type in SQL trigger isINSERT.

• DELETE: If the node identified by XPath expression of XML trigger is of simple

type, then equivalent SQL of the delete XQuery on the specified path is an update

query (which sets its value toNULL). In this case, triggering operation type in SQL

trigger isUPDATEand the column that corresponds to the simple type. If the node

identified by XPath expression of XML trigger is nested element, then operation

type in SQL trigger isDELETE.

• RENAME: For mappable triggers,RENAMEoperation results in update SQL state-

ment. Thus, triggering operation type of SQL trigger should beUPDATE.

triggering granularity: NODE, STATEMENTlevel granularity can be defined in XML trigger;

these are mapped toROW, STATEMENTlevel granularity of SQL trigger, respectively.

trigger-condition: XML trigger condition can be converted to SQL trigger condition using

XML-to-SQL translator. In addition, trigger condition also have the queries correspond-

ing to checking of path filters specified in path oftriggering operation.

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 69

trigger-action: XML trigger action can be converted to SQL trigger action using XML-to-SQL

translator.

Consider XML triggerIncrement-Counterfor bank example. Here we assume that there is

an additional elementacc-counter that keeps track of number of accounts in a branch office

and customer has additional elementbranch that keep track of the branch from which he has

got account.

CREATE TRIGGERIncrement-Counter

AFTER INSERT OF //customer

LET $branch-id = NEW_NODE/ branch

FOR EACH NODE

DO (

FOR $branch-node = //branch-office

LET $counter = $branch-node/ acc-counter

WHERE $branch-node/ id=$branch-id

UPDATE $branch-node

{REPLACE $counter WITH $counter + 1 })

Using above procedure SQL trigger equivalent to above XML trigger is as follows:

CREATE TRIGGERIncrement-Counter

AFTER INSERT ON Customer

REFERENCING NEW ASnew_row

FOR EACH ROW

BEGIN ATOMIC

UPDATE Branch-office

SET Acc-counter = Acc-counter + 1

WHERE Branch-office.Id = new_row.Branch

END

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 70

6.1.4 Processing non-mappable XML Triggers

Non-mappable XML triggerscannot be mapped to equivalent relational trigger. The solution to

this is to map these triggers to stored procedure, which can be called by middleware at runtime.

Elixir model the cost ofNon-mappable XML triggersby including an additional, equivalent

query workload in the input XML query workload. We will first describe the mapping ofnon-

mappable XML triggerto stored procedure and then their incorporation in tuning process.

Non-mappable XML triggers to stored procedure

XML trigger action is converted to an equivalent stored procedure by converting XQuery state-

ments to SQL statements; the variables referred in trigger action are considered as parameters.

For example, the XML triggerNewCityTriggerdefined previously, the stored procedure corre-

sponding to this trigger is as follows:

CREATE PROCEDURENewCityTrigger (IN customer-name STRING,

IN city-name STRING, IN city-state STRING,...)

BEGIN

Send-mail(customer-name, city-name, city-state, ...)

END

Values of NEWNODE or NEWNODES, which are needed for computation of proce-

dure parameters, can be evaluated during XML-to-SQL translation. Values of OLDNODE or

OLD NODES can be evaluated by inserting appropriate select statement before their deletion.

For example translation of the insert query on city is translated as follows:

DECLARE city-name String;

DECLARE city-state String;

INSERT INTO City (1000,’Nasik’,’Maharashtra’, ...);

SET city-name = ’Nasik’;

SET city-state = ’Maharashtra’;

INSERT INTO Branch-office (...)

...

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 71

INSERT INTO Office-Id (...)

...

INSERT INTO Atm (...)

...

CALL NewCityTrigger(customer-name, city-name, city-state,...)

Incorporation of Non-mappable triggers in tuning process

As mentioned earlier, Elixir models the cost of non-mappable triggers by including additional

query workload in the input XML query workload. The query workload equivalent tonon-

mappable XML triggersconsists of two query categories:

1. Select queries that are used to evaluate the variables, which are passed as a parameter to

corresponding stored procedure. In addition, the select queries (insideWHENclause) that

are used to evaluate the condition of trigger.

2. Update queries, which are executed as a trigger action. These are the queries that become

part of stored procedure.

Target workload also consists of the frequencies of the queries. Calculation of the frequency

for the queries from additional workload can be done as follows:

• For each trigger, determine thetrigger-count(i.e. number of times the trigger is likely to

be triggered). This can be easily done by summing the frequencies of the queries, which

are likely to perform the triggering operation specified in the XML trigger.Trigger-count

can be used as the frequency for the select queries.

• If trigger is conditional thenactual-trigger-count(i.e. the number of time the trigger ac-

tion is performed) is less thantrigger-count. Rough estimates for theactual-trigger-count

can be obtained by giving the conditional query (specified in theWHENclause) to rela-

tional optimizer and then getting the cardinality of the result. This estimated cardinality to

actual cardinality is thefraction that indicates the probability with which the trigger will

be executed. Thus,actual-trigger-countcan be obtained as (fraction * trigger-count).

Actual-trigger-countcan be used as the frequency for update queries.

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 72

6.2 XML Views

The notion of views is essential in databases. It allows various users to see data from different

viewpoints. Although XQuery [4] currently does not provide standard for defining XML views,

we can easily extend it to include the definition of views [15] as follows:

”CREATE VIEWview nameAS” followed by FLWR expression

Above definition can be extended to define materialized XML views can be defined as follows:

CREATE MATERIALIZED VIEWview nameAS

FLWR expression

DATA INITIALLY (IMMEDIATE | DEFERRED)

REFRESH(IMMEDIATE | DEFERRED)

DATA INITIALLY IMMEDIATE clause allows user to populate data in table immedi-

ately. The clauseDATA INITIALLY DEFERREDmeans that data is not inserted as part of

theCREATE TABLEstatement. Instead, user has to do aREFRESH TABLEstatement to pop-

ulate table. Syntax forREFRESH TABLEis as follows:

REFRESH TABLEview name

Since the materialized view is built on underlying data that is periodically changed, user

must specify how and when he wants to refresh the data in the view. User can specify that

he want anIMMEDIATE refresh orDEFERREDrefresh. The clauseREFRESH DEFERRED

means that the data in the table only reflects the results of the query as a snapshot at the time

user issueREFRESH TABLEstatement.

Elixir maps XML views to relational views by translating XQuery to equivalent SQL query

and translates XQueries on the XML views to the SQL queries on relational views. Additionally,

if user specifies the materialized XML view, in order to improve the performance of XQueries,

then it is mapped to materialized relational views to improve the performance of equivalent

SQL queries.

For example, to make the balance inquiry faster user can specify the materialized XML view

as follows:

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 73

CREATE MATERIALIZED VIEWcustomer balance AS

FOR $customer IN // customer

FOR $account IN // account

WHERE $customer/ acc-number = $account/ savings-acc-number or

$customer/ acc-number = $account/ checking-acc-number

return

<customer-balance>

<id>$customer/ cust-id</id>

<acc-number>$customer/ acc-number</customer-acc-number>

<balance>$customer/ balance</balance>

</customer-balance>

DATA INITIALLY IMMEDIATE

REFRESH IMMEDIATE

Its equivalent relational materialized view can be specified as follows:

CREATE TABLEcustomer balance AS

(SELECT Customer.id, Customer.acc-number, Account.balance

FROM Customer, Account

WHERE Customer.acc-number = Account.Savings-or-checking-acc-number)

DATA INITIALLY IMMEDIATE

REFRESH IMMEDIATE

(Above syntax is for defining materialized query tables in DB2.)

6.3 Experimental Evaluation

In this section, we present our experimental evaluation of benefit obtained, due to inclusion

of XML Triggers and XML views, in the tuning process. We carry out the experiment on

two representative real-world XML schemas:EPML [20], ICRFS[26] and a synthetic XMark

benchmark schema [53].

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 74

0

0.5

1

1.5

2

2.5
x 10

4

XML Schema

C
o

st
 o

f
E

xe
cu

ti
n

g
 T

ri
g

g
er

s

w/o triggers
with triggers

XMark EPML ICRFS

Figure 6.1: Effect of XML triggers on tuning process

6.3.1 Effect of XML Triggers

To assess the effect of XML triggers in tuning process, for each schema, we created input

workload consisting of 10 read-only queries, 10 update queries, and 5 XML triggers. We carry

out two sets of experiments. First, we do not consider XML trigger while tuning and calculate

the cost of execution of triggers on the final relational configuration, referred asw/o triggers.

Other set of experiments considers triggers while tuning, referred aswith triggers. We compare

the cost of execution of triggers on the final relational configuration. Our experimental results

shows that cost for execution of triggers on the final relational configuration inwith triggersis

less than that inw/o triggersbecause inwith triggersfinal relational configuration get tuned to

triggered actions (refer to Figure 6.1).

6.3.2 Effect of XML Views

As mentioned earlier, Elixir maps materialized XML view specified by user to materialized

relational views, to improve the performance of equivalent SQL queries. For each schema,

we created 5 materialized views and 20 queries consisting of mix of view queries and non-view

queries. Note that, here we have considered only materialized views, because virtual views does

not affect cost of the query, and thus do not affect the tuning process. Our experimental results

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 75

0

1

2

3

4

5

6

7
x 10

4

XML Schema

C
o

st
 o

f
F

in
al

 R
el

at
io

n
al

 C
o

n
fi

g
u

ra
ti

o
n w/o views

with views

XMark EPML ICRFS

Figure 6.2: Effect of XML Views tuning process

shows that considering views in tuning process results in better final relational configuration

(refer to Figure 6.2).

6.4 Overall performance of Elixir system

The previous discussion highlighted the various techniques used in Elixir and their impact on

the final relational configuration. Summary of the techniques used in Elixir and their benefits is

given in table 6.1. Please note that a holistic comparison of relational schema quality can not be

done because the earlier mapping (FleXMap) can generate invalid schemas. Now, we present

the results for the running time of Elixir i.e. user response time. User response time is the

important metric for feasibility of the system. We report here the results of two representative

real-world XML schemas:EPML [20], ICRFS[26] and a synthetic XMark benchmark schema

[53]. Target workload consists of 20read onlyqueries and 10 update queries. For each schema,

we created 5 XML triggers and 5 materialized views for frequent queries. Figure 6.3 shows the

total time required and details about time required in different steps of tuning process – Map-

ping, Index selection, Optimizer. Mapping time is the time required to carry out the schema

transformations. The number of schema transformations done in tuning process depends on the

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 76

Technique Benefit

Key constraint propagation
Search space reduction : 30%-60% compared to FleXMap
Runtime reduction : 50%-85% compared to FleXMap
Better relational configurations

Source-centric index selection
Cost of final relational configuration is reduced by 35- 60%
as compared to that inDB2Advisor(target-centric index
selection)

Mapping XML triggers

Cost for execution of triggers on the final relational
configuration, obtained by considering triggers, is reduced
by 50-70% as compared to that when triggers are not
considered during tuning.

Mapping of XML views

Considering views in tuning process results in 65-75%
reduction of cost of final relational configuration as
compared to the cost when views are ignored during tuning
process.

Table 6.1: Summary of techniques used in Elixir

complexity of schema - such as number of repetitions, unions, similar types, nesting depth, etc.

In our experiments, total numbers of transformations tried out were as follows: 637 (XMark),

505 (ICRFS), 1673 (EPML). We can see that time required for schema transformation (map-

ping) is less than 10% of the total time (refer to Figure 6.3). Each schema transformation

corresponds to different relational configuration. For each relational configuration, indices are

selected using XIST and are converted to relational indices. The time required by XIST, for

index selection, ranges from 25% to 35%. Each relational configuration is evaluated using re-

lational optimizer. The time required for evaluation ranges from 60% to 70%, which involves

creation of tables in database, loading of statistics, getting cost from optimizer, and deletion of

tables. As we have implemented the system outside the relational engine, we cannot obtain the

cost without creating tables, loading statistics thus the time required for evaluation is more as

compared to other operations. If Elixir system is implemented inside relational engine, then the

time required for evaluation can be reduced.

CHAPTER 6. MAPPING OFXML T RIGGERS ANDXML V IEWS 77

0

100

200

300

400

500

600

XML Schema

T
im

e
(i

n
 M

in
.)

Mapping
Index Selection
Optimizer

XMark EPML ICRFS

Figure 6.3: Elixir Performance

Chapter 7

Conclusions

In this thesis, we studied the problem of producing holistic schema mappings from XML repos-

itories to relational backends. Our goal was to ensure both cost-based and source-centric opti-

mization of the mapping process. To this end, we proposed the Elixir system, which delivers

relational schemas that include table configurations, keys, indices, triggers, and views. The

system incorporates techniques for propagating keys through cost-based dynamic mappings, as

compared to the heuristic-based static mappings of the prior literature. Further, through a de-

tailed experimental study on real-world and synthetic schemas, we showed that incorporation

of keys substantially reduces the search space and runtime required for cost-based optimization,

as compared to FleXMap.

With regard to indices, we presented techniques for efficiently mapping source-centric index

choices (made by the XIST tool) to the relational target. Our experimental results comparing

this approach to using the relational engine’s index advisor indicate that better quality configu-

rations can be achieved with a source-centric approach.

Apart from the above core components, a holistic mapping includes other features such as

views, triggers, etc. Elixir incorporates the techniques for achieving their mappings to relational

world. Empirical results shows the improvement of final relational configuration obtained due

to consideration of XML Triggers and XML views in the tuning process of relational configu-

ration.

In a nutshell, the Elixir system attempts to make progress towards achieving “industrial-

78

CHAPTER 7. CONCLUSIONS 79

strength” mappings for XML-on-RDBMS.

7.1 Future Work

The work that we have presented in this thesis can be extended in the following ways:

• Elixir uses various schema transformations for exploring the search space of relational

configurations. These transformations includeInline/Outline, Type-split/merge, Union

distribution/factorization, andRepetition split/merge. These transformations only exploit

the structural relationship between various elements.

Some queries involve join of two different XPaths on the nodes that are semantically re-

lated (we refer these queries assemantic join queries). Merging of such semantically

related nodes i.e. mapping those nodes along with related information in single relation

will improve the performance ofsemantic join queries. Information about such semanti-

cally related nodes can be obtained from the integrity constraints defined in XML schema.

In future, we plan to study the transformations that use the semantic information from the

XML schema.

• As mentioned in Section 6.4, the run time performance of Elixir can be improved, if

implemented inside relational engine. In future, we are planning to implement Elixir

system insidepostgreSQL, an open source platform.

• Currently, Elixir maps the materialized views provided by user. In future, we plan to

incorporate the source-centric technique for recommendation of materialized views.

References

[1] S. Abiteboul. On Views and XML. InProc. of 18th ACM Symp. on Principles of Database

Systems (PODS), May 1999.

[2] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A Framework for Using

Materialized XPath Views in XML Query Processing. InProc. of 30th Intl. Conf. on Very

Large Data Bases (VLDB), August 2004.

[3] E. Bertino and C. Guglielmina. Path-Index: An Approach to the Efficient Execution of

Object-Oriented Queries.Data and Knowledge Engineering, 10, 1993.

[4] S. Boag and et al. XQuery 1.0: An XML Query Language, May 2001.

http://www.w3.org/TR/xquery/.

[5] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations: A cost

based approach to XML storage. InProc. of 18th IEEE Intl. Conf. on Data Engineering

(ICDE), March 2002.

[6] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. InProc. of 18th IEEE Intl.

Conf. on Data Engineering (ICDE), February 2002.

[7] J. Bosak and et al. W3C XML Specification DTD.

http://www.w3.org/XML/1998/06/xmlspec-report.

[8] T. Bray and et al. DCD (Document Content Description).http://www.w3.org/TR/NOTE-

dcd.

80

REFERENCES 81

[9] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML.Computer

Networks, 39(5), 2002.

[10] S. Chaudhuri, Z. Chen, K. Shim, and Y. Wu. Storing XML (with XSD) in SQL Databases:

Interplay of Logical and Physical Designs. InProc. of 20th IEEE Intl. Conf. on Data

Engineering (ICDE), March 2004.

[11] S. Chaudhuri and V. Narasayya. An Efficient, Cost–Driven Index Selection Tool for Mi-

crosoft SQL Server. InProc. of 23rd Intl. Conf. on Very Large Data Bases (VLDB),

September 1997.

[12] Y. Chen, S. Davidson, C. Hara, and Y. Zheng. RRXS: Redundancy reducing XML storage

in relations. InProc. of 29th Intl. Conf. on Very Large Data Bases (VLDB), September

2003.

[13] Y. Chen, S. Davidson, and Y. Zheng. Constraints preserving schema mapping from XML

to relations. InProc. of 5th Intl. Workshop on Web and Databases (WebDB), June 2002.

[14] Y. Chen, S. Davidson, and Y. Zheng. Validating constraints in XML. Technical Report

MS-CIS-02-03, Department of Computer and Information Science, University of Penn-

sylvania, 2002.

[15] Y. Chen, T. Ling, and M. Lee. Designing Valid XML Views. InProc. of 21st Intl. Conf.

on Conceptual Modeling (ER), October 2002.

[16] C. Chung, J. Min, and K. Shim. APEX: An Adaptive Path Index for XML Data. InProc.

of ACM SIGMOD Intl. Conf. on Management of Data, June 2002.

[17] J. Clark and et al. XML Path Language (XPath) Specification. W3C Recommendation, 16

November 1999.http://www.w3.org/TR/xquery/.

[18] S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository. InProc. of

27th Intl. Conf. on Very Large Data Bases (VLDB), September 2001.

[19] A. Conrad. A survey of Microsoft SQL Server 2000 XML features.

http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07162001.asp?frame=true.

REFERENCES 82

[20] EPC Markup Language.http://wi.wu-wien.ac.at/ mendling/EPML/.

[21] D. Florescu and D. Kossman. Storing and querying XML data using an RDBMS.IEEE

Data Engineering Bulletin, 22(3), 1999.

[22] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Statix: Making XML count. In

Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June 2002.

[23] Gene Expression Markup Language.http://www.ncgr.org/genex.

[24] R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and optimization in

semistructured databases. InProc. of 23rd Intl. Conf. on Very Large Data Bases (VLDB),

August 1997.

[25] IBM DB2 XML Extender. http://www-3.ibm.com/software/data/db2/extenders/ xm-

lext/library.html.

[26] ICRFS XML schema.http://www.insureware.com/abouti/ mlines.shtml.

[27] H. Jagadish and et al. TIMBER: A Native XML Database.The VLDB Journal, 11(4),

2002.

[28] H. Jiang, H. Lu, W. Wang, and J. Yu. XParent: An Efficient RDBMS-Based XML Data-

base System. InProc. of 18th IEEE Intl. Conf. on Data Engineering (ICDE), March 2002.

[29] C. Kanne and G. Moerkotte. Efficient Storage of XML data. InProc. of 16th IEEE Intl.

Conf. on Data Engineering (ICDE), February 2000.

[30] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth. Covering Indexes for Branching

Path Expressions. InProc. of ACM SIGMOD Intl. Conf. on Management of Data, May

2002.

[31] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting Local Similarity for Ef-

ficient Indexing of Paths in Graph Structured Data. InProc. of 18th IEEE Intl. Conf. on

Data Engineering (ICDE), February 2002.

REFERENCES 83

[32] M. Klettke and H. Meyer. XML and object-relational database systems - enhancing struc-

tural mappings based on statistics. InProc. of 3rd Intl. Workshop on Web and Databases

(WebDB), May 2000.

[33] R. Krishnamurthy, V. Chakaravarthy, and J. Naughton. On the Difficulty of Finding Opti-

mal Relational Decompositions for XML Workloads: a Complexity Theoretic Perspective.

In Proc. of 9th Intl. Conf. on Database Theory (ICDT), January 2003.

[34] R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient XML-to-SQL Query Transla-

tion: Where to Add the Intelligence? InProc. of 30th Intl. Conf. on Very Large Data

Bases (VLDB), August 2004.

[35] A. Layman and et al. XML-Data.http://www.w3.org/TR/1998/NOTE-XML-data.

[36] D. Lee and W. Chu. Constraints–preserving Transformation from XML Document Type

Definition to Relational Schema. InProc. of 19th Intl. Conf. on Conceptual Modeling

(ER), October 2000.

[37] T. Milo and D. Suciu. Index Structures for Path Expressions. InProc. of 7th Intl. Conf. on

Database Theory (ICDT), January 1999.

[38] Oracle XML DB: An oracle technical white paper.

http://technet.oracle.com/tech/xml/content.html.

[39] POET. http://www.x-solutions.poet.com/.

[40] M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for efficient XML-to-relational

mappings. InProc. of 1st Intl. XML Database Symp. (XSym), September 2003.

[41] K. Runapongsa and J. Patel. Storing and querying XML data in object-relational DBMSs.

In Proc. of 7th Intl. Conf. on Extending Database Technology (EDBT), March 2002.

[42] K. Runapongsa, J. Patel, R. Bordawekar, and S. Padmanabhan. XIST: An XML Index

Selection Tool. InProc. of 2nd Intl. XML Database Symp. (XSym), August 2004.

REFERENCES 84

[43] Schematron: An XML Structure Validation Language using Patterns in Trees.

http://xml.ascc.net/resource/schematron/schematron.html.

[44] A. Schmidt, M. Kersten, M. Wendhouwer, and F. Waas. Efficient relational storage and

retrieval of XML documents. InProc. of 3rd Intl. Workshop on Web and Databases

(WebDB), May 2000.

[45] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational

databases for querying XML documents: Limitations and opportunities. InProc. of 25th

Intl. Conf. on Very Large Data Bases (VLDB), September 1999.

[46] F. Shao, A. Novak, and J. Shanmugasundaram. Triggers over XML Views of Relational

Data. InProc. of 21st IEEE Intl. Conf. on Data Engineering (ICDE), April 2005.

[47] Tamino. http://www1.softwareag.com/Corporate/products/tamino/prodinfo/default.asp.

[48] I. Tatarinov, Z. Ives, A. Halevy, and S. Weld. Updating XML. InProc. of ACM SIGMOD

Intl. Conf. on Management of Data, May 2001.

[49] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML schema Part 1: Struc-

tures, May 2001.http://www.w3.org/TR/xmlschema-1/.

[50] Tourism Markup Language.http://www.opentourism.org.

[51] ToXgene - the ToX XML Data Generator.http://www.cs.toronto.edu/tox/toxgene/.

[52] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 Advisor: An Optimizer

Smart Enough to Recommend its Own Indexes. InProc. of 16th IEEE Intl. Conf. on Data

Engineering (ICDE), February 2000.

[53] XMark. http://monetdb.cwi.nl/xml/.

[54] A. Yao. On random 2-3 trees.Acta Informatica, 9(2), 1978.

[55] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based approach

to storage and retrieval of XML documents using relational databases.ACM Transactions

On Internet Technology (TOIT), 1(1), 2001.

